
A New Algorithm for Intermediate Dataset
Storage in a Cloud-Based Dataflow

Jie Cheng1, Daming Zhu2(B), and Binhai Zhu3

1 School of Mechanical, Electrical and Information Engineering,
Shandong University, Weihai, China

2 School of Computer Science and Technology, Shandong University, Jinan, China
{chjie,dmzhu}@sdu.edu.cn

3 Department of Computer Science, Montana State University, Bozeman,
MT 59717-3880, USA
bhz@cs.montana.edu

Abstract. Running a dataflow in a cloud environment usually generates
many useful intermediate datasets. A strategy for running a dataflow is
to decide which datasets should be stored, while the rest of them are
regenerated. The intermediate dataset storage (IDS) problem asks to find
a strategy for running a dataflow, such that the total cost is minimized.
The current best algorithm for linear-structure IDS takes O(n4) time,
where “linear-structure” means that the structure of the datasets in the
dataflow is a pipeline. In this paper, we present a new algorithm for
this problem, and improve the time complexity to O(n3), where n is the
number of datasets in the pipeline.

1 Introduction

A cloud-based dataflow is a data-driven workflow deployed in a cloud comput-
ing environment. In a cloud-based dataflow, there are usually a large number of
datasets, including initial dataset, output dataset and a large volume of interme-
diate datasets generated during the execution. The intermediate datasets often
contain valuable intermediate results, thus would be frequently traced back for
re-analyzing or re-using [1]. Since the dataflow systems are executed in a cloud
computing environment, all the resources used need to be paid for. As indicated
in [2], storing all of the intermediate datasets may induce a high storage cost,
while if all the intermediate datasets are deleted and regenerated when needed,
the computation cost of the system may also be very high. Hence, an optimal
strategy is needed to store some datasets and regenerate the rest of them when
needed so as to minimize the total cost of the whole workflow system [3,4], which
is called the intermediate dataset storage (IDS) problem.

In a cloud dataflow system, when a deleted dataset needs to be regenerated,
the computation cost will involve not only itself but its direct predecessors, if
these predecessors are also deleted. Hence, the computation cost of a sequence
of deleted datasets needs to be accumulated, which leads to the IDS problem.
In [2], Yuan et al. presented the background of the IDS problem in scientific
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 33–44, 2015.
DOI: 10.1007/978-3-319-19647-3 4

34 J. Cheng et al.

workflows and proposed an intermediate data dependency graph (IDG). Based
on IDG, they presented two algorithms as the minimum cost benchmark of the
IDS problem, a linear CTT-SP algorithm for linear workflow which takes O(n4)
time, and a general CTT-SP algorithm for parallel structure workflow which
takes O(n9) time. Besides [2], there have been some related research. Zohrevandi
and Bazzi [5] presented a branch-and-bound algorithm for the common interme-
diate dataset storage between two scientific workflows, which is related to the
IDS problem. Adams et al. [3] proposed a model balancing the computation
cost and the storage cost. The approach proposed by Han et al. [6] is to sup-
port automatic intermediate data reusing for large-scale cloud dataflow based
on Perti-nets. As far as we know, the current best exact algorithm for the IDS
problem is the one proposed by Yuan et al. in [2].

This paper focuses on the IDS problem for linear-structure cloud dataflow
systems. We present a binary tree model that is called S-C tree for the IDS
problem. In an S-C tree, a vertex represents a choice of a dataset, which could
be storage or computation, and the price of a vertex represents the generation
cost for the choice. Based on the S-C tree model, the optimal solution to the
IDS problem can be converted to searching for an optimal full path in the S-C
tree with the minimum path cost. To reduce the searching space, we propose a
group of pruning strategies, by which, more than k−1

2k of the branches will be
pruned off at each level k. Therefore, with the increasing of the searching level,
the searching space grows linearly. Using these pruning strategies, we present
an exact algorithm for the linear-structure IDS problem and prove that the
algorithm takes O(n3) time.

The rest of the paper is organized as follows. Section 2 introduces the IDS
problem and some related concepts are defined there. The S-C tree model of
the IDS problem, including the proof of some theorems, are presented in Sect. 3.
Section 4 describes the algorithm based on the em S-C tree and the corresponding
analysis. Section 5 concludes the paper.

2 The IDS Problem

In this section, we first introduce some related concepts, and then give the defi-
nition of the IDS problem.

Definition 1. A linear-structure cloud dataflow F can be expressed as F =
(DS, TS), where,

– DS = {d0, d1, · · · , dn} is a set of datasets, where n is the number of interme-
diate datasets. d0 denotes the initial dataset, and dn is the output dataset of
F . For each di, 0 < i < n, di−1 is the direct predecessor of di, and di+1 is the
direct successor of di;

– DT = {t1, t2, · · · , tn} is a set of tasks, where ti, 0 ≤ i ≤ n, is a logical
computation unit executed using di−1 as the input and outputs the dataset di.
Given a dataset di, 0 ≤ i ≤ n, ti is called the execution task of di.

Algorithm for Dataset Storage 35

Fig. 1. The exemplar graph of a linear dataflow.

For simplicity, the linear-structure cloud dataflow is simply called dataflow
throughout the rest of the paper. Since this paper focuses on datasets, a dataflow
can also be simplified as a sequence of datasets, denoted as F = {d0, d1, · · · , dn},
as shown in Fig. 1.

As mentioned in [1], there are two basic types of resources in cloud computing:
storage and computation. Normally, the service price of a cloud platform is
proportional to the size of storage resource and also to the instance-hour for
computation resource.

Given a dataflow F , we say that a dataset d is a storage dataset if d is selected
to be stored; otherwise, it is a computation dataset. Thus F can be separated
into two subsets, denoted as F = S ∪ C, where S is the set of storage datasets
and C is the set of computation datasets. We assume that the initial dataset d0
is a storage dataset.

In a dataflow F = {d0, d1, · · · , dn}, there are two ways to generate an inter-
mediate dataset di, (0 < i ≤ n), storage and computation. That is, if di ∈ S, it
is available when needed; otherwise, it is deleted and has to be regenerated by
computation. Therefore, there have two kinds of costs related to di, which are
storage cost x(di) if di ∈ S and computation cost y(di) if di ∈ C. In general,
x(di) is proportional to the size of di, and y(di) is proportional to the running
time of the execution task ti.

Definition 2. Given a dataset dj(j > 0), we say that the dataset di is the
storage-prior of dj , 0 ≤ i < j, denoted as di �→ dj, if di ∈ S and for any
i < k < j, dk ∈ C. That is, di �→ dj means that di is the nearest predecessor
storage dataset of dj, as shown in Fig. 2.

As indicated in [2], when we want to regenerate a computation dataset dj , we
have to find its direct predecessor dj+1 which may also be deleted, so we have
to further trace the nearest stored predecessor, the storage-prior dataset of dj .

36 J. Cheng et al.

Fig. 2. An exemplar graph of di �→ dj

Hence, for any intermediate dataset dj , its generation cost is defined as:

G cost(dj) =
{

x(dj), if (dj ∈ S)∑j
k=i+1 y(dk), if (dj ∈ C) ∧ (di �→ dj)

(2-1)

Based on the above concepts, the IDS problem is defined as follows.

Input: given a dataflow F = {d0, d1, · · · , dn}, for each intermediate dataset di,
its storage cost x(di) and its computation cost y(di).
Output: the set of storage dataset S and the set of computation dataset C.
Objective: the total cost of F ,

∑n
k=1 G cost(dk), is minimized.

3 Binary Tree Model for the IDS Problem

The objective of the IDS problem is to find an optimal mapping between the
intermediate datasets and the set C or S. Since a dataset has only two choices,
we apply a binary tree as the problem model.

3.1 S-C Tree Model

Definition 3. An S-C tree of a given dataflow F = {d0, d1, · · · , dn}, denoted
as TreeF, is full binary tree with n + 1 levels, in which:

(1) The root represents the initial dataset d0.
(2) The set of nodes at the ith level in TreeF ,0 ≤ i ≤ n, denoted as N |iTreeF ,

is mapped to the dataset di.
(3) Any node τ ∈ N |iTreeF , 0 ≤ i < n, its left child left(τ) and right child

right(τ) represent that the dataset di+1 is selected to be stored and deleted
respectively.

Figure 3 shows a 5-level S-C tree. According to Definition 3, the set of
nodes in TreeF can be separated into S = {s0, s1, · · · , s2n−1} and C =
{c0, c1, · · · , c2n−1}, which are mapped respectively to the set of storage datasets
and set of computation datasets in F . We can see that set S is composed of
the root s0 and all the left-child nodes, and set C consists of all the right-child
nodes. The nodes of set S and C are also simply called S-nodes and C-nodes
respectively.

Algorithm for Dataset Storage 37

Fig. 3. An exemplar graph of 5-level S-C tree.

Definition 4. Given an S-C tree TreeF, the S-prior of a C node τ , denoted
as τ̂ , is the nearest S-ancestor of τ . We use Path�→

τ to denote the ordered set of
nodes of the path that is from τ̂ to τ .

For example, in Fig. 3, ĉ4 = s2, ĉ5 = s1. Path �→
c5 = {s1, c2, c5}, Path�→

c7 =
{s0, c1, c3, c7}. As we can see, in Path�→

τ , only the first node τ̂ is an S-node,
others are C-nodes.

Definition 5. Given a dataflow F = {d0, d1, · · · , dn} and its S-C tree TreeF,
assume that τ ∈ N |iTreeF , 0 ≤ i < n, the weight and cost of τ are defined as
follows.

w(τ) =
{

0, if τ ∈ S
y(di), if τ ∈ C

(3-1)

cost(τ) =
{

x(di), if τ ∈ S∑
α∈Path�→

τ
w(α), if τ ∈ C

(3-2)

We assume that cost(s0) = 0.

Definition 6. Given an S-C tree T with n + 1 levels, a path P =
{pa, pa+1, pa+2, · · · , pb}, 0 ≤ a ≤ b ≤ n, is an ordered set of nodes from pa

to pb, in which pi ∈ N |iT , a ≤ i < b, and pi is the parent node of pi+1. The cost
of path P is defined as: Cost(P) =

∑b
i=a cost(pi).

Definition 7. Given an S-C tree T with n+1 levels, a k- path P k = {p0, p1, p2,
· · · , pk}, 0 ≤ k ≤ n, is a path in which the first node is the root of T . An n-path
is also called a full path. A full path Λ is called an optimal full path if and
only if for any full path Λ′, Cost(Λ) ≤ Cost(Λ′).

For example, in Fig. 3, {s0, s1, c2, c5} is a 3-path, and {s0, s1, c2, c5, c11} is a full
path.

38 J. Cheng et al.

Given a k-path P k = {p0, p1, p2, · · · , pk} and a path P =
{pk, pk+1, pk+2, . . . , pk+i}, we use link(P k, P) to denote the (k + i)-path:
{p0, p1, p2, · · · , pk, pk+1, pk+2, · · · , pk+i}. In addition, if τ is a child node of pk,
we also use link(P k, τ) to denoted the (k + 1)-path: {p0, p1, p2, . . . , pk, τ}.

Definition 8. Given an S-C tree T with n + 1 levels, let τ ∈ N |kT , 0 ≤ k ≤ n,
the sub-tree which is rooted at τ is called a k-subtree. A k-subtree δ is called
an optimal k-subtree if and only if δ contains an optimal full path from the
kth level to the nth level.

For example, an S-C tree itself is an optimal 0-subtree. Assume that Λ =
{p0, p1, p2, · · · , pn} is an optimal full path, then the sub-tree which is rooted
at pi(0 ≤ i ≤ n) is an optimal i-subtree.

Based on the S-C tree model, the IDS problem can be converted as: given a
dataflow F and its S-C tree TreeF, find an optimal full path of TreeF .

3.2 Proofs of the Theorems

For convenience, given an S-C tree T , assume that a node τ ∈ N |kT , we use
subtree(τ) to denote a k-subtree which is rooted at τ .

Definition 9. Given an S-C tree, let τ and τ ′ be the nodes at the same level.
We say that τ is equivalent to τ ′, denoted as τ ≡ τ ′, if and only if ((τ, τ ′ ∈
S) ∨ (τ, τ ′ ∈ C)) ∧ (cost(τ) = cost(τ ′)). If ((τ, τ ′ ∈ S) ∨ (τ, τ ′ ∈ C)) ∧ (cost(τ) <
cost(τ ′)), we say that τ is superior to τ ′, denoted as τ ≺ τ ′.

The equivalent and superior relations between nodes are both transitive.

Lemma 1. Given a dataflow F = {d0, d1, . . . , dn} and its S-C tree TreeF , if τ
and τ ′ are both S-nodes at the same level, then τ ≡ τ ′.

Proof. Assume that τ, τ ′ ∈ N |iTreeF , 0 < i ≤ n. Since τ and τ ′ are both S-nodes,
according to Definition 5, cost(τ) = cost(τ ′) = x(di), thus τ ≡ τ ′. ��

Definition 10. Assume that δ and δ′ are k-subtrees, τ and τ ′ are nodes belong-
ing to δ and δ′ respectively. We say that τ ′ is the corresponding node of τ
about δ and δ′, denoted as τ ↔ τ ′|(δ, δ′), if one of the following conditions is
satisfied:

(1) (δ = subtree(τ)) ∧ (δ′ = subtree(τ ′));
(2) ∃(υ ↔ υ′|(δ, δ′)) ∧ (τ = left(υ)) ∧ (τ ′ = left(υ′));
(3) ∃(υ ↔ υ′|(δ, δ′)) ∧ (τ = right(υ)) ∧ (τ ′ = right(υ′)).

Definition 11. Assume that δ and δ′ are both k-subtrees, Λ and Λ′ are full path
of δ and δ′ respectively. Let τi ∈ (N |iδ ∩ Λ) and τ ′

i ∈ (N |iδ′ ∩ Λ′). We say that Λ′

is the corresponding path of Λ about δ and δ′, denoted as Λ ↔ Λ′|(δ, δ′), if
and only if τi ↔ τ ′

i |(δ, δ′) for any 0 ≤ i ≤ k.

Algorithm for Dataset Storage 39

In Fig. 3, {s1, c2, s5, c10} ↔ {c1, c3, s7, c14}|(subtree(s1), (subtree(c1)).

Definition 12. Assume that δ and δ′ are both k-subtrees, we say that δ is
equivalent to δ′, denoted as δ ≡ δ′, if and only if for each node τ in δ and its
corresponding node τ ′ in δ′, τ ≡ τ ′. We say that δ is superior to δ′, denoted as
δ ≺ δ′, if and only if the set of nodes of δ can be separated into two subsets, A
and B, which satisfy the following conditions:

(1) A = {τ |(τ ↔ τ ′|(δ, δ′)) ∧ (τ ≡ τ ′)};
(2) B = {τ |(τ ↔ τ ′|(δ, δ′)) ∧ (τ ≺ τ ′)};
(3) B is nonempty.

That is, each node in A is equivalent to its corresponding node in δ′, and each
node in B is superior to its corresponding node in δ′. The equivalent and superior
relations between k-subtrees are both transitive.

Definition 13. Given an S-C tree T , let P k
1 = {p1,0, p1,1, . . . , p1,k} and P k

2 =
{p2,0, p2,1, . . . , p2,k} be k-paths of T, 0 < k ≤ n. We say that P k

1 is equivalent
to P k

2 , denoted as P k
1 ≡ P k

2 , if and only if p1,i ≡ p2,i for any 0 ≤ i ≤ n. We
say that P k

1 is superior to P k
2 , denoted as P k

1 ≺ P k
2 , if and only if P k

1 can be
separated into two nonempty subsets, P k

1 = A ∪ B, such that A = {p1,i|p1,i ≡
p2,i, 0 ≤ i < n} and B = {p1,i|p1,i ≺ p2,i, 0 ≤ i < n}.
The equivalent and superior relations between k-paths are also transitive.

Lemma 2. Given a workflow F = {d0, d1, . . . , dn} and its S-C tree TreeF, let
τ, τ ′ ∈ N |iTreeF , 0 < i ≤ n, if τ ≡ τ ′, then subtree(τ) ≡ subtree(τ ′).

Proof. Since τ, τ ′ ∈ N |iTreeF , and left(τ) and left(τ ′) are both S-nodes, based
on Lemma 1, we have: left(τ) ≡ left(τ ′). (a-1)

As right(τ) and right(τ ′) are both C-nodes, cost(right(τ)) =
∑

α∈Path�→
right(τ)

ω(α) =
∑

α∈Path�→
τ

ω(α)+ω(right(τ)) = cost(τ)+y(di+1), and cost(right(τ ′)) =∑
α∈Path�→

right(τ′)
ω(α) =

∑
α∈Path�→

τ′
ω(α)+ω(right(τ ′)) = cost(τ ′)+y(di+1). Due

to τ ≡ τ ′, we have cost(τ) = cost(τ ′), so cost(right(τ)) = cost(right(τ ′)), then:
right(τ) ≡ right(τ ′). (a-2)

Summarizing (a-1) and (a-2), both left(τ) and right(τ) are respectively
equivalent to left(τ ′) and right(τ ′). By this analogy, the rest nodes of subtree(τ)
and subtree(τ ′) can be dealt with in the same manner. Hence, any node
of subtree(τ) is equivalent to its corresponding node of subtree(τ ′). That is:
subtree(τ) ≡ subtree(τ ′). ��
Corollary 1. Let τ and τ ′ be two nodes at the same level in an S-C tree T , then
subtree(left(τ)) ≡ subtree(left(τ ′)).

Proof. Assume that τ, τ ′ ∈ N |iT , then left(τ) ∈ N |i+1
T and left(τ ′) ∈ N |i+1

T .
According to Lemma 1, left(τ) ≡ left(τ ′). Based on Lemma 2, we can obtain:
subtree(left(τ)) ≡ subtree(left(τ ′)). ��

40 J. Cheng et al.

Lemma 3. Let τ and τ ′ be two nodes at the same level in an S-C tree T , if
τ, τ ′ ∈ C and τ ≺ τ ′, then subtree(τ) ≺ subtree(τ ′).

Proof. Assume that τ, τ ′ ∈ N |iT . Based on Lemma 1, we have:
left(τ) ≡ left(τ ′). (b-1)
Similar to the proof of Lemma 2, we have: cost(right(τ)) =

∑
α∈Path�→

right(τ)

ω(α) =
∑

α∈Path�→
τ

ω(α)+ω(right(τ)) = cost(τ)+y(di+1), and cost(right(τ ′)) =∑
α∈Path�→

right(τ′)
ω(α) =

∑
α∈Path�→

τ′
ω(α)+ω(right(τ ′)) = cost(τ ′)+y(di+1). Due

to τ ≺ τ ′, we have cost(τ) < cost(τ ′), thus cost(right(τ)) < cost(right(τ ′)),
then: right(τ) ≺ right(τ ′). (b-2)

Summarizing (b-1) and (b-2), we can separate the set of nodes of subtree(τ)
into two subsets, A and B. We add the nodes of subtree(left(τ)) into subset
A, and right(τ) into subset B. By this analogy, right(τ) can be dealt with in
the same manner like τ until all the nodes are contained in A or B. Each node
in A is equivalent to its corresponding node of subtree(τ ′), and each node in
B is superior to its corresponding node of subtree(τ ′). Therefore, subtree(τ) ≺
subtree(τ ′). ��
Theorem 1. Given an S-C tree T , let P k

i = {pi,0, pi,1, pi,2, . . . , pi,k} and P k
j =

{pj,0, pj,1, pj,2, . . . , pj,k} be any two k-paths of T, i �= j. If Cost(P k
j) < Cost(P k

i),
then subtree(left(pi,k)) is not an optimal (k + 1)-subtree.

Proof. Following Corollary 1, we have subtree(left(pi,k)) ≡ subtree(left(pj,k)).
Assume that P is the optimal full path of subtree(left(pi,k)), as shown in Fig. 4,
there must exist a corresponding path P ′ in subtree(left(pj,k)) which satis-
fies P ′ ≡ P . Since Cost(P k

j) < Cost(P k
i), then the full path link(P k

j , P ′) ≺
link(P k

i , P). Thus link(P k
i , P) must not be the optimal full path of T . That

is, subtree(left(pi,k)) is not the sub-tree through which the optimal full path
passes. Hence, subtree(left(τ)) is not an optimal (k + 1)-subtree. ��
Theorem 2. Given an S-C tree of a dataflow F = {d0, d1, . . . , dn}, let Ω =
{P k

1 , P k
2 , . . . , P k

m} be a set of k-paths, where P k
i = {pi,0, pi,1, pi,2, . . . , pi,k}, 1 ≤

Fig. 4. An exemplar graph of Theorem 1.

Algorithm for Dataset Storage 41

Fig. 5. An exemplar graph of Theorem 2.

i ≤ m. Assume that Ω contains an optimal full path from the root to the kth

level, then if Cost(P k
j) = minpk∈Ω Cost(P k) and pj,k ∈ S, subtree(pj,k) must be

an optimal k-subtree.

Proof. As shown in Fig. 5, let P k
g and P k

h (g �= h �= i) be any two k-paths taken
from Ω such that pg,k ∈ S and ph,k ∈ C. According to the precondition, we have
Cost(P k

j) < Cost(P k
g) and Cost(P k

j) < Cost(P k
h) .

(1) Since pg,k, pj,k ∈ S, based on Lemmas 1 and 2, we have pg,k ≡ pj,k, thus
subtree(pj,k) ≡ subtree(pg,k). Let P be the optimal full path of subtree(pg,k),
then there must exist a corresponding path P ′ in subtree(pj,k), which satisfies
P ′ ≡ P . Since Cost(P k

j) < Cost(P k
g), we have link(P k

j , P ′) ≺ link(P k
g , P). Thus

link(P k
g , P) must not be the optimal full path of TreeF . That is, subtree(pg,k) is

not the sub-tree which the optimal full path passes through, thus subtree(pg,k)
is not an optimal k-subtree.

(2) Based on Corollary 1, we have:

subtree(left(pj,k)) ≡ subtree(left(ph,k)). (c-1)

Since Pj,k ∈ S, thus cost(right(pj,k)) = y(di+1). While due to Ph,k ∈ C,
we also have cost(right(ph,k)) =

∑
α∈Path�→

right(Ph,k)
ω(α) which is equal to∑

α∈Path�→
Ph,k

ω(α) +ω(right(ph,k)) = cost(ph,k)+y(dk+1). That is, subtree(right

(pj,k)) ≺ subtree(right(ph,k)). As right(pj,k) and right(ph,k) are both C-nodes,
according to Lemma 3, we have:

subtree(right(pj,k)) ≺ subtree(right(ph,k)). (c-2)

Due to (c-1), (c-2) and Cost(P k
j) < Cost(P k

h), we can obtain that, assuming P is
the optimal full path of subtree(ph,k), there must exist a corresponding path P ′

in subtree(pj,k), which satisfies P ′ ≺ P , so we have link(P k
j , P ′) ≺ link(P k

h , P).
Hence, subtree(ph,k) is not the sub-tree through which the optimal full path of
treeF passes, that is, subtree(pg,k) is not an optimal k-subtree.

Summarizing (1) and (2), if Ω contains an optimal full path from the root
to the kth level, the optimal full path must pass through subtree(pj,k), thus
subtree(pj,k) must be an optimal k-subtree.

42 J. Cheng et al.

4 Algorithm for the IDS Problem Based on the S-C Tree

Based on the S-C tree model, the IDS problem is converted to searching an
optimal full path of a given dataflow S-C tree. Using Theorems 1 and 2, we can
obtain the following pruning strategies. By these strategies, the search space can
be greatly reduced.

(1) Search for the optimal full path of the given S-C tree from top to bottom by
level. At each level k, the search space is set to Ω = {P k

1 , P k
2 , . . . , P k

m}, in
which P k

i = {pi,0, pi,1, pi,2, . . . , pi,k}, 1 ≤ i ≤ m, is the k-path that has not
been pruned off.

(2) At each level k, let P k
j be the current best k-path which satisfies Cost(P k

j)
= minpk∈Ω Cost(P k), then:
(a) If pj,k ∈ C, based on Theorem 1, for any pi,k, i �= j, subtree(left(pi,k))

is not an optimal (k + 1)-subtree thus can be pruned off, so all

Fig. 6. An example of Algorithm 1.

Algorithm for Dataset Storage 43

Fig. 7. The IDS algorithm based on S-C tree.

link(P k
i , right(pi,k)), i �= j, as well as link(P k

j , left(pj,k)) and
link(P k

j , right(pj,k)) will be contained in Ω for the next round of search.
(b) If pj,k ∈ S, according to Theorem 2, subtree(pj,k) is the optimal

k-subtree, so any subtree(pi,k), i �= j, can be pruned off, so only
link(P k

j , left(pj,k)) and link(P k
j , right(pj,k)) can be contained into Ω

for the next round of search.

Figure 6 shows an example of the searching process. We can see that more than
k−1
2k of the branches are pruned off at each level of searching. Based on the

strategies above, we present the IDS algorithm in Fig. 7.
In line 8 and 15, the function tail(Ptemp) means the last node of Ptemp.

Theorem 3. The searching space Ω increases linearly with the level of the S-C
tree in Algorithm 1.

Proof. Let |Ω|k denote the size of Ω in the searching of the kth level, 0 ≤ k ≤ n.
According to Algorithm 1, we have:

(1) When k = 0, Ω = {d0}, thus |Ω|0 = 1.
(2) When k > 0, if τ ∈ S, |Ω|k+1 = 2; else τ ∈ C, then for each Ptemp ∈ Ω,Ptemp

will be replaced by link(Ptemp, right(tail(Ptemp))), and link(P, left(τ)) will

44 J. Cheng et al.

be the only additional new comer of Ω in the next round of searching, hence,
|Ω|k+1 = |Ω|k + 1.

Therefore, in the worst-case, |Ω|k+1 = |Ω|k +1, then we have |Ω|k = |Ω|k−1 +1,
|Ω|k−1 = |Ω|k−2 + 1,. . . , |Ω|1 = |Ω|0 + 1, so we can obtain that |Ω|k = k + 1.
That is, Ω increases linearly with the level of the S-C tree. ��
For a k-path P k = {p0, p1, p2, . . . , pk}, 0 ≤ k ≤ n, the calculation of Cost(P k)
takes O(k) time. Following Theorem 3, Algorithm 1 takes O(n3) time in the worst
case. Furthermore, since Ω is composed of n n-paths, thus the space complexity
of Algorithm 1 is O(n2).

5 Conclusions

In this paper, we solved the IDS problem for linear-structure dataflow by using
an S-C tree model. The running time of our algorithm is O(n3), which improves
the previous bound of O(n4). In the near future, we will study the IDS problems
for cloud dataflow with a non-linear structure, such as parallel structure and
non-structure dataflows.

Acknowledgements. This paper is supported by national natural science foundation
of China: 61472222, and natural science foundation of Shandong province: ZR2012Z002.

References

1. Deelman, E., Chervenak, A.: Data management challenges of data-intensive scien-
tific workflows. In: IEEE International Symposium on Cluster Computing and the
Grid (CCGrid 2008), pp. 687–692, Lyon, France (2008)

2. Yuan, D., Yang, Y., Liu, X., Zhang, G., Chen, J.: On-demand minimum cost bench-
marking for intermediate data storage in scientific cloud workflow systems. J. Par-
allel Distrib. Comput. 71(2), 316–332 (2011)

3. Adams, I., Long, D.D.E., Miller, E.L., Pasupathy, S., Storer, M.W.: Maximizing
efficiency by trading storage for computation. In: Workshop on Hot Topics in Cloud
Computing (HotCloud 2009), pp. 1–5, San Diego, CA (2009)

4. Yuan, D., Yang, Y., Liu, X., Zhang, G., Chen, J.: A data dependency based strategy
for intermediate data storage in scientific cloud workflow systems. Concurr. Comput.
Pract. Exp. 24(9), 956–976 (2010)

5. Zohrevandi, M., Bazzi, R.A.: The bounded data reuse problem in scientific work-
flows. In: 2013 IEEE 27th International Symposium on Parallel & Distributed
Processing, pp. 1051–1062 (2013)

6. Han, L.X., Xie, Z., Baldock, R.: Automatic data reuse for accelerating data inten-
sive applications in the Cloud. In: The 8th International Conference for Internet
Technology and Secured Transactions (ICITST-2013), pp. 596–600 (2013)

	A New Algorithm for Intermediate Dataset Storage in a Cloud-Based Dataflow
	1 Introduction
	2 The IDS Problem
	3 Binary Tree Model for the IDS Problem
	3.1 S-C Tree Model
	3.2 Proofs of the Theorems

	4 Algorithm for the IDS Problem Based on the S-C Tree
	5 Conclusions
	References

