
On r-Gatherings on the Line

Toshihiro Akagi and Shin-ichi Nakano(B)

Gunma University, Kiryu 376-8515, Japan
nakano@cs.gunma-u.ac.jp

Abstract. In this paper we study a recently proposed variant of the
facility location problem, called the r-gathering problem. Given an inte-
ger r, a set C of customers, a set F of facilities, and a connecting cost
co(c, f) for each pair of c ∈ C and f ∈ F , an r-gathering of customers

C to facilities F is an assignment A of C to open facilities F
′ ⊂ F such

that r or more customers are assigned to each open facility. We give an
algorithm to find an r-gathering with the minimum cost, where the cost
is maxci∈C{co(ci, A(ci))}, when all C and F are on the real line.

Keywords: Algorithm · Facility location · Gathering

1 Introduction

The facility location problem and many of its variants are studied [5,6]. In the
basic facility location problem we are given (1) a set C of customers, (2) a set
F of facilities, (3) an opening cost op(f) for each f ∈ F , and (4) a connecting
cost co(c, f) for each pair of c ∈ C and f ∈ F , then we open a subset F ′ ⊂ F
of facilities and find an assignment A from C to F ′ so that a designated cost is
minimized.

In this paper we study a recently proposed variant of the problem, called
the r-gathering problem [4]. An r-gathering of customers C to facilities F is an
assignment A of C to open facilities F

′ ⊂ F such that r or more customers are
assigned to each open facility. This means each open facility has enough number
of customers. We assume |C| ≥ r holds. Then we define the cost of (the max
version of) a gathering as maxci∈C{co(ci, A(ci))}. (We assume op(fj) = 0 for
each fj ∈ F in this paper.) The min-max version of the r-gathering problem finds
an r-gathering having the minimum cost. For the min-sum version see the brief
survey in [4].

Assume that F is a set of locations for emergency shelters, and co(c, f) is the
time needed for a person c ∈ C to reach a shelter f ∈ F . Then an r-gathering
corresponds to an evacuation assignment such that each opened shelter serves r
or more people, and the r-gathering problem finds an evacuation plan minimizing
the evacuation time span.

Armon [4] gave a simple 3-approximation algorithm for the r-gathering prob-
lem and proves that with assumption P �= NP the problem cannot be approx-
imated within a factor of less than 3 for any r ≥ 3. In this paper we give an
c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 25–32, 2015.
DOI: 10.1007/978-3-319-19647-3 3

26 T. Akagi and S. Nakano

O((|C| + |F |) log(|C| + |F |)) time algorithm to solve the r-gathering problem
when all C and F are on the real line.

The remainder of this paper is organized as follows. Section 2 gives an algo-
rithm to solve a decision version of the r-gathering problem. Section 3 contains
our main algorithm for the r-gathering problem. Sections 4 and 5 present two
more algorithms to solve two similar problems. Finally Sect. 6 is a conclusion.

2 (k,r)-Gathering on the Line

In this section we give a linear time algorithm to solve a decision version of the
r-gathering problem [3].

Given customers C = {c1, c2, · · · , c|C|} and facilities F = {f1, f2, · · · , f|F |}
on the real line (we assume they are distinct points and appear in those
order from left to right respectively) and two numbers k and r, then prob-
lem P (C,F, j, i) finds an assignment A of customers Ci = {c1, c2, · · · , ci} to
open facilities F

′
j ⊂ Fj = {f1, f2, · · · , fj} such that (1) r or more customers

are assigned to each open facility, (2) co(ci, A(ci)) ≤ k for each ci ∈ Ci and
(3) fj ∈ F

′
j . (2) means each customer is assigned to a near facility, and

(3) means the rightmost facility is forced to open. We assume that co(c, f) is the
distance between c ∈ C and f ∈ F , and for each fj ∈ F interval [fj − k, fj + k]
contains r or more customers, otherwise we can remove such fj from F since
such fj never open.

An assignment A of Ci to Fj is called monotone if, for any pair ci′ , ci of
customers with i

′
< i, A(ci′) ≤ A(ci) holds. In a monotone assignment the

interval induced by the assigned customers to a facility never intersects other
interval induced by the assigned customers to another facility. We can observe
that if P (C,F, j, i) has a solution then P (C,F, j, i) also has a monotone solution.
Also we can observe that if P (C,F, j, i) has a solution and co(ci+1, fj) ≤ k then
P (C,F, j, i+ 1) also has a solution.

If P (C,F, j, i) has a solution for some i then let s(fj) be the minimum i such
that P (C,F, j, i) has a solution. Note that (3) fj ∈ F

′
j means cs(fj) is located in

interval [fj −k, fj +k]. We define P (C,F, j) to be the problem to find such s(fj)
and a corresponding assignment. If P (C,F, j, i) has no solution for every i then
we say P (C,F, j) has no solution, otherwise we say P (C,F, j) has a solution.

Lemma 1. For any pair fj′ and fj in F with j
′
< j, s(fj′) ≤ s(fj) holds.

Proof. Assume otherwise. Then s(fj′) > s(fj) holds. Modify the assignment
corresponding to s(fj) as follows. Reassign the customers assigned to fj to fj′

then close fj . The resulting assignment is an r-gathering of Cs(fj) to Fj′ and
now s(fj′) = s(fj). A contradiction. ��
Assume that P (C,F, j) has a solution and c1 < fj − k. Then the corresponding
solution has one or more open facilities except for fj . Choose the solution of
P (C,F, j) having the minimum second rightmost open facility, say fj′ . We say
fj′ is the mate of fj and write mate(fj) = fj′ . We have the following three cases
based on the condition of the mate fj′ of fj .

On r-Gatherings on the Line 27

Case 1: P (C,F, j
′
) has a solution, fj′ + k < fj − k, the interval (fj′ + k, fj − k)

has no customer and the interval [fj − k, fj + k] has r or more customers.

Case 2: P (C,F, j
′
) has a solution, cs(f

j
′) ≥ fj − k and interval (cs(f

j
′), fj + k]

has r or more customers.

Case 3: P (C,F, j
′
) has a solution, cs(f

j
′) < fj − k and interval [fj − k, fj + k]

has r or more customers.

For each fj by checking the three conditions above for every possible mate fj′

one can design O(|F |2 + |C|) time algorithm based on a dynamic programming
approach. However we can omit the most part of the checks by the following
lemma.

Lemma 2. (a) Assume P (C,F, j) has a solution. If P (C,F, j + 1) also has a
solution then mate(fj) ≤ mate(fj+1) holds.
(b) For fj ∈ F , let fmin be the minimum fj′ such that (i)P (C,F, j

′
) has a

solution and (ii)fj′ +k ≥ fj −k, if such fmin exists. If P (C,F, j) has no solution
with the second rightmost open facility fmin, then (b1) any fj′′ satisfying fmin <
fj′′ < fj is not the mate of fj, and P (C,F, j) has no solution, and (b2) fmin ≤
mate(fj+1) holds if mate(fj+1) exists.

Proof. (a) Assume otherwise. If mate(fj+1)+ k < fj − k holds then mate(fj+1)
is also the mate of fj , a contradiction. If mate(fj+1) + k ≥ fj − k holds then
by Lemma1 mate(fj+1) is also the mate of fj , a contradiction. (b1) Immediate
from Lemma1. (b2) Assume otherwise. If mate(fj+1) + k < fj − k holds then
mate(fj+1) is also the mate of fj , a contradiction. If mate(fj+1) + k ≥ fj − k
holds then fmin is mate(fj+1) not mate(fj), a contradiction. ��
Lemma2 means after searching for the mate of fj upto some fj′ the next search
for the mate of fj+1 can start at the fj′ . Based on the lemma above we can
design algorithm find(k, r)-gathering.

In the preprocessing we compute, for each fj ∈ F , (1) the index of the first
customer in interval (fj + k, c|C|), (2) the index of the first customer in interval
[fj −k, c|C|) and (3) the index of the r-th customer in interval [fj −k, c|C|). Also
we store the index s(fj) for each fj ∈ F . Those needs O(|C| + |F |) time. After
the preprocessing the algorithm runs in O(|F |) time since j′ ≤ j always holds
the most inner part to compute s(fj) executes at most 2|F | times.

We have the following lemma.

Lemma 3. One can solve the (k, r)-gathering problem in O(|C| + |F |) time.

3 r-Gathering on the Line

In this section we give an O((|C| + |F |) log(|C| + |F |)) time algorithm to solve
the r-gathering problem when all C and F are on the real line.

28 T. Akagi and S. Nakano

Algorithm 1. find(k, r)-gathering (C,F, k)
j = 1
// One open facility Case //
while interval [fj − k, fj + k] has both c1 and cr do

set s(fj) to be the r-th customer cr
j = j + 1

end while
// Two or more open facilities Case//

j
′
= 1

while j ≤ |F | do
flag = off
while flag =off and s(fj) is not defined yet and j

′
< j do

if P (C,F, fj′) has a solution and fj′ + k < fj − k, interval (fj′ + k, fj − k) has
no customer then

set s(fj) to be the r-th customer in the interval [fj − k, fj + k]
else if P (C,F, fj′) has a solution and fj′ + k ≥ fj − k then

flag = on
if s(fj′) ≥ fj − k and interval (s(fj′), fj + k] has r or more customers then

set s(fj) to be the r-th customer in the interval (s(fj′), fj + k]
else if P (C,F, fj′) has a solution, s(fj′) < fj − k and interval [fj − k, fj + k]
has r or more customers then

set s(fj) to be the r-th customer in the interval [fj − k, fj + k]
end if

end if
j

′
= j

′
+ 1

end while
j = j + 1

end while
if some fj with defined s(fj) has c|C| within distance k then

output YES
else

output NO
end if

Our strategy is as follows. First we can observe that the minimum cost
k∗ of a solution of an r-gathering problem is some co(c, f) with c ∈ C and
f ∈ F . Since the number of distinct co(c, f) is at most |C||F |, sorting them
needs O(|C||F | log(|C||F |)) time. Then find the smallest k such that the (k, r)-
gathering problem has a solution by binary search, using the linear-time algo-
rithm in the preceding section log(|C||F |) times. Those part needs O((|C| +
|F |) log |C||F |) time. Thus the total running time is O(|C||F | log(|C||F |)).

However by using the sorted matrix searching method [7] (See the good sur-
vey in [2, Section 3.3]) we can improve the running time to O((|C|+|F |) log(|C|+
|F |)). Similar technique is also used in [8,9] for a fitting problem. Now we explain
the detail in our simplified version.

First let MC be the matrix in which each element is mi,j = ci − fj . Then
mi,j ≥ mi,j+1 and mi,j ≤ mi+1,j always holds, so the elements in the rows and

On r-Gatherings on the Line 29

columns are sorted respectively. Similarly let MF be the matrix in which each
element is m

′
i,j = fj − ci. The minimum cost k∗ of an optimal solution of an

r-gathering problem is some positive element in those two matrices. We can find
the smallest k in MC for which the (k, r)-gathering problem has a solution, as
follows.

Let n be the smallest integer which is (1) a power of 2 and (2) larger than
or equal to max{|C|, |F |}. Then we append the largest element m|C|,1 to MC as
the elements in the lowest rows and the leftmost columns so that the resulting
matrix has exactly n rows and n columns. Note that the elements in the rows
and columns are still sorted respectively. Let MC be the resulting matrix. Our
algorithm consists of stages s = 1, 2, · · · , log n, and maintains a set Ls of sub-
matrices of MC possibly containing k∗. Hypothetically first we set L0={MC}.
Assume we are now starting stage s.

For each submatrix M in Ls−1 we partite M into the four submatrices with
n/2s rows and n/2s columns and put them into Ls.

Let kmin be the median of the upper right corner elements of the submatrices
in Ls. Then for the k = kmin we solve the (k, r)-gathering problem. We have
two cases.

If the (k, r)-gathering problem has a solution then we remove from Ls each
submatrix with the upper right corner element (the smallest element) greater
than kmin. Since kmin ≥ k∗ holds each removed submatrix has no chance to
contain k∗. Also if Ls has several submatrices with the upper right corner element
equal to kmin then we remove them except one from Ls. Thus we can remove
|Ls|/2 submatrices from Ls.

Otherwise if the (k, r)-gathering problem has no solution then we remove
from Ls each submatrix with the lower left corner element (the largest element)
smaller than kmin. Since kmin < k∗ holds each removed submatrix has no chance
to contain k∗. Now we can observe that, for each “chain” of submatrices, which is
the sequence of submatrices in Ls with lower-left to upper-right diagonal on the
same line, the number of submatrices (1) having the upper right corner element
smaller than kmin (2) but remaining in Li is at most one (since the elements on
“the common diagonal line” are sorted). Thus, if |Ls|/2 > Ds, where Ds = 2s+1

is the number of chains plus one, then we can remove at least |Ls|/2 − Ds

submatrices from Ls.
Similarly let kmax be the median of the lower left corner elements of the

submatrices in Ls, and for the k = kmax we solve the (k, r)-gathering problem
and similarly remove some submatrices from Ls. This ends stage s.

Now after stage log n each matrix in Llog n has just one element, then we can
find the k∗ using a binary search with the linear-time decision algorithm.

We can prove that at the end of stage s the number of submatrices in Ls is
at most 2Ds, as follows.

First L0 has 1 submatrix and 1 ≤ 2D0 = 2 · 20+1 submatrix. By induction
assume Ls−1 has 2Ds−1 = 2 · 2s submatrices.

At stage s we first partite each submatrix in Ls−1 into four submatrices then
put them into Ls. Now the number of submatrices in Ls is 4 · 2Ds−1 = 4Ds. We
have four cases.

30 T. Akagi and S. Nakano

If the (k, r)-gathering problem has a solution for k = kmin then we can
remove at least a half of the submatrices from Ls, and so the number of the
remaining submatrices in Ls is at most 2Ds, as desired.

If the (k, r)-gathering problem has no solution for k = kmax then we can
remove at least a half of the submatices from Ls, and so the number of the
remaining submatices in Ls is at most 2Ds, as desired.

Otherwise if |Ls|/2 ≤ Ds then the number of the submatices in Ls (even
before the removal) is at most 2Ds, as desired.

Otherwise (1) after the check for k = kmin we can remove at least |Ls|/2−Ds

submatices (consisting of too small elements) from Ls, and (2) after the check
for k = kmax we can remove at least |Ls|/2 − Ds submatices (consisting of too
large elements) from Ls, so the number of the remaining submatices in Ls is at
most |Ls| − 2(|Ls|/2 − Ds) = 2Ds, as desired.

Thus at the end of stage s the number of submatrices in Ls is always at
most 2Ds.

Now we consider the running time. We implicitly treat each submatrix as
the index of the upper right element in MC and the number of lows. Except for
the calls of the linear-time decision algorithm for the (k, r)-gathering problem,
we need O(|Ls−1|) = O(Ds−1) time for each stage s = 1, 2, · · · , log n, and D0 +
D1+ · · ·+Dlog n−1 = 2+4+ · · ·+2log n < 2 ·2log n = 2n holds, so this part needs
O(n) time in total. (Here we use the linear time algorithm to find the median.)

Since each stage calls the linear-time decision algorithm twice this part needs
O(n log n) time in total.

After stage s = log n each matrix has just one element, then we can find the
k∗ among the |Llog n| ≤ 2Dlog n = 4n elements using a binary search with the
linear-time decision algorithm at most log 4n times. This part needs O(n log n)
time.

Then we similarly find the smallest k in MF for which the (k, r)-gathering
problem has a solution. Finally we output the smaller one among the two.

Thus the total running time is O((|C| + |F |) log(|C| + |F |)).
Theorem 1. One can solve the r-gathering problem in O((|C| + |F |) log(|C| +
|F |)) time when all C and F are on the real line.

4 r-Gather Clustering

In this section we give an algorithm to solve a similar problem by modifying the
algorithm in Sect. 3.

Given a set C of n points on the plane an r-gather-clustering is a parti-
tion of the points into clusters such that each cluster has at least r points. The
r-gather-clustering problem [1] finds an r-gather-clustering minimizing the max-
imum radius among the clusters, where the radius of a cluster is the minimum
radius of the disk which can cover the points in the cluster. A polynomial time
2-approximation algorithm for the problem is known [1].

When all C are on the real line, in any solution of any r-gather-clustering
problem, we can assume that the center of each disk is at the midpoint of some

On r-Gatherings on the Line 31

pair of points, and the radius of an optimal r-gather-clustering is the half of the
distance between some pair of points in C.

Given C and two numbers k and r the decision version of the r-gather-
clustering problem find an r-gather-clustering with the maximum radius k. We
can assume that in any solution of the problem the center of each disk is at c−k
for some c ∈ C. Thus, by introducing the set of all such points as F , we can solve
the decision version of the r-gather-clustering problem as the (k, r)-gathering
problem. Using the algorithm in Sect. 2 we can solve the problem in O(|C|) time.

Now we explain our algorithm to solve the r-gather-clustering problem. First
sort C in O(|C| log |C|) time. Let c1, c2, · · · , c|C| be the resulting non decreasing
sequences and let M be the matrix in which each element is mi,j = (ci − cj)/2.
Note that the optimal radius is in M and this time M has |C| rows and columns.
Now mi,j ≥ mi,j+1 and mi,j ≥ mi+1,j holds, so the elements in the rows and
columns are sorted respectively. Then as in Sect. 3 we can find the optimal radius
by the sorted matrix searching method. The algorithm calls the decision algo-
rithm O(log |C|) times and the decision algorithm runs in O(|C|) time, and in
the stages the algorithm needs O(|C|) time in total except for the calls. Finally
we needs O(|C| log |C|) time for the last binary search. Thus the total running
time is O(|C| log |C|).
Theorem 2. One can solve the r-gather-clustering problem in O(|C| log |C|)
time when all points in C are on the real line.

5 Outlier

In this section we consider a generalization of the r-gathering problem where at
most h customers are allowed to be not assigned.

An r-gathering with h-outliers of customers C to facilities F is an assignment
A of C\C ′

to open facilities F
′ ⊂ F such that r or more customers are assigned

to each open facility and |C ′ | ≤ h. The r-gathering with h-outliers problem finds
an r-gathering with h-outliers having the minimum cost.

Given customers C = {c1, c2, · · · , c|C|} and facilities F = {f1, f2, · · · , f|F |}
on the real line and three numbers k and r and h, problem P (C,F, j, i, h)
finds an r-gathering with h-outliers of Ci = {c1, c2, · · · , ci}\C ′

i to F
′
j ⊂ Fj =

{f1, f2, · · · , fj} such that (1) r or more customers are assigned to each open
facility, (2) co(ci, A(ci)) ≤ k for each ci ∈ Ci\C ′

i , (3) fj ∈ F
′
j and (4)

|C ′
i | ≤ h. For designated j and h

′
if P (C,F, j, i, h

′
) has a solution for some i

then let s(fj,h′) be the minimum i such that P (C,F, j, i, h
′
) has a solution. We

define P (C,F, j, h
′
) to be the problem to find such s(fj,h′) and a corresponding

assignment.
By a dynamic programming approach one can compute P (C,F, j, h

′
) for each

j = 1, 2, · · · , |F | and h
′
= 1, 2, · · · , h in O(|C| + h2|F |) time in total. Then one

can decide whether an r-gathering with h-outliers problem has a solution with
cost k.

32 T. Akagi and S. Nakano

Lemma 4. One can decide whether an r-gathering with h-outliers problem has
a solution with cost k in O(|C| + h2|F |) time.

The minimum cost k∗ of a solution of an r-gathering with h-outliers problem
is again some co(c, f) with c ∈ C and f ∈ F . By the sorted matrix searching
method using the O(|C| + h2|F |) time decision algorithm above one can solve
the problem with outliers in O((|C| + h2|F |) log(|C| + |F |)) time.

Theorem 3. One can solve the r-gathering with h-outliers problem in O((|C|+
h2|F |) log(|C| + |F |)) time when all C and F are on the real line.

6 Conclusion

In this paper we have presented an algorithm to solve the r-gathering problem
when all C and F are on the real line. The running time of the algorithm is
O((|C|+ |F |) log(|C|+ |F |)). We also presented two more algorithm to solve two
similar problems.

Can we design a linear time algorithm for the r-gathering problem when all
C and F are on the real line?

References

1. Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas, D.,
Zhu, A.: Achieving anonymity via clustering, Tranaction on Algorithms, vol. 6,
Article No.49, pp. 49:1-49:19 (2010)

2. Agarwal, P., Sharir, M.: Efficient algorithms for geometric optimization. Comput.
Surv. 30, 412–458 (1998)

3. Akagi, T., Nakano, S.: On (k, r)-gatherings on a road. In: Proceedings of Forum on
Information Technology, FIT 2013, RA-001 (2013)

4. Armon, A.: On min-max r-gatherings. Theoret. Comput. Sci. 412, 573–582 (2011)
5. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer,

New York (1995)
6. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer,

Heidelberg (2004)
7. Frederickson, G., Johnson, D.: Generalized selection and ranking: sorted matrices.

SIAM J. Comput. 13, 14–30 (1984)
8. Fournier, H., Vigneron, A.: Fitting a step function to a point set. In: Halperin, D.,

Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 442–453. Springer, Heidelberg
(2008)

9. Liu, J.-Y.: A randomized algorithm for weighted approximation of points by a step
function. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp.
300–308. Springer, Heidelberg (2010)

	On r-Gatherings on the Line
	1 Introduction
	2 (k,r)-Gathering on the Line
	3 -Gathering on the Line
	4 -Gather Clustering
	5 Outlier
	6 Conclusion
	References

