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Abstract. Given a Boolean formula in conjunctive normal form with n
variables and m = rn clauses, if there exists a truth assignment satis-
fying (1 − 2−k − q(1 − 2−k))m clauses, call the formula q-satisfiable.
The Minimum Satisfiability Problem (MinSAT) is a special case of
q-satisfiable, which asks for an assignment to minimize the number of sat-
isfied clauses. When each clause contains k literals, it is called MinkSAT.
If each clause is independently and randomly selected from all possible
clauses over the n variables, it is called random MinSAT. In this paper,
we give upper and lower bounds of r (the ratio of clauses to variables) for
random k-CNF formula with q-satisfiable. The upper bound is proved by
the first moment argument, while the proof of lower bound is the second
moment with weighted scheme. Interestingly, our experimental results
about MinSAT demonstrate that the lower and upper bounds are very
tight. Moreover, these results give a partial explanation for the excellent
performance of MinSatz, the state-of-the-art MinSAT solver, from the
perspective of pruning effects. Finally, we give a conjecture about the
relationship between the minimum number and the maximum number
of satisfied clauses on random SAT instances.
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1 Introduction

Given a Boolean formula in conjunctive normal form(CNF), the satisfiability
problem (SAT), which is a prototype of many NP-complete problems, asks for
the existence of a satisfying assignment to the formula. In the past decades, SAT
has been one of the most active and prolific research areas. Many problems, such
as planning [21] and Pseudo-Boolean Constraints, can be translated into SAT
[10]. Recently, the success of SAT research has led to exploring its optimization
formalisms, such as the maximum satisfiability problem (MaxSAT) [4–6,8,12,15,
19,23] and the minimum satisfiability problem (MinSAT) [14,16,17]. MaxSAT
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asks for a Boolean assignment to maximize the number of satisfied clauses, while
MinSAT asks for a Boolean assignment to minimize the number of satisfied
clauses.

MaxSAT is considered as one of the fundamental combinatorial optimization
problems, with close ties to important problems like max cut or max clique,
and with applications in scheduling, routing, etc. For MaxSAT, there is a long
tradition of theoretical works, e.g. [6,12,15,19]. Moreover, Coppersmith et al.
consider the phase transitions of random MaxkSAT (k ≥ 2) problem, where
each clause contains two literals and is selected independently and randomly
[9]. They demonstrate that, with increasing of r, i.e. the ratio between number
of clauses and number of variables, the expected number of unsatisfied clauses
under an optimal assignment quickly changes from Θ(1/n) to Θ(n). Furthermore,
they provide the upper and lower bounds of the maximum number of satisfied
clauses for MaxSAT. Xu et al. improve the upper bound of Max2SAT by the
first moment argument via correcting error items [24]. Achlioptas et al. first
studied the p-satisfiable problem while there exists a truth assignment satisfying
a fraction of 1 − 2−k + p2−k of all clauses. They introduced weighting second
moment method to prove the upper and lower bound of r(clauses/variables) [2].
Zhou et al. improve the lower bound by giving a different weight to the truth
assignment if exactly one of k literals in a clause is satisfied [26].

The research of MaxSAT leads to increasing interest in its counterpart, Min-
SAT, which is introduced by Kohli, Krishnamurti and Mirchandani in [14]. They
show that MinSAT is NP-complete, even when the formula is a 2-CNF formula,
i.e. each clause of which contains at most two literals, or a Horn formula, i.e.
each clause of which contains at most one positive variable. They also analyze
the performances of deterministic greedy and probabilistic greedy heuristics for
MinSAT. A reduction from MinSAT to the minimum vertex cover (MinVC)
problem is given in [20], to improve the approximation ratio of MinSAT to 2.
A simple randomized 1.1037-approximation algorithm for Min2SAT, and a
1.2136-approximation algorithm for Min3SAT, are given by Avidor and Zwick
in [1]. The first exact algorithm for MinSAT is by encoding MinSAT to MaxSAT
and solving it with a MaxSAT solver [16]. A branch and bound algorithm for
solving MinSAT is proposed by Li et al. in [17]. Their experiments show that
solving problems like MaxClique and combinatorial auction problems, is faster
by encoding them to MinSAT than reducing them to MaxSAT.

Compared with MaxSAT, there is a lack of knowledge about the bounds of
random MinSAT. A k-CNF of q-satisfiable asks for a truth assignment satisfying
a fraction of 1− 2−k − q(1− 2−k) of all clauses. In this paper, we give upper and
lower bounds of r for k-CNF to be q-satisfiable. The upper bound is obtained
by the first moment method, while the proof of lower bound is weighted second
moment used by [2].

We also present experimental results to demonstrate the tightness of these
lower and upper bounds. For MinSAT, the experimental results explain the excel-
lent performance of the state-of-the-art solver MinSatz. Moreover, we investigate
the relationship between MaxSAT and MinSAT, and propose a conjecture about
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the expected sum of the maximum number and the minimum number of satisfied
clauses for a random SAT instance.

This paper is organized as follows. In the next section, we review some
basic definitions about SAT and MinSAT. Then the lower and upper bounds of
k-CNF to be q-satisfiable are proved respectively. After that, experimental results
are presented, as well as a discussion on the relationship between MaxSAT and
MinSAT suggested by the experimental results. Finally, we conclude our work
and point out future research directions.

2 Preliminaries

A Boolean formula in conjunctive normal form F is a set of clauses
{C1, C2, ..., Cm}, where m is the number of clauses in F . A clause is a dis-
junction of literals, xi1 ∨ xi2 ∨ · · · ∨ xik , where k is the length of the clause.
A literal is either a Boolean variable x or its negation x. The SAT problem is
to determine the existence of an assignment satisfying all the clauses. If there is
no assignment to satisfy all the clauses, a natural but more practical question
is, how far or how close can one get to satisfiability? This is the optimization
version of SAT, which is to find an assignment satisfying the most or the least
number of clauses.

Definition 1. (MinSAT) Given a SAT instance F , MinSAT asks for an assign-
ment to all the variables such that the minimum number of clauses are satisfied.
This number is called the value of the MinSAT instance.

Definition 2. (q-satisfiable) Given a k-CNF formula F , if there exists a truth
assignment satisfying a fraction of 1−2−k −q(1−2−k) (0 < q < 1) of all clauses,
it is q-satisfiable.

For simplicity, we use x in lieu of �x�, the largest integer no more than x. The
following standard asymptotic notations will be used in this paper.

lim
x→∞

f(x)
g(x)

= 0 ⇒ f(x) = o(g(x))

lim
x→∞

f(x)
g(x)

= 1 ⇒ f(x) � g(x)

lim
x→∞ sup

f(x)
g(x)

≤ M(M > 0) ⇒ f(x) = O(g(x))

Especially, while M = 1, f(x) � g(x) means f(x) is less than or equal to g(x)
asymptotically.

3 The Upper Bound

Given a k-CNF instance F to be q-satisfiable. Let Pr be the probabilistic distri-
bution and let N denote the solutions number of the instance.
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Theorem 1. Let r > 2 ln 2
q2(2k−1)

, we have

lim
n→∞ Pr[F is q − satisfiable] = 0

Proof. The expected value of N , denoted as E(N), is given by

E(N) = 2n

ρrn∑

i=0

(
rn

i

)(
1
2k

)rn−i(
1 − 1

2k

)i

where ρ = 1 − 2−k − q(1 − 2−k).

The last term is maximized for q ∈ (0, 1), so E(N) is upper bounded by

E(N) ≤ 2n(ρrn + 1)
(

rn

ρrn

)(
1
2k

)rn−ρrn(
1 − 1

2k

)ρrn

According to Stirling’s formula n! � (n/e)nO(n), and
(

rn

ρrn

)
� (

ρ−ρ(1 − ρ)ρ−1
)rn

,

We have

E(N) ≤ 2n(ρrn + 1)

(
ρ−ρ(1 − ρ)ρ−1

(
1
2k

)1−ρ(
1 − 1

2k

)ρ
)rn

It is easy to prove that E(N) < 0 while r > 2 ln 2
q2(2k−1)

. By the Markov inequality
Pr(SAT ) ≤ E(N), the upper bound is obtained.

4 The Lower Bound

Generally, the standard second moment method can be used to prove the lower
bound for random problems, such as SAT, CSP. Unfortunately, it fails by using to
optimization problem like MaxSAT. To cover this problem, Achlioptas provide a
weighting scheme of the second moment to improve the lower bound of kSAT [3]
and MaxSAT [2]. We following this line to prove the lower bound of q-satisfiable
problem.

For any truth assignment σ ∈ {0, 1}n, let

H = H(σ, F ) = Unsat(l, σ) − Sat(l, σ)
S = S(σ, F ) = Sat(c, σ)

where Unsat(l, σ)(Sat(l, σ)) is the number of unsatisfied(satisfied) literal,
Sat(c, σ) is the number of satisfied clauses.

Let N defined as the number of solutions to q-satisfiable problem. Define

N = ΣσγH(σ,F )ηS(σ,F )−s0rn
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where s0 = 1 − q − (1 − q)2−k, 0 < γ, η < 1.
Using the following two functions,

f(α, γ, η)
= η−2s0E[γH(σ,F )+S(τ,F )ηH(σ,F )+S(τ,F )]

= η2s0

[(
α(γ2+γ−2

2 ) + 1 − α
)k

− 2(1 − η)
((

α(γ2+γ−2

2 ) + 1 − α
)k

−
(

αγ−2+1−α
2

)k
)

+ (1 − η)2
(((

α(γ2+γ−2

2 ) + 1 − α
)k

− 2
(

αγ−2+1−α
2

)k
)

+ 2−k
(
αγ−2

)k
)]

Let

gr(α, γ, η) =
f(α, γ, η)r

αα(1 − α)1−α

We have

E2[N ] = 2n

ηs0rn

[
(γ+γ−1

2 )k − (1 − η)[γ+γ−1

2 )k − (2γ)−k]
]rn

=
(
2gr

(
1
2 , γ, η

))n

Theorem 2. Given a k-CNF formula F , if r ≤ ln 2
(q+(1−q) ln(1−q))2k

(1−O(k2−k)),

lim
n→∞[F is q − satisfiable] = 1.

The proof is similar to the lower bound for MaxSAT in [2], so we ignore here.

5 Experimental Results

We conduct experiments to k-CNF formula to be q-satisfiable, the results are
presented in Fig. 1. The upper bound (upper) is proved by the first moment
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Fig. 1. The upper and lower bound for q-satisfiable
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Fig. 2. The bounds of n = 80 for Min3SAT
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Fig. 3. The bounds of n = 120 for Min2SAT

method, while the proof of the lower bound (lower) is weighted scheme of the
second moment method. We also give a poor lower bound (lower* ) by algorithm
analysis, which was used to MaxSAT in [9].

From Fig. 1, we can see that the space between upper bond and lower bound
become smaller as q increase. That is to say, the bounds is tighter while the
number of satisfying clauses is less. Based on this, the lower and upper bounds
of MinkSAT is presented in Fig. 2, which indicate that the bounds for MinSAT
(k = 3) provided by this paper is very tight. However, the second moment is
poor to upper bound for Min2SAT, so algorithm analysis is considered in Fig. 3.
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Table 1. Comparing with MinSATz with branching number

r = 6 r = 7

#n MinSatz + LB MinSatz Minsatz + LB MinSatz

120 6593 7331 14601 14764

130 24881 25605 319657 333949

140 109061 112213 946257 947779

150 49597 49744 552269 552442

In the second experiment, we apply our work to the state-of-the-art solver
MinSatz. In MinSatz, UB is the largest number of falsified clauses while extend-
ing the current partial assignment to a complete one, and LB is the number
of clauses falsified in the best assignment found so far. if LB < UB, MinSatz
select a variable and instantiate it, otherwise, the solver backtracks. Besides,
MinSatz introduces both clique partitioning algorithms and MaxSAT technol-
ogy to improve the UB so as to prune the search tree quickly. However, we focus
on the other side, and give LB an initial number so as to reduce the branching
number. We conduct an experiment to test the performances before and after
adding our work to MinSatz in Table 1. The branching number can be reduced
while giving UB a initial value computed by this paper, but the improvements is
not so obvious. Further analysis indicate that the genuine MinSatz is an excel-
lent solver for MinSAT. However, if the MinSAT solver is not so excellent as
MinSatz, such as a trivial MinSAT solver with no inference rules (minsat), the
improvements will be more obvious. The results are presented in Table 2, which
indicates that a MinSAT solver with our work outperforms the one without.

Li et al. have found from experiments that the relationship between MaxSAT
and MinSAT is counter-intuitive [17,18]: for the same instances, the bigger the
MaxSAT value is, the smaller the MinSAT value is, the opposite is also true.
They focus these instances at the threshold (c = 4.25 for 3SAT). We follow this
line, and conjecture that, the sum of the MaxSAT and MinSAT value is a con-
stant value. In our experiments, the number of variables in random instances
ranges from 40 to 140, and the density r considered are 6, 7 and 8. We compare
the sum of exact MinSAT value and MaxSAT value (‘sum’ in Table 3) with our
conjectured value (‘conjecture’ in Table 3). From experiments, the accuracy of
our conjecture is found to be over 99 % (‘accuracy’ in Table 3). This indicates

Table 2. Application to MinSAT solver

r= 0.8 r= 1 r=2

#n minsat minsat +LB incr minsat minsat +LB incr minsat minsat +LB incr

20 0 0 0 1 1 0 1 1 0

30 0 0 0 1 1 0 100 85 15%

40 500 420 16% 600 500 16.67% 1783 1458 18.22%

50 1284 1076 16.2% 2117 1916 9.49% 4839 4279 11.57%
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Table 3. The relationship of MinSAT and MaxSAT

r = 6 r = 7 r = 8

#n Sum Conjecture Accuracy Sum Conjecture Accuracy sum Conjecture Accuracy

40 357 360 99.17% 418 420 99.52% 478 480 99.58%

60 535 540 99.07% 627 630 99.52% 716 720 99.44%

80 715 720 99.31% 834 840 99.29% 954 960 99.37%

100 892 900 99.11% 1041 1050 99.14% 1191 1200 99.25%

120 1071 1080 99.17% 1251 1260 99.29% 1431 1440 99.37%

140 1248 1260 99.05% 1459 1470 99.25% 1669 1680 99.35%

that our conjecture is close to the exact value. For kSAT instances, the sum of
MinSAT value and MaxSAT value is approximately (2−21−k)cn. If the relation-
ship between MinSAT and MaxSAT values is clear, this conjecture can be used
to get a better upper bound for MaxSAT. In other words, give the exact value
of MinSAT, the value of MaxSAT for the same instance can be approximated.
Besides, this value is significantly better than the upper bound obtained by [9],
see Table 4.

Table 4. Conjecture about the upper bound of MaxSAT. ‘MinSAT value’ (‘MaxSAT
value’) is the exact value of MinSAT (MaxSAT), ‘ub04’ is the upper bound of MaxSAT
obtained by [9], ub� is our guess value.

#n MinSAT value MaxSAT value ub� ub04

40 142 215 218 229

60 213 322 327 344

80 283 432 437 459

100 353 539 547 574

120 423 648 657 689

140 493 755 767 804

6 Conclusions and Future Work

We have presented upper and lower bounds of the minimization versions of the
SAT problem. For the upper bound, the first moment argument is used, while the
lower bound is derived by weighting second moment. The experimental results
confirm the correctness and accuracy of our work. Furthermore, we consider the
relationship between MinSAT and MaxSAT, and an interesting conjecture is
presented. As for future work, the bounds of other optimization problems such
as Min-CUT of random graphs [7] and Min-CSP [13] of random CSPs [25] may
be considered.
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