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Abstract. In this paper we study a recently proposed variant of the
facility location problem, called the r-gathering problem. Given an inte-
ger r, a set C of customers, a set F' of facilities, and a connecting cost
co(c, f) for each pair of ¢ € C and f € F, an r-gathering of customers
C to facilities F' is an assignment A of C to open facilities F' C F such
that r or more customers are assigned to each open facility. We give an
algorithm to find an r-gathering with the minimum cost, where the cost
is maxc,cc{co(ci, A(c;))}, when all C and F' are on the real line.
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1 Introduction

The facility location problem and many of its variants are studied [5,6]. In the
basic facility location problem we are given (1) a set C of customers, (2) a set
F of facilities, (3) an opening cost op(f) for each f € F, and (4) a connecting
cost co(c, f) for each pair of ¢ € C and f € F, then we open a subset F/ C F
of facilities and find an assignment A from C to F’ so that a designated cost is
minimized.

In this paper we study a recently proposed variant of the problem, called
the r-gathering problem [4]. An r-gathering of customers C' to facilities F is an
assignment A of C to open facilities F' C F such that r or more customers are
assigned to each open facility. This means each open facility has enough number
of customers. We assume |C| > r holds. Then we define the cost of (the max
version of ) a gathering as max.,cc{co(c;, A(c;))}. (We assume op(f;) = 0 for
each f; € F in this paper.) The min-max version of the r-gathering problem finds
an r-gathering having the minimum cost. For the min-sum version see the brief
survey in [4].

Assume that F' is a set of locations for emergency shelters, and co(c, f) is the
time needed for a person ¢ € C to reach a shelter f € F. Then an r-gathering
corresponds to an evacuation assignment such that each opened shelter serves r
or more people, and the r-gathering problem finds an evacuation plan minimizing
the evacuation time span.

Armon [4] gave a simple 3-approximation algorithm for the r-gathering prob-
lem and proves that with assumption P # NP the problem cannot be approx-
imated within a factor of less than 3 for any r > 3. In this paper we give an
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O((|C] + |F])log(|C] + |F|)) time algorithm to solve the r-gathering problem
when all C' and F' are on the real line.

The remainder of this paper is organized as follows. Section 2 gives an algo-
rithm to solve a decision version of the r-gathering problem. Section 3 contains
our main algorithm for the r-gathering problem. Sections4 and 5 present two
more algorithms to solve two similar problems. Finally Sect. 6 is a conclusion.

2 (k,r)-Gathering on the Line

In this section we give a linear time algorithm to solve a decision version of the
r-gathering problem [3].

Given customers C' = {cy,¢c2, -+ ,¢c|} and facilities F' = {f1, f2,- -, fip|}
on the real line (we assume they are distinct points and appear in those
order from left to right respectively) and two numbers k£ and r, then prob-
lem P(C,F,j,i) finds an assignment A of customers C; = {c1,c2,-+ ,¢;} to
open facilities FJ/ C F; = {f1,f2,---,f;} such that (1) r or more customers
are assigned to each open facility, (2) co(c;, A(¢;)) < k for each ¢; € C; and
(3) f; € FJI . (2) means each customer is assigned to a near facility, and
(3) means the rightmost facility is forced to open. We assume that co(c, f) is the
distance between ¢ € C' and f € F, and for each f; € F interval [f; — k, f; + k]
contains 7 or more customers, otherwise we can remove such f; from F' since
such f; never open.

An assignment A of C; to Fj is called monotone if, for any pair ¢, ,c; of
customers with i < i, A(cy) < A(c;) holds. In a monotone assignment the
interval induced by the assigned customers to a facility never intersects other
interval induced by the assigned customers to another facility. We can observe
that if P(C, F, j,%) has a solution then P(C, F, j,1) also has a monotone solution.
Also we can observe that if P(C, F,j,i) has a solution and co(¢;t1, fj) < k then
P(C,F,j,i+ 1) also has a solution.

If P(C, F,j,i) has a solution for some ¢ then let s(f;) be the minimum ¢ such
that P(C, F,j,1) has a solution. Note that (3) f; € FJI means ¢y, is located in
interval [f; —k, f; +k]. We define P(C, F, j) to be the problem to find such s(f;)
and a corresponding assignment. If P(C, F, j,4) has no solution for every ¢ then
we say P(C, F, j) has no solution, otherwise we say P(C, F, j) has a solution.

Lemma 1. For any pair f; and f; in F with i <j, s(f;) < s(f) holds.

Proof. Assume otherwise. Then s(f;) > s(f;) holds. Modify the assignment
corresponding to s(f;) as follows. Reassign the customers assigned to f; to Iy
then close f;. The resulting assignment is an r-gathering of Cyf,) to F) and
now s(f;/) = s(f;). A contradiction. O

Assume that P(C, F, j) has a solution and ¢; < f; — k. Then the corresponding
solution has one or more open facilities except for f;. Choose the solution of
P(C, F,j) having the minimum second rightmost open facility, say [y- We say
[ is the mate of f; and write mate(f;) = [~ We have the following three cases
based on the condition of the mate f;/ of f;.
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Case 1: P(C,F,j ) has a solution, [y +k < fj —k, the interval (f; +k, f; — k)
has no customer and the interval [f; — k, f; + k] has r or more customers.

Case 2: P(C, F,j/) has a solution, cyy,y > f; — k and interval (cys, ), f; + K]
J J

has r or more customers.

Case 3: P(C, F,j/) has a solution, cys ) < f; — k and interval [f; — k, f; + K]

has r or more customers.

For each f; by checking the three conditions above for every possible mate f;/
one can design O(|F|? 4 |C|) time algorithm based on a dynamic programming
approach. However we can omit the most part of the checks by the following
lemma.

Lemma 2. (a) Assume P(C,F,j) has a solution. If P(C,F,j+ 1) also has a
solution then mate(f;) < mate(fj11) holds.

(b) For f; € F, let fmin be the minimum f; such that (i)P(C, F,5) has a
solution and (ii)f; +k > f;—k, if such fmn exists. If P(C, F, j) has no solution
with the second rightmost open facility fmin, then (b1) any [y satisfying fmin <
[y < fj is mot the mate of f;, and P(C, F\j) has no solution, and (b2) fmin <
mate(fj11) holds if mate(fji1) exists.

Proof. (a) Assume otherwise. If mate(fj+1) +k < f; — k holds then mate(f;41)
is also the mate of f;, a contradiction. If mate(f;11) + k& > f; — k holds then
by Lemma 1 mate(f;+1) is also the mate of f;, a contradiction. (b1) Immediate
from Lemma 1. (b2) Assume otherwise. If mate(f;4+1) +k < f; — k holds then
mate(fj1+1) is also the mate of f;, a contradiction. If mate(fj+1) +k > f; — k
holds then f,:y, is mate(f;+1) not mate(f;), a contradiction. O

Lemma 2 means after searching for the mate of f; upto some f;/ the next search
for the mate of f;j;1 can start at the f;;. Based on the lemma above we can
design algorithm find(k, r)-gathering.

In the preprocessing we compute, for each f; € F, (1) the index of the first
customer in interval (f; + k, ¢|c|), (2) the index of the first customer in interval
[f; —k,cic|) and (3) the index of the r-th customer in interval [f; —k, ¢|¢|). Also
we store the index s(f;) for each f; € F. Those needs O(|C| + |F|) time. After
the preprocessing the algorithm runs in O(]F|) time since j° < j always holds
the most inner part to compute s(f;) executes at most 2|F| times.

We have the following lemma.

Lemma 3. One can solve the (k,r)-gathering problem in O(|C| + |F|) time.

3 r-Gathering on the Line

In this section we give an O((|C| + |F|) log(|C| + |F|)) time algorithm to solve
the r-gathering problem when all C' and F' are on the real line.
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Algorithm 1. find(k, r)-gathering (C, F, k)

j=1

// One open facility Case //

while interval [f; — k, f; + k] has both ¢; and ¢, do
set s(f;) to be the r-th customer c,
j=j+1

end while

// Two or more open facilities Case//

i=1
while j < |F| do
flag = off

while flag =off and s(f;) is not defined yet and jl < jdo
if P(C,F, fjr) has a solution and fj/ +k < f; — k, interval (fjf +k, f; — k) has
no customer then
set s(f;) to be the r-th customer in the interval [f; — k, f; + K]
else if P(C, F, fj/) has a solution and fj/ + k> f; — k then
flag = on
if s(f;) > fi —k and interval (s(f;/), f; + k] has r or more customers then
set s(f;) to be the r-th customer in the interval (s(f;), f; + K]
else if P(C, F, f;/) has a solution, s(f;/) < f; —k and interval [f; —k, f; + k]
has r or more customers then
set s(f;) to be the r-th customer in the interval [f; — k, f; + k|
end if
e,nd if/'
Jg =3 +1
end while
j=j+1
end while
if some f; with defined s(f;) has ¢|¢| within distance k then
output YES
else
output NO
end if

Our strategy is as follows. First we can observe that the minimum cost
k* of a solution of an r-gathering problem is some co(c, f) with ¢ € C and
f € F. Since the number of distinct co(c, f) is at most |C||F|, sorting them
needs O(|C||F|log(|C||F])) time. Then find the smallest k such that the (k,r)-
gathering problem has a solution by binary search, using the linear-time algo-
rithm in the preceding section log(|C||F|) times. Those part needs O((|C| +
|F'|)log |C||F]) time. Thus the total running time is O(|C||F|log(|C||F])).

However by using the sorted matrix searching method [7] (See the good sur-
vey in [2, Section 3.3]) we can improve the running time to O((|C|+|F|) log(|C|+
|F'|)). Similar technique is also used in [8,9] for a fitting problem. Now we explain
the detail in our simplified version.

First let Mc be the matrix in which each element is m; ; = ¢; — f;. Then
m;; > My 41 and m; ; < myyq ; always holds, so the elements in the rows and
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columns are sorted respectively. Similarly let Mp be the matrix in which each
element is m;’j = f; — ¢;. The minimum cost k* of an optimal solution of an
r-gathering problem is some positive element in those two matrices. We can find
the smallest k in M¢ for which the (k,r)-gathering problem has a solution, as
follows.

Let n be the smallest integer which is (1) a power of 2 and (2) larger than
or equal to max{|C|, |F|}. Then we append the largest element m¢|; to Mc as
the elements in the lowest rows and the leftmost columns so that the resulting
matrix has exactly n rows and n columns. Note that the elements in the rows
and columns are still sorted respectively. Let M be the resulting matrix. Our
algorithm consists of stages s = 1,2,--- ,logn, and maintains a set Ly of sub-
matrices of M¢ possibly containing k*. Hypothetically first we set Lo={Mc¢}.
Assume we are now starting stage s.

For each submatrix M in L,y we partite M into the four submatrices with
n/2% rows and n/2% columns and put them into L.

Let ky,in be the median of the upper right corner elements of the submatrices
in Ls. Then for the k = ki, we solve the (k,r)-gathering problem. We have
two cases.

If the (k,r)-gathering problem has a solution then we remove from L, each
submatrix with the upper right corner element (the smallest element) greater
than k. Since ki > k* holds each removed submatrix has no chance to
contain k*. Also if L, has several submatrices with the upper right corner element
equal to k,,;n then we remove them except one from L,. Thus we can remove
|Ls|/2 submatrices from L.

Otherwise if the (k,r)-gathering problem has no solution then we remove
from L each submatrix with the lower left corner element (the largest element)
smaller than k,,;,. Since k,,;, < k* holds each removed submatrix has no chance
to contain k*. Now we can observe that, for each “chain” of submatrices, which is
the sequence of submatrices in L with lower-left to upper-right diagonal on the
same line, the number of submatrices (1) having the upper right corner element
smaller than £, (2) but remaining in L; is at most one (since the elements on
“the common diagonal line” are sorted). Thus, if |Ls|/2 > D, where Dy = 257!
is the number of chains plus one, then we can remove at least |Lg|/2 — D;
submatrices from L.

Similarly let k... be the median of the lower left corner elements of the
submatrices in Ly, and for the k = k4. we solve the (k,r)-gathering problem
and similarly remove some submatrices from L. This ends stage s.

Now after stage logn each matrix in Ljos , has just one element, then we can
find the k* using a binary search with the linear-time decision algorithm.

We can prove that at the end of stage s the number of submatrices in L is
at most 2D, as follows.

First Lo has 1 submatrix and 1 < 2Dy = 2 - 29*! submatrix. By induction
assume L,_1 has 2D,_1 = 2 - 2% submatrices.

At stage s we first partite each submatrix in L,_; into four submatrices then
put them into L. Now the number of submatrices in L is 4-2Ds_1 = 4D,. We
have four cases.
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If the (k,r)-gathering problem has a solution for k = k,,;, then we can
remove at least a half of the submatrices from L, and so the number of the
remaining submatrices in Ly is at most 2D, as desired.

If the (k,r)-gathering problem has no solution for k& = k4, then we can
remove at least a half of the submatices from L, and so the number of the
remaining submatices in Ly is at most 2Dy, as desired.

Otherwise if |Lg|/2 < Dg then the number of the submatices in Ly (even
before the removal) is at most 2D, as desired.

Otherwise (1) after the check for k = ky,:n, we can remove at least |Lg|/2— D;
submatices (consisting of too small elements) from Lg, and (2) after the check
for k = kpmax we can remove at least |Ls|/2 — Dy submatices (consisting of too
large elements) from Ly, so the number of the remaining submatices in L is at
most |Lg| — 2(|Ls|/2 — Ds) = 2Dy, as desired.

Thus at the end of stage s the number of submatrices in Ly is always at
most 2D;.

Now we consider the running time. We implicitly treat each submatrix as
the index of the upper right element in M and the number of lows. Except for
the calls of the linear-time decision algorithm for the (k,r)-gathering problem,
we need O(]Ls—1]) = O(Ds—1) time for each stage s =1,2,--- ,logn, and Dy +
Di+--+Diggn—1=2+4+-- 4 2logn 9. 9logn — 9p holds, so this part needs
O(n) time in total. (Here we use the linear time algorithm to find the median.)

Since each stage calls the linear-time decision algorithm twice this part needs
O(nlogn) time in total.

After stage s = logn each matrix has just one element, then we can find the
k* among the |Liggrn| < 2Diogpn = 4n elements using a binary search with the
linear-time decision algorithm at most log4n times. This part needs O(nlogn)
time.

Then we similarly find the smallest k in Mp for which the (k,r)-gathering
problem has a solution. Finally we output the smaller one among the two.

Thus the total running time is O((|C| + |F|) log(|C| + |F))-

Theorem 1. One can solve the r-gathering problem in O((|C| + |F|) log(|C| +
|F'|)) time when all C and F' are on the real line.

4 r-Gather Clustering

In this section we give an algorithm to solve a similar problem by modifying the
algorithm in Sect. 3.

Given a set C' of n points on the plane an r-gather-clustering is a parti-
tion of the points into clusters such that each cluster has at least r points. The
r-gather-clustering problem [1] finds an r-gather-clustering minimizing the max-
imum radius among the clusters, where the radius of a cluster is the minimum
radius of the disk which can cover the points in the cluster. A polynomial time
2-approximation algorithm for the problem is known [1].

When all C' are on the real line, in any solution of any r-gather-clustering
problem, we can assume that the center of each disk is at the midpoint of some
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pair of points, and the radius of an optimal r-gather-clustering is the half of the
distance between some pair of points in C.

Given C and two numbers k and r the decision version of the r-gather-
clustering problem find an r-gather-clustering with the maximum radius k. We
can assume that in any solution of the problem the center of each disk is at ¢ —k
for some ¢ € C. Thus, by introducing the set of all such points as F', we can solve
the decision version of the r-gather-clustering problem as the (k,r)-gathering
problem. Using the algorithm in Sect. 2 we can solve the problem in O(|C]) time.

Now we explain our algorithm to solve the r-gather-clustering problem. First
sort C' in O(|C|log|C|) time. Let ¢1,ca,- - -, ¢jc| be the resulting non decreasing
sequences and let M be the matrix in which each element is m; ; = (¢; — ¢;)/2.
Note that the optimal radius is in M and this time M has |C| rows and columuns.
Now m;; > m; ;41 and m;; > m;4q ; holds, so the elements in the rows and
columns are sorted respectively. Then as in Sect. 3 we can find the optimal radius
by the sorted matrix searching method. The algorithm calls the decision algo-
rithm O(log|C|) times and the decision algorithm runs in O(|C]) time, and in
the stages the algorithm needs O(|C|) time in total except for the calls. Finally
we needs O(|C|log|C|) time for the last binary search. Thus the total running
time is O(|C|log|C]).

Theorem 2. One can solve the r-gather-clustering problem in O(|C|log |C|)
time when all points in C' are on the real line.

5 Outlier

In this section we consider a generalization of the r-gathering problem where at
most h customers are allowed to be not assigned.

An r-gathering with h-outliers of customers C to facilities F' is an assignment
A of C’\Cl to open facilities F' C F such that r or more customers are assigned
to each open facility and |C/| < h. The r-gathering with h-outliers problem finds
an r-gathering with h-outliers having the minimum cost.

Given customers C' = {c1,¢c2,--- ,¢|c|} and facilities F' = {f1, fo,-- -, fir|}
on the real line and three numbers k and r and h, problem P(C,F,j,i,h)
finds an r-gathering with h-outliers of C; = {c1,cq,- - ,ci}\C; to F]' C F; =
{f1, f2,---, f;} such that (1) r or more customers are assigned to each open
facility, (2) co(ci, A(ci)) < k for each ¢; € C\Cj, (3) f; € FJ/ and (4)
|C;| < h. For designated j and h" if P(C, F,j,i,h’) has a solution for some i
then let s(f,,/) be the minimum 7 such that P(C, F\ j, 1, h') has a solution. We

define P(C, F, j, h/) to be the problem to find such s( fj’h/) and a corresponding
assignment.

By a dynamic programming approach one can compute P(C, F), j, h/) for each
j=1,2,---,|F|and b’ =1,2,--- ,h in O(|C| 4+ h?|F]) time in total. Then one
can decide whether an r-gathering with h-outliers problem has a solution with
cost k.
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Lemma 4. One can decide whether an r-gathering with h-outliers problem has
a solution with cost k in O(|C| + h2|F|) time.

The minimum cost k£* of a solution of an r-gathering with h-outliers problem
is again some co(c, f) with ¢ € C and f € F. By the sorted matrix searching
method using the O(|C| + h%|F|) time decision algorithm above one can solve
the problem with outliers in O((|C| + h?|F|)log(|C| + |F|)) time.

Theorem 3. One can solve the r-gathering with h-outliers problem in O((|C|+
h2|F|)1og(|C| + |F])) time when all C and F are on the real line.

6 Conclusion

In this paper we have presented an algorithm to solve the r-gathering problem
when all C' and F' are on the real line. The running time of the algorithm is
O((|C|+|F|)log(|C| + |F])). We also presented two more algorithm to solve two
similar problems.

Can we design a linear time algorithm for the r-gathering problem when all
C and F are on the real line?
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