
Eff icient Computation of the Characteristic
Polynomial of a Threshold Graph

Martin Fürer(B)

Department of Computer Science and Engineering, Pennsylvania State University,
University Park, State College, PA 16802, USA

furer@cse.psu.edu

http://www.cse.psu.edu/∼furer

Abstract. An efficient algorithm is presented to compute the charac-
teristic polynomial of a threshold graph. Threshold graphs were intro-
duced by Chvátal and Hammer, as well as by Henderson and Zalcstein in
1977. A threshold graph is obtained from a one vertex graph by repeat-
edly adding either an isolated vertex or a dominating vertex, which is
a vertex adjacent to all the other vertices. Threshold graphs are spe-
cial kinds of cographs, which themselves are special kinds of graphs of
clique-width 2. We obtain a running time of O(n log2 n) for computing
the characteristic polynomial, while the previously fastest algorithm ran
in quadratic time.

Keywords: Efficient algorithms · Threshold graphs · Characteristic
polynomial

1 Introduction

The characteristic polynomial of a graph G = (V,E) is defined as the charac-
teristic polynomial of its adjacency matrix A, i.e. χ(G,λ) = det(λI − A). The
characteristic polynomial is a graph invariant, i.e., it does not depend on the enu-
meration of the vertices of G. The complexity of computing the characteristic
polynomial of a matrix is the same as that of matrix multiplication [10,13] (see
[2, Chap.16]), currently O(n2.376) [4]. For special classes of graphs, we expect
to find faster algorithms for the characteristic polynomial. Indeed, for trees, a
chain of improvements [12,16] resulted in an O(n log2 n) time algorithm [7]. The
determinant and rank of the adjacency matrix of a tree can even be computed
in linear time [5]. For threshold graphs (defined below), Jacobs et al. [9] have
designed an O(n2) time algorithm to compute the characteristic polynomial.
Here, we improve the running time to O(n log2 n). As usual, we use the alge-
braic complexity measure, where every arithmetic operation counts as one step.
Throughout this paper, n = |V | is the number of vertices of G.

Threshold graphs [3,8] are defined as follows. Given n and a sequence
b = (b1, . . . , bn−1) ∈ {0, 1}n−1, the threshold graph Gb = (V,E) is defined by

M. Fürer—Research supported in part by NSF Grant CCF-1320814.

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 45–51, 2015.
DOI: 10.1007/978-3-319-19647-3 5

46 M. Fürer

V = [n] = {1, . . . , n}, and for all i < j, {i, j} ∈ E i f f bi = 1. Thus Gb is con-
structed by an iterative process starting with the initially isolated vertex n. In
step j > 1, vertex n − j + 1 is added. At this time, vertex j is isolated if bj is 0,
and vertex j is adjacent to all other (already constructed) vertices {j +1, . . . , n}
if bj = 1. It follows immediately that Gb is isomorphic to Gb′ iff b = b′. Gb is con-
nected if b1 = 1, otherwise vertex 1 is isolated. Usually, the order of the vertices
being added is 1, 2, . . . , n instead of n, n−1, . . . , 1. We choose this unconventional
order to simplify our main algorithm.

Threshold graphs have been widely studied and have several applications
from combinatorics to computer science and psychology [11].

In the next section, we study determinants of weighted threshold graph matri-
ces, a class of matrices containing adjacency matrices of threshold graphs. In
Sect. 3, we design our efficient algorithm to compute the characteristic polyno-
mial of threshold graphs. We also look at its bit complexity in Sect. 4, and finish
with open problems.

2 The Determinant of a Weighted Threshold
Graph Matrix

We are concerned with adjacency matrices of threshold graphs, but we consider
a slightly more general class of matrices. We call them weighted threshold graph
matrices. Let Md1d2...dn

b1b2...bn−1
be the matrix with the following entries.

(
Md1d2...dn

b1b2...bn−1

)
ij

=

⎧
⎪⎨
⎪⎩

bi if i < j

bj if j < i

di if i = j

Thus, the weighted threshold matrix for (b1b2 . . . bn−1; d1d2 . . . dn) looks like this.

Md1d2...dn

b1b2...bn−1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d1 b1 b1 . . . b1 b1
b1 d2 b2 . . . b2 b2
b1 b2 d3 . . . b3 b3
...

...
...

. . .
...

...
b1 b2 b3 . . . dn−1 bn−1

b1 b2 b3 . . . bn−1 dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

In order to compute the determinant of Md1d2...dn

b1b2...bn−1
, we subtract the penulti-

mate row from the last row and the penultimate column from the last column. In
other words, we do a similarity transformation with the following regular matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Efficient Computation of the Characteristic Polynomial 47

i.e.,

Pij =

⎧
⎪⎨
⎪⎩

1 if i = j

−1 if i = n and j = n − 1
0 otherwise.

The row and column operations applied to Md1d2...dn

b1b2...bn−1
produce the similar

matrix

PT Md1d2...dn

b1b2...bn−1
P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d1 b1 b1 . . . b1 0
b1 d2 b2 . . . b2 0
b1 b2 d3 . . . b3 0
...

...
...

. . .
...

...
b1 b2 b3 . . . dn−1 bn−1 − dn−1

0 0 0 . . . bn−1 − dn−1 dn + dn−1 − 2bn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Naturally, the determinant of P is 1, implying

det
(
PT Md1d2...dn

b1b2...bn−1
P

)
= det

(
Md1d2...dn

b1b2...bn−1

)
.

Furthermore, we observe that PT Md1d2...dn

b1b2...bn−1
P has a very nice pattern.

PT Md1d2...dn

b1b2...bn−1
P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M
d1d2...dn−1
b1b2...bn−2

0
0
0
...
0

bn−1 − dn−1

0 0 0 . . . 0 bn−1 − dn−1 dn + dn−1 − 2bn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

To further compute the determinant of PT Md1d2...dn

b1b2...bn−1
P , we use Laplacian

expansion by minors applied to the last row.

det
(
Md1d2...dn

b1b2...bn−1

)
= det

(
PT Md1d2...dn

b1b2...bn−1
P

)

= (dn + dn−1 − 2bn−1) det
(
M

d1d2...dn−1
b1b2...bn−2

)
− (bn−1 − dn−1)2 det

(
M

d1d2...dn−2
b1b2...bn−3

)

By defining the determinant of the 0 × 0 matrix Md1d2...dn

b1b2...bn−1
with n = 0 to be

1, and checking the determinants for n = 1 and n = 2 directly, we obtain the
following result.

Theorem 1. Dn = det
(
Md1d2...dn

b1b2...bn−1

)
is determined by the recurrence equation

Dn =

⎧
⎪⎨
⎪⎩

1 if n = 0
d1 if n = 1
(dn + dn−1 − 2bn−1)Dn−1 − (bn−1 − dn−1)2Dn−2 if n ≥ 2

��

48 M. Fürer

This has an immediate implication, as we assume every arithmetic operation
takes only 1 step.

Corollary 1. The determinant of an n×n weighted threshold graph matrix can
be computed in time O(n).

Proof. Every step of the recurrence takes a constant number of arithmetic oper-
ations. ��
For arbitrary matrices, the tasks of computing matrix products, matrix inverses,
and determinants are all equivalent [2, Chap.16], currently O(n2.376) [4]. For
weighted threshold graph matrices, they all seem to be different. We have just seen
that the determinant can be computed in linear time, which is optimal, as this time
is already needed to read the input. The same lower bound holds for computing
the characteristic polynomial, and we will show an O(n log2 n) algorithm. It is not
hard to see that the multiplication of weighted threshold graph matrices can be
done in quadratic time. This is again optimal, because the product is no longer a
threshold graph matrix, and its output requires quadratic time.

3 Computation of the Characteristic Polynomial
of a Threshold Graph

The adjacency matrix A of the n-vertex threshold graph G defined by the
sequence (b1, . . . , bn−1) is the matrix M0 0...0

b1b2...bn−1
, and the characteristic poly-

nomial of this threshold graph is

χ(G,λ) = det(λI − A) = det
(
Mλ λ...λ

−b1−b2···−bn−1

)
.

This immediately implies that any value of the characteristic polynomial can be
computed in linear time.

The characteristic polynomial itself can be computed by the recurrence equa-
tion of Theorem 1. Here all di = λ, and Dn, as the characteristic polynomial of
an n-vertex graph, obviously is a polynomial of degree n in λ. Now, the com-
putation of Dn from Dn−1 and Dn−2 according to the recurrence equation is a
multiplication of polynomials. It takes time O(n), as one factor is always of con-
stant degree. The resulting total time is quadratic. The same quadratic time is
achieved, when we compute the characteristic polynomial χ(G,λ) for n different
values of λ and interpolate to obtain the polynomial χ(G,λ).

We want to do better. Therefore, we write the recurrence equation of
Theorem 1 in matrix form.

(
Dn

Dn−1

)
=

(
dn + dn−1 − 2bn−1 −(bn−1 − dn−1)2

1 0

) (
Dn−1

Dn−2

)

Noticing that D0 = 1 and D1 = λ, and all di = λ, we obtain the following matrix
recurrence immediately.

Efficient Computation of the Characteristic Polynomial 49

Theorem 2. For

Bi =
(

2(λ − bi) −(bi − λ)2

1 0

)
for i = 1, . . . , n − 1,

we have (
Dn

Dn−1

)
= Bn−1Bn−2 · · · B1

(
λ
1

)

��
This results in a much faster way to compute the characteristic polynomial
χ(G,λ).

Corollary 2. The characteristic polynomial χ(G,λ) of a threshold graph G with
n vertices can be computed in time O(n log2 n).

Proof. For every i, all the entries in the 2 × 2 matrix Bi are polynomials in λ of
degree at most 2. Therefore, products of any k such factors have entries which
are polynomials of degree at most 2k. To be more precise, actually the degree
bound is k, because by induction on k, one can easily see that the degree of the
i, j-entry of any such k-fold product matrix is at most

k for i = 1 and j = 1,

k + 1 for i = 1 and j = 2,

k − 1 for i = 2 and j = 1,

k for i = 2 and j = 2,

But the bound of 2k would actually be sufficient for our purposes. W.l.o.g., we
may assume that n − 1 (the number of factors) is a power of 2. Otherwise, we
could fill up with unit matrices. Now the product Bn−1Bn−2 · · · B1 is computed
in log(n − 1) rounds of pairwise multiplication to reduce the number of factors
by half each round. We use the FFT (Fast Fourier Transform) to compute the
product of two polynomials of degree n in time O(n log n) [1].

In the rth round (r = 1, . . . , log(n − 1)), we have (n − 1)2−r pairs of
matrices with entries of degree at most 2r−1 + 1, requiring O(n2−r) multiplica-
tions of polynomials of degree at most 2r−1 + 1. With FFT this can be done
in time O(n2−r)(2r−1 + 1) log(2r−1 + 1) = O(nr). Summing over all rounds
r = 1, . . . , log(n − 1), results in a running time of O(n log2 n). ��
Omitting the simplification of di = λ in Theorem 2, we see immediately, that
also the characteristic polynomial of a weighted threshold graph matrix can be
computed in the same asymptotic time of O(n log2 n).

4 Complexity in the Bit Model

By definition, the characteristic polynomial of an n-vertex graph can be viewed
as a sum of n! monomials with coefficients from {−1, 0, 1}. Thus all coefficients of

50 M. Fürer

the characteristic polynomial have absolute value at most n!, and can therefore
be represented by binary numbers of length O(n log n).

The coefficients of the characteristic polynomials of some graphs can be of
this order of magnitude. For an example, one can start with an n×n Hadamard
matrix with only 1’s in the first row. Its determinant has an absolute value of
nn/2. Adding the first row to all other rows and dividing all other rows by 2
results in a 0-1-matrix whose determinant has an absolute value of 2−n+1nn/2.
The bipartite graph G with this bipartite adjacency matrix has a determinant
with absolute value

(
2−n/2+1(n/2)n/4

)2
= 4(n/8)n/2. Thus the constant coeffi-

cient of the characteristic polynomial of G has length Ω(n log n).
With such long coefficients, the usual assumption of arithmetic operations in

constant time is actually unrealistic for large n. Therefore, the bit model might
be more useful. We can use the Turing machine time, because our algorithm is
sufficiently uniform. No Boolean circuit is known to compute such things with
asymptotically fewer operations than the number of steps of a Turing machine.

We use the fast m log m2O(log∗ m) integer multiplication algorithm [6] (where
m is the length of the factors) to compute the FFT for the polynomials. A direct
implementation, just using fast integer multiplication everywhere during a fast
polynomial multiplication, results in time

(nr)(2rr22O(log∗ r)) = n2rr32O(log∗ r)

for the rth round, where O(n2−r) pairs of polynomials of degree O(2r) are
multiplied. The coefficients of these polynomials have length O(2rr). As the
coefficients and the degrees of the polynomials increase at least geometrically,
only the last round with r = log n counts asymptotically. The resulting time
bound is n2 log3 n 2O(log∗ n). Using Schönhage’s [14] idea of encoding numerical
polynomials into integers in order to do polynomial multiplication, a speed-
up is possible. Again only the last round matters. Here a constant number of
polynomials of degree O(n) with coefficients of length O(n log n) are multiplied.
For this purpose, each polynomial is encoded into a number of length O(n2 log n),
resulting in a computation time of

n2 log2 n 2O(log∗ n).

Actually, because the lengths of coefficients are not smaller than the degree
of the polynomials, no encoding of polynomials into numbers is required for this
speed-up. In this case, one can do the polynomial multiplication in a polynomial
ring over Fermat numbers as in Schönhage and Strassen [15]. Then, during the
Fourier transforms all multiplications are just shifts. Fast integer multiplication
is only used for the multiplication of values. This is not of theoretical importance,
as it results in the same asymptotic n2 log2 n 2O(log∗ n) computation time, just
with a better constant factor.

5 Open Problems

We have improved the time to compute the characteristic polynomial of a thresh-
old graph from quadratic to almost linear (in the algebraic model). The question

Efficient Computation of the Characteristic Polynomial 51

remains whether another factor of log n can be removed. More interesting is the
question whether similarly efficient algorithms are possible for richer classes of
graphs. Of particular interest are larger classes of graphs containing the threshold
graphs, like cographs, graphs of clique-width 2, graphs of bounded clique-width,
or even perfect graphs.

References

1. Aho, A., Hopcroft, J., Ullman, J.D.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, MA (1974)

2. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 315. Springer, Berlin (1997)

3. Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming.
In: Studies in Integer Programming (Proceedings Workshop Bonn, 1975). Annals
of Discrete Mathematics, vol. 1, pp. 145–162. North-Holland, Amsterdam (1977)

4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9(3), 251–280 (1990)

5. Fricke, G.H., Hedetniemi, S., Jacobs, D.P., Trevisan, V.: Reducing the adjacency
matrix of a tree. Electron. J. Linear Algebr. 1, 34–43 (1996)

6. Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)
7. Fürer, M.: Efficient computation of the characteristic polynomial

of a tree and related tasks. Algorithmica 68(3), 626–642 (2014).
http://dx.doi.org/10.1007/s00453-012-9688-5

8. Henderson, P.B., Zalcstein, Y.: A graph-theoretic characterization of the pv chunk
class of synchronizing primitives. SIAM J. Comput. 6(1), 88–108 (1977).
http://dx.doi.org/10.1137/0206008

9. Jacobs, D.P., Trevisan, V., Tura, F.: Computing the characteristic polynomial of
threshold graphs. J. Graph Algorithms Appl. 18(5), 709–719 (2014)

10. Keller-Gehrig, W.: Fast algorithms for the characteristic polynomial. Theor. Com-
put. Sci. 36(2,3), 309–317 (1985)

11. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Annals
of Discrete Mathematics. Elsevier Science Publishers B.V. (North Holland),
Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo (1995)

12. Mohar, B.: Computing the characteristic polynomial of a tree. J. Math. Chem.
3(4), 403–406 (1989)

13. Pernet, C., Storjohann, A.: Faster algorithms for the characteristic polynomial. In:
Brown, C.W. (ed.) Proceedings of the 2007 International Symposium on Symbolic
and Algebraic Computation, University of Waterloo, Waterloo, Ontario, Canada,
29 July–1 August 2007, pp. 307–314. ACM Press, pub-ACM:adr (2007)

14. Schönhage, A.: Asymptotically fast algorithms for the numerical multiplication and
division of polynomials with complex coeficients. In: Calmet, J. (ed.) EUROCAM
1982. LNCS, vol. 144, pp. 3–15. Springer, Heidelberg (1982)

15. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7,
281–292 (1971)

16. Tinhofer, G., Schreck, H.: Computing the characteristic polynomial of a tree. Com-
puting 35(2), 113–125 (1985)

http://dx.doi.org/10.1007/s00453-012-9688-5
http://dx.doi.org/10.1137/0206008

	Efficient Computation of the Characteristic Polynomial of a Threshold Graph
	1 Introduction
	2 The Determinant of a Weighted Threshold Graph Matrix
	3 Computation of the Characteristic Polynomial of a Threshold Graph
	4 Complexity in the Bit Model
	5 Open Problems
	References

