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Abstract. This paper studies the prediction of head pose from still
images, and summarizes the outcome of a recently organized competition,
where the task was to predict the yaw and pitch angles of an image
dataset with 2790 samples with known angles. The competition received
292 entries from 52 participants, the best ones clearly exceeding the
state-of-the-art accuracy. In this paper, we present the key methodologies
behind selected top methods, summarize their prediction accuracy and
compare with the current state of the art.
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1 Introduction

Head pose estimation [5,6,9-11,15] attempts to predict the viewing direction of
human head given a facial image. More specifically, the output of a head pose
estimator consists of the yaw and pitch angles in 2D space and optionally the
roll angle in 3D space. The estimation of head orientation is difficult due to
variations in illumination, sparsity of data and ambiguity of labels.

On one hand, collecting data for head pose estimation is difficult although
there exists large facial databases such as Labeled Faces in the Wild [12] and
Youtube Faces Dataset [22]. However, it is almost impossible to manually anno-
tate these collected images with an exact head orientation. The available solution
adopted by the public benchmarking datasets is to ask the participants to look
at a set of markers that are located in predefined direction in the measurement
room (e.g., 93 direction marks of Pointing’04 dataset [8]). Therefore, the data of
the benchmark sets is sparse, both in terms of subjects and angles. For example,
there are only 30 images for each head pose angle acquired from 15 subjects
in the Pointing’04 dataset. The data are then further divided into training and
testing set, which makes the data for training even more sparse.

On the other hand, the annotated labels obtained with the pose direction
markers are noisy because they in fact define the direction of gaze instead of the
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head pose direction. In other words, even the within-subject head pose direction
can have a large variation while looking at the same marker. As a result, the
images with the same label can actually have different true poses.

In addition to the ambiguity caused by the varying appearance of different
persons, the mentioned two challenges lead to a complicated observation-label
relation, which requires a model that is truly robust. Considering the labels
for head pose estimation as sparse discrete integers, such a problem can be
formulated into the following three types of frameworks: 1) regression-based
approaches [3,5,10,19]; 2) classification-based approaches [6,11]; and 3) hybrid
of the two [9]. In this paper we mostly concentrate on the classification approach,
but will first briefly review the principles behind all approaches.

In regression frameworks for head pose estimation, a regression mapping is
learned from low-level image features to continuous scalar-valued label space.
Reference [5] introduced a two-layer regression framework in a coarse-to-fine
fashion, which first approximately determines the range of predicted labels and
then learns a regression function to discover the exact label values. Alternatively,
regression forests have shown superior efficiency in head pose estimation [3]
compared to other regression methods. After the introduction of the tree-based
approach [3], alternating regression forests were proposed [19] to incorporate
the global loss across all trees during training instead of independently growing
trees in the original random forests. Recently, a K-clusters regression forest
was proposed with a more flexible multi-branch splitting algorithm instead of
the standard binary function, thus integrating the locality in randomized label
subspace into the whole regression framework [10].

When using the classification approach, the labels are treated as independent
class labels [11], which discards the ordered dependency across labels. Geng
et al. [6] introduced the concept of soft labeling to capture the correlation of
adjacent labels around true pose and also model the noise in the labels. Guo
et al. [9] investigated both advantages and disadvantages of regression based
and classification based algorithms, and then introduced a hybrid approach by
adding an extra classification step to locally adjust the regression prediction.

In this paper we consider a large variety of prediction methods crowdsourced
from the research community in a form of a competition. The TUT Head Pose
Estimation Challenge was organized in the Kaggle.com competition hosting plat-
form! during the Fall 2014, and attracted altogether 292 submissions from 52
teams around the world. In the sequel we describe selected methods of the top
participants and compare them with recently proposed state-of-the-art methods.

Apart from the learning based approach considered in this paper, there has
been increasing interest in geometry-based approaches that fit a geometric face
model into the measurements using algorithms such as Iterative Closest Point
(ICP). State of the art methods in this field typically use a 3D sensor with
applications in the transportation and driver monitoring [17,21]. The model
based approach and the depth measurements can reach significant accuracy gain
in comparison to plain 2D data. Nevertheless, plain RGB cameras are extremely

! https://inclass.kaggle.com/c/tut-head-pose-estimation-challenge/
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Fig. 1. Left: An example image with green lines illustrating the HOG features. Right:
All combinations of yaw and pitch angles in the training set. The size and color of each
point represents the number of images in each category.

widespread and purely data driven methods have surpassed human accuracy in
many areas [20], so we will limit our attention to this line of research. We also
hope that the manuscript will serve other researchers in the field as a collection
of benchmark methods. All data together with the ground truth and benchmark
code are publicly available at the supplementary site of this paper?.

2 Material and Methods

The material used in the experiments is derived from the widely used Pointing’04
dataset [8]. The original data was collected by requesting test subjects to look
at markers located at different viewing directions in the measurement room, and
an example of the original images is shown in Figure 1 (left). The locations of
the total of 93 angles (markers) are then the basis of the annotations. The 93
directions are the product of 13 different pitch angles and 9 different yaw angles,
as illustrated in Figure 1 (right). The dataset in our experiments is slightly
modified by a tight cropping and resizing the head area from the original 384 x
288 resolution to images of size 150x150 pixels, thus forcing the methods to
estimate the angles based on relative location of face features instead of the
absolute location. The database consists of pictures of 15 subjects, each looking
at the 93 angles twice. In total this results in 15 x 93 x 2 = 2790 samples.

The cropped and resized images were transformed to feature vectors using
dense Histogram of Oriented Gradient (HOG) features as defined by Felzen-
szwalb et al. [4] with a 9 x 9 grid. The HOG features are the most common
feature set for head pose estimation representing the state of the art in the
field [6,10]. The Felzenszwalb variant differs from the original HOG features [2]
in that it uses both directed and undirected histogram bins as well as additional

2 http:/ /sites.google.com/TUT-head-pose/
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energy features. In our case, the image was split to 9 x 9 blocks, and the HOG
features with 9 undirected bins, 18 directed bins and 4 energy features were
calculated to result in a feature vector of dimension 9 x 9 x (94 18 +4) = 2511.

For the competition, the data was split to three parts: The training set with
1953 randomly selected images, validation set with 279 and test set with 558
samples. In other words, the proportions of the three subsets are 70 %, 10%
and 20% of all samples. The role of separate validation and test sets is that
the competition participants can probe the accuracy of their algorithm on the
validation set, while the final standings are determined based on the test set.
This discourages overfitting to the test set and results in better generalization.

In the following, we will consider two criteria for prediction accuracy. The
main accuracy metric is the Mean Absolute Error (MAE) defined as MAE =

ﬁ 22;1 (|én — 0] + |q7>n — qbn\) , where 0, and ¢,, denote the true yaw and

pitch angles of the n’th sample and 0,, and én their estimates, respectively. For
classification based methods, we will also consider the mean accuracy, i.e., the
proportion of cases when the two angles are predicted exactly correct.

2.1 State of the Art

This section reviews two recent algorithms for head pose estimation, which were
proposed in 2014 top conferences: Multivariate Label Distribution (MLD) [6]
and K-clusters Regression Forests (KRF) [10]. As mentioned in the introductory
section, MLD and KRF methods represent the state of the art among classifica-
tion and regression based approaches, respectively.

K-clusters Regression Forests. Based on the standard random forests for
regression a K -cluster Regression Forest was recently proposed [10] by introduc-
ing more flexible node split algorithm instead of binary split. The splitting rule
of K-cluster Regression Forests at each node consists of three steps: 1) Cluster
the training samples into multiple groups according to the distribution of the
label space; 2) Learn the decision function to distinguish the samples in the
same cluster from others as a classification problem; 3) Split the data using the
predicted cluster label by the trained classifier.

As a result, the novel splitting scheme gives more freedom of choosing parti-
tioning rule and increases the accuracy in comparison to a standard regression
forest. It is worth noting that the size of clusters can be determined by either
adaptive selection or cross-validation. In the experiments, we adopt the adaptive
K-clusters Regression Forests (AKRF) with the same parameters as in [10] as the
baseline state-of-the-art regression method for comparing the results generated
by the participants of the competition.

Multivariate Label Distribution. Multivariate Label Distribution (MLD) is
a recently proposed classification method [6] aimed at capturing the correlation
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between neighboring poses in the label space. Based on standard Label Distribu-
tion Learning (LDL), Multivariate Label Distribution is extended to model the
two-dimensional output of head pose estimation (i.e., yaw and pitch angles of
head viewing direction), which can mitigate the data sparsity and imbalanced-
ness. By mining the correlation across labels, MLD can intuitively be treated as
multi-label learning with correlated labels.

2.2 Top Methods of the TUT Head Pose Estimation Challenge

The TUT Head Pose Estimation Challenge was organized in Fall 2014, and pro-
vided the participants readily calculated HOG feature vectors together with the
ground truth yaw and pitch angles for the 1953 training samples. The partici-
pants were requested to predict the corresponding angles for the validation and
test sets. The participating teams were allowed to submit the predicted angles
four times each day for assessment. The Kaggle.com platform automatically cal-
culates the accuracy of both subsets but reveals only the validation set accuracy
(called public leaderboard score), while the test set accuracy (called private
leaderboard score) is visible to organizers only until the end of the competition.

The top scoring participants all use a classification based approach. The exact
methods that can be divided into three broad categories: 1) Support Vector
Machines (SVM), 2) Neural Networks, and 3) Ensemble methods.

Support Vector Machines. The support vector machine is a widely used
classifier due to its maximum margin property, which separates the classes with
a largest possible distance between them [18]. Typically the SVM is used together
with the kernel trick that implicitly maps the data into a high dimensional kernel
space, but also the linear kernel is widely used, especially with large data sets.

The basic linear two-class SVM has later been extended to nonlinear decision
boundaries via the kernel trick (substituting each dot product by a higher order
mapping), and to multiclass classification problems via the one-vs-all (each class
is compared against the rest) and one-vs-one (each pair of classes is compared)
heuristics. Probably the most famous implementation is the LIBSVM [1], which
was also used by the participating methods described below. The LIBSVM imple-
mentation is also the optimization engine of many machine learning packages,
including the Scikit-learn [16] also used by some of the teams.

There were two SVM-based submissions to the TUT Head Pose Estimation
Challenge ending up as 2nd (team Abhishek) and 4th best (team Awurora) in the
final results (Table 2). Team Abhishek standardizes the features by removing
the mean and scaling to unit variance. Without standardization, a feature with
large variance may dominate the objective function. The team uses the SVM with
Radial Basis Function (RBF) kernel defined as K(x,x’) = exp (—7|/x — x||?) ,
with v € R a free parameter selected by cross-validation. The method also
separates the yaw and pitch angles and trains a separate SVM model for each.
So, for both pitch and yaw, a prediction for a given test sample is always among
the angles found in the training set. The separation of the full 93 class problem
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into two problems with 13 and 9 classes simplifies the estimation and may be
particularly helpful with the SVM, whose extension to multiclass problems is
non-trivial.

Team Abhishek fine-tunes the SVM model parameters using an extensive
grid-search on a parameter grid consisting of different values of penalty and
gamma parameters. The grid search was performed on a 5-fold Cross Validation
set and optimized the Mean Absolute Error (MAE) which was set as the evalua-
tion metric for the task. Interestingly, the optimal parameters for both the pitch
and yaw model are the same with C' = 10 and v = 0.0.

Team Awurora was another team whose solution relies on the SVM. The
method is a straightforward application of a single SVM classifier to the data
with the original 93 class encoding. The score is however, significantly improves
by averaging the predictions of an ensemble of SVM classifiers obtained by ran-
domly subsampling the data. More specifically, random samples of 80% of the
training data are used to train a large number of models. Each of these is used
for prediction and the resulting predicted angles are then combined together.
The team experimented with different fusion strategies, and ended up taking
the median of the SVM predictions as the most accurate method.

Neural Networks. Artificial neural networks (ANN) are powerful, nonlinear
models that can learn complex relationships between variables. They have been
studied already for over six decades and have been shown to be successful in
various machine learning problems including image recognition [13] and optical
character recognition [14]. Due to their nature, the ANN treats the multi-label
encoding of the classes in a straightforward manner and does not require any
multi-category heuristics like inherently binary classifiers such as the SVM.

Team ogencoglu uses ANN in the TUT Head Pose Estimation Challenge
placing in the third best position. The method first standardizes the features to
zero mean and unit variance, and treats the data as a single estimation problem
simultaneously for both angles. However, the encoding of the classes is nontrivial:
Instead of the straightforward 93-class encoding, the multi-label target vector is
obtained by concatenating the yaw and pitch into 22-element indicator vectors
(first 13 elements indicate the yaw angle, and the remaining 9 elements indicate
the pitch angle). The target always contains exactly two nonzero elements (one
among the first 13 and one among the 9 last ones). The final classification for
yaw angle is completed by selecting the angle that gives the maximum output
probability among the first 13 outputs. Similarly, classification of pitch angle is
performed by examining the remaining 9 elements of the output vector.

The neural network topology consists of 2 hidden layers having 200 and
70 neural units respectively with sigmoid activation functions. The output is a
softmax layer of size 22. The neural network is trained with the backpropagation
algorithm with minibatch stochastic gradient descent optimization to minimize
the negative log-likelihood. The batch size and learning rate are selected to be 50
and 0.01 respectively. The training is run for total of 750 iterations. The solution
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Table 1. Effect of stacking the classifiers. The first three rows tabulate the public
(validation) and private (test) MAE of straightforward use of a 500-tree random for-
est, 5-nearest neighbor and logistic regression classifiers, respectively. The bottom row
shows the decreased MAE when augmenting the original features with the outputs of
the first three classifiers.

Model H Public MAE Private MAE
500-tree random forest 6.156 6.546
5-nearest neighbor 6.828 7.460
Logistic regression 6.694 6.949
Extremely randomized trees (with stacking) 4.772 4.718

is implemented using pylearn2 [7] library on an NVIDIA graphics processing unit
(GPU) for faster computations.

Ensemble Methods and Stacked Generalization. Stacked Generalization
was proposed already in 1992 as a tool for improved generalization using a pool
of classifiers. The seminal paper by Wolpert [23] has inspired later work on
averaging the predictions of a collection of classifiers in various ways. The basic
principle is to train a pool of first level classifiers and feed their outputs to a
second layer predictor, possibly together with the original features.

In the TUT Head Pose Estimation Challenge, team Triskelion used the
stacked generalization framework ending up on the 6th place. The first layer
of classifiers consists of a pool of logistic regression, random forest and nearest
neighbor classifiers. The predicted class membership probabilities of the three
are appended to the 2511-dimensional feature vector as three additional higher
level features. Note that the three classifiers are first trained on the training
set, after which their outputs are calculated for the training, validation and test
sets. At first sight one could imagine that the augmented features are highly
overfitted to the training set, but practice has shown this not to be the case.
As the final second layer predictor, an extremely randomized trees classifier is
trained on the training data with augmented features. The problem is encoded
as a multi-class classification task. In other words, separate models are trained
for yaw and pitch angles. Table 1 shows the effect of stacking in terms of Public
MAE and Private MAE for the individual models and the stacked ensemble.
One can see that adding the three high-level features decreases the error about
30 %.

3 Results

The TUT Head Pose Estimation Challenge was open for submissions approxi-
mately one month. During that period, altogether 292 entries were submitted
by 52 players in 37 teams. As a baseline, the competitors were given the result
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of a ridge regression model, whose MAE score for the test set equals 9.06. The
MAE can be lowered in a straightforward manner to approximately 6.0 using,
e.g., random forest classifier with enough trees. In this section we concentrate
the top-6 teams, whose entries clearly outperform this level.

The results of the six top performing teams for the test data (private MAE
score) are summarized at the top of Table 2. The columns of the table correspond
to the MAE of the pitch and yaw angles separately, and the third column is
the average of the two. The three rightmost columns show the classification
accuracy of the methods, for pitch and yaw angles and their average, respectively.
More specifically, the accuracy refers to the proportion of cases where the angle
was predicted exactly as annotated. Note that this measure is not reliable with
regression based methods, as the exact prediction seldom occurs in a continuous-
valued output (same applies to averaged output of a classifier). Nevertheless, we
include this accuracy criterion as it gives valuable insight as to why a particular
method works well.

From the table, one can clearly see that the differences between the top
performing teams is relatively small. In terms of the pitch angle, the SVM based
approaches (teams Abhishek and Aurora) seem to dominate, while the yaw angle
is most accurately predicted by the neural network (team ogencoglu).

In addition to the prediction errors of individual submissions, the table also
shows the accuracy of committee predictors. More specifically, the rows TOP-
6-mean and TOP-6-median are the scores of combining the TOP-6 teams by
averaging and taking the median of the 6 predictions, respectively. Table 2 shows
that averaging the predictions does not improve the prediction accuracy com-
pared to individual submissions. Instead, the median of individual submissions
clearly improves the accuracy compared to any individual submission.

The two bottom rows of the table show the accuracy of two recent reference
methods for this data. The KRF method [10] is a recent regression tree based
method, and MLD [6] is a classifier method, both developed for the same feature
extraction approach as with our data. However, one can clearly see that the
methods of the competitors clearly outperform the state of the art.

4 Discussion

In this paper we summarized a collection of well performing methods for head
pose estimation from still images. Moreover, the approach illustrates the impor-
tance of collaboration between different players in developing accurate solutions
to real world problems. In the case of the TUT Head Pose Estimation Chal-
lenge, the competition was originally opened as an exercise for the participants
of a graduate level course, but soon gathered submissions from an international
audience. The discussion on the competition forum was quite lively, discussing
various approaches and proposing novel ideas.

The paper describes a collection of community machine learning methods for
head pose estimation. Data driven machine learning is becoming more and more
mainstream as the advances in software and hardware allows easier adoption of
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Table 2. Competition results. All numbers denote the Mean Absolute Error between
the true and predicted yaw and pitch angles for the test set (20 % of all data). The
best score in each column is highlighted in boldface font.

Pitch Yaw Owverall|| Pitch Yaw Overall
MAE MAE MAE ||Accuracy Accuracy Accuracy

Team f623 3.47 5.30 4.38 0.81 0.66 0.54
Team Abhishek 3.55 5.30 4.42 0.80 0.67 0.53
Team ogencoglu, || 4.17 4.78 4.48 0.79 0.71 0.55
Team Aurora 3.84 5.54 4.69 0.79 0.66 0.52
Team RainStorml|| 3.92 5.24  4.58 0.80 0.69 0.54
Team Triskelion || 4.23 5.31  4.77 0.73 0.60 0.43

Method

TOP-6-mean 3.76  5.17 4.46 0.60 0.44 0.26
TOP-6-median 3.35 5.04 4.20 0.80 0.64 0.51
KRF [10] 5.33 6.03 5.68 0.29 0.17 0.05
MLD [6] 4.49 543 4.96 0.76 0.65 0.48

recent methods. The paper gives a partial answer on how well a generic data
driven machine learning methods implemented by non-experts in the field (of
head pose estimation) compare against tailored state of the art methods.

The results of the top-scoring teams are clearly exceeding the state of the
art. One should bear in mind that the submissions are somewhat optimized
against this particular dataset and its HOG representation. Although the test
data was hidden from the participants until the end, the results probably are
slightly optimistic and favourable for the participating teams, because the data
split was random and not a more systematic “leave-one-person-out” type of split.
On the other hand, the competitors were not given the origin of the dataset, so
they were not aware of the exact feature extraction procedure.

With thorough optimization the performance of the comparison methods
could probably be improved because the image size and feature extraction param-
eters of the two are different from the test data (and from each other). Neverthe-
less, the top competitors used gemeral machine learning tools without domain
specific knowledge (the approach of a non-academic pattern recognition engineer
implementing a real application) and proved that they can reach the accuracy
of highly sophisticated tailored algorithms.

The number of submissions to the competition was relatively large, and
gained worldwide attention. The feedback from the students of the course was
also positive proving the significance of gamification as a tool for motivating
students to put forth their best effort and to combine research aspects with
classroom education.
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