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Abstract. We investigate a scheduling problem with job delivery coor-
dination in which the machine has a maintenance time interval. The
goal is to minimize the makespan. In the problem, each job needs to
be processed on the machine non-preemptively for a certain time, and
then transported to a distribution center; transportation is by one vehi-
cle with a limited physical capacity, and it takes constant time to deliver
a shipment to the distribution center and return back to the machine.
We present a 2-approximation algorithm for the problem, and show that
the performance ratio is tight.
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packing · Approximation algorithm · Worst-case performance analysis

1 Introduction

We consider a scheduling problem that arises from supply chain management
research at the operational level, with the goal to show that decision makers at
different stages of a supply chain can make coordinated decisions at the detailed
scheduling level, and achieve substantial efficiencies. This problem integrates
production and delivery whereby the jobs are first processed in a manufacturing
center, and then delivered to a distribution center. We use a machine to model the
manufacturing center, which has a preventive maintenance time interval when
it is unavailable for processing any jobs. Job delivery is performed by a single
vehicle with a limited physical load capacity, between the manufacturing center
and the distribution center. The goal is to minimize the makespan. A special
case of this problem was first considered by Wang and Cheng [9], in which the
jobs have uniform size.
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Our target scheduling problem is formally described as follows. We are given
a set of jobs J = {J1, J2, . . . , Jn}, each of which needs to be processed in a
manufacturing center (the machine) and then delivered to a distribution center
(the customer). Each job Ji requires a non-preemptive processing time of pi in the
manufacturing center; when transported by the only vehicle to the distribution
center, it occupies a fraction si of physical space on the vehicle. The vehicle
has a normalized space capacity of 1, is initially at the manufacturing center,
and needs to return to the manufacturing center after all jobs are delivered. It
takes the vehicle T units of time to deliver a shipment and return back to the
manufacturing center. The manufacturing center, modeled as a single machine,
has a known maintenance time interval [s, t], where 0 ≤ s ≤ t, during which no
jobs can be processed. The problem objective is to minimize the makespan, that
is, the time the vehicle returning to the manufacturing center after all jobs are
delivered.

Using the notation of Lee et al. [7] and following Wang and Cheng [9], the
problem under study is denoted as (1, h(1) | non-pmtn,D, si | Cmax). In this
three-field notation, the first field denotes the machine environment, the second
denotes the job characteristics, and the last denotes the performance measure to
be optimized. In our case, “1” says that there is only a single machine to process
the jobs and “h(1)” indicates that there is a hole (i.e. a maintenance interval)
in the machine, “non-pmtn” states that each job needs a continuous processing
or, if interrupted by the unavailable machine maintenance interval, it has to
restart the processing after the machine becomes available,1 “D” indicates the
delivery requirement that jobs must be delivered to the distribution center after
the processing is completed in the manufacturing center, “si” is the normalized
physical size of job Ji on the single vehicle, and lastly, “Cmax” denotes the
makespan, which is the time the vehicle returning to the manufacturing center
after all jobs are delivered.

For the special case where all jobs have the same size, that is si = 1
K for some

positive integer K, Wang and Cheng showed that (1, h(1) | non-pmtn,D, si =
1
K | Cmax) is NP-hard, and presented a 3

2 -approximation algorithm based on the
shortest processing time (SPT) rule [9]. Essentially, the SPT rule sorts the jobs
into a non-decreasing order of the processing time and the machine processes the
jobs in this order. The intuition is to let the machine finish processing as many
jobs as possible at any given time point, to optimally supply the transportation
vehicle.

While the SPT rule alone works well in this special uniform-size case, it can
be very bad in the general case where the jobs have different sizes. Indeed, for
another extremely special case where all jobs have zero processing time, the
problem (1, h(1) | non-pmtn,D, si | Cmax) reduces to minimizing the number
of shipments, or the classic bin-packing problem, which is NP-hard and APX-
complete [2].

In this paper, we show that the next-fit (NF) algorithm [5] designed for
the bin-packing problem can be employed for packing the jobs into a favorable
1 In the literature, non-resumable (specified as “nr-a”) has been used.
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number of batches, where each batch is a shipment to be delivered by the sin-
gle vehicle. This is followed by applying the SPT rule to sequence the batches
with delivery coordination. We show that this algorithm has a worst-case per-
formance guarantee of 2, and this ratio is tight. In the next section, we present
the performance analysis in detail. We conclude the paper in the last section.

2 The Algorithm D-NF-SPT

In our target scheduling problem (1, h(1) | non-pmtn,D, si | Cmax) we assume
the non-trivial case where

∑n
i=1 pi > s ≥ minn

i=1 pi, i.e. the machine mainte-
nance interval does affect the schedule, since otherwise the problem reduces to
the problem (1 | D, si | Cmax), which has been extensively investigated in the
literature [1,4,6,8,10], and it admits a (best possible) 1.5-approximation algo-
rithm [8]. In the 1.5-approximation algorithm, when the total size of the jobs is
greater than 1 but less than or equal to 2, the jobs are packed by the NF algo-
rithm; otherwise, the jobs are packed by the modified first-fit decreasing (MFFD)
algorithm [3]. The resultant batches are then processed and delivered in the SPT
order.

Recall that there are n jobs, and each job Ji, for i = 1, 2, . . . , n, needs to be
processed non-preemptively for pi units of time on the machine, and then trans-
ported to the distribution center by a single vehicle. The machine has a known
maintenance time interval [s, t], during which no jobs can be processed. The job
Ji has a physical size si ∈ (0, 1], representing its fractional space requirement
on the vehicle during the transportation. A shipment (i.e., a batch, used inter-
changeably) can contain multiple jobs, as long as the total size of the jobs in
the shipment is no greater than 1. The vehicle takes constant time T to deliver
a shipment to the distribution center and return back to the machine. For ease
of presentation, we use Δ = t − s to denote the length of the machine mainte-
nance. As mentioned in the introduction, we have the following lemma due to
the hardness results of the bin-packing problem.

Lemma 1. The problem (1, h(1) | non-pmtn,D, si | Cmax) is NP-hard and
APX-hard. ��
Let π denote a feasible schedule, in which the jobs are transported in k shipments
denoted as B1, B2, . . . , Bk in order. We extend the notation to use p(Bj) (s(Bj),
respectively) to denote the total processing time (size, respectively) of the jobs of
Bj , for every j. Note that in general the jobs of Bj are not necessarily processed
before all the jobs of Bj+1 on the machine. Let α denote the smallest batch
index such that

∑α
j=1 p(Bj) > s. Clearly, 1 ≤ α ≤ k. We can assume, without

loss of generality, that for every j < α the jobs of Bj are processed before all
the jobs of Bj+1 on the machine, and furthermore they are processed on the
machine consecutively in an arbitrary order. We use δ to denote the length of
the machine idling period due to the pending maintenance. It follows that the
machine finishes processing all the jobs at time

∑k
j=1 p(Bj) + Δ + δ. On the
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other hand, the total transportation time for this schedule is kT . We assume
that the vehicle does not idle if there are shipments ready to be transported.

Our algorithm D-NF-SPT can be described as follows (see Fig. 1). First (the
D-step), all jobs are sorted into a non-increasing order of the ratio si

pi
, which we

also call the density. Next (the NF-step), in this order, the jobs are formed into
shipments (batches) by their physical sizes using the next-fit (NF) bin-packing
algorithm. The NF algorithm assigns the job at the head of the order to the last
(largest indexed) shipment if the job fits in, or else to a newly created shipment
for the job. This way, every shipment contains a number of consecutive jobs. The
achieved batch sequence is denoted as 〈B′

1, B
′
2, . . . , B

′
k〉. The processing times

of the shipments are then calculated, and the shipments are sorted into a non-
decreasing order of the processing time (the SPT-step). The final batch sequence
is denoted as 〈B1, B2, . . . , Bk〉. According to this shipment order, a maximum
number of batches are processed before time s; the other batches are processed
starting time t (when the maintenance ends). For each shipment, its jobs are
processed consecutively on the machine in an arbitrary order; and a shipment is
transported to the distribution center after all its jobs are finished and the vehicle
is available. We denote the achieved schedule as π, that is π = 〈B1, B2, . . . , Bk〉
with p(B1) ≤ p(B2) ≤ . . . ≤ p(Bk). Let Bα denote the first shipment processed
after time t;

δ = s −
α−1∑

j=1

p(Bj) (1)

denotes the length of the machine idle time before the maintenance (see Fig. 2
for the configuration of π).

Algorithm D-NF-SPT:

Step 1. (The D-step) Sort the jobs into a non-increasing order of the ratio si/pi;

Step 2. (The NF-step) Pack the jobs by size into a sequence of batches using

the algorithm NF:

2.1. Place the current job into the last batch if it fits in;

2.2. Or else create a new batch for the current job;

2.3. The achieved batch sequence is denoted as B1, B2, . . . , Bk ;

Step 3. (The SPT-step) Sort the job batches into a non-decreasing order of the

processing time:

3.1. The achieved batch sequence is denoted as B1, B2, . . . , Bk ;

Step 4. Process the jobs in this batch order and deliver a finished batch as early

as possible:

4.1. Let α denote the smallest batch index such that α
j=1 p(Bj) > s;

4.2. Batches B1, B2, . . . , Bα−1 are processed before time s;

4.3. Batches Bα, Bα+1, . . . , Bk are processed starting time t.

sequence is denoted

Fig. 1. A high-level description of the algorithm D-NF-SPT.
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B1 B2
. . . Bα−1

Maintanance

Bα Bα+1
. . .

δ
s

Δ
t

Fig. 2. A visual configuration of the schedule π produced by the D-NF-SPT algorithm.

We next prove some structural properties for the schedule π, and estimate
its makespan denoted as Cmax. For ease of presentation, the finish processing
time of the batch Bj on the machine is denoted as Cj , and let Dj denote the
time at which the vehicle delivers the batch Bj to the distribution center and
returns back to the machine. Clearly, Dj − Cj ≥ T , for every j.

Lemma 2. For the schedule π produced by the algorithm D-NF-SPT for the
problem (1, h(1) | non-pmtn,D, si | Cmax), the makespan is

Cmax =

⎧
⎨

⎩

∑α
j=1 p(Bj) + Δ + δ + (k − α + 1)T, if Cα > Dα−1, Ck < Dk−1;

p(B1) + kT, if Cα ≤ Dα−1, Ck < Dk−1;∑k
j=1 p(Bj) + Δ + δ + T, if Ck ≥ Dk−1.

Proof. Recall that the machine processes the jobs of B1∪B2∪ . . .∪Bα−1 contin-
uously before time s, and processes the jobs of Bα ∪Bα+1∪ . . .∪Bk continuously
after time t. Thus for the last job batch Bk, Ck =

∑k
j=1 p(Bj) + Δ + δ.

If the batch Bk has finished the processing while the vehicle is not ready for
transporting it, i.e. Ck < Dk−1, we conclude that the vehicle does not idle during
the time interval [Cα, Ck], where Cα =

∑α
j=1 p(Bj) + Δ + δ. This can be proven

by a simple contradiction, as otherwise there would be a batch Bj for some j > α,
such that Cj > Dj−1. Then clearly p(Bj) = Cj − Cj−1 > Dj−1 − Cj−1 ≥ T . It
follows that all the succeeding batches have a processing time greater than T .
This indicates that for every successive batch, including Bk, the vehicle has to
idle for a while before delivering it.

Using the same argument, if the vehicle idles inside the time interval [C1, Cα]
(note that the vehicle has to wait for the first batch B1 to finish), then there
must be Cα > Dα−1 and thus the vehicle must have delivered all the batches
B1, B2, . . . , Bα−1 at time Cα. In this case, the makespan is Cmax =

∑α
j=1 p(Bj)+

Δ + δ + (k − α + 1)T . If the vehicle does not idle before time Cα, that is,∑α
j=2 p(Bj) + Δ + δ ≤ (α − 1)T , then the makespan is Cmax = p(B1) + kT .
If the job batch Bk has finished the processing and the vehicle is ready for

transporting it, i.e. Ck ≥ Dk−1, then the makespan is the finishing time of
the batch Bk plus one shipment delivery time of the vehicle, which is Cmax =∑k

j=1 p(Bj) + Δ + δ + T . ��
From the proof of Lemma 2, we have the following corollary.

Corollary 1. For the schedule π produced by the algorithm D-NF-SPT for the
problem (1, h(1) | non-pmtn,D, si | Cmax), the vehicle idles inside the time
interval [C1, Cα] if and only if Cα > Dα−1. ��



Machine Scheduling with a Maintenance Interval 109

Consider the associated instance I of the bin-packing problem to pack all the
jobs of J = {J1, J2, . . . , Jn} by their size into the minimum number of batches
(of capacity 1); let ko denote this minimum number of batches. It is known
that k ≤ 2ko − 1 [5], where k is the number of batches by the algorithm NF.
The algorithm NF is one of the simplest approximation algorithms designed
for the bin-packing problem, but not the best in terms of approximation ratio.
Nevertheless, there are important properties of the packing result achieved by
the algorithm NF, stated in the next two lemmas.

Lemma 3. Consider the job batch sequence 〈B′
1, B

′
2, . . . , B

′
k〉 produced by the

algorithm D-NF-SPT in Step 2. Let J ′ be any subset of jobs, and assume all
its jobs can be packed into k′ batches. For any k1, if

∑k1
j=1 s(B′

j) ≤ s(J ′), then
k1 ≤ 2k′ − 1.

Proof. From the execution of the NF algorithm, we know that every two adjacent
batches, B′

j and B′
j+1, have a total size strictly greater than 1. If k1 is odd, then

∑k1
j=1 s(B′

j) > k1−1
2 ; otherwise,

∑k1
j=1 s(B′

j) > k1
2 . On the other hand, every one

of the k′ batches has size at most 1, and thus s(J ′) ≤ k′. Putting together, we
have

k′ ≥ s(J ′) ≥
k1∑

j=1

s(B′
j) >

k1 − 1
2

.

That is, k′ > k1−1
2 + 1 = k1+1

2 . This proves the lemma. ��
Lemma 4. Consider the job batch sequence 〈B′

1, B
′
2, . . . , B

′
k〉 produced by the

algorithm D-NF-SPT in Step 2. Let J ′ be any subset of jobs. For any k1, if∑k1
j=1 p(B′

j) > p(J ′), then
∑k1

j=1 s(B′
j) > s(J ′).

Proof. Recall that in Step 1 of the algorithm D-NF-SPT, all the jobs of J are
sorted by non-increasing density si

pi
. Assume to the contrary that

∑k1
j=1 p(B′

j) >

p(J ′) and
∑k1

j=1 s(B′
j) ≤ s(J ′). There must exist at least one job J ∈ J ′ but

not in the first k1 batches B′
1, B

′
2, . . . , B

′
k1

, such that

s(J)
p(J)

>

∑k1
j=1 s(B′

j)
∑k1

j=1 p(B′
j)

≥ min
Ji∈B′

k1

{
si

pi

}

.

However, this is a contradiction since such a job J must have been in one of the
first k1 batches B′

1, B
′
2, . . . , B

′
k1

, from the execution of the NF algorithm. This
proves the lemma. ��
Let π∗ denote an optimal schedule, in which there are k∗ job batches B∗

1 , B∗
2 ,

. . ., B∗
k∗ , when finished, delivered in this order. We assume that the batch B∗

α∗

is the first one in this order containing a job processed after time t; and use
δ∗ to denote the length of the machine idle time before the maintenance. It is
important to note that we may assume without loss of generality that the jobs
of B∗

j , for each j < α∗, are processed continuously (in an arbitrary order), but
no specific processing order for the jobs of B∗

α∗ , B∗
α∗+1, . . . , B

∗
k∗ .
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The makespan of the optimal schedule π∗ is denoted as C∗
max. Again for ease

of presentation, the finish processing time of the batch B∗
j on the machine is

denoted as C∗
j , and let D∗

j denote the time at which the vehicle delivers the
batch B∗

j to the distribution center and returns back to the machine. Clearly,
D∗

j − C∗
j ≥ T , for every j.

Lemma 5. For the optimal schedule π∗ for the problem (1, h(1) | non-pmtn,D,
si | Cmax), the makespan is

C∗
max ≥ max

⎧
⎨

⎩
p(B∗

1) + k∗T,

k∗
∑

j=1

p(B∗
j ) + Δ + δ∗ + T

⎫
⎬

⎭
.

Proof. Since after the first batch B∗
1 is processed on the machine, the vehicle

needs to deliver all the k∗ batches; thus the makespan is at least p(B∗
1) + k∗T .

On the other hand, the finish processing time of the last batch B∗
k∗ is C∗

k∗ =
∑k∗

j=1 p(B∗
j )+Δ+δ∗, and afterwards it has to be delivered; hence the makespan

is at least
∑k∗

j=1 p(B∗
j ) + Δ + δ∗ + T . This completes the proof. ��

Now we are ready to prove the main theorem.

Theorem 1. The algorithm D-NF-SPT is an O(n log n)-time 2-approximation
for the problem (1, h(1) | non-pmtn,D, si | Cmax).

Proof. First, if
∑n

i=1 pi ≤ s, i.e. all the jobs can be processed before the machine
maintenance, the target problem reduces to the problem (1 | D, si | Cmax), which
admits a 1.5-approximation algorithm [8]. We thus assume in the following that∑n

i=1 pi > s. Consequently, 1 ≤ α ≤ k and 1 ≤ α∗ ≤ k∗ (these four quantities
are all well defined).

If in the schedule π produced by the algorithm D-NF-SPT, Ck ≥ Dk−1,
then by Lemma 2 the makespan is Cmax =

∑k
j=1 p(Bj) + Δ + δ + T . On the

other hand, from Lemma 5 we have C∗
max ≥ ∑k∗

j=1 p(B∗
j ) + Δ + δ∗ + T . Clearly,

δ ≤ p(Bα) ≤ ∑k
j=1 p(Bj) =

∑k∗

j=1 p(B∗
j ). It follows that

Cmax =
k∑

j=1

p(Bj) + Δ + δ + T ≤ 2
k∗
∑

j=1

p(B∗
j ) + Δ + T ≤ 2C∗

max.

That is, the makespan of the schedule π is no more than twice of the optimum.
If k∗ = 1 in the optimal schedule π∗, that is, all the jobs can form into

a single batch, then we also have k = 1 in the schedule π, and consequently
Cmax = p(B1) + Δ + δ + T . As in the previous paragraph the makespan of the
schedule π is no more than twice that of the optimum.

In the following we consider Ck < Dk−1, k ≥ 2 and k∗ ≥ 2, and we separate
the discussion into two cases. Note that in the following D0 = 0, meaning at the
beginning the vehicle is ready.
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Case 1. Cα ≤ Dα−1.
From Corollary 1 and Lemma 2, we know that in the schedule π the vehicle

does not idle inside the time interval [C1, Cα] and the makespan is Cmax =
p(B1) + kT .

By letting J ′ be the whole set J of jobs in Lemma 3, we have k ≤ 2k′ − 1 ≤
2k∗ − 1, since k′ is the minimum number of batches for all the jobs of J .

One can check that for every possible value of α, we always have C2 ≤ D1

because there is no vehicle idling inside the time interval [C1, Cα], and thus
p(B1) ≤ p(B2) = C2 − C1 ≤ D1 − C1 = T . It follows from Lemma 5 that

Cmax = p(B1) + kT ≤ T + (2k∗ − 1)T = 2k∗T ≤ 2C∗
max.

Case 2. Cα > Dα−1.
Note that we have Ck < Dk−1, and thus α ≤ k − 1. From Corollary 1 and

Lemma 2, we know that in the schedule π, the vehicle idles inside the time interval
[C1, Cα] and the makespan is Cmax =

∑α
j=1 p(Bj) + Δ + δ + (k − α + 1)T .

If α > 2 and the vehicle idles inside the time interval [C1, Cα−1], then
p(Bα−1) > T . Consequently, p(Bk) > T too, which contradicts Ck < Dk−1.
In the remaining situation, either α = 1 (i.e., no jobs processed before the
machine maintenance), or 2 ≤ α ≤ k − 1 and the vehicle idles only inside the
time interval [Cα−1, Cα]. Thus we always have p(Bα) ≤ p(Bα+1) ≤ T (again, as
otherwise Ck > Dk−1, a contradiction).

Subcase 2.1. α∗ = 1. In this subcase, all the batches are finished after time t,
and thus C∗

max ≥ t + k∗T . It follows from p(Bα) ≤ T and k ≤ 2k∗ − 1 [5] that

Cmax = t + p(Bα) + (k − α + 1)T ≤ t + T + 2k∗T − αT = t + 2k∗T ≤ 2C∗
max.

Subcase 2.2. α∗ ≥ 2. In this subcase, C∗
max ≥ max{t + (k∗ − α∗ + 1)T, p(B∗

1) +
k∗T}.

Let J ′ denote the subset of jobs that are processed before time s in the opti-
mal schedule π∗, and J ′′ = J −J ′. Clearly,

∑α
j=1 p(Bj) > p(J ′) since not all the

jobs of Bα can be processed before time s. On the other hand, the batch sequence
〈B1, B2, . . . , Bk〉 is the rearrangement of the batch sequence 〈B′

1, B
′
2, . . . , B

′
k〉 in

the SPT order; therefore,
∑α

j=1 p(Bj) ≤ ∑α
j=1 p(B′

j). It follows that

α∑

j=1

p(B′
j) > p(J ′).

By Lemma 4 we have
α∑

j=1

s(B′
j) > s(J ′),

and thus
k∑

j=α+1

s(B′
j) < s(J ′′).
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From Lemma 3 and that the jobs of J ′′ are in k∗ − α∗ + 1 batches, we conclude
that

k − α ≤ 2(k∗ − α∗ + 1) − 1.

It follows from p(Bα) ≤ T that

Cmax = t + p(Bα) + (k − α + 1)T
≤ t + T + 2(k∗ − α∗ + 1)T
= (t + (k∗ − α∗ + 1)T ) + (k∗ − α∗ + 2)T
≤ 2C∗

max.

That is, in the remaining situation we also have Cmax ≤ 2C∗
max. Hence the

algorithm D-NF-SPT is a 2-approximation.
The running time of the algorithm D-NF-SPT in O(n log n), where n is the

number of jobs, is clearly seen, because the job sorting by density and the later
job batch sorting by processing time take an O(n log n)-time, and the algorithm
NF takes only an O(n)-time. This proves the theorem. ��

2.1 A Tight Instance

In this instance I there are 2n jobs, J = {J1, J2, . . . , J2n}, with n being even.
The processing time and the size of the job Ji is (pi, si), and here J2i−1 = (iε, 1

2 )
and J2i = ((2i + 1)ε2, ε) for every i = 1, 2, . . . , n. The positive constant ε is
small such that ε < 1

2n+1 . The machine maintenance time interval is [s, t] where
s = 1

2n(n − 1)ε + (n − 1)(n + 1)ε2 + 1
2 (2n − 1)ε2 and t = s + 1

2 (2n − 1)ε2, i.e.
Δ = 1

2 (2n − 1)ε2. The one shipment delivery time is T = 1.
Clearly, si

pi
= 1

(i+1)ε for every i = 1, 2, . . . , 2n and therefore the job order after
Step 1 of the algorithm D-NF-SPT is 〈J1, J2, . . . , J2n〉. Using this job order, the
algorithm NF packs the jobs into a sequence of n batches B′

j = {J2j−1, J2j},
j = 1, 2, . . . , n. Clearly, s(B′

j) = 1
2 + ε for all j, and p(B′

j) = jε + (2j + 1)ε2.
Therefore, Bj = B′

j for every j, and the final batch order is 〈B1, B2, . . . , Bn〉.
Note that

s =
1
2
n(n − 1)ε + (n − 1)(n + 1)ε2 +

1
2
(2n − 1)ε2 =

n−1∑

j=1

p(Bj) +
1
2
(2n − 1)ε2.

Since p(Bj) = jε + (2j + 1)ε2 < T for every j, Cn−1 < s < t < Cn−1 + p(Bn)
and (2n − 1)ε2 + p(Bn) < T , for the achieved schedule π its makespan is

Cmax = p(B1) + nT = ε + 3ε2 + nT. (2)

Consider a feasible schedule in which there are n
2 + 1 batches where B∗

j =
{J4j−3, J4j−1} for each j = 1, 2, . . . , n

2 , and B∗
n
2 +1 = {J2, J4, . . . , J2n}. Clearly,

s(B∗
j ) = 1 for all 1 ≤ j ≤ n

2 , s(B∗
n
2 +1) = nε, p(B∗

j ) = (4j − 1)ε for all 1 ≤ j ≤ n
2 ,

and p(B∗
n
2 +1) = n(n + 2)ε2. Since

∑n
2 −1
j=1 p(B∗

j ) < s, all the jobs of the batches
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B∗
1 , B∗

2 , . . . , B∗
n
2 −1 are processed before time s in this feasible schedule. Due to

∑n
2 +1
j=1 p(B∗

j )+(2n−1)ε2 < n
2 −1, no matter when the jobs of the batches B∗

n
2

and
B∗

n
2 +1 are processed, the vehicle has not delivered the batch B∗

n
2 −1 and comes

back to the machine. It follows that the makespan of this feasible schedule is at
most p(B∗

1) + (n
2 + 1)T = 3ε + (n

2 + 1)T . Therefore, the makespan of an optimal
schedule for the instance I is also

C∗
max ≤ 3ε +

(n

2
+ 1

)
T. (3)

Consequently, putting Eqs. (2) and (3) together gives

Cmax

C∗
max

≥ ε + 3ε2 + nT

3ε + (n
2 + 1)T

→ 2, when n → +∞.

3 Conclusions

We have investigated the single scheduling problem with job delivery coordi-
nation, in which the machine has an unavailable maintenance interval. A good
schedule needs not only to well organize jobs into a smaller number of shipments
to save delivery time, but also must wisely exploit the machine time period
before maintenance. The first consideration is addressed by employing a good
approximation algorithm for the bin-packing problem, where the item size is the
job physical size and the bin has a size that is the vehicle capacity. Nevertheless,
the second consideration implies that the machine should perhaps process first
those jobs of shorter processing times. We realized that this is not the same as
the machine processing first those batches of shorter processing time. We thus
propose to sort the jobs in a non-increasing order of the density si/pi, and call
the next-fit (NF) bin-packing algorithm to pack the jobs into batches. Two key
properties of the packing results achieved by the algorithm NF lead to the desired
performance analysis.

We also showed that the worst-case performance ratio 2 of the algorithm
D-NF-SPT is tight. It would be really interesting to see whether the problem
admits a better approximation algorithm, for example, by distinguishing the
machine availability before and after the maintenance. From the practical point
of view, it is worth investigating the problem where the machine has multiple
maintenance periods, whether they occur on a regular basis, or irregularly but
known in advance.
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