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Abstract. We consider two multilevel facility location problems with
linear and submodular penalties respectively, and propose two approxi-
mation algorithms with performance guarantee 3 and 1+ 2

1−e−2 (≈ 3.314)
for these two problems.
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1 Introduction

Facility location is an important area in combinatorial optimization with vast
applications in operation research, computer science and management science.

The k-level facility location problem (k-LFLP) is a classical and extensively
investigated problem, which has many applications. For example, typical prod-
ucts are shipped through manufacturers, warehouses and retailers before they
can reach customers. One of the problems facing the business is to minimize the
cost across these multi-level facilities. Formally, we are given a set D of clients,
and k pairwise disjoint facility sets F� (� = 1, 2, . . . , k). Assume that the set
D ∪ (∪k

�=1F�
)

constitutes a metric space; that is, if i, j ∈ D ∪ (∪k
�=1F�

)
are con-

nected, then we pay a connected cost cij , which is symmetric, nonnegative and
satisfies triangle inequalities. Each facility has an open cost fi�

, i� ∈ F�. Define
a facility path as a sequence of k facilities (i1, i2, . . . , ik) such that i� ∈ F�,
(� = 1, 2, . . . , k). A path is open if all its facilities are open. If client j is con-
nected to a path p = (i1, i2, . . . , ik), the corresponding connection cost is defined
as cjp = cji1 +

∑k−1
�=1 ci�il+1 . The goal of the k-LFLP is to serve all the clients

in the set D by connecting each of them to an open path so as to minimize
the total cost, including both connection and open cost. When k is equal to 1,
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the problem is reduced to the classic uncapacitated facility location problem,
which is proved to be NP-hard. The FLP has been widely studied. Shmoys et al.
[14] gave the first constant 3.16-approximation algorithm using LP-rounding
technique, and Li [12] proposed the current best approximation factor 1.488, close
to the lower bound 1.463 of this problem given by Guha and Khuller [7]. For the
k-LFLP, Aardal et al. [1] gave the current best approximation ratio 3 using the
stochastic LP-rounding technique, while Ageev et al. [3] presented the current
best combinatorial algorithm with performance guarantee 3.27. Based on the
stochastic LP-rounding, Wu and Xu [15] proposed a bifactor

(
ln(1/β)
1−β , 1 + 2

1−β

)
-

approximation algorithm1, where β ∈ (0, 1) is a constant. In addition, Gabor
et al. [6] gave a 3-approximation algorithm by adopting a new integer pro-
gramming formulation with a polynomial number of variables and constraints.
Li et al. [11] gave a cross-monotonic cost sharing method for the multi-level
economic lot-sizing game. On the negative side, Krishnaswamy and Sviridenko
[10] proved that the lower bound for the k-LFLP is 1.61. In light of the 1.488-
approximation algorithm of Li [12] for the FLP, the k-LFLP obviously is harder
to approximate.

The focus of this work is on the k-LFLP with penalties, where each client is
either connected to an open facility path by paying connection cost or rejected
for service with a penalty cost. The goal of the problem is to open a subset of
facilities from F�, � = 1, 2, . . . , k, such that each client j ∈ D is either connected
to an open facility path, or rejected with a penalty cost so as to minimize the
total facility cost, connection cost and penalty cost. If each client j has a fixed
penalty cost qj , the corresponding problem is called the k-LFLP with linear
penalties. On the other hand, the k-LFLP with submodular penalties treats the
penalty cost as a monotone increasing submodular function h(·) defined on the
client set D; that is, h(A) ≤ h(B) and h(A ∪ {j}) − h(A) ≥ h(B ∪ {j}) −
h(B) for all A ⊆ B, j /∈ B. Li et al. [8] extended the primal-dual technique of
Jain and Vazirani [9] to the k-LFLP with submodular penalties and obtained a
combinatorial 6-approximation algorithm. Based on LP-rounding, Asadi et al. [2]
gave a 4-approximation algorithm for the k-LFLP with linear penalties. For any
given k, Byrka et al. [4] considered the k-LFLP with linear penalties and gave an
approximation algorithm whose approximation ratio converges monotonically to
three when k tends to infinity.

Our main contribution is to give two approximation algorithms for the k-
LFLP with submodular/linear penalties, which are the current best approxi-
mation ratio respectively. The rest of the paper is organized as follows. We
present an

(
1 + 2

1−e−2

)
-approximation algorithm for the k-FLP with submod-

ular penalties in Sect. 2, and a 3-approximation algorithm for the k-FLP with
linear penalties in Sect. 3.

1 Let us denote the facility cost by F ∗ and the connection cost by C∗ in the optimal
solution. If an algorithm can get an integer feasible solution to the k-LFLP with the
total cost no more than aF ∗ + bC∗ in polynomial time, then this algorithm is called
a bifactor (a, b)-approximate algorithm for k-LFLP.
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2 Multilevel Facility Location Problem with Submodular
Penalties

In this section, we consider the k-LFLP with submodular penalties. We introduce
several binary decision variables as follows: xjp indicates whether client j is
connected to path p or not; zS indicates whether the client set S is penalized
or not; and yi�

indicates whether facility i� is open or not. The k-LFLP with
submodular penalties can be formulated as an integer linear program:

min
k∑

�=1

∑

i�∈Fl

fi�
yi�

+
∑

p∈P

∑

j∈D
cjpxjp +

∑

S⊆D
h(S)zS

s. t.
∑

p∈P
xjp +

∑

S⊆D:j∈S

zS ≥ 1, ∀j ∈ D,
∑

p:i�∈p

xjp − yi�
≤ 0, ∀j ∈ D, i� ∈ F l, � = 1, 2, . . . , k,

xjp ∈ {0, 1}, ∀p ∈ P, j ∈ D,
yi�

∈ {0, 1}, ∀i� ∈ F�, � = 1, 2, . . . , k,
zS ∈ {0, 1}, ∀S ⊆ D,

(1)

where the first constraints say that client j is either connected to a facility path
or penalized, and the second constraints imply that client j must be connected
to an open facility path.

Now we present the LP-based approximation algorithm for k-LFLP with
submodular penalties. We consider the convex relaxation of problem (1):

min
k∑

�=1

∑

i�∈Fl

fi�
yi�

+
∑

p∈P

∑

j∈D
cjpxjp + h′(z)

s. t.
∑

p∈P
xjp + zj ≥ 1, ∀j ∈ D,

∑

p:i�∈p

xjp − yi�
≤ 0, ∀j ∈ D, i� ∈ F l, � = 1, 2, . . . , k,

xjp ≥ 0, ∀p ∈ P, j ∈ D,
yi�

≥ 0, ∀i� ∈ F�, � = 1, 2, . . . , k,
zj ≥ 0, ∀j ∈ D,

(2)

where h′(z) is the Lovász extension function of any given submodular function
h(·)(cf. [13]),

h′(z) = max
∑

j∈D
θjzj

s. t.
∑

j∈S

θj ≤ h(S), ∀S ⊆ D,

θj ≥ 0, j ∈ D.

It follows from Li et al. [13] that the function h′(·) has the following
properties.
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Property 1. h′(I(S)) = h(S), and h′(0) = h(∅).
Property 2. h′(aw) = ah′(w), a ≥ 0 is a number; w ≥ 0 is a vector.
Property 3. h′(·) is a monotonically increasing convex function.
Property 4. Given the optimal solution (x∗, y∗, z∗) to problem (2), and let

θ∗ := arg max h′(z∗). If j ∈ D, x∗
jp > 0 and z∗

j > 0, then we have θ∗
j ≥ cjp.

Now we illustrate the high level idea of our algorithm. Our algorithm is moti-
vated by Li et al. [8] for the one-level FLP (1-LFLP) with submodular penalties.
By considering the Lovász extension of submodular function, we overcome the
difficulties brought by submodular penalties and separate the client set into the
penalized set and the serviced set according to the optimal solution to the linear
programming relaxation. First, we solve the convex relaxation problem (2) to get
an optimal solution (x∗, y∗, z∗). Then based on the penalized/connected propor-
tion of each client, we partition the client set D into two sets: the connected
set Dγ and the penalized set D̄γ (where γ is a pre-specified parameter). Next,
we consider an instance of the k-LFLP with the facility sets F1, . . . ,Fk, and
the client set Dγ . Then, based on the optimal solution to problem (2), we con-
struct a feasible solution (x̂, ŷ) to the linear program relaxation for the k-LFLP
with client set Dγ . Finally, we call the bifactor

(
ln(1/β)
1−β , 1 + 2

1−β

)
-approximation

algorithm for the k-LFLP by Wu and Xu [15] as a subroutine (cf. Steps 4–6 of
Algorithm 1) to get a feasible integer solution (x̄, ȳ) to the k-LFLP with the
client set Dγ . Combining with the penalized client set D̄γ , we get a feasible
integer solution (x̄, ȳ, z̄) to our problem.

The algorithm is given below.

Algorithm 1
Step 1. Solve the LP relaxation (2) to obtain the fractional optimal solution

(x∗, y∗, z∗).
Step 2. According to the penalized proportion of client j, we partition the clients

set into two sets Dγ =

{

j ∈ D :
∑

p∈P
x∗

pj ≥ 1
γ

}

, and D̄γ = D \ Dγ . Penalize

the clients in D̄γ and set x̄jp := 0, ∀j ∈ D̄γ , p ∈ P,

z̄S :=
{

1, if S = D̄γ

0, otherwise
Step 3. For the served client set Dγ , set

x̂jp := x∗
jp

1−z∗
j
, ∀j ∈ Dγ , p ∈ P, ŷi := min{γy∗

i , 1},∀i ∈ ∪k
�=1F�.

Then (x̂, ŷ) is a feasible solution for the relaxed k-LFLP with the client set
Dγ and facility sets F1, . . . ,Fk.

Step 4. Given a parameter β ∈ (0, 1), choose randomly and uniformly α ∈ (β, 1).
Step 5. ∀j ∈ Dγ , let Pj := {p ∈ P : x̂jp > 0}. Sort the paths in Pj in an

nondecreasing distance to client j; that is, cjpj
1

≤ cjpj
2

≤ . . . ≤ cjpj
|Pj |

. Let

s∗
j be the number satisfying

∑
s≤s∗

j
x̂jpj

s
≥ α >

∑
s≤s∗

j −1 x̂jpj
s
and define

cj(α) = cjpj

s∗
j

. Calculate the average connection cost of client j,
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Dav(j) :=

s∗
j∑

s=1
cjpj

s
x̂jpj

s

s∗
j∑

s=1
x̂jpj

s

.

Step 6. For the served client set Dγ , iteratively generate greedily cluster centers
as follows.
Step 6.1 Set t = 1, C := ∅, C′

= Dγ .
Step 6.2 Choose cluster center jt := arg min

j∈C′
cj(α) + Dav(j).

Step 6.3 Set Pt := {pjt

1 , pjt

2 , . . . , pjt

s∗
jt

},
Ft := ∪k

�=1{i� ∈ F� : ∃p ∈ Pt, s.t.i� ∈ p},
Ct := {j ∈ C′ : ∃s ≤ s∗

j s.t. pj
s ∩ Ft �= ∅}.

Step 6.4 Set C′
:= C′ \ Ct, C := C ∪ {jt}.

Step 6.5 We randomly open a facility path from the path set Pt; namely

choose a path p ∈ Pt with probability x̂jtp/
s∗

jt∑

s=1
x̂

jtp
jt
s
; round all variables

{ȳi�
}i�∈p and {ȳi�

}i�∈Ft\p to 1 and 0 respectivly; connect the cluster center
jt to this open path; and set x̄jtp = 1 and x̄jtp′ = 0, ∀p′ ∈ P \ p.

Step 6.6 If C′ �= ∅, set t = t + 1 and go to Step 6.2.
Step 6.7 Connect all the clients j ∈ Dγ \ C to the closest open path.

Since Steps 4–6 of Algorithm 1 is Wu and Xu [15]’s bifactor
(

ln(1/β)
1−β , 1 + 2

1−β

)
-

approximation algorithm for the k-LFLP with feasible LP solution (x̂, ŷ), the cost
of integer feasible solution (x̄, ȳ) generated is no more than ln(1/β)

1−β F̂ +1+ 2
1−β Ĉ,

where F̂ , Ĉ are the facility cost and connection cost respectively of solution
(x̂, ŷ).

The performance of Algorithm 1 is summarized in the following theorem.

Theorem 1. When β = e−2, γ = 3−e−2

2 , Algorithm 1 is an
(
1 + 2

1−e−2

)
-

approximation algorithm for the k-LFLP with submodular penalties.

3 Multilevel Facility Location Problem with Linear
Penalties

Analogous to the k-LFLP with submodular penalties, the k-LFLP with linear
penalties can also be formulated as an integer linear program:

min
k∑

�=1

∑

i�∈Fl

fi�
yi�

+
∑

p∈P

∑

j∈D
cjpxjp +

∑

j∈D
qjzj

s. t.
∑

p∈P
xjp + zj ≥ 1, ∀j ∈ D,

∑

p:i�∈p

xjp − yi�
≤ 0, ∀j ∈ D, i� ∈ F l, � = 1, 2, . . . , k,

xjp ∈ {0, 1}, ∀p ∈ P, j ∈ D,
yi�

∈ {0, 1}, ∀i� ∈ F�, � = 1, 2, . . . , k,
zj ∈ {0, 1}, ∀j ∈ D.

(3)
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The linear programming relaxation of the above program is as follows:

min
k∑

�=1

∑

i�∈Fl

fi�
yi�

+
∑

p∈P

∑

j∈D
cjpxjp +

∑

j∈D
qjzj

s. t.
∑

p∈P
xjp + zj ≥ 1, ∀j ∈ D,

∑

p:i�∈p

xjp − yi�
≤ 0, ∀j ∈ P, i� ∈ F l, � = 1, 2, . . . , k,

xjp ≥ 0, ∀p ∈ P, j ∈ D,
yi�

≥ 0, ∀i� ∈ F�, � = 1, 2, . . . , k,
zj ≥ 0, ∀j ∈ D.

(4)

The dual of the problem (4) is

max
∑

j∈D
αj

s. t. αj − ∑

i�∈p

βi�j ≤ cjp, ∀p ∈ P, j ∈ D,
∑

j∈D
βi�j ≤ fi�

, ∀i� ∈ F l, � = 1, 2 . . . , k,

αj ≤ qj , ∀j ∈ D,
αj ≥ 0, βi�j ≥ 0, ∀j ∈ D, i� ∈ F�, � = 1, 2 . . . , k.

(5)

Lemma 2. Let (x∗, y∗, z∗) and (α∗, β∗), respectively, be the optimal solutions
to the primal and dual LP. Then we have

(1) x∗
jp > 0 ⇒ α∗

j − ∑

i�∈p

β∗
i�j = cjp, cjp ≤ α∗

j , ∀p ∈ P, j ∈ D;

(2) x∗
jp > 0, and z∗

j > 0 ⇒ cjp ≤ qj = α∗
j , ∀p ∈ P, j ∈ D.

Proof. If x∗
jp > 0, it follows from the complementary slackness condition that

α∗
j −

∑

i�∈P

β∗
i�j = cjp.

Combining with β∗
i�j ≥ 0, i� ∈ p, we get cpj ≤ α∗

j .
If x∗

pj > 0 and z∗
j > 0, we have cjp ≤ α∗

j from Case 1. On the other hand,
we have the complementary slackness condition z∗

j (α∗
j − qj) = 0, implying that

qj = α∗
j .

Our algorithm is motivated by Aardal et al. [1]. First, we solve the linear pro-
gram (4) and its relaxation (5) to obtain the optimal solutions (x∗, y∗, z∗) and
(α∗, β∗). Two clients j and j′ are neighbors if there exist two paths p and p′ such
that x∗

jp > 0, x∗
j′p′ > 0 and p ∩ p′ �= ∅. Set (x̄, ȳ, z̄) := (x∗, y∗, z∗). Iteratively

revise (x̄, ȳ, z̄) untill we obtain a feasible integer solution to problem (3). In each
iterative step, we maintain the feasibility of the solution (x̄, ȳ, z̄). Based on the
optimal solution (x∗, y∗, z∗), we partition the set D of clients into the penalized
set D̄γ of clients and the served set Dγ of clients.

Next for the client set Dγ , we construct pairwise disjoint cluster sets, each
containing a client called cluster center, all its neighbors and facilities from the
path of fractionally serving that cluster center in the solution (x∗, y∗, z∗).
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For each cluster set, we randomly choose an open path from the path set serv-
ing cluster center fractionally, and connect cluster center to this path. Because
a non-cluster-center client j is possible to be the neighbor of two or more cluster
centers, we connect these clients to the closest open path finally.

Introduce the following notation:

Dav(j) =

⎛

⎝
∑

p∈P
cpjx

∗
pj

⎞

⎠ /(1 − z∗
j ).

Algorithm 2
Step 1. Solve the LP relaxation (4) and its dual (5) to obtain the optimal solu-

tions of them (x∗, y∗, z∗) and (α∗, β∗). Set (x̄, ȳ, z̄) := (x∗, y∗, z∗).
Step 2. According to the penalized proportion of client j, we partition the clients

set into two sets Dγ = {j ∈ D :
∑

p∈P

x∗
jp ≥ 1

γ }, and D̄γ = D\Dγ . We penalized

the clients in the set D̄γ and set z̄j := 1, x̄jp := 0,∀j ∈ D̄γ , p ∈ P.
Step 3. For the served clients set Dγ , generate greedily cluster center as follows.

Step 3.1 Set t := 1, C := ∅, C′
:= Dγ .

Step 3.2 Choose cluster center jt := arg min
j∈C′

α∗
j + Dav(j).

Step 3.3 Set Pt := {p ∈ P : x∗
jtp

> 0},
Ft := ∪k

�=1{i� ∈ F� : ∃p ∈ Pt, s. t. i� ∈ p},
Ct := {j ∈ D : ∃p ∈ Ps. t. x∗

jp > 0, p ∩ Ft �= ∅}.
Step 3.4 Set C′

:= C′ \ Ct, C := C ∪ {jt}.
Step 3.5 We randomly open a path with probability 1 from the path

set Pt. Formally, choose a path p ∈ Pt with probability
x∗

jtp

1−z∗
jt

and

perform the following operations: round all the variables {ȳi�
}i�∈p to

1 and all other variables {ȳi�
}i�∈Ft\p to 0; connect the cluster center

jt to this open path; and set x̄jtp := 1 and x̄jtp′ := 0, ∀p′ ∈ P \ p.
Step 3.6 If C′ �= ∅, set t := t + 1, go to Step 3.2.
Step 3.7 Connect all the clients j ∈ Dγ \ C to the closest open path.

The performance of Algorithm 2 is given below.

Theorem 3. If γ = 1, then the expected total cost of (x̄, ȳ, z̄) is no more than
3 times the optimum cost, which implies that Algorithm 2 is a 3-approximation
algorithm for the k-LFLP with linear penalties.
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