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Abstract. We study the probabilistic behaviour of super solutions to
random instances of the Boolean Satisfiability (SAT) and Constraint
Satisfaction Problems (CSPs). Our analysis focuses on a special type of
super solutions, the (1,0)-super solutions. For random k-SAT, we estab-
lish the exact threshold of the phase transition of the solution probability
for the cases of k = 2 and 3, and upper and lower bounds on the threshold
of the phase transition for the case of k ≥ 4. For CSPs, by overcoming
difficulties that do not exist in the probabilistic analysis of the standard
solution concept, we manage to derive a non-trivial upper bound on the
threshold for the probability of having a super solution.

1 Introduction

For many problems arising in uncertain, dynamic, or interactive environments,
it is desirable to find solutions that can be modified at a low cost in response to
changes of the environment. This requires that a solution has a certain degree of
robustness or stability. For example, super solutions have been used to formalize
the notion of a robust or stable solution to the Boolean Satisfiability problem
and the constraint satisfaction problem [8,10]. An (a, b)-super solution to a CSP
instance is a satisfying solution such that, if the values assigned to any set of
a variables are no longer available, a new solution can be found by reassigning
values to these a variables and at most b other variables.

In general, finding super solutions to SAT and CSPs is NP-complete. One
of the fruitful approaches to such hard problems is to understand the typical-
case complexity of a hard problem by studying the probabilistic behaviour of
random instances [2,9]. By analyzing the threshold phenomena of the solution
probability and the correlated easy-hard-easy pattern of the instance hardness of
the standard solution concept for SAT and CSPs, much insight has been gained
on the effectiveness of the many heuristics widely-used in practice to tackle these
problems [6,7,9,11–13].

In this paper, we study the probabilistic behaviour of super solutions to
random instances of SAT and CSPs. Our analysis focuses on a special (but
highly non-trivial) type of super solutions, the (1,0)-super solutions. We denote
the problems of finding (1, 0)-super solution for k-SAT and CSPs by (1, 0)-k-SAT
and (1, 0)-CSP respectively.
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In Sect. 2, we establish the exact threshold for the probability of having a
(1, 0)-super solutions to random 3-SAT by making use of an observation on
the equivalence between a (1, 0)-k-SAT and a standard satisfying solution of a
properly-constructed (k − 1)-SAT instance. In Sect. 3, we establish upper and
lower bounds on the threshold of random (1, 0)-k-SAT for k ≥ 4. In Sect. 4, we
study possible upper bounds on the threshold of random (1, 0)-CSPs.

2 Super Solutions for Boolean Satisfiability

Let X = {x1, x2, · · · , xn} be a set of n Boolean variables. A literal is a variable
or its negation. A k-clause is a disjunction of k different literals and a k-CNF
formula is a conjunction of k-clauses. An assignment σ is a mapping σ : X →
{1, 0}n and is said to satisfy a k-CNF formula F if each clause of F contains at
least one literal that evaluates to true under σ. A satisfying assignment is also
called a solution.

2.1 Equivalent Definitions of (1, 0)-Super Solutions

As a special case of (a, b)-super solutions, a (1, 0)-super solution for a k-SAT
is a solution such that changing the value assigned to exactly one variable will
not violate any clause. Equivalently, a (1, 0)-super solution is an assignment
such that every clause contains at least two literals that evaluate to true under
the assignment. Another equivalent condition for a (1, 0)-super solution is given
below and plays a crucial role in our analysis.

Definition 1. The projection of a clause C = l1 ∨ · · · ∨ lk is defined to be the
conjunction of all (k − 1)-clauses contained in C, i.e. π(C) = ∧k

i=1(∨j �=ilj). We
say that C projects onto π(C) and call clauses in π(C) siblings.

The projection of a CNF formula F is defined to be π(F ) = ∧Ci∈F π(Ci).

The following observation can be proved easily.

Lemma 1. An assignment (1,0)-satisfies F if and only if it satisfies π(F ).

The following theorem complements existing results on the worst-case complexity
of super solutions [10].

Theorem 1. (1, 0)-k-SAT is in P for k ≤ 3, and is NP-Complete otherwise.

Proof. Any instance of (1,0)-3-SAT F can be solved by solving the 2-SAT
instance of π(F ), which is in P. For k ≥ 4, we first prove the NP-completeness
of (1,0)-4-SAT via a reduction from 3-SAT. Note that, σ satisfies (l1 ∨ l2 ∨ l3)
if and only if it (1,0)-satisfies (l1 ∨ l2 ∨ l3 ∨ 1). For any 3-SAT F , we reduce it
into a 4-SAT F ′ as following in three steps. First, create 4 additional variables,
Y = {y1, y2, y3, y4} and a 4-SAT Fy of all the possible

(
4
2

)
clauses, where each

clause has exactly two negations of variables. In order to (1,0)-satisfy Fy, we
have σy(yi) = 1, 1 ≤ i ≤ 4. Secondly, for each clause ci in F , add c′

i = (ci ∨ y1)
into F ′. Finally, let F ′ be the conjunction of F ′ and Fy. Now, σ is a solution of
F if and only if it is a (1,0)-solution of F ′. Thus (1,0)-4-SAT is NP-complete.
Similar methods can reduce any k-SAT instance to (1, 0)-(k + 1)-SAT instance.
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2.2 Random Models of k-SAT

We denote by Fk(n,m) the standard random model for k-CNF formulas on n
variables, where the m clauses are selected uniformly at random without replace-
ment from the set of all possible 2k

(
n
k

)
k-clauses. We say that a sequence of events

En occurs with high probability (w.h.p.) if limn→∞ P[En] = 1. As sometimes it is
hard to directly analyze Fk(n,m) due to the dependence created by selecting the
clauses without replacement, we consider two related models. The first model
selects from all 2k

(
n
k

)
proper clauses with replacement. The second model selects

each literal uniformly and independently with replacement. Both models may
result in improper formula and the second model may have improper clauses.
As long as k is fixed, the number of improper clauses and repeated clauses is
o(n). Therefore, with-high-probability properties of (1,0)-satisfiability hold in all
these three models simultaneously. For notation convenience, we denote all three
models by Fk(n,m). When k ≤ 3, we use the first model. When k ≥ 4, we use
the second model. We also assume that k is fixed.

Due to Lemma 1, the probability for Fk(n,m) to be (1,0)-satisfiable equals
the probability for its projection π(F ) to be satisfiable. This, however, does
not imply that the probability for a random Fk(n,m) to be (1, 0)-satisfiable
equals the probability for Fk−1(n, km) to be satisfiable. The following result on
the exact threshold of the solution probability of (1,0)-2-SAT is not hard to
establish.

Theorem 2. F2(n,m) is (1,0)-satisfiable w.h.p. when m = o(
√

n) and is (1,0)-
unsatisfiable w.h.p. when m = ω(

√
n).

Proof. We say that two clauses are conflicting if some literal in one clause is the
negation of some literal in the other clause. Note that a 2-CNF formula F is
(1,0)-satisfiable if and only if no conflicting clauses exists. Let F = C1 ∧· · ·∧Cm

and Xi,j be the indicator variable that Ci conflicts with Cj . Then, E[Xi,j ] =
2(2(n−1)−1)+1

22(n2)
= 4n−5

2n(n−1) . Denote by X =
∑

(i,j) Xi,j the number of conflicting

pairs in F .

E[X] =
(

m

2

)
E[Xi,j ] =

m2

n
(1 − o(1))

When m = o(
√

n), lim
n→∞P[X > 0] ≤ lim

n→∞E[X] = 0.

Let t =
(
m
2

)
and p = E[Xi,j ], then E[X] = tp. Note that, X2 is composed

of t2 items of Xi,jXi′,j′ . Group these items according to h = |{i, j, i′, j′}|. We
see that E[Xi,jXi′,j′ ] equals p when h = 2, and equals p2 otherwise. Thus,
E

[
X2

]
= tp + (t2 − t)p2. When m = ω(

√
n),

lim
n→∞P[X > 0] ≥ lim

n→∞
E[X]2

E[X2]
= lim

n→∞
tp

tp + 1 − p
= 1,

where the first inequality is due to the Cauchy-Schwarz inequality.
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2.3 An Exact Threshold for the Solution Probability of (1,0)-3-SAT

We use the equivalence (Lemma 1) for a (1, 0)-super solution to study the thresh-
old for the solution probability of random (1, 0)-3-SAT. We upper bound (resp.
lower bound) the probability for F to be (1,0)-unsatisfiable by the probability of
some necessary (resp. sufficient) condition on the satisfiability of its projection
π(F ) (a 2-CNF formula). The conditions were proposed in [4]. It is important
to note that while π(F ) is a 2-CNF formula obtained from a random 3-CNF
formula F3(n,m), π(F ) itself is not distributed as the random 2-CNF formula
F2(n,m). This is the major obstacle we have to deal with in our analysis.

Theorem 3. F3(n, rn) is (1,0)-satisfiable w.h.p. if r < 1/3 and is (1,0)-
unsatisfiable w.h.p. if r > 1/3.

The proof of the above result is presented in two lemmas. In the proof, we use F
to denote a random formula F3(n, rn), m = rn, and write N = 23

(
n
3

)
. A bicycle

([4]) of length s ≥ 2, is a conjunction of s + 1 2-clauses C0, · · · , Cs defined on s
variables {x1, x2, · · · , xs} such that Ci = li ∨ li+1, 0 < i < s, C0 = u ∨ l1, and
Cs = ls ∨ v, where

1. li is either xi or xi, and
2. u and v are from {xi, xi | 1 ≤ i ≤ s}.

It can be shown that if a 2-SAT is unsatisfiable, then it must contain a
bicycle ([4]).

Lemma 2. F3(n, rn) is (1,0)-satisfiable w.h.p. when r < 1/3.

Proof. For any fixed bicycle B = C0∧· · ·∧Cs, we consider the number of 3-CNF
formulae F such tht B ⊂ π(F ). Let C = {C1, C2, · · · , Cs−1}. Since clauses in C
are defined on distinct literals, no two clauses in C can be siblings with respect to
the projection of any 3-clause. Similarly, no three clauses from B can be siblings
with respect to a 3-clause. The only possible siblings are (C0, Ci) and (Cs, Ci)
for some 0 ≤ i ≤ s.

Denote by g(s, l) the number of 3-CNF formulas F such that B ⊂ π(F ),
where l = 0, 1, or 2 is the number of clause pairs that belong to the projection
of a same 3-clause in F . We have

g(s, l) =
(

N − (s + 1 − l)
m − (s + 1 − l)

)
· (2(n − 2))s+1−2l.

Let p(s) denote the probability that a bicycle of length s over a given (ordered)
set of s variables is part of π(F ). Then,

p(s) ≤
(

N

m

)−1

(g(s, 0) + 2s · g(s, 1) + g(s, 2))

≤
(

N

m

)−1

2(s + 1)
(

N − (s − 1)
m − (s − 1)

)
· (2(n − 2))s−3

≤
(

3r

2(n − 1)

)s−1

· s + 1
2(n − 2)2
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Let Ns denote the number of different bicycles of length of s and X be the
number of bicycles in π(F ). As Ns < ns2s(2s)2, we have

E[X] =
n∑

s=2

Nsp(s) ≤ 4n

(n − 2)2

n∑

s=2

s2(s + 1)(
3rn

n − 1
)s−1

When r < 1/3, lim
n→∞P[X > 0] ≤ lim

n→∞E[X] = 0. 	


A snake of length t ≥ 1 is the conjunction of 2t 2-clauses C0, C1, · · · , C2t−1

and has following structure.

1. Ci = (li ∨ li+1), 0 ≤ i ≤ 2t − 1. l0 = l2t = lt
2. For any 0 < i, j < 2t − 1, li �= lj and li �= lj .

If π(F ) contains a snake, then F is not (1,0)-satisfiable. We show that w.h.p.
π(F ) contains a snake of length log3r n.

Lemma 3. F3(n, rn) is (1,0)-unsatisfiable w.h.p. when r > 1/3.

Proof. Let A be a snake of length t, XA be the indicator variable that A occurs in
F . Note that there only the two pairs, (C0, Ct−1) and (Ct, C2t−1), can potentially
be siblings with respect to the projection of a 3-clause. Let s = 2t − 1 and let
p(s) be the probability that a snake of length t over a given set of variables is in
π(F ). We have

p(s) =
(

N

m

)−1

(g(s, 0) + 2g(s, 1) + g(s, 2))

≈
(

N

m

)−1

4g(s, 2) ≈ (
3r

2n
)s−1 1

n2

Let X denote the number of snakes of length t in π(F ). E[X] =
(
n
s

)
s!2sp(s) ≈

(3r)s/n. When r > 1/3 and t = ω(log3r n), limn→∞ E[X] = ∞.
In order to apply the second moment method to X, we have to consider

correlation between snakes. To satisfy a clause (li ∨ lj), if li is false, then lj
must be true. This implication can be represented by two arcs (li, lj), (lj , li) in a
digraph. The digraph for a snake of length t is a directed cycle lt, l1, l2, · · · , ls, lt.
Two snakes are not independent if and only if there are some common arcs
between the corresponding directed cycles. Let B be another snake of length t.
Suppose B share i arcs with A and these arcs contain j vertices. Then, taking
into consideration the fact that the dominating term is still the one where exactly
two pairs in B are siblings in the projection of the formula, we have

P[B|A] ≤
(
N−2t−(2t−i)
m−2t−(2t−i)

) · (2(n − 2))2t · (2(n − 2))2t−i

(
N−2t
m−2t

) · (2(n − 2))2t

≤
(

m − 2t

N − 2t
· 2(n − 2)

)2t−i

≤
(

3r

2n

)2t−i
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It is clear that those common i arcs comprise (j − i) directed paths. Fixing A,
there are L1 number of choices for the shared j vertices to occur in B, and there
are L2 number of choices for the remaining 2t − j vertices to occur in B.

L1 =
(

2 ·
(

2t

2(j − i)

))2

· (j − i)! ≤ 4 · (2t)4(j−i)

L2 ≤
(

n − j + 1
2t − j

)
(2t − j)! · 22t−j ≤ (2(n − j + 1))2t−j

For a given A, let A(i, j) be the set of snakes sharing i arcs and j vertices with
A, and write

p(i, j) =
∑

B∈A(i,j)

P[B|A] = L1L2P[B|A]

≤
(

3r

2n

)2t−i

4(2t)4(j−i) (2(n − j + 1))2t−j
.

If i ≤ t, then i+1 ≤ j ≤ 2i. If t < i ≤ 2t, then i+1 ≤ j ≤ 2t. Let A ∼ B denote
the fact that A and B are dependent.

∑

A∼B

P[B|A] =
2t∑

i=1

min{2i,2t}∑

j=i+1

p(i, j) =
2t∑

j=2

j−1∑

i=j/2

p(i, j)

≤
2t∑

j=2

(2(n − j + 1))2t−j 4
j−1∑

i=j/2

(
3r

2n

)2t−i

(2t)4(j−i)

≤
2t∑

j=2

(2(n − j + 1))2t−j 4 · j

2

(
3r

2n

)2t−j+1

(2t)4

≤
2t∑

j=2

2j

(
3r

2n

)
(2t)4

≤ Θ(1) · 1
n

t6 = o(
1
n

(3r)2t) = o(E[X]).

According to corollary 4.3.5 of [3], lim
n→∞P[X > 0] = 1.

2.4 Thresholds for the Solution Probability of (1, 0)-k-SAT

Using Markov’s inequality, the following upper bound on the threshold of the
phase transition can be proved:

Theorem 4. For all k ≥ 3, Fk(n, rn) is (1, 0)-unsatisfiable w.h.p. when r >
2k

k+1 ln 2.
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In the rest of this section, we establish a lower bound on the threshold for
k > 3 and show that the ratio of the lower bound over the upper bound goes
to 1 as k goes to infinity. Our analysis uses the techniques introduced in [2]
for proving lower bounds on the threshold for the phase transition of standard
satisfying solutions of random SAT, but the calculation we have to deal with
is even more complicated. The idea is to use a weighting scheme on satisfying
assignments when applying the second moment method to prove lower bounds
on the threshold.

For a clause c, denote by S(c) the set of (1, 0)-super solutions of c, S0(c)
(resp. S1(c)) the set of assignments that satisfies exactly 0 (resp. 1) literal of c.
Define H(σ, c) be the number of satisfied literals minus the number of unsatisfied
literals. For an event A, let 1A be the indicator variable that A occurs. The
weight of σ w.r.t. c is defined as w(σ, c) = γH(σ,c)1σ∈S(c), 0 < γ < 1 and is
determined by k. These definitions extend naturally to a formula F : w(σ, F ) =
γH(σ,F )1σ∈S(F ) =

∏
ci

w(σ, ci). Let X =
∑

σ w(σ, F ). F is (1,0)-satisfiable if and
only if X > 0.

Note that by viewing an instance of (1, 0)-k-SAT as a generalized Boolean
satisfiability problem (Boolean CSP) and applying the conditions established
in [5], random (1, 0)-k-SAT has a sharp threshold. Therefore, to show X > 0
w.h.p., it is sufficient to prove that P[X > 0] is greater than some constant.

For a fixed σ and a random k-clause c, since σ (1-0)-satisfies c if at least two
literals in c evaluate to true under σ, we have

E[w(σ, c)] = E

[
γH(σ,c)(1 − 1σ∈S0(c) − 1σ∈S1(c))

]

= (
γ + γ−1

2
)k − 2−kγ−k − k2−kγ−k+2 = φ(γ)

Thus, E[X] =
∑

σ

∏
ci
E[w(σ, c)] = (2φ(γ)r)n.

We now consider E
[
X2

]
. Fix a pair of assignments σ, τ such that they overlap

each other on z = αn variables. Consider a random k-clause c and write

f(α) = E[w(σ, c)w(τ, c)] = E

[
γH(σ,c)+H(τ,c)1σ,τ∈S(c)

]
.

We have the following equations for relevant events

1σ,τ∈S(c) = 1 − 1σ �∈S(c) − 1τ �∈S(c) + 1σ,τ �∈S(c),

1σ �∈S(c) = 1σ∈S0(c) + 1σ∈S1(c),

1σ,τ �∈S(c) = 1σ∈S0(c),τ∈S0(c) + 1σ∈S0(c),τ∈S1(c)

+ 1σ∈S1(c),τ∈S0(c) + 1σ∈S1(c),τ∈S1(c),

and for mathematical expectations
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E

[
γH(σ,c)+H(τ,c)1

]
= (α(

γ2 + γ−2

2
) + 1 − α)k,

E

[
γH(σ,c)+H(τ,c)1σ �∈S(c)

]
= 2−k((αγ−2 + 1 − α)k

+ k(αγ−2 + 1 − α)k−1(αγ2 + 1 − α)),

E

[
γH(σ,c)+H(τ,c)1σ,τ �∈S(c)

]
= 2−k(αkγ−2k + 2kγ−2k+2αk−1(1 − α)

+ γ−2k+4(kαk + k(k − 1)αk−2(1 − α)2)).

Therefore, the expectation of X2 can be written as

E
[
X2

]
=

∑

σ,τ

E[w(σ, F )w(τ, F )]

=
∑

σ,τ

∏

ci

E[w(σ, ci)w(τ, ci)] = 2n
n∑

z=0

(
n

z

)
f(z/n)rn

The following lemma from [1] enables us to consider the dominant part of
E

[
X2

]
.

Lemma 4. Let h be a real analytic positive function on [0, 1] and define g(α) =
h(α)/(αα(1 − α)1−α), where 00 ≡ 1. If g has exactly one maximum at g(β),
β ∈ (0, 1), and g′′(β) < 0, then there exists constant C > 0 such that for all
sufficient large n,

∑n
z=0

(
n
z

)
h(z/n)n ≤ C × g(β)n.

Define gr(α) = f(α)r/(αα(1 − α)1−α) and say gr(α) satisfies the dominant con-
dition if gr

′′(1/2) < 0 and gr(1/2) is the unique global maximum. According to
lemma 4 and φ(γ)2 = f(1/2), if gr(α) satisfies the dominant condition, then

P[X > 0] >
E[X]2

E[X2]
=

4nf(1/2)rn

E[X2]

>
(2gr(1/2))n

C · (2gr(1/2))n
=

1
C

,

where C is a constant when k is fixed.
If we can find suitable γ and r so that gr(α) satisfies the dominant condition,

then X > 0 w.h.p.. It is clear that the dominant condition implies f ′(1/2) = 0.
According to [2], a necessary condition for f ′(1/2) = 0 is that the sum of vectors
scaled by their corresponding weight is 0, i.e.,

∑
v∈{0,1}k w(v)v = 0. For (1, 0)-

k-SAT, this is
∑k

i=1

(
k
i

)
γ2i(2i − k) = 0. When k = 4, this equation requires

γ = 0. Thus, the weighting scheme is not meaningful when k = 4. Therefore, we
consider the case of k > 4 first and then the case of k = 4 in a different way.

It is too complicated to directly prove that gr(α) satisfies the dominant con-
dition, at least for small k. Therefore, we plot figures to show how gr(α) changes
when k is fixed. Figure 1 shows the case when k = 5. For each k, when r is
smaller than some r∗

k, gr(α) satisfies the dominant condition and Fr(n, rn) is
(1, 0)-satisfiable w.h.p. Thus r∗

k is a lower bound for Fk(n, rn). We do this analy-
sis for k up to 11 and show the values in Table 1. We can see that the ratio of



322 P. Zhang and Y. Gao

the lower bound over the upper bound of thresholds of Fk(n, rn) goes to 1 as k
becomes large. We still have to solve the case k = 4 separately. The weighting
scheme, w(σ, c) = γH(σ,c)1σ∈S(c), does not work for any γ > 0. This is because
H(σ, F ) is either 0 or positive. Thus, a compromise is to consider only those
assignments which satisfy H(σ, F ) = 0. Specifically, for each clause of F , exactly
two literals are satisfied and exactly two literals are unsatisfied. And every sat-
isfying assignment has the same weight, 1. By doing this, the likelihood for an
assignment not to be in X is doubled. Therefore, the upper bound for such solu-
tions becomes 2k−1

1+k ln 2, half of the upper bound for (1, 0)-4-SAT. The remaining
analysis is similar to the analysis of k > 4. The r∗

4 we found is 0.602.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 1. k = 5, r = 1, 1.2, 1.6, 2, 2.4, 2.8, 3.2 (top down)

Table 1. Upper bound and lower bound for different k

k 4 5 6 7 8 9 10 11

Upper Bound 2.2 3.6 6.3 11.1 19.7 35.5 64.5 118.3

Lower Bound 0.6 1.6 3.7 7.8 15.8 30.9 59.3 113.4

3 Super Solutions for Random Binary CSPs

We consider random binary CSPs defined on a domain D of size |D| = d.
A binary CSP C consists of a set of variables X = {x1, · · · , xn} and a set
of binary constraints (C1, · · · , Cm). Each constraint Ci is specified by its con-
straint scope, an unordered pair of two variables in X, and a constraint relation
RCi

that defines a set of incompatible value tuples in the binary relation D × D
for the scope variables. An incompatible value tuple is also called a restriction.
The constraint graph of a binary CSP is a graph whose vertices correspond to
the set of variables and edges correspond to the set of constraint scopes. We
use the following random CSP model Bd,q

n,m where the domain size is allowed to
increase with the number of variables.
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1. Its constraint graph is a random graph G(n,m) where the m edges are selected
uniformly at randomly from all the possible

(
n
2

)
edges.

2. For each edge, its constraint relation is determined by choosing each value
tuple in D × D as a restriction independently with probability q.

Proposed and studied in a series of papers by Xu, et al., this class of models
for random CSPs is known as the Model RB [11–13]. In particular, the exact
threshold of the phase transition of standard satisfiability has been established in
[12] and the (resolution) complexity of random instances at the phase transition
has been analyzed in [13].

Denote by H(σ1, σ2) the set of variables being assigned different values by
σ1 and σ2, i.e., H(σ1, σ2) = {xi|σ1(xi) �= σ2(xi), 1 ≤ i ≤ n}. Let σ be a fixed
assignment and I be a random Bd,q

n,m instance. Define the following three events:

1. S(σ) : σ is a solution for I.
2. Si(σ) : there exists another solution σ′ for I such that H(σ, σ′) = {xi}.
3. T (σ) : σ is a (1, 0)-super solution for I.

It is clear that P[T (σ)] = P[S(σ)]P[∩1≤i≤nSi(σ)|S(σ)]. Estimating the probabil-
ity of a (1, 0)-super solution for a random CSP instance is, however, more compli-
cated than estimating the probability of a satisfying assignment, largely due to
the fact that the events Si(σ), 1 ≤ i ≤ n, are not independent. This is the major
hurdle we need to overcome. Note that in a random CSP instance, the selection
of constraints and the selection of restrictions for each constraint are indepen-
dent. Let C ⊂ (X × X)m be the collection of all possible sets of m unordered
pairs of variables. For a given set e ∈ C of m unordered pairs, denote by E(e)
the event that e is selected as the set of constraints of the random instance I. Let
mi be the number of constraints xi is involved with. Considering an assignment
σ′, H(σ, σ′) = {xi}, it is clear that P

[
S(σ′)|S(σ) ∩ E(e)

]
= 1 − (1 − q)mi . Let

D′ = D \ {σ(xi)}, σ′(xi) = y, p = 1 − q, then

P[Si(σ)|S(σ) ∩ E(e)] = P
[∪y∈D′S(σ′)|S(σ) ∩ E(e))

]

= P

[
∩y∈D′S(σ′)|S(σ) ∩ E(e))

]

= 1 − P

[
∩y∈D′S(σ′)|S(σ) ∩ E(e))

]

= 1 − (1 − (1 − q)mi)d−1.

This shows that, conditioned on S(σ) and fixed constraint sets e, Si(σ) and
Sj(σ) are independent for any i �= j.

P[T (σ)] = P[∪e∈C (E(e) ∩ S(σ) ∩ (∩1≤i≤nSi(σ)))]

=
∑

e∈C

P[E(e)]P[S(σ)|E(e)]P
[∩i∈[n]Si(σ)|S(σ) ∩ E(e)

]

=

((
n
2

)

m

)−1

pm
∑

e∈C

n∏

i=1

(
1 − (1 − pmi)d−1

)
. (1)

Let Yσ be an indicator variable of Tσ and Y =
∑

σ Yσ be the number of (1, 0)-
super solutions. We have

E[Y ] = dn · E[Yσ] = dn · P[Tσ]
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We have the following lower and upper bounds on the threshold of solution
probability.

Theorem 5. Consider the random CSP Bd,q
n,m with d =

√
n, p = 1 − q, m =

c · n ln n where c is a positive constant.

– If c > − 1
3 ln p , lim

n→∞E[Y ] = 0 and thus Bd,q
n,m is (1, 0)-unsatisfiable w.h.p.

– If c < − 1
10 ln p and q = 1 − p < 0.43, lim

n→∞E[Y ] → ∞.

Proof. Due to space limit, we give a brief proof of the first part of the conclusion
and omit the proof of the second part of the conclusion.

The right hand side of Eq. (1), subject to
∑n

i=1 mi = 2m, achieves the global
maximum when mi = 2m

n , 1 ≤ i ≤ n. This can be proved by the method of
Lagrange multipliers. Let c = c′ · − 1

ln p , then

E[Y ] ≤ (d · pc lnn · (1 − (1 − p2c lnn)d−1))n

= (d · nc ln p · (1 − (1 − n2c ln p)d−1))n

≈ (n1/2−c′ · (1 − (1 − n−2c′
)n1/2

))n.

For any a, b satisfying 0 ≤ a ≤ 1 and ab < 1, (1 − a)b ≥ 1 − ab. If c′ > 1/3, then

E[Y ] ≤ (n1/2−c′ · n−2c′
n1/2)n = (n1−3c′

)n → 0.

4 Conclusions

To the best of our knowledge, we have conducted (for the first time) a proba-
bilistic analysis of super solutions of random instances of SAT and CSPs. While
we have focused on the special (but already challenging) case of (1,0)-super solu-
tions, some of our analysis extends to the case of (a, 0)-super solutions for a > 1.
For random instances of CSPs, new analytical methods and ideas are needed to
obtain a more detailed characterization of the behavior of the super solutions,
and we leave this as a future work. It is also highly interesting to conduct a
systematic empirical analysis to fully understand the hardness of solving ran-
dom instances of (1, 0)-k-SAT as well as the hardness of solving the projected
standard SAT instances, which may serve as suite of SAT benchmark with a
unique structural properties. Finally, we wonder if our analysis can be extended
to random instances of other problems such as graphical games where solution
concepts similar to super solutions have been used.
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