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Abstract. Accurate tumor segmentation plays an important role in
radiosurgery planning and the assessment of radiotherapy treatment
efficacy. In this paper we propose a method combining an ensemble
of 2D convolutional neural networks for doing a volumetric segmenta-
tion of magnetic resonance images. The segmentation is done in three
steps; first the full tumor region, is segmented from the background by
a voxel-wise merging of the decisions of three networks learned from
three orthogonal planes, next the segmentation is refined using a cellu-
lar automaton-based seed growing method known as growcut. Finally,
within-tumor sub-regions are segmented using an additional ensemble of
networks trained for the task. We demonstrate the method on the MIC-
CAI Brain Tumor Segmentation Challenge dataset of 2014, and show
improved segmentation accuracy compared to an axially trained 2D net-
work and an ensemble segmentation without growcut. We further obtain
competitive Dice scores compared with the most recent tumor segmen-
tation challenge.

Keywords: Tumor segmentation · Convolutional neural network ·
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1 Introduction

Segmentation of brain tumors plays a role in radiosurgery, radiotherapy plan-
ning, and for monitoring tumor growth. Segmentation is challenging since tumor
location and appearance vary greatly between patients.

Many successful method for doing voxel-based segmentation are based on
the random forest (RF) classification scheme which predicts segmentation labels
from user engineered image features. Tustison et al. [15] proposed a two-stage
RF approach, with features derived from a Gaussian mixture model followed
by a Markov random field segmentation smoothing. The RF was also used by
Reza et al. [12] who designed features using textons and multifractional Brow-
nian motion. Menze et al. [10] proposed a generative probabilistic atlas-based
model which adapts to the intensity distribution of different subjects and later
combined it with the RF classifier [9]. An example of a successfull method that
does not use a RF classifier is the patch-based approach [2]. Here voxels are
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segmented by comparing image patches to a dictionary consisting of training
patches where the corresponding expert labels are used for segmentation.

In recent years and due to advancements in computational power, deep neu-
ral networks have been revived. In the most recent Brain Tumor Segmentation
Challenge 2014 (BraTS2014), this was reflected by a number of contributions
using deep neural networks. The work by Davy et al. [3] presented a 2D con-
volutional network trained from an axial perspective. Two others presented 3D
networks [16], [18], and while their implementations differed, the results indi-
cated a benefit of using 3D information. An important property of a network
is that it learns image features relevant for the specific segmentation problem.
This alleviate researchers from having to engineer such features.

We revisit the idea of Davy et al. [3] but instead of using one 2D network to
do voxel-based segmentations, we learn an ensemble of networks, one for each of
the axial, sagittal and coronal planes and fuse their segmentations into a more
accurate 3D informed segmentation. Unlike previous works using convolutional
networks we do not segment the tumor and its sub-regions using a single multi-
label classifier. Instead, we split the problem into two sequential segmentation
problems. The first segmentation separates tumor from healthy tissue and refine
the segmentation using a growcut algorithm [17]. The second segmentation per-
forms the within-tumor sub-region segmentation using the tumor mask of the
first segmentation to select voxels of interest.

The method (Fig. 1) is demonstrated on the BraTS2014 dataset. We were
able to achieve improved ground truth segmentation accuracy compared to a 2D
axially trained network [3] and Dice scores [4] just below the top methods of the
challenge leaderboard (https://www.virtualskeleton.ch/BRATS/Start2014).

2 Data

Two datasets were downloaded from the BraTS2014 website (November, 2014).
The first dataset (data1) consisted of 106 high grade glioma (HGG) and 25

low grade glioma (LGG) subjects (no longitudinal repetitions), all with ground
truth segmentations of the tumors. It was randomly split into a training set
of 76 HGG/15 LGG subjects, and the rest (30 HGG/10 LGG) were used as
test data. For each subject, we used a set of multimodal magnetic resonance
imaging (MRI) volumes, consisting of two T2-weighted images (Fluid-attenuated
inversion recovery (FLAIR) and (T2)) and a T1-weighted image with gadolinium
contrast (T1c). The MRIs were skull stripped, rigidly oriented according to MNI
space and re-sliced to 1 mm3 as described in [6]. The ground truth segmentation
consisted of five labels (background=0, necrosis=1, edema=2, non-enhancing=3,
enhancing=4).

The second dataset (data2) consisted of 187 multi-modal MRI volumes from
88 different subjects with 99 longitudinal repetitions. Since only the BraTS2014
challenge organizers know the ground truth segmentations, it allowed for a
blinded segmentation evaluation via the challenge website.

https://www.virtualskeleton.ch/BRATS/Start2014
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3 Method

The proposed method, outlined in Fig. 1, consists of four steps. First, the MRI
volumes are bias corrected for scanner field inhomogeneity and standardized to
similar cross subject intensities. Second, an ensemble of convolutional networks
segments the tumor from healthy tissue. The third step (growcut) post processes
the segmentation to improve the segmentation. The fourth step does the within-
tumor segmentation using an additional ensemble of networks. The four steps of
the method are detailed successively in section 3.1-3.4.

Fig. 1. Shows a schematic, outlining the pipeline of our method. The multi-modal MRI
data is pushed through four successive stages of 1) bias correction, 2) whole tumor
segmentation (tumor vs. none tumor), 3) localized post-processing of the segmentation
and 4) a within-tumor segmentation stage.

3.1 Bias Correction and Standardization

MRI generally exhibits large intensity variations even within the same tissue type
of a subject, largely due to field inhomogeneity of the scanner. To minimize this
bias, the N4 method [14] was applied to each MRI.The N4 method works under
the assumption that the bias field can be modeled by a smooth multiplicative
model which is fitted iteratively to maximize the high frequency content of the
MRI intensity distribution. To further standardize across different scanners, the
maximum peak of each MRI intensity histogram was found, and the intensities
scaled according to I = Ic · (Ib/Ip), where Ic is the N4 bias corrected image
volume, Ip is the maximum peak intensity of Ic and Ib is a reference value which
we fixed to Ib = 200. To achieve equal importance of the multi-modal MRI, their
intensities were further standardised using a normal transformation applied to
each of the different modalities.

3.2 Convolutional Network Ensemble: Whole Tumor

To segment tumor tissue, three convolutional neural networks were trained using
a multi-modal image patch of dimension 46 × 46. Each 2D network learned to
classify the same center voxel but viewed from an axial, sagittal and coronal
perspective. Combining this ensemble of 2D networks enabled the segmentation
method to become 3D aware.
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The 2D networks are described by the architecture in Fig. 2. It shows a
network consisting of 6 layers. Each perform an algebraic operation on the input
data x and passes the result as input to the next layer. The process is repeated
until reaching layer 6 which predicts the most probable classification label.

Fig. 2. Depicts a 2D deep neural network architecture consisting of six layers. The first
three are convolutional layers, followed by two fully connected layers and a softmax
layer where the arrows indicate the connections between layers. The squares illustrate
the 2D nature of the input (x) and the intermediate representations (h) of the convolu-
tional layers, where x = [x1...xn] is a 3D matrix of n input patches and h = [h1...hm],
is the concatenation of m 2D filter response. The circles of the fully connected layers
indicate its 1D nature with n being the number of neurons (=the circles), such that
x = [x1...xn]T and h = [h1...hn]T are the 1D vector representations of the input and
the neuronal activations.

Convolutional layers: The convolutional layers apply filtering and downsam-
pling operations to image patches. The first layer uses a filter bank of size
40 × 3 × 7 × 7 which it applies to the 3 × 46 × 46 image patch. This produces a
feature map h of size 40 × 40× 40, where the first dimension indexes the feature
maps, while the second and third dimensions indexes (row, column) coordinates.
More specifically the jth map is calculated by hj = bj +

∑n
i=1(wij ∗ xi), where i
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indexes the input channel and a trainable filter wij , the ∗ operator denotes 2D
convolution and n = 3 is the number of input channels. Subsequently a 2×2 max
pooling strategy is used to downsample h to size 40 × 20 × 20 and the rectified
linear unit function, σ(h) = max(0, h) is applied. The remaining convolutional
layers (two and three) perform the same type of operations but using filter banks
of size 50×40×5×5 and 60×50×5×5 for the respective layers. The application
of these filters and downsampling steps result in a number of the intermediate
feature maps with the dimensionalities listed in the top part of Fig. 2.

Fully connected layers: Layer 4, 5 and 6 are fully connected layers meaning
each neuron is exposed to the full input x of the previoues layer. Each of the
800 neurons in layer 4, evaluates the product hj = wT

j x + bj and applies the
non-linear activation function σ(hj). Thereby transforming the 240 dimensional
vector x into an 800 dimensional vector σ(h) which is passed to layer 5. Layer
5 works similar to layer 4, but now generating a 500 dimensional feature vector
σ(h) which is propagated to layer 6. Layer 6 evaluates the softmax function

p(Y = y|x,w, b) =
ewyx+by

∑
j ewjx+bj

, (1)

generating posterior probabilities for a number of classification labels, y = {0, 1}.
Here wj refer to a vector of linear parameters for the jth class, bj is a bias weight
and x is the 500 dimensional response vector from the previous layer.

Network Training Each of the 2D networks were trained by minimizing the
following cost function

C(W,B) =
1
nd

·
nd∑

i=1

− ln(p(Y = yi|xi,W,B)) + λ ·
nw∑

j=1

W 2
j . (2)

The first term of eq. (2) is the mean negative log-likelihood of the softmax
probability and we have used capitalized (W,B) to indicate that it is a function
of (w, b) parameters from different types of layers. Further, the training patches
are denoted xi, yi, corresponding to the patch intensities and ground truth label
of the ith training example. The second term of eq. (2) is a regularization term
that adds robustness to the optimization problem by limiting the solution space
to models with smaller parameter weights. It does so by penalizing the 2-norm of
the parameters and through experimentation we found λ = 0.0001 to be suitable.

The cost function was minimized using a stochastic gradient descent (SGD)
which relied on the back propagation algorithm to estimate gradients. The SGD
performed iterative updates based on gradients estimated from mini-batches
with a batch size of 200 where an update occurred after each mini-batch. Each
gradient update was further augmented by a moment based learning rule [13]
which updated the parameters as a weighted combination of the current gra-
dients and the gradients of previous iteration update. We used a momentum
coefficient of 0.9. Layer 4 and 5 were trained using the dropout learning [5]
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(dropout rate=0.5) which activates half the neurons for each training example.
As a consequences the activations of these layers(σ(h)) were divided by 2 when
a network was applied to an unseen test image patch.

A GPU implementation for training the three 2D networks was achived using
Theano [1].

Network Ensemble Merging Having learned the parameters of the three
networks, their complementary decision information were merged. This was done
using the posterior probablities of the last layer (layer 6). If the networks agreed
on the same label we were highly confident in this classification and assigned the
label of voxel x with probability p(Y |x) = 1. Otherwise a majority vote decided
the class label and the probability was set to reflect this uncertainty by averaging
the class probabilities of the three networks, p(Y |x) = (1/3)

∑3
i=1 pi(Y |x,w, b).

The resulting label segmentations and their probabilities were then used as input
for the growcut algorithm.

3.3 Cellular Automaton: Growcut

The growcut algorithm was initially proposed as a continuous state cellular
automata method for automated segmentation based on user labeled seed vox-
els [17]. From these labels and a local intensity transition rule the algorithm
decides whether voxels should be re-labelled.

We used the algorithmic formulation of [17] which we extended to 3D. The
algorithm models each voxel as a cell with a state set S(Θ, l, C) consisting of a
strength value Θ ∈ [0, 1], a label l and an intensity feature vector C. It is an
iterative algorithm and for each iteration the strength and labels of the previous
iteration remain fixed. During an iteration each image cell r is attacked by its
neighboring cells s ∈ N(r) where N(r) denote the 3 × 3 × 3 neighborhood of a
volume and only if g(Cr, Cs) · Θs > Θr, will Θr, and lr be updated before the
next iteration. The local transition rule is given by

g(C1, C2) = 1 − ||C1 − C2||2
k

(3)

Where we have normalized the intensities of C to be in the range [0, 1] such that
for k =

√
3, the value of g(C1, C2) ∈ [0, 1]. Since g(C1, C2) can never exceed 1,

any cells with strength Θ = 1 will remain constant throughout the algorithm.
To use the growcut on the ensemble segmentations, the feature vector C was

set to the multi-modal MRI intensities and the values of l, Θ were initialized
with the labels and probability maps of the convolutional network ensemble.
This initialization served as a strong prior for growcut segmentation, assuming
that the segmentation was already near optimal.

Once growcut converged to a stable segmentation (100 iterations), a heuristic
rule was used to identify the tumor. It was based on a connected components
analysis to remove any spatially coherent clusters of voxels which were less than
80% of the biggest cluster.
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3.4 Convolutional Network Ensemble: Within-Tumor

This ensemble of convolutional networks was used to segment the within-
tumor sub-regions. The architecture of each network is similar to the previously
described, but considers a smaller image patch and has only two convolutional
layers, two fully connected dropout layers and softmax probability layer. The
input patch size is 3× 34× 34 and the first convolutional layer uses a filter bank
of size 50×3×7×7 while the second one uses a filter bank of size 60×50×5×5.
The justification of choosing a smaller patch size is that the within-tumor seg-
mentation uses information on a smaller scale compared to the whole tumor
segmentation. As with the previously described networks, the fully connected
layers use 800 and 500 neurons respectively while the softmax layer, predicts
one of four possible classification labels. The SGD optimization was again used
to train the networks but for these specific networks we used λ = 0.00005.

Network Ensemble Merging The voxel-based decisions of the ensemble of
axial, sagittal and coronal networks were either set to the label they all agree on,
or according to the most probable average probability of the softmax probability.

4 Results

4.1 Test and Phenotype Performance

Testing our method on the 40 left out subjects (data1), resulted in the segmen-
tation performances of Table 1. This table shows ground truth scores for three
methods; A 2D convolutional network applied to the axial plane similar to [3], a
method using only the ensemble part of our method (ensem) and our full method
which is ensem in combination with growcut (ensem+grow). The scores of the
table are given for pathologically relevant tumor regions. These are the whole
tumor (labels: necrosis, edema, non-enhancing, enhancing), the enhanced tumor
region and the tumor core (labels: necrosis, non-enhancing, enhancing). We see
that using an ensemble improved the segmentation relative to a 2D network and
achieved further improvement by including growcut post-processing. As a visual
comparison example, two tumor segmentations based on our method and their

Table 1. Average segmentation performance scores of three convolutional neural net-
work methods evaluated on 40 subjects of data1. The scores (Dice, positive predictive
and sensitivity) were calculated for the different tumor regions.

Method Dice scores Positive predictive Sensitivity

Whole Core Enh. Whole Core Enh. Whole Core Enh.

axial 0.744 0.642 0.629 0.732 0.624 0.642 0.811 0.746 0.707

ensem 0.786 0.686 0.676 0.786 0.707 0.693 0.825 0.743 0.717

ensem+grow 0.810 0.697 0.681 0.833 0.718 0.701 0.825 0.750 0.720
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Fig. 3. This visual comparison shows both the proposed segmentation method and
corresponding ground truth for two subjects. The Dice scores of subject 1 were 0.825
(whole), 0.795 (core) and 0.842 (enhanced) and for subject 2 they were, 0.892 (whole),
0.840 (core) and 0.854 (enhanced).

ground truth, are shown in Fig. 3. By dividing the test subjects based on tumor
types (HGG/LGG), we evaluated their impact on method performance. This
comparison (Fig. 4), reveals higher Dice scores with less variance for the HGGs,
indicating a methodological bias towards the tumor type.

4.2 Blinded Challenge Performance

Testing our method on the blinded challenge dataset previously denoted data2
and performing an on-line evaluation of the segmentations, resulted in the aver-
age performance scores of Table 2. It lists the scores for the first time point of the
99 subjects (cross sectional) and the full challenge data (full data) where similar
performances are achieved. It also includes the top 3 scores of the BraTS2014
challenge where our method is ranked amongst.
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Fig. 4. Ground truth Dice scores performance for two different types of tumors (HGG
and LGG). Red line indicate mean Dice score, blue boxes show the 25 and 75 percentiles
of the scores while extreme observations are show with red dots.

Table 2. Shows the average segmentation performance scores of our method in grey
(cross sectional and full data), for the BraTS2014 challenge data (data2). Also listed
are the top three of the challenge (15/12-2014), ranked according to their whole tumor
Dice scores. These are Urbag [16], Kleej [7], Dvorp [8].

Method Dice scores Positive predictive Sensitivity

Whole Core Enh. Whole Core Enh. Whole Core Enh.

Cross sectional 0.801 0.637 0.586 0.803 0.682 0.554 0.857 0.715 0.745

Full data 0.799 0.631 0.625 0.783 0.629 0.580 0.861 0.736 0.776

Urbag 0.87 0.76 0.72 0.91 0.80 0.69 0.85 0.76 0.81

Kleej 0.87 0.76 0.73 0.90 0.73 0.66 0.85 0.83 0.87

Dvorp 0.60 0.30 0.29 0.86 0.58 0.56 0.53 0.27 0.28

5 Discussion

We have presented a method, combining an ensemble of 2D convolutional net-
works with the growcut method for making a 3D informed segmentation. It
showed improved accuracy compared to a 2D network and an ensemble seg-
mentation without growcut thereby validating the usefulness of the proposed
method. The investigation of tumor type showed better performance for HGG,
likely due to the imbalanced training data distribution (76 HGG/15 LGG). It
could also indicate the presence of a measurable pathologic difference. If so, the
training of a segmentation method for each type could lead to improved segmen-
tations for both types. This would require knowing the tumor type in advance,
information that was not readily available for the blinded challenge data. Our
challenge results showed a nice performance although sub-par to the top two
methods of the challenge but was superior to the remaining 11. It is noted that
our methods performance is in the Dice score range that manual annotators
can achieve according the results of [11]. They reported the Dice accuracy of
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annotators to be in the range of (0.74-0.85). This is comparable to the pro-
posed method. A simple strategy for improving our work would be to extend
the ensemble to use 3D network (computationally costly) or to investigate the
inclusion of networks trained from more than orthogonal planes. In addition, the
usage of using longitudinal information could also play a role towards improving
segmentations.
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