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Abstract. Paired de Bruijn graphs are a variant of classic de Bruijn
graphs used in genome assembly. In these graphs, each vertex v is asso-
ciated with two labels L(v) and R(v). We study the NP-hard Sound
Covering Cycle problem which has as input a paired de Bruijn graph G
and two integers d and �, and the task is to find a length-� cycle C con-
taining all arcs of G such that for every vertex v in C and the vertex u
which occurs exactly d positions after v in C, we have R(v) = L(u). We
present the first exact algorithms for this problem and several variants.

1 Introduction

DNA sequencing is the task of deciphering the sequence of a given DNA frag-
ment. Most technologies approach this task by obtaining a collection of possibly
overlapping small subfragments, called reads, of the given fragment. Genome
assembly aims at recovering the original DNA fragment from the set of reads.
When no reference genome is used, this is called de novo assembly.

Recent sequencing technologies, known as next-generation sequencing (NGS),
create billions of very short erroneous reads. For this new type of data, de novo
assembly is a challenging task [3,5,11,13]. The use of short reads makes it par-
ticularly difficult to correctly assemble repeated regions since the repeat may be
longer than the reads. Therefore, many NGS methods generate pairs of reads
separated by a known distance, called insert length, that is much longer than
the read length. This new type of reads, called paired-end reads, is used to span
regions that contain long repeats.

One classic approach in de novo genome assembly is the de Bruijn method
[6,9] which computes a de Bruijn graph from the read set. This is done as follows.
First, generate the set of k-mers of the reads, that is, the set of all length-k strings
that occur as substrings of at least one read. Each k-mer in this set corresponds
to exactly one vertex of the de Bruijn graph. Now draw an arc from a vertex u
to a vertex v if and only if there is a k + 1-mer s in one of the input reads such
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Fig. 1. A paired de Bruijn graph with a sound cycle: (a) The DNA fragment to be
sequenced. (b) The set of paired reads with insert distance d = 8. (c) The paired de
Bruijn graph constructed from the paired reads in (b) for a k = 3. The upper part of
each vertex v is the label L(v), the lower part is the label R(v).

that the k-mer corresponding to u is a prefix of s and the k-mer corresponding
to v is a suffix of s. A walk in this graph then corresponds to a DNA sequence.
Classic de Bruijn assembling software uses paired-end information only in a
post-processing step.

The paired de Bruijn graph model incorporates the paired-end information
directly into the graph [8]. It is based on the classic de Bruijn graph, though
now the overlaps are computed between pairs of k-mers separated by the insert
length of the read pairs. This improves assembly quality and facilitates repeat
detection but the computational problems involved in computing an assembly
in these graphs become more challenging. In particular, the Sound Covering
Cycle which we define below is NP-hard [7]. In this work, we present the first
exact algorithms for Sound Covering Cycle and several variants.

Preliminaries. For a string s, let s[i] denote the letter at position i of s and s[i, j]
the substring of s that starts at position i and ends at position j. We consider
directed graphs G = (V,A) with vertex set V and arc set A. A walk (v1, . . . , vp)
is a tuple of vertices such that (vi, vi+1) ∈ A, 1 ≤ i < p. The length |W | of a
walk W := (v1, . . . , vp) is the number p of tuple elements. A walk is simple if i �= j
implies vi �= vj . Given two walks W1 = (v1, . . . , vp) and W2 = (u1, . . . , uq) such
that (vp, u1) ∈ A, let W1 ·W2 := (v1, . . . , vp, u1, . . . , uq) denote the concatenation
of W1 and W2. For a walk W = (v1, . . . , vp), let W [i] := vi denote the i-th vertex
of W . Finally, let A(W ) denote the set of arcs contained in a walk W .

Paired de Bruijn Graphs. Before defining the problem, we describe how the paired
de Bruijn graph is constructed from the input data; see Fig. 1 for an example.
The input is a set R := {(rL

1 , rR
1 ), . . . , (rL

m, rR
m)} of paired-end reads and two

integers d and k. Each (rL
i , rR

i ) is a pair of strings of the same length over an
alphabet Σ. The integer d is the insert size or shift. It specifies that the paired-
end read corresponds to two substrings of the complete genome whose first letters
have distance exactly d in the genome. The integer k is a user-defined parameter.
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In a paired de Bruijn graph G(R) constructed from a read set R, each vertex v
is associated with a pair of k-mers (L(v),R(v)). This pair is called bilabel. Each
node has a unique bilabel. For a read set R, the vertex set of G(R) is defined as

V (R) := {(s, t) ∈ Σk × Σk |∃(rL
i , rR

i ) ∈ R, p ∈ N :

s = rL
i [p, p + k − 1] ∧ t = rR

i [p, p + k − 1]}. (1)

An arc is drawn from a vertex u to a vertex v if some read in R contains the
bilabels of u and v in consecutive positions. More precisely, the arc set of G(R) is

A(R) := {(u, v) |∃(rL
i , rR

i ) ∈ R, p ∈ N :

L(u) = rL
i [p, p + k − 1] ∧ L(v) = rL

i [p + 1, p + k]∧
R(u) = rR

i [p, p + k − 1] ∧ R(v) = rR
i [p + 1, p + k]}.

A walk in a paired de Bruijn graph directly corresponds to a string over Σ
and thus to a DNA sequence. More precisely, a walk W := (v1, . . . , vp) in a
paired de Bruijn graph spells the two strings L(v1) · L(v2)[k] · . . . · L(vp)[k] and
R(v1) · R(v2)[k] · . . . · R(vp)[k]. There is one walk in G(R) that corresponds to
the original DNA sequence. This walk fulfills several properties that we describe
below. The computational task that we consider here is deciding whether a
walk fulfilling these properties exists in G(R). In the remainder of this work,
the read set R is irrelevant in the computational problems, thus, we denote the
paired de Bruijn graph G = (V,A) instead of G(R).

The Sound Covering Cycle Problem. In the case of organisms with a single
circular chromosome, the walk that corresponds to the genome is a cycle. Slightly
abusing notation, we define a cycle in a graph G = (V,A) as a walk (v1, . . . , vp),
vi ∈ V , such that (vp, v1) ∈ A. This cycle should have a length � which is the
estimated genome length. As described above, the cycle spells two cyclic strings.
The cycle that spells the genome should also spell every pair of observed k + 1-
mers. By construction of G, a pair of k + 1-mers in the read set corresponds to
an arc between two vertices. Thus, we demand the cycle to contain every arc of
the graph. Accordingly, a cycle C is called covering if for each arc (u, v) ∈ A
there is a vi such that (u, v) = (vi, vi+1) or (u, v) = (vp, v1).

The above properties are also relevant in classic de Bruijn graphs. In a
paired de Bruijn graph the walks should also fulfill the insert size constraint.
Recall that the distance between the L- and R-label of a vertex is d. The sound-
ness constraint will ensure that the strings spelled by these two labels are con-
sistent with the insert size. More precisely, in a paired de Bruijn graph, a cycle
is called sound if the pair of strings it spells matches with shift d. Let s and t
be the two strings spelled by the bilabels of the cycle C. If d ≤ �, then we call
C sound if

– s[i + d] = t[i] for 1 ≤ i ≤ � − d, and
– s[i] = t[i + � − d] for 1 ≤ i ≤ d.
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Accordingly, we call a vertex vi in a walk (v1, . . . , vq) sound if R(vi) = L(vi+d).
The soundness definition corresponds to the one of Kapun and Tsarev [7]. This
leads to our main problem definition.

Sound Covering Cycle
Input: A paired de Bruijn graph G = (V,A) and nonnegative integers
d and �.
Question: Does G contain a sound covering cycle of length �?

Related Work. Kapun and Tsarev [7] show that Sound Covering Cycle is NP-
hard even if the values of d or k are small constants. They also claim that if |Σ|
and k are constants, which implies that the graph has constant size, then Sound
Covering Cycle cannot be NP-hard as the language defined by it is sparse
since d is encoded in unary. We do not make this assumption, that is, in our case d
and � are encoded in binary. Thus, the complexity of Sound Covering Cycle
for fixed graph size is open in our encoding. A related graph-based approach
of modeling the information of paired-end reads are rectangle graphs [1,10,12].
Computing a covering cycle of length at most � in a directed graph is known as
Directed Chinese Postman and can be solved in polynomial time [4].

Contribution and Organization of the Paper. In Sect. 2, we describe a decom-
position of cycles in directed graphs that we use throughout this work. More-
over, we describe an algorithm for computing a fixed-length covering cycle. This
algorithm is used as a subroutine in Sect. 5 and may also be of independent
interest. In Sect. 3, we present an algorithm for Sound Covering Cycle that
runs in f(n, d) · poly(log �) time. In Sect. 4, we present similar algorithms for
variants of Sound Covering Cycle such as searching for a shortest covering
sound cycle and dealing with relaxed models of soundness that model noisy input
data. In Sect. 5, we present a special case of Sound Covering Cycle that is
solvable in f(n) · poly(log � + log d) time. Since paired de Bruijn graphs are very
sparse, we use the maximum outdegree Δ in our running time bounds.

Due to space constraints, most proofs are deferred to an appendix. We use
the following observations in our algorithms.

Lemma 1. Let G = (V,A) be a directed graph with maximum outdegree Δ and
let � be an integer. There are at most n · Δ�−1 walks and cycles of length � in G
and they can be enumerated in O(n · Δ�−1 · (� + Δ)) time.

This statement implies the following bound on the number of simple walks.

Lemma 2. A directed graph G = (V,A) with n vertices and maximum outde-
gree Δ has at most 2n · Δn−1 different simple walks.

2 Cycle-Walk Decompositions

Before presenting our algorithms, we describe a structured representation of
cycles and walks.
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First, we show that we can decompose any walk or cycle into maximal simple
walks (denoted by Ωi) and possibly empty simple walks between them (denoted
by Wi). Herein, the term maximal refers to the property that in C each Ωi =
(u1, . . . , ut) is followed by its first vertex u1. This implies in particular that Ωi

is a cycle.

Lemma 3. Let C be a walk in a graph G. Then C can be written as a concate-
nation of simple walks Ω1 · W1 · . . . · Ωq · Wq such that

1. |Ωi| > 0 for each i ∈ {1, . . . , q}, and
2. for each Ωi := (u1, u2, . . . , us), 1 ≤ i ≤ q it holds that u1 = v1 where v1 is the

first vertex of Wi · Ωi+1 .

A representation adhering to Lemma 3 is called cycle-walk decomposition of C.
Our next aim is to show the existence of cycle-walk decompositions with a com-
pact description. The proof exploits the fact that if there are too many different
cycles in the decomposition, then some of them can be replaced by repetitions
of other cycles.

Before proving Lemma 5, we show the correctness of the following exchange
operation.

Lemma 4. Let C be a covering cycle of a graph G with cycle-walk decomposi-
tion Ω1 · W1 · . . . · Ωq · Wq. If C contains a cycle Ωj such that

– there is a walk Ωi, i < j, that has the same length as Ωj, and
– for each arc a ∈ A(Ωj), there is a walk Ωp, p �= j, such that a ∈ A(Ωp),

then C ′ := Ω1 · . . . · Wi−1 · Ω2
i · Wi · . . . · Wj−1 · Wj · . . . · Wq is a covering cycle

of the same length in G.

Proof. Let Ωi := (u1, u2, . . . , us) and Wi · Ωi+1 := (w1, w2, . . . , wt). Since Ωi is
a cycle, Ωi · Ωi · Wi is a walk. Now consider Ωj−1 · Wj−1 := (x1, . . . , xs), Ωj :=
(y1, . . . , yt), and Wj ·Ωj+1 := (z1, . . . , zr). Since C is a walk we have (xs, y1) ∈ A
and by the properties of cycle-walk decompositions also y1 = z1. Therefore,
(xs, z1) ∈ A and thus Ωj−1 · Wj−1 · Wj · Ωj+1 is a walk. Consequently, C ′ is
a walk. Since Ωi and Ωj have the same length, C ′ has the same length as C.
Moreover, C ′ is covering as every arc of Ωj is contained in some Ωp, p �= j. ��

Using the exchange operation described by Lemma 4, we now show that there
are compact cycle-walk decompositions.

Lemma 5. If a directed graph G has a covering cycle C of length �, then it
has a covering cycle C ′ of length � such that C ′ has a cycle-walk decomposition
(Ω1)r1 · W1 · . . . · (Ωq)rq · Wq where q ≤ n + m.

Proof. Assume that G has a covering cycle C of length �. According to Lemma 3,
C has a cycle-walk decomposition (Ω1)r1 · W1 · . . . · (Ωq)rq · Wq (Lemma 3 shows
the existence of the special case r1 = . . . = rq = 1). Now consider of all covering
cycles of G one with a decomposition in which q +

∑q
i=1 |Wi| is minimum.
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Now assume towards a contradiction, that in this decomposition there are
indices i and j, i �= j, such that |Ωi| = |Ωj | and each arc of Ωj is contained in
some Ωp, p �= j. Without loss of generality assume i < j. We transform C into a
new cycle C ′ in which q+

∑q
i=1 |Wi| is smaller. This contradicts our choice of C.

By the assumption on i and j and by Lemma 4, C ′ := Ω1 · . . . · Wi−1 ·
(Ωi)ri+rj · Wi · . . . · Ωj−1 · Wj−1 · Wj · Ωj+1 · . . . · Wq is also a covering cycle
of G. Clearly, |C| = |C ′| = � and C ′ is also a covering cycle. Now consider two
cases.

Case 1: Wj−1 · Wj contains a simple cycle Ω∗. Let Wj−1 · Wj = W ∗
1 · Ω∗ · W ∗

2

where W ∗
1 and W ∗

2 are not simple cycles. Then, C ′ := Ω1 · . . . · Wi−1 · (Ωi)ri+rj ·
Wi · . . . · Ωj−1 · W ∗

1 · Ω∗ · W ∗
2 · Ωj+1 · . . . · Wq. In this decomposition, the overall

number of Ω’s has not changed but, since |W ∗
1 |+ |W ∗

2 | < |Wj−1|+ |Wj |, the sum
of the lengths of the Wi’s has decreased. This contradicts our choice of C.

Case 2: Otherwise. In this case, Wj−1 · Wj is a simple walk. Thus, the number
of Ω’s has decreased by one while

∑q
i=1 |Wi| remains the same. This contradicts

our choice of C.
Since both cases lead to a contradiction to the choice of C we can assume

that for each Ωj in C there is either one arc aj that is not contained in any
other Ωp, p �= j, or there is no other Ωi of the same length as Ωj . By pigeonhole
principle,there can be at most |A| = m cycles Ωj for which the first condition
is true. For all further cycles, the first condition is false. Now since each Ωj has
length at most n there can be, again by pigeonhole principle, at most n further
cycles for which the second condition is true. This implies that q ≤ m + n. ��

The following lemma shows that the cycle lengths in a decomposition suffice to
determine the possible overall cycle length.

Lemma 6. A graph G has a covering cycle C of length � if and only if it has a
covering cycle C ′ with cycle-walk decomposition Ω1 · W1 · . . . · Ωq · Wq such that

1. C ′ has length x ≤ 2n(m + n), and
2. there are nonnegative integers pi, 1 ≤ i ≤ q, such that x+

∑
1≤i≤q pi ·|Ωi| = �.

We now bound the running time for determining the existence of such a cycle.

Theorem 1. Let G = (V,A) be a directed graph with n vertices and m arcs and
let � be an integer. Then, in O(8m · 2n) · poly(n + log �) time we can determine
whether G contains a covering cycle of length exactly �.

3 An Algorithm for the Parameters n and d

We now describe our first algorithm for Sound Covering Cycle. The running
time of this algorithm is exponential in n and d. Thus, we avoid a combinatorial
explosion in the number � which is at least as large as d and usually much larger.

The algorithm exploits that in a sound walk, parts with distance more than d
are “independent” with respect to the soundness property. To make the argument
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more precise, consider a yes-instance (G, d, �) of Sound Covering Cycle with
a solution cycle C = W1 · W2 · . . . · Wq · W ∗, where |Wi| = d for 1 ≤ i ≤ q
and |W ∗| = � mod d. For each vertex vj in Wi the vertex that is relevant to
determine whether vj is sound is contained in Wi+1. Thus, consider a graph G =
(V,A) which contains each length-d walk as a vertex. In particular, G contains
each Wi. Moreover, assume that G contains an arc (W,W ′) if W · W ′ is a walk
in G which is sound for all positions in W . Then (Wi,Wi+1) ∈ A for each i < q.
Consequently, the walk W1 · W2 · . . . · Wq in G corresponds to a walk W in G
and W · W ∗ is a sound covering cycle of length � in G.

The algorithm outline hence is as follows: First construct the graph G, called
walk graph from now on. Second, compute “candidate” walks in G. Finally, check
for each candidate walk, whether there is some short walk W ∗ such that con-
catenating W ∗ at its end gives a sound covering cycle of the correct length.

Theorem 2. Sound Covering Cycle can be solved in O(8n·Δ ·2n·Δd

)·poly(n·
Δd + log �) time where Δ is the maximum outdegree of G.

Proof. We describe each of the three main steps of the algorithm in detail and
then bound its running time.

Constructing the Walk Graph G. First, enumerate all walks of length d in G.
Let V denote the set of these walks and make V the vertex set of G. Now construct
the arc set A of G as follows. For each pair of vertices W and W ′ in V, check
whether W · W ′ = (v1, . . . , v2d) is a walk in G and whether it is sound for
each vi, 1 ≤ i ≤ d. That is, check whether (vd, vd+1) ∈ A and whether R(vi) =
L(vi+d) for each vi, 1 ≤ i ≤ d. If this is the case, then add the arc (W,W ′) to
G; otherwise, do not add this arc. This completes the construction of G. Now
“almost” sound walks in G correspond to walks in G.

Observation 1: A walk W1 · . . . ·Wi of length d · i in G with |Wj | = d, 1 ≤
j ≤ i, is sound for all of its first d · (i − 1) positions ⇔ (W1, . . . , Wi) is a
walk in G.

Dynamic Programming. Now, for a walk (W1, . . . , Wi) in G, let A(W1, . . . , Wi)
denote the arcs of W1 · . . . ·Wi in G. Moreover, for an arc (W,W ′) in G with W =
(v1, . . . , vd) and W ′ = (vd+1, . . . , v2d) let arc(W,W ′) denote the arc (vd, vd+1)
in G (by the construction of the walk graph, this arc is present in G).

Following the discussion above, we now solve Sound Covering Cycle by
determining whether there is a walk (W1, . . . , Wq) of length q := 
�/d� in G and
a walk W ∗ of length � mod d in G such that (1) Wq · W ∗ · W1 is a walk of
length 2d + (� mod d) in G which is sound for its first d + (� mod d) positions,
and (2) every arc of G is contained in A(W1, . . . , Wq) or in Wq · W ∗ · W1. This
is done by a dynamic programming algorithm that fills a table T with entries of
the type T [W,W ′, A′, Λ, y] where

– W and W ′ are vertices of G,
– A′ is a subset of A (note that A is the arc set of G not of G),
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– Λ is a subset of {1, . . . , |V|}, and
– y is a nonnegative integer of value at most |V| · (|V| + |A|).

Each entry in T is either true or false. The aim of the algorithm is to fill
the table T such that T [W,W ′, A′, Λ, y] is true if and only if G contains a
walk (W, . . . , W ′) with cycle-walk decomposition Ω1 · Ψ1 · . . . · Ωi · Ψi such that

– A(W, . . . ,W ′) = A′, that is, the walk W · . . . · W ′ in G contains exactly the
arcs of A′,

– Λ = {|Ωj | | 1 ≤ j ≤ i}, and
– (W, . . . ,W ′) has length y.

The idea behind T is that, by Lemma 6, it suffices to consider walks of length
at most |V| · (|V| + |A|) and then to extend them by using the cycle lengths
in Λ. In a preprocessing, we compute a table D. For the correctly filled table D,
an entry D[W,W ′, A′, y] is true if and only if G contains a walk (W, . . . , W ′) of
length y such that A(W, . . . , W ′) = A′. The table is filled for all A′ ⊆ A and for
increasing y < |V|. Initially, set D[W,W,A(W ), 1] to true for each W ∈ V. Then
the recurrence for D is

D[W,W ′, A′, y] :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

true
if ∃(W̃ ,W ′) ∈ A, Ã ⊆ A′ :

Ã ∪ {arc(W̃ ,W ′)} ∪ A(W ′) = A′∧
D[W, W̃ , Ã, y − 1],

false otherwise.

After D is completely filled, compute the table T . The recurrence is

T [W,W ′, A′, Λ, y] :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if Λ = {y} ∧ D[W,W ′, A′, y] ∧ (W ′,W ) ∈ A,

true
if ∃(W̃ ,W ′) ∈ A, Ã ⊆ A′ :

Ã ∪ {arc(W̃ ,W ′)} ∪ A(W ′) = A′∧
T [W, W̃ , Ã, Λ, y − 1],

true

if ∃T [W, W̃ , Ã, Λ̃, y − z],D[W̃ ,W ′, A∗, z] :
T [W, W̃ , Ã, Λ̃, y − z] ∧ D[Ŵ ,W ′, A∗, z]∧
(W̃ , Ŵ ) ∈ A ∧ Ã ∪ {arc(W̃ , Ŵ )} ∪ A∗ = A′∧
Λ \ {z} ⊆ Λ̃ ⊆ Λ,

false otherwise.

Determining the Possible Lengths for Candidate Entries. The next step is to
compute for each entry whether it can be extended, by repeating cycles of the
cycle-walk decomposition, to obtain a walk of length � − (� mod d).

This is done by reducing to Money Changing [2]. More precisely, for each
true entry T [W,W ′, A′, Λ, y], we check whether there is a walk of length � − (�
mod d) that can be obtained from repeating the simple cycles in a length-y
walk W whose existence is implied by the table entry. The set of different lengths
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of simple cycles in W is Λ = {λ1, . . . , λ|Λ|}. Thus, determining the existence of
a cycle of length � − (� mod d) is equivalent to checking whether the equation

p1λ1 + p2λ2 + . . . + p|Λ|λ|Λ| = � − (� mod d) − y

has a solution in which each pi is a nonnegative integer. Each table entry for
which the above equation has such a solution is labeled as candidate entry.
By Lemma 6, the existence of a walk of length � − (� mod d) implies that there
is a corresponding candidate entry.

Closing the Cycle. The final step of the algorithm is to check whether any of
the candidate entries can be completed to a sound cycle of length � by adding
a “short” walk of length � mod d. To this end, first enumerate all walks W ∗

of length � mod d in G. Now, for each candidate entry T [W,W ′, A′, Λ, y] and
each W ∗ and for each enumerated short walk W ∗ do the following. Check
whether W ′ · W ∗ · W is a walk in G. If yes, then W · . . . · W ′ · W ∗ corresponds
to a cycle C in G. This cycle has length y + (� mod d) but since we consider
only candidate entries in T , the walk W · . . . · W ′ which has length y can be
extended to one of length � − (� mod d). Thus, the existence of C implies the
existence of a cycle C ′ of length � in G. It remains to check whether C ′ is sound
and covering. To check whether C ′ is sound it is sufficient to check whether the
walk W ′ · W ∗ · W is sound for its first d + (� mod d) positions (as every walk
in G corresponds to a walk in G whose positions are sound except for the last d).
Finally, it remains to check whether C ′ is covering. This is done by checking
whether A = A′ ∪ {(w′

d, w
∗
1), (w

∗
� mod d, w1)} ∪ A(W ∗) where w′

d is the last ver-
tex of W ′ and w1 is the first vertex of W in G. If yes, C ′ is a solution. If none of
the combinations of candidate entry and W ∗ yields a solution, then the instance
is a no-instance.

Running Time Analysis. By Lemma 1 the number of different walks of length d
in G is at most n ·Δd−1 and thus |V| ≤ n ·Δd−1. Consequently, the construction
of G can be performed in poly(n · Δd−1) time.

The running time in the dynamic programming part is dominated by the time
for filling the table T . This is dominated by the time needed to check whether
the third case of the recursion applies. To do this, one needs to consider, for
each table entry, O(|V|2 · 4n·Δ) possibilities (recall that n · Δ ≥ |A|). For each
possibility, the check can be performed in poly(|V|) time and there are O(|V|2 ·
2n·Δ ·2|V| · |V| · (|V|+ |E|)) = 2n·Δ ·2|V| ·poly(|V|) table entries to compute. Thus,
the overall running time in the dynamic programming part is 8n·Δ ·2|V| ·poly(|V|).

Next, we solve O(2n·Δ ·2|V|) Money Changing instances, each in poly(|V|+
log �) time [2]. The checks in the final stage require poly(|V|) time for each
candidate entry since less than |V| different short walks are considered and each
check needs poly(|V|) time. The overall running time follows. ��

4 Shortest Sound Cycles and Approximately
Sound Cycles

The idea described above can be used in several problem variants. One possibility
is to find a shortest sound covering cycle instead of one with fixed length.
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Shortest Sound Covering Cycle
Input: A paired de Bruijn graph G = (V,A) and a nonnegative integer
d.
Task: Find a sound covering cycle of minimum length in G.

We first bound the length of a shortest sound covering cycle G.

Lemma 7. Let G = (V,A) be a directed graph with maximum outdegree Δ.
If G has a sound covering cycle, then it has a sound covering cycle of length at
most 2d(n · Δ + 1) · (n · Δd−1) + d.

Proof. Consider the walk graph G of G. This graph has n · Δd−1 vertices. Now
consider a walk W in G such that W · W ∗ is a sound covering cycle in G,
where |W ∗| < d and assume that W has minimum length with this property.

Let Ω1 · W1 · . . . · Ωq · Wq be the cycle-walk decomposition of W which exists
due to Lemma 3. Then, for each Ωi, i < q, there is some a ∈ A(Ωi) which is not
contained in any Ωj , j �= i, otherwise removing Ωi from W yields a shorter walk
in G whose corresponding walk in G also covers all arcs. By pigeonhole principle
this implies q ≤ |A|+1. Thus, the length of W in G is at most 2(|A|+1)·(n·Δd−1)
as each Ωi and Wi are simple walks in G. The corresponding walk in G has length
at most 2d(|A| + 1) · (n · Δd−1) since each vertex of G corresponds to a length-
d walk in G. The overall bound now follows from the fact that |A| ≤ n · Δ
and |W ∗| < d. ��

Using this bound, we now derive a dynamic programming algorithm that com-
putes walks of increasing length in G. In this computation, we store the last d
vertices of the walk, since these have influence on the soundness condition. More-
over, we store which arcs of G are already covered by the walk.

Theorem 3. Shortest Sound Covering Cycle can be solved in O(n4 · d ·
Δ3d) time.

The second variant relaxes the soundness constraint. This is motivated by the
fact that the insert size between the paired end reads is not always exactly d.
This relaxed notion of soundness is defined as follows. Recall that a cycle in a
paired de Bruijn graph spells two strings s and t. Now, a length-� cycle C is
called x-approximately sound if

∀i ∈ {1 ≤ i ≤} : t[i mod �] ∈ {s[i + d − x mod �], . . . , s[i + d mod �]}.

Informally, this means that the right label has distance at least d−x and distance
at most d to the left label. This definition leads to the following problem.

Approximately Sound Covering Cycle
Input: A paired de Bruijn graph G = (V,A) and nonnegative integers
d, x, and �.
Question: Does G contain an x-approximately sound covering cycle of
length �?
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We slightly modify the algorithm for Sound Covering Cycle to obtain the
following.

Theorem 4. Approximately Sound Covering Cycle can be solved in O
(8n·Δ · 2n·Δd

) · poly(n · Δd + log �) time.

Finally, we consider the combination of finding a short and approximately sound
cycle. In this variant, we can even allow a number y of mismatches, that is,
there can be y positions that are not approximately sound. More formally, a
length-� walk W is called x-approximately sound with cost at most y if there is
a set M ⊆ {1, . . . , �} of size at most y such that

∀i ∈ {1, . . . , �} \ M : t[i mod �] ∈ {s[i + d − x mod �], . . . , s[i + d mod �]}.

The Cost-bounded Shortest Approximately Sound Covering Cycle
problem now is to find a shortest covering cycle that is x-approximately sound
with cost at most y (if such a cycle exists).

To obtain an algorithm for this variant, first note that the bound of Lemma7
also holds for shortest approximately sound cycles of bounded cost: the replace-
ment argument in the proof only removes cycles in the walk graph which does
not increase the cost of the solution.

Theorem 5. Cost-bounded Shortest Approximately Sound Covering
Cycle can be solved in O(n4 · d2 · Δ3d) time.

5 A Tractable Special Case for the Parameter n

Finally, we present an f(n) · poly(log �)-time algorithm for a special case of
Sound Covering Cycle. To describe the structure of this special case, we
introduce the following notion: the compatibility graph of a paired de Bruijn
graph G = (V,A) is a graph H = (V,B) such that (a, b) ∈ B if L(a) = R(b).

We now exploit this structure by presenting an algorithm for the case that H
is a union of loops. Then, each pair of vertices with distance d within a sound
cycle is identical. Due to this periodic behavior, we obtain the following rela-
tionship between sound cycles and shorter covering cycles.

Lemma 8. Let G be a paired de Bruijn graph such that its compatibility graph H
is a union of loops. Then, G has a sound covering cycle of length � with shift d
if and only if G has a covering cycle of length gcd(d, �).

Here, gcd(d, �) denotes the greatest common divisor of d and �.

Theorem 6. Sound Covering Cycle can be solved in O(8n·Δ ·2n) ·poly(n+
log �) time if the compatibility graph H of G is a union of loops.

Proof. By Lemma 8 the problem reduces to one of finding a covering cycle of the
correct length �′ ≤ �. Since G has n vertices and at most n · Δ arcs, this can be
done in O(8n·Δ · 2n) · poly(n + log �) time by Theorem 1. ��
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6 Outlook

It would be clearly desirable to improve the presented algorithms. Any substan-
tial improvement would need to avoid the enumeration of all length-d walks
in G. Also it would be interesting to extend the algorithm for the case that H
is a disjoint union of loops, for example to the case that every vertex in H has
outdegree one. Finally, in a subroutine we consider the problem of computing
a covering cycle of fixed length. It is open whether this problem is NP-hard or
solvable in polynomial time.
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