Interface for Composing Queries for Complex
Databases for Inexperienced Users

Rodolfo A. Pazos R.(g), Alan G. Aguirre L., Marco A. Aguirre L.,
and José A. Martinez F.

Instituto Tecnoldgico de Cd. Madero, Tecnoldgico Nacional de México,
Cd. Madero, Mexico
r_pazos_r@yahoo.com.mx, 1i.aguirre. lam@hotmail. com,
marco.aguirre@itcm. edu. mx, jose.mtz@gmail. com

Abstract. In most business activities, decision-making has a very important
role, since it may benefit or harm the business. Nowadays decision-making is
based on information obtained from databases, which are only accessible
directly by computer experts; however, the end-user that requires information
from a database is not always a computer expert, so the need arises to allow
inexperienced users to obtain information directly from a database. To this end,
several tools are commercially available such as visual query building and
natural language interfaces to databases (NLIDBs). However, the first kind of
tools requires at least a basic level of knowledge of some formal query language,
while NLIDBs, despite the fact that users do not require training for using the
interface, have not obtained the desired performance due to problems inherent to
natural language processing. In this paper an intuitive interface is presented,
which allows inexperienced users to easily compose queries in SQL, without the
need of training on its operation nor having knowledge of SQL.

1 Introduction

Natural interfaces allow users to access information in a database by a query formulated
in natural language (NL) or by multimodal interfaces. Examples of such interfaces are
described in [1, 2]. However, the use of natural language to formulate a query to a DB
can lead to some problems concerning the process of translating the query to SQL [3],
which could cause that users could not obtain the desired result.

An alternative to NLIDBs are the tools for query composition for databases, which
aim at obtaining information from a DB by formulating an SQL query by using a
friendly graphical interface. They also facilitate the composition of an SQL query using
various methods of composition; however, they require users to have some degree of
knowledge of SQL and the database schema; as a result, such interfaces are difficult to
use for inexperienced users.

This paper presents a human-computer interface that facilitates mid and higher
managers to compose an SQL query to obtain information from a database, which is
necessary for their decision-making tasks. Unlike other interfaces, the design of this
interface allows composing a query without the need to have any knowledge of neither
SQL nor the database schema. The design of the interface involves two major aspects:

© Springer International Publishing Switzerland 2015
E. Onieva et al. (Eds.): HAIS 2015, LNAI 9121, pp. 61-72, 2015.
DOI: 10.1007/978-3-319-19644-2_6

62 R.A. Pazos R. et al.

the human-computer interaction, which is presented in this paper; and the semantic
information dictionary, which is based on a semantically enriched database model
(described in [4]).

This interface has been customized for and tested with Spanish-speaking users, but
its design allows its customization for other European languages: English, French,
Italian, Portuguese.

2 Related Work

As mentioned in Sect. 1, there are a large number of interfaces that allow the com-
position of SQL queries, such as COBASE [5], WYSIWYM [6], TAICHI [7] and
Query by Example of Microsoft Access,' among others.

Table 1 shows a comparison of the characteristics of the interfaces mentioned before
and those of the interface described in this paper. As shown, most interfaces require a
degree of knowledge of SQL, which could lead the user to face difficulties in using these
interfaces. Furthermore, none of the interfaces explains the contents of the database to the
user, so the user can not be sure that the information that he/she needs is in the database.

Table 1. Characteristics of some interfaces for query composition

Interface Domain Method of Explanation Need of Used in
independence | query of the DB SQL complex
composition contents knowledge | DBs
CoBase v Selection x v X
WYSIWYM | x «NL x x v
» Templates
TAICHI v *NL x v X
* Drag &
Drop
MS Access v * Drag & x v v
Drop
* SQL
templates
Proposed v Selection v x v
interface

Unlike the interfaces presented in Table 1, a NLIDB requires the user to formulate a
NL query in order to generate an SQL query. Such task requires a semantic processing
of the NL query. An example of a semantic processing is presented by Agrawal [2] in
2013. Unfortunately, while using a NLIDB, sometimes the user may request infor-
mation that is not stored in the database, this may happen because the user does not
know the database schema; moreover, the user may think that the NLIDB can answer
any questions, which is not so.

! http://products.office.com/en-us/access.

http://products.office.com/en-us/access

Interface for Composing Queries for Complex Databases for Inexperienced Users 63

3 Description of the Query Composition Interface

The proposed interface aims at allowing an inexperienced user to compose SQL queries
through a three-step composition process: selection of the topic of interest, selection of
the elements of interest, and specification of the search conditions.

The graphical interface contains controls that most users are familiar with; there-
fore, the composition of a query does not require the user to receive training to use the
interface, as the experimental results show (Sect. 5).

To this end, the interface uses a classification of tables that belong to the database
and builds a graphic structure (composition tree) to represent the database schema
based on the classification of tables and the relations between them.

In addition, the interface displays descriptions of the tables and columns of the DB
keeping their names hidden, thus the user can get a better idea of what is stored in the
database than by just looking at the names of tables and columns.

In the next subsections the classification of tables and the composition tree are
explained, which are two of the most important aspects of the interface.

3.1 Classification of Tables

The classification of tables allows the interface to group tables of the database
according to their level of relevance to query composition. In addition, the classifi-
cation of tables is used to build the query tree.

Table 2 shows the different types of tables proposed for classification, they are
listed in decreasing order of relevance to query composition.

Table 2. Classification of tables

Type of Description

table

1. Base Main tables that store information that is frequently used for querying the
tables database.

2. Views Virtual tables that are obtained from a Select statement that involves base

tables and are used for providing information that can not be directly

obtained from base tables.

2. Catalogs | Tables that are used mainly for obtaining a NL description for a key or ID.

3. M-to-N Tables that contain foreign keys that belong to other tables (7; and 7)) and are
relations used for implementing M-to-N relations between 7T; and T;.

4. Satellite Tables that are disconnected from the rest of the tables. These tables are used
tables by internal processes of the applications that use the database.

In query composition, base tables have the highest relevance, also views and cat-
alogs are highly likely to be used for composition, while tables that implement M-to-N
relations are only used for the construction of the composition tree; finally, satellite
tables are seldom used for query composition.

64 R.A. Pazos R. et al.

3.2 Composition Tree

The composition tree is the most important component of the interface. It is used by the
user for selecting the columns belonging to the tables of the database that will be used
in query composition.

In the composition tree, a fragment of the DB (tables and columns) is presented
using NL descriptions instead of names. Each table is represented as an expandable
node, while the columns of each table are represented with simple nodes, which can not
be expanded and are the only nodes that can be selected by the user.

The construction of the composition tree is carried out by the interface in the second
step of the query composition process (selection of the elements of interest) from a
table selected by the user in the first step.

Algorithm 1 shows the pseudocode for the construction of the composition tree,
where CT is the composition tree, n is the relation node (of the composition tree) that
represents a table, and R is a set of tables that are related with table 7. The construction
consists of initializing CT by inserting the root table 7, and applying the recursive
function shown at line 1, which requires a table 7 as input. Subsequently, the interface
obtains a set R of related tables of ¢, and for each table r in R its type is evaluated as
follows:

e If the related table is a base table, it applies the recursive function to insert the
columns and relations in the composition tree CT (line 8).

e If the related table is a catalog table, the nodes corresponding to the columns of this
table are inserted into the parent node (line 11).

e If the related table is an M-to-N relation, the table related to this one is obtained
(line 14), and the function to insert related tables is applied (line 15), thus, hiding
the M-to-N relation table.

Algorithm 1. Pseudocode for constructing a composition tree
1: insertRelations(?)

2: p //Parent node of t
3: n + insertRelationNode(C7),,)
4: insertColumnNode(CT,, t)
5: R + getRelatedTables(7)
6: for each » from R do
7: if isBaseTable ()
8: insertRelations(r)
9: endif
10: if isCatalog(r)
11: insertColumnNodes(CT,, r)
12: endif
13: if isMtoN (7)
14: r'+ getRelatedTable(r)
15: insertRelations(r")
16: endif
17: endfor

18: end

Interface for Composing Queries for Complex Databases for Inexperienced Users 65

3.3 Query Composition Process

The query composition process is performed by the user using the interface. This
process consists of three steps: selection of the topic of interest, selection of the
elements of interest, and specification of the search conditions.

In the step of selection of the topic of interest, the interface displays the tables in the
database grouped by the classification shown in Table 2. In this step, the interface starts
displaying the tables commonly used for composition and, at the end, those tables that
are used less frequently.

For example, the classification of tables proposed for the ATIS database is shown in
Table 3, which shows table descriptions in Spanish (along with their translation to
English). In this case, the interface would show first the base tables, then the catalog
tables, next the M-to-N relation tables, and finally the satellite tables.

Table 3. Proposed classification of tables for the ATIS database

Base tables Catalogs Relations M-to-N Satellite tables

Avion (Aircraft)
Aerolinea (Airline)
Aeropuerto (Airport)
Servicios de
aeropuerto
(Airport service)
Ciudad (City)
Clase compuesta
(Compound class)
Tarifa (Fare)
Vuelo de un
aeropuerto a
otro (Flight from an

Clase de servicio
(Class of service)

Servicio de comida

(Food service)

Clase de restriccion
(Class of restriction)

Estado (State)

Zona horaria
(Time zone)

Servicio de transporte
del aeropuerto (Transport
service of the airport)

Vuelo — Tarifa
(Flight — Fare)
Restriccion de
empresa (Airline
restriction)
Segmento de
conexion
(Connection leg)
Empresa doble
(Dual carrier)
Servicio terrestre
(Ground service)
Parada (Stop)

Descripcion de codigo
(Code description)
Dia (Day)
Dias de vuelo
(Flight days)
Nombres de mes
(Month names)
Intervalo de tiempo
(Time interval)

airport to another)
Conexion de vuelo
(Flight connection)

In this step, the selected table will be used to build the composition tree. This table
represents the main topic of which the user is interested in finding information.

After choosing the topic of interest of the query, the user will be directed to the
selection of the elements of interest, where the interface displays the composition tree
and asks the user to select the elements that he/she wants to be displayed as the result of
the query. In this step the interface obtains the information needed to build the Select
clause of the query.

For each element that the user wants to know in the database, he/she must add it to
a list containing the elements of interest. Next, the interface stores a vector of tree
nodes that represents the path from the root of the tree to the selected element. Each
node is represented as a vector with four positions, where the first position stores the
description of the table to which the node belongs, the second stores the description of

66 R.A. Pazos R. et al.

the column representing the node, the third stores the relation between the previous
node and the current node, and the fourth represents the type of table to which the node
belongs. Figure 1 shows how the information concerning the generation of a path is
stored.

—5 0 Vuelo de un aeropuerto a otro
® Namero de vuelo
Hora de salida
@ Fra de Regida Node Path
@ Nimero de escalas .
o Tiempo de viaje 1 | Table description Node 1
@ Cédigo de dase
 Cédigo de vuelo 2 | Column description Node 2
o Empresa dual —
. [[’S"as hé""js S - 3 | Relation (if the node refers to a table or M-to-N relation)
o [Servicio de comida] Descripcidn de comida
® [Servicio de comida] Cédigo de comida table.column (if the node refers to a column or catalog)
@ [Servicio de comida] Nmero de comida
® [Servico de comida] Clase de comida 4 | Type of node (root table, table, column, or catalog)
—> [--®@ Aerolinea (Codigo de aerol;
A o - - o R Node 7

Fig. 1. Generation of the path information for a selected node

Once the user has finished adding items to the list of elements of interest, the
interface will have a set of vectors representing the paths of each element of interest.
This set of paths is stored in a vector with m positions, where m is the total number of
elements added by the user, as shown in Fig. 2.

q Mostrar los siguientes datos: Speciﬁc elements of the tOpiC
NUmero de vuelo I Path 1
Nombre de la aerolinea
[Tipo de avién — | Path 2
Path m

Fig. 2. Information of the paths of the elements of interest

Once the user has defined the elements of interest, if the user wants to obtain a
dataset with specific information, he/she can use the interface to enter the search
conditions to discriminate the data and get a result with specific characteristics. In this
step the interface obtains the information needed to construct the Where clause of the
query.

The information obtained by the interface concerning the search conditions is
shown in Fig. 3. This figure shows that the information of a search condition is
constituted by a column node or catalog, a comparison operator (=, <, >, <=, > =, <>),
the description of the comparison operator, the value of the search condition, and the
path from the root node to the selected node (see Fig. 1). After the user has finished
defining search conditions, the interface will have a list of search conditions.

Interface for Composing Queries for Complex Databases for Inexperienced Users 67

Hora de salida

~lag
Hora de salida después de las 1200 hrs.
p——

Vuelo de un aeropuerto a otro

® Nimero de vuelo

Search conditions

Node:

Vuelo de un aeropuerto a otro
Hora de salida
fight.departure_time
Columna

@ Hora de llegada
@ Nimero de escalas
@ Tiempo de viaje

Comparison operator:
>

Comparison operator description:
después de las

Search condition value:
1200

Path:
flight— flight.departure_time

Fig. 3. Definition of a search condition

Once the three steps of the composition process have been completed, the interface
will be able to generate the SQL expression from the elements of interest and search
conditions already defined. The query is constructed as follows:

e Select clause. From the list of elements of interest, for each element, the last node of
the path (the column selected by the user) is obtained and defined as an element of
the clause.

e Where clause. From the list of search conditions, for each condition specified by the
user, the name of the column, the comparison operator and the value of the con-
dition are taken to build a condition of the clause. Subsequently the joins between
tables are defined from the paths of all the elements of the list of elements of interest
and the paths from the list of search conditions.

4 Composition Example

Considering the classification of tables proposed in Subsect. 3.1, the following types of
queries that the user could compose using the interface were considered:

Queries that involve one base table.

Queries that involve two base tables.

Queries that involve three base tables.

Queries that involve two base tables and one M-to-N table.

To illustrate the composition of a query, consider the next query that involves two base
tables directly connected:

Dame el niimero de vuelo y nombre de aerolinea de los vuelos que salen antes de las 1500 h
(Give me the flight and airline name of the flights departing before 1500 h).

68 R.A. Pazos R. et al.

As mentioned previously, this interface was customized for Spanish; thus, the
relevant information for this example is presented in Spanish along with its translation
to English.

It is worth noting that the user must consider three aspects to compose the query:
the topic on which he/she wishes to obtain information, the specific elements of the
topic that are of interest, and if the query requires the specification of search conditions.

First, the user defines the topic that the query will deal with. In this case, the topic
of interest is Vuelo de un aeropuerto a otro (Flight from an airport to another), which
involves table flight. Later, the elements of interest of the main topic are selected. In the
example a flight number and airline name are required. Therefore, the node Niumero de
vuelo (Flight number) of the root node Vuelo de un aeropuerto a otro (Flight from an
airport to another) is selected. For the second element, the user should extend the node
Aerolinea (Airline) and select the node Nombre de la aerolinea (Airline name).

The sample query requires to obtain information with specific conditions; therefore,
the search conditions are defined. For this example, it is required that the flight departs
before 1500 h, then, the node Hora de salida (Departure time) is selected from the
node Vuelo de un aeropuerto a otro (Flight from an airport to another). For the
selected node, it is necessary to specify the description of the comparison operator
antes de las (before) and the value 1500 without the measurement unit (hrs). Finally,
the interface will display the SQL query and its result as a table whose columns are
Numero de vuelo (flight number) and Nombre de aerolinea (Airline name).

5 Experimental Results

The experiments performed on the composition interface aim at measuring the ease of
use in conjunction with its functionality. This is done in order to determine if the
interface is friendly and functional enough to compose the queries mentioned in Sect. 4
to a complex database. For this purpose, the following parameters are measured:

e Amount of time that a user spends in composing a query.
e Number of attempts by a user to compose a query correctly.

Considering the abovementioned parameters, information can be obtained on the dif-
ficulty involved in composing a query for a specific type of query.

5.1 Description of the Experimental Setting

The experiments were conducted in a one-hour session with 17 students majoring in
engineering in computer science. They were provided a user manual with one day in
advance that details how the composition interface is used. The users were given a set
of 20 natural language queries related to the ATIS database sorted by level of difficulty,
which are separated in groups of five queries, ordered as follows:

e Queries from 1 to 5. Queries that involve one base table.
e Queries from 6 to 10. Queries that involve two base tables.
e Queries from 11 to 15. Queries that involve three base tables.

Interface for Composing Queries for Complex Databases for Inexperienced Users 69
e Queries from 16 to 20. Queries that involve two base tables and one M-to-N relation
table.

It is worth mentioning that the students were never provided with a diagram of the
database schema nor the correct SQL statement for each query; moreover, some of
them were not familiar with the domain of the database.

5.2 Results

The experimental results are shown in Table 4. These results were obtained from 20
queries composed by 17 users, discarding the attempts of queries that were not com-
posed correctly.

Table 4. Experimental results for each query

Query Attempts Times No. of
No. Minimum | Maximum | Average | Minimum | Maximum | Average | correct B
(sec.) (sec.) (min.) €ompositions
1 1 10 2.35 42 609 2.78 17
2 1 6 1.47 43 343 1.55 17
3 1 3 1.25 27 303 1.49 16
4 1 2 1.12 31 73 0.76 17
5 1 7 1.59 28 285 1.17 17
6 1 2 1.06 24 105 0.71 17
7 1 1 1.00 20 85 0.59 16
8 1 5 2.00 24 280 1.36 17
9 1 1 1.00 27 57 0.59 17
10 1 6 2.15 41 514 2.55 13
11 1 1 1.00 34 97 0.83 17
12 1 2 1.06 39 123 0.98 16
13 1 2 1.06 46 182 1.23 16
14 1 4 1.24 24 185 0.91 17
15 1 4 1.18 55 257 1.63 17
16 1 1 1.00 19 75 0.49 17
17 1 2 1.06 31 99 0.82 17
18 1 2 1.24 26 110 0.84 17
19 1 3 1.25 25 237 1.30 16
20 1 8 4.64 90 970 6.93 11
Average 1.48 1.47

The meaning of the columns of Table 4 is explained next. The first column indi-
cates the number of query, the second column indicates the minimum number of
attempts it took to compose the query, the third column indicates the maximum number
of attempts, the fourth column shows the average number of attempts. The fifth column
indicates the minimum time in seconds that was spent in composing the query, the sixth
column indicates the maximum time, the seventh column shows the average time in

70 R.A. Pazos R. et al.

8.00

X
=)
o

o
o
o

Paly
=3
(=]

EAttempts

mTime

Attempts & time
w ~
(=4 o
o o

g
1=
o

—-
=]
S

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Queries

e
o

0

Fig. 4. Average attempts for each query

minutes; finally, the eighth column shows the number of users that were able to
correctly compose the query.

As shown in the plot of Fig. 4, most of the queries could be answered by the users
in one or two attempts in less than 2 min. However, for query number 1 a higher
average of attempts and time occurs. This is so because it is the first query that the users
must compose and they face the learning process of the operation of the interface.
Later, the attempts and the average time were declining because users got used to the
operation of the interface. It is important to remark that by the fourth query, the users
have already learned to operate the interface.

The queries from number 4 to 19 were composed by most users in the first attempt,
except for queries 8 and 10, and the average time for this set of queries was 55 s.

Query number 10 (Dame los codigos de clase de tarifa y tipos de tarifa de tem-
porada de la clase de servicio con rango 12 — Give me the codes of fare class and the
types of season fare of the service class with rank 12) required a larger number of
attempts because the query requires that the user has more knowledge about the topic at
hand.

Additionally, query number 20 has a high number of attempts because it involves a
large number of tables (three base tables and one M-to-N relation table), and the
required information by the query needs to be searched in the deepest levels of the
composition tree.

In summary, the experiments indicate that users can compose a query of any type in
about one minute with an average of approximately 1.5 attempts.

Some comments left by the users about the interface were the following: “At first, it
was hard to understand how to use it. However, it became easier to use it by just using
it”. “It works just fine for me”. “As you use it, it becomes easier to get the queries
right”. As noted, the comments about the interface were mostly positive and some of
them confirm the conclusions drawn from the experimental results.

Interface for Composing Queries for Complex Databases for Inexperienced Users 71

6 Conclusions

The experiments carried out on the composition interface show that users require to use
the query composition interface a small number of times (about three) to learn how to
compose queries quickly and efficiently. This is so because the interface is intuitive
enough for users that do not know the schema and domain of the DB so as to allow
composing queries in about one minute.

Note that a third party designed the natural language queries used in these exper-
iments. Therefore, the interface will perform better when a user devises his/her own
queries, because the user knows specifically what information he/she needs from
the DB.

Table 4 shows that the average number of attempts is 1 to 2 per query and that a
user takes an average of 1.47 min per query, indicating that the interface allows users to
compose queries properly in a reasonable time.

One of the main aspects that enable the good performance of the interface is the use
of the composition tree. This mechanism allows displaying a fragment of the database
schema (specifically, the fragment of interest for each particular query), so the users can
make use of several tables at once without this being a problem to compose queries.
Therefore, the number of tables involved in a query does not greatly increase the
difficulty of the composition of a query when using the composition tree.

In summary, the proposed interface has proven useful for the composition of
queries that include three different types of tables. This is because the interface allows
the user to view a section of the database schema through the composition tree, which
provides information about each element of the database schema using natural lan-
guage descriptions that are easy to understand.

The results in Table 4 show that from a total of 20 queries, 13 could be correctly
composed by all of the 17 users. In addition, another 5 queries were composed cor-
rectly by 16 users, leaving 2 queries with 13 and 11 correct compositions respectively.
This shows that most of the queries could be composed correctly by the users.
Additionally, the low number of correct compositions for queries number 10 and
number 20 was due to the lack of knowledge about the domain of the database by the
users.

It is important to point out that 11 out of 17 users composed correctly all the queries
showing that the interface can be used for composing queries by most of the users. This
is remarkable considering that neither a diagram of the database schema nor the correct
SQL statements were provided to the users involved in these experiments.

References

1. Chai, J., Pan, S., Zhou, M.: MIND: a context-based multimodal interpretation framework in
conversational systems. In: Van Kuppevelt, J.C.J., Dybkjer, L., Bernsen, N.O. (eds.)
Advances in Natural Multimodal Dialogue Systems Text, Speech and Language Technology,
vol. 30, pp. 265-285. Springer, Netherlands (2005)

72

R.A. Pazos R. et al.

. Agrawal, A., Kakde, O.: Semantic analysis of natural language queries using domain ontology

for information access from database. Int. J. Intell. Syst. Appl. 5, 81-90 (2013)

. Pazos, R., Aguirre, M., Gonzalez, J., Carpio, J.: Features and pitfalls that users should seek in

natural language interfaces to databases. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk,
J. (eds.) Studies in Computational Intelligence, vol. 547, pp. 617-630. Springer, Heidelberg
(2014)

. Pazos, R., Gonzalez, J., Aguirre, M.: Semantic model for improving the performance of

natural language interfaces to databases. In: Batyrshin, 1., Sidorov, G. (eds.) MICAI 2011.
LNCS, vol. 7094, pp. 227-290. Springer, Heidelberg (2011)

. Zhang, G., Chu, W., Meng, F., Kong, G.: Query formulation from high-level concepts for

relational databases. In: User Interfaces to Data Intensive Systems, pp. 64—74. IEEE Computer
Society, Los Alamitos, CA (1999)

. Hallet, C., Scott, D., Power, R.: Composing questions through conceptual authoring. Com-

putational linguistics 33(1), 105-133 (2007)

. Pan, S., Zhou, M., Houck, K., Kissa, P.: Natural language aided visual query building for

complex data access. In: 22nd Innovative Applications of Artificial Intelligence Conference
(IAAI-10), pp. 1821-1826. Association for the Advancement of Artificial Intelligence, Palo
Alto, CA (2010)

	Interface for Composing Queries for Complex Databases for Inexperienced Users
	Abstract
	1 Introduction
	2 Related Work
	3 Description of the Query Composition Interface
	3.1 Classification of Tables
	3.2 Composition Tree
	3.3 Query Composition Process

	4 Composition Example
	5 Experimental Results
	5.1 Description of the Experimental Setting
	5.2 Results

	6 Conclusions
	References

