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Abstract. We present in this paper a framework for articulated hand
pose estimation and evaluation. Within this framework we implemented
recently published methods for hand segmentation and inference of
hand postures. We further propose a new approach for the segmenta-
tion and extend existing convolutional network based inference methods.
Additionally, we created a new dataset that consists of a synthetically
generated training set and accurately annotated test sequences captured
with two different consumer depth cameras. The evaluation shows that
we can improve with our methods the state-of-the-art. To foster further
research, we will make all sources and the complete dataset used in this
work publicly available.
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1 Introduction

The availability of affordable depth sensors in the consumer market, especially
beginning with the first Microsoft Kinect, provided new ways for human com-
puter interaction. This hardware combined with data-driven methods [10,22,23]
enabled the estimation of human body pose in real-time which is now used for
example in video games. The latest depth sensors, especially those based on the
time-of-flight principle, have a smaller package size than ever. They can be inte-
grated into notebooks, tablets, or bundled with a virtual reality headset, which
allows new and interesting possibilities for natural interactions by hand gestures
and movements.

Although the pose estimation of an articulated hand shares similarities with
body pose estimation, it remains a challenging problem. First of all, a human
hand has many degrees of freedom. This implies also the possibilities for a high
degree of self occlusions. For instance, only a few joints are visible in the depth
map of a fist gesture. Further, depending on the viewpoint, one hand pose can be
mapped to significantly different depth maps. An additional difficulty is inherited
from the sensors themselves. The output of a consumer depth sensor is typically
of low resolution and contains noise of different distributions.
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Current methods for articulated hand pose estimation can be roughly divided
into two areas. Model based tracking methods such as [1,11,16,20] try to fit a
known hand-model to the depth data and track it over time. Whereas discrim-
inative approaches like [14,24–26] try to learn a mapping from the visual input
of the depth sensor to a pose vector. However, a comparison between different
methods remained difficult in the past, because of the lack of available datasets
and source codes. Only recently, Tang et al. [24] and Tompson et al. [26] inde-
pendently published datasets of varying quality.

In this work we provide a common framework for hand pose estimation. This
includes interchangeable methods for hand segmentation, preprocessing, model
training and inference. We re-implemented several published methods and intro-
duce also extensions, especially for methods based on convolutional networks.
Further, we propose a mean-shift method for hand segmentation that gives a
very good trade-off between speed and accuracy. To overcome the limitations of
existing datasets, we created a new one that contains more than 4·105 annotated
training images, rendered from a realistic human model. To evaluate the different
methods, we additionally annotated test sequences captured with two different
depth sensors. To foster further research of articulated hand pose estimation, we
will make the source code of the complete framework and the datasets publicly
available at our project page: http://rvlab.icg.tugraz.at/pose.

2 Related Work

Pose estimation and the related gesture recognition of a human hand has due
to its importance for human computer interaction a long history in the com-
puter vision community. Mitra and Acharya [17] give a good overview of gesture
recognition. Erol et al. [7] focus specifically on hand pose estimation, where the
authors divide the approaches based on the data input, color images and depth
maps, and between model based tracking methods and discriminative methods.

With the availability of affordable depth sensors in the consumer market, the
interest in pose estimation from depth maps has increased. In the seminal work
of Shotton et al. [22], the authors utilize a random decision forest for body pose
estimation from depth data. They predict for each pixel a class probability, if it
belongs to the background, or to one of the 38 defined body parts. In the same
spirit, Girshick et al. [10] and Sun et al. [23] refine the random forest frame-
work with joint regression methods and incorporating dependency relationships
between output variables, respectively.

Earlier methods to estimate the articulated hand pose rely on model based
tracking. Oikonomidis et al. [20] fit a hand model with 26 degrees of freedom
to the data with particle swarm optimization. Similar, De La Gorce et al. [11]
use a detailed hand mesh with simulated texture and lightning to fit and track
a model to a monocular image stream. To handle occlusions, Balan et al. [1]
detect finger tips as salient points and assign them to the hand jointly with
the pose estimation. Further, they include edge and optical flow clues in their
objective function. Melax et al. [16] propose a tracker based simulation of a hand
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model to fit the depth data in terms of a 3D error function. They spawn multiple
simulations and constrain the hand model to improve the overall accuracy.

Following the success in body pose estimation, discriminative methods have
recently become popular for articulated hand pose estimation. Keskin et al. [14]
propose to cluster the training data based on their shape with a random decision
forest and train for each cluster an expert similar to [22]. In [25], Tang et al. train
a semi-supervised random forest to combine on synthetic data in combination
with sparsely labeled real depth data. The structure of the hand in a random
forest framework is exploited by Tang et al. [24]. The authors treat the joint
localization as a structured coarse to fine search by conditioning the trees on the
previous estimations and a latent tree model.

In contrast to random forest based methods, approaches that rely on con-
volutional networks have become popular since the enormous success in object
classification [15]. Hand segmentation with a convolutional network is described
by Neverova et al. [18]. They combine synthetic and real depth data to conduct
a pixel-wise prediction of 20 different hand parts. In the work of Tompson et al.
[26] the authors train a convolutional network to predict joint locations in a
coarse 2D heat-map. The depth of the joint is obtained by the depth value at
the 2D joint location. An additional inverse kinematic model is utilized to refine
the results.

All of the above mentioned methods use their own datasets for training and
evaluation. Unfortunately, most of the authors did not publish their datasets,
making a fair comparison complicated. Only very recently Tang et al. [24] and
Tompson et al. [26] independently released their images along with annotations.
However, these datasets have their drawbacks. The annotations provided by
Tang et al. are located on the bone centers, rather than on the joint locations of
a human hand skeleton. This prohibits refinement and regularization techniques
that rely on this skeletal information. Further, the annotations were obtained
by the tracking method of [16] and only little effort was put into refining the
estimates. The dataset of Tompson et al. has a higher annotation accuracy, but
lacks in variability of the training data. Only a sequence of a single user was
recorded for training. The test set consists of two persons, whereby one is the
same as in the training sequence.

Our synthetic dataset that is used for training provides a high annotation
accuracy in terms of joint locations. To ensure a high variability in the dataset we
use several size and shape variations of the animated hand. Because the training
set is synthetically generated, the test sequences are guaranteed to be completely
independent to the test sequences. Further, we provide test sequences captured
with two different depth sensors to evaluate all methods within our framework.

3 Framework

In this section we describe the general framework we utilize for articulated hand
pose estimation. We summarize the existing methods implemented in our frame-
work and propose a new method for hand segmentation and extensions to infer
the joint locations. An overview of the framework is visualized in Figure 1.
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Fig. 1. Framework Overview: The main building blocks of our hand pose estimation
pipeline. The data provider loads depth maps and optional infrared images from a
specified dataset, or from a camera stream. The projection is an abstraction of the
camera parameters and maps the pixels of a depth map from the 2D image space
to 3D world coordinates and vice versa. In the next step, the hand gets segmented
from the background. The segmentation results are then preprocessed including depth
normalization and mean subtraction. Finally, the joint locations are predicted in an
inference step and postprocessing is conducted to refine the results.

Data Provider. The data provider abstracts the access to the various sources
of data. This allows the evaluation of a single method on different datasets.
Further, the data provider can encapsulate a camera stream to qualitatively test
a method on new data. The type of data itself depends on the depth sensor. For
a typical time-of-flight sensor the data consists of a depth map and an infrared
image. However, it could also include a color image, or any combination of it.

Projection. The focus of this work is on hand pose estimation from depth data.
This implies that we can project the points from the 2D image space to a metric
3D space and vice versa given the camera projection model. For the remainder
of this work we will stick to the following convention: We denote a coordinate in
the 2D image space with associated depth d as u = (u, v, d)T . Given a projection
φ the 2D point is related to a 3D world coordinate x = (x, y, z) by φ(u) = x.
Conversely, given a 3D point we get the corresponding image coordinate with
a depth value by φ′(x) = u. The projection model φ highly depends on the
camera. It can be a projective model, or an orthographic one. Further, the camera
intrinsics need to be known, for example from a camera calibration procedure.
For more details we refer to [12].

Segmentation. Most of the existing methods need a hand detection or segmen-
tation prior to the inference. The result of this step is either one, or possibly
more detection results represented as bounding boxes, or as pixel-wise segmen-
tation masks. Currently, we have implemented two existing approaches and we
additionally propose a new mean-shift based approach.

The most simple hand segmentation is given by depth thresholding. Based
on the common assumption that the hand is the nearest object to the sensor,
one defines all pixels as belonging to a hand where the depth d is in the interval
[dnearest, dnearest+tt], where tt is a user defined threshold. One can easily see, that
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the parameter tt is very critical and that the segmentation, depending on the
arm posture, will include many pixels of other body parts and the background.

The second existing approach implemented in our framework is derived from
[22] and used for example in [26] for hand segmentation. We train a random forest
that assigns each pixel a probability if it belongs to a hand or the background.
Following the work of [22], we sample split functions in the training phase of the
form

D
(
u + d−1Δu, v + d−1Δv

) − D(u, v) ≥ td (1)

where (u, v) is the current pixel location with associated depth d, (Δu,Δv) is a
random offset vector sampled from a log-space, td is a sampled threshold and D
is the depth map. We further apply a median filter and a morphological closing
to remove outliers from the segmentation result.

The two segmentation methods described above work in the 2D image space.
We propose a new simple technique that is fast and directly works with the
points in 3D. Given the set of 3D points {xi}Ni=1 and a starting point x(0), for
example the nearest point to the sensor, we apply a mean shift segmentation [5]
to find the hand center by iterating
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until convergence or a maximum number of iterations. With an appropriate ker-
nel profile k(·), the bandwidth parameter h can be related to the circumference
of a common hand. A point xi is considered as belonging to a hand, if k(·) is
greater than ε.

Preprocessing. Convolutional networks, need an input of a predefined size.
Therefore, we resize the segmented hand to an uniform patch size pw × ph.
However, this is also beneficial for other methods, because it decreases the vari-
ability between depth sensors that have different resolutions. We improve this
robustness further, by enforcing a zero mean and a unit standard deviation of
the depth values in each patch.

Convolutional network based methods have a better training convergence by
decorrelating the data. For this purpose, we subtract the mean of all training
samples from the data. Optionally, we could perform a Zero Component Analy-
sis [4].

Inference. Given the segmented and preprocessed patch, we want to infer the
hand posture that is defined by the set of joint locations. At the moment, we
have implemented a random forest method and different approaches based on
convolutional networks. All methods have in common that they determine the
location in the 2D image space (u, v) with an associated depth value d, u =
(u, v, d).
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The first method is a simple regression forest similar to [9]. Given the seg-
mented and preprocessed hand patches Pi as input, the samples are separated
by split functions of the form

Pi(u1, v1) − Pi(u2, v2) ≥ tp (3)

where (ui, vi) get sampled from the interval [0, pw) × [0, ph). In each leaf node
we store the mean joint locations of the training samples that reach this node.
At test time, the estimated joint locations are then given by the mean of the
independent tree predictions.

The second type of methods that we have implemented are based on con-
volutional networks. One existing approach to compute predictions for (u, v) is
to regress the locations of each joint in a discrete heat-map of size hw × hh as
proposed in [26]. This has the drawback that the depth of each joint has to be
determined in an additional postprocessing step. Hence, we extend this approach
by adding for each joint an additional 1D discrete heat-map of size hd to also
infer the depth. A full 3D heat-map for each joint would not be feasible, because
of the huge amount of parameters that have to be computed.

Instead of regressing a heat-map for the joint locations, we propose to regress
the values directly. This has the benefit that we do not have to discretize the
space of valid locations and further it reduces the amount of parameters in the
convolutional network. In this way we can directly regress the depth values and
along with the 2D joint locations.

An addition to this model relies on the assumption that the set of joint
locations lies on a lower dimensional sub-space. Therefore, we can regress the
values of the lower dimensional sub-space and reducing the number of parameters
we have to estimate. One way to compute a mapping to a lower dimensional
space is by applying a Principal Component Analysis (PCA) on the set of joint
locations given by the training data [19]. This maps the joint space to a linear
sub-space. However, we can implement a non-linear mapping directly in the
convolutional network with an auto-encoder [13] and learn the sub-space jointly
with the network itself. This is achieved by introducing a fully-connected layer
of N neurons between fully-connected layers of M neurons, given N � M [13].

Postprocessing. The postprocessing step serves two purposes. First, for methods
that do not directly infer the depth of a joint, we try to estimate it from the
depth map itself by choosing the depth value at the estimated 2D joint location.
The second purpose is the refinement of the estimation result. For the heat-map
estimates we obtain sub-pixel accuracy by fitting a 2D Gaussian distribution
[26] to the heat-map. For the future we also plan to implement different kinds
of inverse kinematic models, as for example proposed in [25], or [26].

4 Dataset

This section describes the proposed dataset that consists of a synthetically gen-
erated training set and three test sequences captured by two different consumer
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depth sensors. With this approach we can cover a wide range of hand shapes
and also many hand postures in the training set, ensuring a high variability.
Further, we minimize with this approach the cumbersome manual annotation of
the data and therefore increase the accuracy of the annotations. The test sets
are recorded with two different depth sensors. This has the benefit that we can
evaluate the generalization-abilities of the different methods.

An important decision for the annotation is the placement of the points that
define the hand skeleton. We defined those points in a way that they closely
resemble the anatomy of a human hand. Therefore, we place them directly at
the real joints of the hand and additionally on the finger tips. A 2D sketch of
this is shown in Figure 2(a). A major advantage of this placement is that the
distance between the single points stay almost constant in 3D.

(a) Skeleton (b) Blender Model (c) Rendered Texture (d) Rendered Depth

Fig. 2. Hand Skeleton and Blender Data: (a) A sketch of the hand skeleton that
we use for the annotation. It closely resembles the anatomy of a real human hand so
that the distances in 3D stay almost constant. (b) A textured MakeHuman mesh in
Blender with the complete skeleton. The black pyramid visualizes the camera. (c) The
rendered textures can be used to train segmentation algorithms. (d) The corresponding
rendered depth map of the Blender scene.

The whole synthetic training data is rendered in Blender [3]. We utilize there-
fore a high quality mesh of a complete human body that is created with Make-
Human [2]. For the model visualized in Blender see Figure 2(b). By using a
complete human body model over a hand model alone, it is possible to generate
more realistic images. We also texture the model by coloring the hand in red. In
this way, we also create training data for segmentation algorithms. The output
of a Blender rendering is the segmentation mask of the hand, a depth map that
is perfectly pixel-aligned to the segmentation mask, and the joint annotations.
For an example see Figures 2(c) and 2(d). After the rendering we add a Gaussian
noise with a zero mean and a standard deviation of σ = 3 to the depth maps to
simulate some of the sensor noise.

To achieve a high variability in the training set, we alter the model in two
ways. First, we change the size of the hand and the fingers to simulate the
diversity of different people. Second, we model a wide range of hand gestures
and arm postures. This set is further increased by interpolating between random
pairs of the modeled poses. In total, we rendered over 4 × 105 depth maps with
associated hand segmentation masks and annotations with this setup.

For the test set we recorded three sequences with 400 frames each. We employ
as depth sensors the Creative GestureCam [6] and the PMD Pico [21]. Both
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(a) Creative (b) Pico (c) Blender

Fig. 3. Annotations: (a) and (b) depict sample annotations in the 3D point cloud
and the 2D infrared image. In comparison, (b) shows the annotation and the point
cloud of the synthetic generated data.

sensors use the time-of-flight principle to compute dense depth measurements.
Additionally to the depth maps, the sensors provide infrared images. We anno-
tated the data with the aid of those infrared images and the 3D point clouds asso-
ciated with the depth maps. Samples of the annotations from the test sequences
in comparison to the synthetically generated data is shown in Figure 3.

5 Evaluation

In this section, we evaluate the above described methods on our proposed
dataset. We compare the different approaches to segment the hand from the
background in Section 5.1. The evaluation of the pose estimation is afterwards
described in Section 5.2.

5.1 Hand Segmentation

To evaluate the performance of the hand segmentation we use the intersection-
over-union metric as it is commonly used in object localization [8]:

r = area (Bes ∩ Bgt) · area (Bes ∪ Bgt)
−1

. (4)

Bes is the estimated hand localization and defined as the rectangle that encloses
the hand segmentation. Similarly, we define Bgt as the rectangle with minimum
area that encloses the 2D ground-truth joint locations. The value r is in the
interval of [0, 1] and higher values correspondent to better hand segmentations.

We evaluate the random forest based hand segmentation as explained in [26]
and our proposed mean-shift based approach. The parameters for the random
forest are chosen as in [26], with four trees, a maximal tree depth of 25 and
10.000 sampled split-functions per node. The random forest is trained on a subset
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of 20% of the training images. For the mean-shift based approach we use a
exponential kernel profile k(x) = exp(−x) and set the bandwidth parameter
to h = 13.5. As baseline, we also include a simple depth thresholding. In this
case, the segmentation contains all pixels with depth value d in the interval
[dnearest, dnearest + tt] and tt = 300mm.
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Fig. 4. Segmentation Results: The plots depict the percentage of frames where
the intersection-over-union r is greater than a threshold t. The first test sequence was
recorded with the Creative GestureCam (a) and the second one with a PMD Pico (b).

We evaluated those three methods on a test sequence captured by a Cre-
ative GestureCam and on one captured by a PMD Pico. In Figure 4 we plot
the percentage of frames with a intersection-over-union value r greater than an
increasing threshold t. We can see that the proposed mean-shift based approach
delivers the best segmentations in terms of fitting the ground-truth 2D joint
locations the tightest. Our method also generalizes better over different camera
models. The random forest method and the thresholding include many pixels of
the arm and other body parts. However, the mean-shift approach fails in some
cases to find the hand, in contrast to the random forest and the thresholding
method. This is especially the case, if the hand is not the nearest object to the
depth sensor. Another advantage of the mean-shift segmentation is the speed as
it runs a magnitude faster than the random forest based method.

5.2 Pose Estimation

In this section we evaluate the above described methods for inference on two of
our three test sequences1. We use for all experiments the proposed mean-shift
approach to segment the hand from the background, with the previously stated
parameters. However, instead of initializing the algorithm with the pixel with
the smallest depth value, we set x(0) to the ground truth location of the palm
to ensure a successful hand segmentation. After scaling the segmented hand to
a patch size of 96 × 96, we normalize the depth within each patch to zero mean
and a unit standard deviation. Further, we subtract the mean over the training
set from each patch.
1 Results on additional test sequences can be found on our project page.
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Fig. 5. Quantitative Evaluation: The graphs show the inference result in 2D and
3D for three test sequences. (a) was captured with a Creative GestureCam, whereas (b)
was captured with a PMD Pico. In the first row, we plot the mean estimation results
in 2D. The second row shows the same in 3D. Finally, we show in the last row the
percentage of frames where all joints are within a distance of D.

The first method is the regression forest, where we trained 8 trees with a
maximal depth of 25. For each node we sample 104 split functions and optimize
them with a random sub-set of 5 ·103 training patches. In the leaf node we store
the mean of the regression vectors that reaches this node and at inference, we
compute the mean over all tree results to get the final estimate. For the convolu-
tional network based methods we utilize the same multi-resolution architecture
as in [26]. Only the fully connected layers differ for these networks. As activation
functions we use a ReLU in the hidden layers, and a linear one in the output
layer. To improve generalization, we apply dropout with a probability of 0.5 in
the fully-connected layers. The first network is similar to the one in [26], except
that we have 20 output heat-maps of size 18 × 18 instead of 14. In the second
network we add for each joint a 1D heat-map of size 25 to infer also a depth
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value from the network. We replace the heat-maps with standard regression in
the third network architecture and have two fully-connected layers with 4096
neurons each, so we get an output structure of 4096×4096×60 neurons. Finally,
we evaluate the network methods that are based on the sub-space assumption
described above. In the first variant, we approximate a PCA with an auto-encode
of the form 4096 × 4096 × 20 × 60, where we utilize also linear units in the layer
before the last. Finally, we use a non-linear auto-encoder in the output layers
of the form 4096 × 4096 × 20 × 4096 × 60. This projects the pose space to a
non-linear sub-space as described in [13].

The results are depicted in Figure 5. We show in the first row the 2D mean
error in pixels. Similarly, the second row compares the mean error of the 3D
estimates in mm. In the last row, we visualize the percentage of frames where
all 3D joint estimates are within an increasing distance D to the ground-truth.

We can observe that the convolutional network methods outperform the
regression forest. Our proposed extension to the heat-map to infer also the
depth is beneficial. In 2D the accuracy stays identical, however in 3D we get
an improvement of the results. Interesting is the fact that the regression based
networks perform even better. While the PCA based network achieves nearly no
gain of performance, we can see that the non-linear auto-encoder further boosts
the results, validating the sub-space assumption.

6 Conclusion

We presented in this a paper a framework for articulated hand pose estima-
tion that includes state-of-the art segmentation and inference methods. Further,
we proposed a new method for segmenting the hand from the background and
improving existing inference approaches. To overcome common problems with
current benchmarks for hand pose estimation, we created a new dataset that
consists of a synthetically generated training set that covers a large space of
possible postures. Additionally, we accurately annotated three test sequences
obtained by two consumer depth sensors. In the evaluations we showed the ben-
efits of our proposed methods. To foster further research in the community we
make all sources and the dataset publicly available. In the future, we plan to
add test sequences from more depth sensors, as for example the Microsoft Kinect
OneTM and implementing further segmentation and inference methods within
our framework.
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