
QoS Optimization for Cloud Service
Composition Based on Economic Model

Hisham A. Kholidy1,5, Hala Hassan2(&), Amany M. Sarhan3,
Abdelkarim Erradi1, and Sherif Abdelwahed4

1 Department of Computer Science and Engineering, College of Engineering,
Qatar University, Doha, Qatar

{hkholidy,erradi}@qu.edu.qa
2 Department of Computer Engineering and Systems, Faculty of Engineering,

Mansoura University, Mansoura, Egypt
Hala_h62@yahoo.com

3 Faculty of Engineering, University of Tanta, Tanta, Egypt
amany_m_sarhan@tanta.edu.eg
4 Electrical and Computer Engineering,

Mississippi State University, Starkville, MS, USA
sherif@ece.msstate.edu

5 Faculty of Computers and Information, Fayoum University, Fayoum, Egypt

Abstract. Cloud service composition is usually long term based and economi-
cally driven. Services in cloud computing can be categorized into two groups:
Application services and Computing Services. Compositions in the application
level are similar to the Web service compositions in Service-Oriented Computing.
Compositions in the computing level are similar to the task matching and
scheduling in grid computing. We consider cloud service composition from end
users perspective. We propose Genetic Algorithm-based approach to model the
cloud service composition problem. A comparison is given between the proposed
composition approach and other existing algorithms such as Integer Linear
Programming. The experiment results proved the efficiency of the proposed
approach.

Keywords: Cloud service composition � Cloud computing � Genetic
algorithm � Quality of service

1 Introduction

Cloud computing is emerging as the new paradigm for the next-generation distributed
computing. Big companies such as Amazon, Microsoft, Google and IBM are already
offering cloud computing solutions in the market. A fast increasing number of orga-
nizations are already outsourcing their business tasks to the cloud, instead of deploying
their own local infrastructures [1]. A significant advantage of cloud computing is its
economic benefits for end users and service providers.

Services in cloud computing can be categorized into application services and
computing services [2]. Almost all the software/applications that are available through
the Internet are application services, e.g., flight booking services. Computing services

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
R. Giaffreda et al. (Eds.): IoT360 2014, Part I, LNICST 150, pp. 355–366, 2015.
DOI: 10.1007/978-3-319-19656-5_48

are software or virtualized hardware that supports application services, e.g., virtual
machines, CPU services and storage services. Service compositions in cloud computing
include compositions of application services and computing services. Compositions in
the application level are similar to the Web service compositions in SOC. Composi-
tions in the computing level are similar to the task matching and scheduling in grid
computing. Cloud service composition is usually long-term based and economically
driven. Traditional QoS (Quality of Service)-based composition techniques usually
consider the qualities at the time of the composition [3]. This is fundamentally different
in cloud environments where the cloud service composition should last for a long
period.

In this paper, a genetic-algorithm-based cloud service composition approach is
proposed. We focus on the selection of composition plans based solely on non-functional
or QoS attributes. The comparisons between the proposed approach and other existing
ones show the effectiveness and efficiency of the proposed approach. The rest of the
paper is structured as follows: Sect. 2 illustrates the preliminaries of service composition
in cloud computing. Section 3 provides an overview of cloud service composition
problem. Section 4 highlights the related work of the cloud service composition models.
Section 5 describes in details the proposed composition approach. Section 6 tests and
evaluates the proposed approach and presents the experiment results. Section 7 draws a
conclusion and highlights the future work.

2 Preliminaries

In this section we present basic knowledge about cloud computing, service composi-
tions in cloud computing and QoS model.

2.1 Cloud Computing System

Cloud computing provides two types of services, application and computing services.
Application services are the most visible services to the end users (i.e. Google Apps),
Cloud systems provide these services to the end users through the software providers in
SaaS (Software as a Service) layer. Computing services are the hardware and system
software in the datacenters that provide those services [2] see Fig. 1.

Some vendors use terms such as PaaS (Platforms a Service) or IaaS (Infrastructure
as a Service) to describe their products. In this paper, PaaS and IaaS are considered
together as Computing Services. PaaS are platforms that are used to develop, test,
deploy and monitor application services. For example, Google has Google App Engine
that works as the platform to develop, deploy and maintain Google Apps. IaaS services
provide fundamental computing resources, which can be used to construct new plat-
form services or application services. Computing Services include computation ser-
vices, i.e., Virtual Machines (VMs); storage services, i.e., Databases; and network
services. Computing Services Vendors are these companies or organizations that make
their computing resources available to the public such as Amazon EC2.

356 H.A. Kholidy et al.

2.2 Service Composition in Cloud Computing

A composite service is specified as a collection of abstract application services
according to a combination of control-flow and data-flow. Similar to traditional service
composition, cloud service composition is conducted in two steps. First, a composition
schema is constructed for a composition request. Second, the optimal composition plan
is selected. Control-flow graphs are represented using UML activity diagrams. Each
node in the graph is an abstract application service. There are four control-flow patterns
for defining a composite cloud service (composition schema), such as sequential,
parallel, conditional and iterative (loop) patterns [8] (Fig. 2). Directed acyclic graphs
(DAGs) are used to represent composition schema.

Any solution to a composition problem in cloud computing includes: (1) Map the
abstract application services to concrete application services and corresponding com-
pute service (VM, database and network services). (2) Schedule the execution order of
the application services. In this research we introduce only the selection of the com-
position plan (abstract application services) based solely on user’s QoS attributes.

2.3 QoS Model

QoS-based cloud service selection is a critical process that directly determines the QoS
values of the composite cloud service. The ultimate goal of the selection process is to

A
pp

lic
at

io
n

se
rv

ic
e

C
om

pu
te

se

rv
ic

e
SaaS

Simple App.
serviceComposite service

IaaS
Storage

Compute
(VM)

Network

PaaS

Fig. 1. Cloud system

Fig. 2. Basic composition patterns

QoS Optimization for Cloud Service Composition Based on Economic Model 357

find the best composition plan for the composite cloud service that provides the optimal
choice to the end user. We use a QoS model that is applicable to all the SaaS and IaaS.

2.3.1 QoS Model for Elementary Services

We consider the three major QoS attributes which are: cost, response time, and
throughput.

Cost: the amount of money that the end user has to pay to the service provider for using
a cloud service S, it is denoted as Qcost Sð Þ. For SaaS provider, it is the execution cost
for using a single request SaaS, for IaaS provider it is the computation cost for using a
unit IaaS for one second.

Response time: the time interval of a cloud service S from request to response, it is
denoted as Qresp Sð Þ. For SaaS provider SP, response time is the expected delay in
seconds between the moment when a request is sent and the moment when the results
are received. For IaaS provider IP, the response time is the number of CPU (network,
storage) units used for processing a computation (data transfer, storage) request.

Throughput: the rate at which a cloud service S can process requests, it is denoted as
Qth Sð Þ. For SaaS provider SP, the throughput is the number of requests the SaaS
provider is able to process per second. For IaaS provider IP, the service rate is the
number of CPU (network, storage) requests IaaS provider is able to process per sec.

2.3.2 QoS Model for Composite Services

In addition to the QoS attributes of each individual service, the composition pattern and
corresponding aggregate functions should be also considered. The overall QoS can be
defined as shown in Eq. 1.

QoStotal Sð Þ¼ Qcost Sð Þ; Qresp Sð Þ; Qth Sð Þ� � ð1Þ

where S is a single path composite cloud service;QoStotal Sð Þ indicates the overall
quality of a composed cloud service S. Each dimension is the aggregation of all
services which is calculated by the aggregation functions (Table 1) [18].

Table 1. Aggregation functions

358 H.A. Kholidy et al.

3 System Model

In this section, we highlight the service composition model, the problem formulation,
and the cloud service composition problem.

3.1 Cloud Service Composition Model

The service composition model introduced in this paper is similar to the one given
in [6]. In this model we identify four components: IaaS (Infrastructure as a Service)
Providers, SaaS (Software as a Service) Providers, Composer and End users, see Fig. 3.
Platform as a Service (PaaS) layer is omitted because we assume that this layer is
included in the IaaS layer. The IaaS Providers supply IaaS, i.e., CPU services, storage
services, and network services, to SaaS providers and end users. The SaaS providers
supply SaaS to end users. The end users are usually large companies and organizations,
e.g., universities, governments. The Composer is the proposed composition model that
acts on behaves of the end users to form composite services that contain services from
multiple SaaS providers and IaaS providers. The main functions of composer are: (1)
construct composition schema. (2) Select optimal composition plan. Since the main
concern in this research is the selection of optimal composition plan based solely on
user’s preferences (QoS attributes). We assume that existing composition techniques
such as the one introduced in [7] to generate composition schema.

3.2 Problem Formulation

This section introduces the cloud service composition problem as follow:
Given

1. A set of abstract cloud services (or tasks) T involved in a cloud service composition,
where T = {T1,T2,…..,Tn} and n is the total number of abstract cloud services in the
composition.

Fig. 3. The proposed composition model

QoS Optimization for Cloud Service Composition Based on Economic Model 359

2. For task Ti, a set of Ki candidate SaaS providers can be used to implement the task,
SPi = f SPið1Þ; SPið2Þ; : : : ; SPiðKiÞg . A set of Pp candidate IaaS providers sup-
ply IaaS to composite services: SP0 = f SP0ð1Þ; SP0ð2Þ; : : : ; SP0ðPpÞg

3. A candidate composition plan (denoted as Plan ½fSP0 K0ð Þ; SP1 K1ð Þ; SP2 K2ð Þ : : :
SP0 K0ð Þg� is formed by selecting certain SaaS providers and IaaS providers for the
end user.

4. In the composition plan, the composite service is supported by the IaaS provider
SP0 K0ð Þ. Task Ti is implemented by SaaS provider SPi(Ki).

5. We assume sequential composition pattern is used for composition and user’s QoS
attributes are numbered from 1 to 3, with 1 = cost, 2 = response time and
3 = throughput. The QoS values for a composition plan using the aggregation
functions stated above is denoted as: QoStotal(plan) = [Q(1), Q(2),Q(3)]

6. Since Service composition in cloud is long-term based economically driven user’s
QoS requirement, The end users would have different QoS requirements (cost,
response time, throughput) on the composite service during long period, i.e., the end
user may prefer composite service that has less cost, while in another period the end
user may find that the cost is less important than decreasing the response time as
much as possible.

The Composite Cloud Service (CCS) is the problem whose goal is to choose one or
more composition plan (execution plan) that have a good performance on most of the
QoS factors and meet user requirements. [19] The CCS problem based on multiple QoS
criteria is a combinational optimization problem that is known to be an NP-Hard [12].
The solution to this problem should optimize (minimize/ maximize) the components of
the vector QoStotal(plan).

When the composition system makes decisions on which concrete SaaS providers
and IaaS providers should be selected for the end user, it has no idea about how will the
ultimate composite service behave during a long period. To enable long-term cloud
service composition, economic models are needed to predict the long-term preferences
of the end users. An economic model is defined as “a theoretical construct that rep-
resents economic processes by a set of variables and a set of logical and quantitative
relationships between them”. [9].

The final objective is to find a fully cloud service composition that minimizes the
cost and time, and improves the throughput. We model the cloud service composition
problem as a multi-objective optimization problem (MOP).

3.3 Cloud Service Composition Optimization Problem

In this problem, we consider the three user objectives, the lowest cost, the shortest
response time, and the highest throughput. This makes it infeasible to find an optimal
composition as these objectives can conflict with each other. One way to address this
problem is to convert the composition problem to a single-objective problem by asking
users to give weights to each objective. The end user presents these preferences through
a Score Function [3]. We denote the QoS requirements of the end user as: Wa tð Þ ¼
½w1 ðtÞ;w2 ðtÞ;w3 ðtÞ� , where Wa(t) denotes the weight of QoS attribute (a) for the
composite service at period t. Each composition plan is associated with a score from the

360 H.A. Kholidy et al.

end user’s perspective. A commonly used score function is the weighted sum of QoS
values of the composite service. The main objective is to find an optimal composition
plan S (plan) that provides the maximum score value.

S planð Þ ¼ W1 tð Þ � þW2 tð Þ � Q2 tð Þ þW3 tð Þ � Q3 tð Þ ð2Þ

4 Related Works

Service composition problem can be categorized into two groups. One group focuses
on the functional composition among component services. The other group aims to
make optimal decisions to select the best Component services based on non-functional
properties (QoS).

Functional-driven service composition approaches typically adopt semantic
descriptions of services. Examples of automatic approaches include Policy-based
approach proposed by [14]. Other functional-driven composition approaches use AI
planning methods. Most of them [15] assume that each service is an action which alters
the state of the world as a result of its execution. The inputs and outputs parameters of a
service act as preconditions and effects in the planning context. Users only need to
specify the inputs and the outputs of the desired composite service, a plan (or a
composite service) would automatically generated by the AI planners. Different users
may have different requirements and preferences regarding QoS. Therefore, QoS-aware
composition approaches are needed. QoS-aware service composition problem is usu-
ally modeled as a Multiple Criteria Decision Making [3] problem. The most popular
approaches include integer linear programming and genetic algorithms. An Integer
Linear Program (ILP) consists of a set of variables, a set of linear constraints and a
linear objective function. After having translated the composition problem into this
formalism, Specific solver software such as LPSolve [13] can be used. References
[16, 17] use Genetic Algorithms (GA) for service composition.

Most of the existing composition approaches are not well suited for cloud envi-
ronment [17]. They usually consider the qualities at the time of the composition [4].
The proposed composition approach considers the problem from a long-term
perspective.

5 Genetic Algorithm – Based Approach

Genetic Algorithms (GAs) [12] are heuristic approaches that iteratively find the nearest
optimal solution in large search solutions. Any possible solution to the optimization
problem is encoded as a Chromosome (genome). A set of chromosomes is referred to
as a Population. The first step of a GA is to derive an initial population. A random set
of chromosomes is often used as the initial population. This initial population is the first
generation from which the evolution starts. The second step is the selection process,
each chromosome is eliminated or duplicated (one or more times) based on its relative
quality. The population size is typically kept constant. The next step is the Crossover

QoS Optimization for Cloud Service Composition Based on Economic Model 361

process. Some pairs of chromosomes are selected from the current population and some
of their corresponding components are exchanged to form two valid chromosome.
After crossover, each chromosome in the population may be mutated with some
probability. The mutation process transforms a chromosome into another valid one.
The new population is then evaluated and each chromosome is associated with a fitness
value, which is a value obtained from the objective function. The objective of the
evaluation is to find a chromosome that has the optimal fitness value. If the stopping
criterion is not met, the new population goes through another cycle (iteration) of
selection, crossover, mutation, and evaluation. These cycles continue until the stopping
criterion is met [4].

5.1 Algorithm Implementation

The Proposed Approach Consists of the Following Process:

1. Define Chromosome: For genetic algorithms, one of the key issues is to encode a
solution of the -problem into a chromosome (individual). In our model, the chro-
mosome is encoded by an integer array with a number of items equals to the number
of distinct abstract services that compose our service. Each item, in turn, contains an
index to the array of the concrete services matching that abstract service.

2. Generate Initial Population: a predefined number of chromosomes are generated
to form the initial generation. The chromosome in a generation is first ordered by
their fitness values from the best to worst.

3. Apply Genetic Operator: To apply this process we define the operator of each step
as following:

• Selection Operator: We use the binary tournament selection as the selection
operator. The binary tournament selection runs a tournament between two
individuals and selects the winner. In this way, the individuals that formed
the next generation are determined. The population size of each generation is
always P.

• Crossover Operator: We use the single-point crossover as the crossover
operator. The crossover point is a random value from 1 to Nt (the number of
genes in one chromosome).

• Mutation Operator: We randomly select an abstract service and randomly
replace the corresponding concrete service with another one among those
available. Clearly, we select the abstract service for which only one concrete
service is available.

4. Evaluate the Chromosomes Using Fitness Function: The fitness function should
maximize some QoS attributes (i.e. throughput), minimize some other attributes (i.e.
cost and response time). In addition, the fitness function must penalize solutions that
do not meet the QoS constraints and drive the evolution towards constraints sat-
isfaction. Let us suppose that the composite service has a set of constraints defined
as QC [10]. we define D(c), the distance from the constraint satisfaction of a
chromosome (solution) c, as following :

362 H.A. Kholidy et al.

D(c) =
Xl

i¼1
QCi cð Þ � ei � weighti; ei = 0QCiðcÞ� 0

1QCiðcÞ[0

� �
ð3Þ

where,

– weighti indicates the weight of the QoS constraint.
– l is number of constraints that composite service has for a specific chromosome

(solution) c.

The fitness function for a chromosome c is then defined as:

F cð Þ ¼
Xa
i¼1

wi � Qi cð Þ þ weightp � DðcÞ ð4Þ

where,

– wi is the weight corresponding to each QoS attribute i.
– weightp is the penalty factor.
– A is number of Qos attributes which is 3 in our case.

The stop criterions of the proposed approach are:

(1) Iterate until the constraints are met (i.e. D(c) = 0).
(2) If this does not happen within a defined maximum number of generation,

‘MAXGEN’, then iterate until the best fitness value remains unchanged for a given
number ‘MAXGEN’ of generations.

(3) If neither (1) nor (2) happened within ‘MAXGEN’ generations, then no solution
will be returned.

6 Experiments and Evaluation

We run our experiments on a Dell laptop with 2.3 GHz Intel Core i7 processor and 6G
Ram under Windows 7 operating system. We have used Jmetal [11] which is Java
framework for implementing multi-objective and single-objective algorithms. We
implement the Genetic Algorithm-based approach in this framework that allows us to
define each problem by defining each chromosome (variable) to point to a cloud service
candidate. After that, we define the fitness functions for all defined objectives and
choose the algorithm that solves the problem. We first conduct one experiment to show
the effect of changing available concrete services for each abstract service on the
execution time, Fig. 4 shows that the execution time increases quickly at the beginning
of the experiment, but it keeps nearly constant when the number of concrete services
for each abstract service becomes larger than 200. We conduct the experiment that
shows the effect of selection operator on reaching to the optimal fitness value. Figure 5
shows the comparison between the tournament selection operator used in the proposed
approach and the random selection operator. As shown in Fig. 5, the proposed
approach will always reach an optimized fitness value while random selection seldom

QoS Optimization for Cloud Service Composition Based on Economic Model 363

converges. The proposed GA based approach will always reach an optimal fitness value
and the converged point becomes very close to the actual optimal point. We conduct a
comparison experiment with another approach such Integer Programming. The Integer
Programming (IP) approaches have been proposed to solve QoS-aware service com-
position. The IP approaches implemented using LPSolve [13], which is an open source
integer programming system. Figure 6 shows that the IP approach performs as good as

Fig. 4. Concrete services against execution time

Fig. 5. Tournament selection against random selection

Fig. 6. GA-based against ILP

364 H.A. Kholidy et al.

the GA based approach at the beginning. Notice that, when the number of abstract
services becomes more than 40, the execution time cost of the IP approaches will
increase exponentially to solve composition problems.

7 Conclusions and Future Work

This paper discusses the cloud service composition problem as multi-objective opti-
mization to satisfy the requirements of user’s QoS requirements and presents an
approach to solve the multi-objective problem by converting it to a single objective
problem. We have proposed an approach that uses the Genetic Algorithm to solve this
problem. The experiment results proved the efficiency of the proposed approach.

For the future work, we intend to solve the multi-objective composition problem
using multi-objective algorithms such NSGA II (Non-dominated Sorting Genetic
Algorithm), SPEA-II (Strength Pareto Evolution Algorithm) [20] and other meta-
heuristics algorithm which is based on swarm intelligence such as Particle Swarm
Optimization (OMOPSO) [21] and compare the efficiency of these algorithms.

Acknowledgments. This work was made possible by NPRP grant # 7 - 481-1 - 088 from the
Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are
solely the responsibility of the authors.

References

1. Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud computing. In:
Grid Computing Environments Workshop (2009)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of
cloud computing. Technical report, February 2009

3. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware
middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)

4. Srinivas, M., Patnaik, L.: Genetic algorithms: a survey. Comput. 27(6), 17–26 (1994)
5. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware service

composition based on genetic algorithms. In: Proceedings of the 2005 Conference on
Genetic and Evolutionary Computation, pp. 1069–1075. ACM, New York (2005)

6. Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based on
economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented
Computing. LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012)

7. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the semantic
web. VLDB J. 12(4), 333–351 (2003)

8. Wu, B., Chi, C., Chen, Z., Gu, M., Sun, J.: Workflow-based resource allocation to optimize
overall performance of composite services. Future Gener. Comput. Syst. 25(3), 199–212
(2009)

9. Baumol, W., Blinder, A.: Economics: Principles and Policy. South-Western Pub, Mason
(2011)

QoS Optimization for Cloud Service Composition Based on Economic Model 365

10. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware service
composition based on genetic algorithms. In: Proceedings of the 2005 Conference on
Genetic and Evolutionary Computation, pp. 1069–1075 (2005)

11. Durillo, J., Nebro, A.: jMetal: a java framework for multi- objective optimization. Adv. Eng.
Softw. 42(10), 760–771 (2011)

12. De Jong, K., Spears, W.M.: Using genetic algorithms to solve NP complete problems. In:
Proceedings of the Third International Conference on Genetic Algorithm, pp. 124–132.
Morgan Kaufman, Los Altos, CA (1989)

13. Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: Open source (mixedinteger) linear
programming system. Eindhoven U. of Technology

14. Chun, S.A., Atluri, V., Adam, N.R.: Using semantics for policy-based web service
composition. Distrib. Parallel Databases 18(1), 37–64 (2005)

15. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.S.: Automating DAML-S web services
composition using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003)

16. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware service
composition based on genetic algorithms. In: Proceedings of the 2005 Conference on
Genetic and Evolutionary Computation, pp. 1069–1075 (2005)

17. Ye, Z., Zhou, X., Bouguettaya, A.: Genetic algorithm based QoS-aware service
compositions in cloud computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011, Part II. LNCS, vol. 6588, pp. 321–334. Springer, Heidelberg (2011)

18. Lie Q., Yan, W., Orgun, M. A.: Cloud service selection based on the aggregation of user
feedback and quantitative performance assessment. In: Services Computing (SCC). IEEE
(2013)

19. Jula, A., Sundararajan, E., Othman, Z.: Cloud computing service composition: a systematic
literature review. Expert Syst. Appl. J. 41, 3809–3824 (2014). Elsevier

20. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and
the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

21. Sierra, M.R., Coello, C.A.: Improving PSO-based multi-objective optimization using
crowding, mutation and ε-dominance. In: Coello Coello, C.A., Hernández Aguirre, A.,
Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)

366 H.A. Kholidy et al.

	QoS Optimization for Cloud Service Composition Based on Economic Model
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cloud Computing System
	2.2 Service Composition in Cloud Computing
	2.3 QoS Model
	2.3.1 QoS Model for Elementary Services
	2.3.2 QoS Model for Composite Services

	3 System Model
	3.1 Cloud Service Composition Model
	3.2 Problem Formulation
	3.3 Cloud Service Composition Optimization Problem

	4 Related Works
	5 Genetic Algorithm -- Based Approach
	5.1 Algorithm Implementation

	6 Experiments and Evaluation
	7 Conclusions and Future Work
	Acknowledgments
	References

