
Performance Evaluation of Ant Colony Systems
for the Single-Depot Multiple Traveling

Salesman Problem

Raluca Necula1(B), Mihaela Breaban1, and Madalina Raschip2

1 Alexandru Ioan Cuza University, Iasi, Romania
{raluca.necula,pmihaela}@info.uaic.ro

2 University of Neuchatel, Neuchatel, Switzerland
{madalina.raschip}@unine.ch

Abstract. Derived from the well-known Traveling Salesman problem
(TSP), the multiple-Traveling Salesman problem (multiple-TSP) with
single depot is a straightforward generalization: several salesmen located
in a given city (the depot) need to visit a set of interconnected cities,
such that each city is visited exactly once (by a single salesman) while the
total cost of their tours is minimized. Designed for shortest path prob-
lems and with proven efficiency for TSP, Ant Colony Systems (ACS) are
a natural choice for multiple-TSP as well. Although several variations of
ant algorithms for multiple-TSP are reported in the literature, there is
no clear evidence on their comparative performance. The contribution of
this paper is twofold: it provides a benchmark for single-depot-multiple-
TSP with reported optima and performs a thorough experimental eval-
uation of several variations of the ACS on this problem.

Keywords: Multiple-TSP · Ant colony optimization · Clustering

1 Introduction

The traveling salesman problem (TSP) is one of the most famous combinator-
ial optimization problems. The multiple traveling salesman problem (multiple-
TSP) is an extension of this well-known problem that involves further a new
parameter - the number of salesmen. It can accommodate easily related real-
world problems, especially routing and scheduling problems. The problem is
NP-hard and is difficult to solve. One solution is to transform the problem, with
m salesmen and n cities, into a TSP with n + m − 1 cities by adding m − 1
artificial depots n+1, ..., n+m− 1. The resulting TSP is highly degenerate and
more difficult to solve than an ordinary TSP with the same number of cities.

There are various approaches in literature to solve variants of the multiple-
TSP. A detailed overview of the problem’s variants and methods used for solv-
ing them is available in [1]. Exact algorithms, like cutting planes [2] or branch
and bound [3] were developed, but they can obtain optimal solutions only for
small size instances in acceptable time. Due to the combinatorial complexity
c© Springer International Publishing Switzerland 2015
E. Onieva et al. (Eds.): HAIS 2015, LNAI 9121, pp. 257–268, 2015.
DOI: 10.1007/978-3-319-19644-2 22

258 R. Necula et al.

of the problem, heuristics to solve real-world instances were also employed. For
large dimensions of the problem, heuristic approaches like k-opt approach [4], or
metaheuristics like Tabu Search [5], Genetic Algorithms [6–9], Ant Colony Opti-
mization [10], Neural Networks [11] are necessary to solve it. In [12] two new
swarm intelligence based metaheuristics, artificial bee colony and invasive weed
optimization, are proposed for solving the single depot multiple-TSP. Another
approach, relying on a market-based solution, is employed in [13] for a multiple-
TSP with multiple depots, where agents and tasks operate in a market to achieve
near-optimal solutions.

With a proven efficiency on the standard TSP, ant algorithms were also
adapted for the multiple-TSP. In [14] the ant colony optimization is used to
solve the multiple-TSP with the ability constraint. The problem imposes that
the number of cities which are traveled by each salesman to be upper bounded
by a value. The problem was converted to TSP. In [10] two objectives were con-
sidered: minimizing the total tour length of all the salesmen and minimizing the
maximum tour length of each salesman. The ACO algorithm follows the MAX-
MIN Ant System scheme and integrates a local improvement procedure. In [15]
is presented an algorithm based on multiple artificial ant colonies, that cooper-
ate by means of frequent pheromone exchanges in order to find a competitive
solution to the multiple-TSP. A multi-depot variant of multiple-TSP is consid-
ered in [16], where lower and upper bounds are imposed on the number of cities
visited in a tour and the objective is to minimize the total distance traveled by
all the salesmen.

Another criterion, much less addressed, but important in real-world appli-
cations is the balancing of workloads amongst salesmen. Such a criterion is
addressed in [17], where a team of ants construct in parallel solutions to the
multiple-TSP with MinMax objective. In order to achieve balanced tours, the
moving member of a team is chosen as being the one with the minimum route
length. In [18], the authors present a comparison of evolutionary computation
algorithms and paradigms for the euclidean multiple traveling salesman problem.
The authors are concerned with the first level of optimization, the optimal sub-
division of cities into groups. To this end, the chromosome representation makes
use of the neighborhood attractor schema which is a variation of k-means. The
shrink-wrap algorithm is used to determine the circuit path lengths. Another
clustering approach to solve the multiple-TSP is proposed in [19]. The cluster-
ing algorithm minimizes the variation of distances traveled within each cluster.
A good balance of workloads among clusters is achieved.

The current paper aims at proposing and evaluating several variations of
the Ant Colony System (ACS) for the single-depot multiple-TSP. The paper
is structured as follows. Section 2 defines the problem as an integer linear pro-
gram (ILP) that can be solved to optimality with dedicated software. Section 3
reviews the standard formulation of the Ant Colony System. A number of 5 vari-
ants of the standard ACS adapted for the single-depot multiple-TSP problem
are subsequently described in Sect. 4. Experiments and results are presented in
Sect. 5.

Performance Evaluation of ACS for the Single-Depot Multiple TSP 259

2 The Single-Depot Multiple Traveling
Salesman Problem

There are several integer linear programming formulations for the multiple-TSP.
We have used the variant that restricts the minimal number of nodes that a
salesman may visit [20]. Such restrictions appear in real-life applications where
the purpose is to have a good balance of workloads for the salesmen.

Let G = (V,A) be a directed graph where V is the set of nodes and A is
the set of arcs and C = (cij) is the cost (distance) matrix associated with each
arc (i, j) ∈ A. Let n be the number of cities and m be the number of salesmen.
All salesmen are located at the depot city 1. They start and end at the same
depot, and each other node is located in only one tour. The number of nodes a
salesman can visit lies within a predetermined interval. The problem is to find
the tours of each salesman such that the previous restrictions are satisfied and
the overall cost of visiting all nodes is minimized.

The problem is formulated as the following:

min
∑

(i,j)∈A

cijxij (1)

s.t.
∑

j=2

x1j = m (2)

∑

j=2

xj1 = m (3)

n∑

i=1

xij = 1, j = 2, .., n (4)

n∑

j=1

xij = 1, i = 2, .., n (5)

ui + (L − 2)x1i − xi1 ≤ L − 1, i = 2, .., n (6)
ui + x1i + (2 − K)xi1 ≥ 2, i = 2, .., n (7)
x1i + xi1 ≤ 1, i = 2, .., n (8)
ui − uj + Lxij + (L − 2)xji ≤ L − 1, 2 ≤ i �= j ≤ n (9)
xij ∈ {0, 1}, ∀(i, j) ∈ A. (10)

where xij is a binary variable that is equal to 1 if the arc (i, j) is contained in
the optimal solution and 0 otherwise. ui denotes the number of nodes visited on
that salesman’s path from the origin to node i, for any salesman, i.e. the position
of node i in a tour. L is the maximum number of nodes a salesman may visit,
and K the minimum number of nodes a salesman must visit.

Constraints (2) and (3) ensure that exactly m salesmen depart from and
return to the depot. Constraints (4) and (5) are the degree constraints, i.e.
exactly one tour enters and exits each node. Constraints (6) and (7) are bounding
constraints, their corresponding inequalities serve as upper and lower bound
constraints on the number of nodes visited by each salesman. Inequality (8)

260 R. Necula et al.

forbids a vehicle from visiting only a single node. The inequalities from (9) ensure
that uj = ui + 1 if and only if xij = 1. Constraints (9) are the classical subtour
elimination constraints that prevent the formation of any subtour between nodes
in V \ {1}. The formulation is valid if 2 ≤ K ≤ �(n − 1)/m� and L ≥ K.
Constraint (8) becomes redundant when K ≥ 4.

3 The Ant Colony System

The fundamental idea of the ant colony algorithms is inspired by the way the
natural ants succeed in finding food. The ants communicate via the pheromone
trails in order to find the shortest paths from the nest to the food sources.

The algorithms investigated in this paper are based on the original version of
the Ant Colony System designed by Dorigo and Gambardella for the Traveling
Salesman problem [21]. In this section we review the main steps of the standard
algorithm for solving TSP, leaving the presentation of its variations for multiple-
TSP for the next section.

3.1 Route Selection

Each ant builds a route by iteratively selecting a node it has not visited yet. At
each step in this process, the nodes not selected yet form the candidate set. The
node to be added to the current route is chosen relative to the current position
of the ant, in a probabilistic manner, from the candidate set. The probability
assigned to a node s in the candidate set C, considering that node r is the current
position of the ant, is computed with Eq. (11):

p(r, s) =
τ(r, s) · ηβ(r, s)∑

u∈C τ(r, u) · ηβ(r, u)
(11)

where τ is the pheromone, η is the inverse of the cost measure (distance) δ(r, s),
and β is a parameter that specifies the relative importance of pheromone vs.
distance. The product τ(r, s) · ηβ(r, s) can be viewed as the fitness of node s,
while the probabilistic selection based on the probabilities defined in Eq. (11)
corresponds to the roulette wheel selection in genetic algorithms. The selection
of the next node for tour construction in ACS can be synthesised by the following
equation:

s =
{

arg maxs∈C τ(r, s) · ηβ(r, s), if rand(0, 1) < q0
S, otherwise

where q0 is a parameter and S is a random variable with the probability distri-
bution given by Eq. (11).

3.2 Local Pheromone Update

Each time an ant builds a route, it changes the pheromone level on each edge it
traverses. The pheromone of each edge traversed is updated by Eq. (12):

τ(r, s) = (1 − ρ) · τ(r, s) + ρ · Δτ(r, s) (12)

Performance Evaluation of ACS for the Single-Depot Multiple TSP 261

where ρ ∈ (0, 1) is a local pheromone decay parameter. The purpose of the local
pheromone update is to ensure that the same links are not included again and
again forming very similar tours.

3.3 Global Pheromone Update

Usually, ants search for food in a neighborhood of the best tour. In order to
make the search more directed, after all ants have completed their tours, the
globally updating phase of the pheromone follows. Only the edges included in
the best global solution receive pheromone in this phase. The pheromone level
is updated by applying the following rule:

τ(r, s) = (1 − α) · τ(r, s) + α · Δτ(r, s) (13)

where

Δτ(r, s) =
{

(Lgb)−1, if (r, s) ∈ global-best-tour
0, otherwise

where α ∈ (0, 1) is the pheromone decay parameter and Lgb is the length of the
globally best tour encountered. By this rule, only the edges that belong to the
globally best tour receive reinforcement.

4 Algorithms Investigated for Multiple-TSP

4.1 Problem Decomposition with k-Means Followed by ACS
for TSP (kM-ACS)

One possible approach to tackle the multiple-TSP problem is to decompose the
problem instance into a number of small subproblems equal to the number of
salesmen; subsequently, each subproblem can be solved by the standard ACS
resulting in one (near)optimal subtour for the corresponding salesman. The prob-
lem decomposition can be performed by means of clustering algorithms, with the
aim to group closely interconnected cities. Among the popular clustering algo-
rithms, k-Means seems to be the most appropriate choice due to its reduced time
and space complexity and, more important, due to the fact that it is known to
generate groups of equal volumes. The latter characteristic is desirable for the
multiple-TSP problem, where we aim to obtain balanced subtours.

To split one single-depot multiple-TSP instance into several TSP instances,
we need to adapt the k-Means algorithm. Our problem formulation necessitates
that the depot should be included in each of the TSP subproblems generated.
Since k-Means is a crisp-clustering algorithm, when applied the multiple-TSP
instance, it will generate disjoint sets of cities. To obtain an optimal clustering of
the cities where all groups share the depot city, the assignment step is changed in
k-Means: at every iteration in k-Means, all the cities are assigned to the cluster
based on their distances to the centroids, with the exception of the depot which
is assigned to every cluster; thus, all the centroids will be biased towards the

262 R. Necula et al.

location of the depot. This modification discourages the clustering algorithm
from forming isolated groups, at far distances from the depot. After the cities
are clustered into m groups (where m is the number of salesmen), m independent
runs of the ACS are performed, one for each group; in this step, m smaller TSP
instances are practically solved. The final solution for the multiple-TSP problem
is obtained by aggregating the solutions obtained in the ACS runs, as subtours
to be assigned to the m salesmen. This version of the algorithm is denoted in
the experimental section by kM − ACS.

4.2 ACS with Global-Solution Pheromone Update (g-ACS)

Several salesmen can compete towards building the subtours in one run of the
ACS, idea found also in [14]. In such an approach, for a problem instance with m
salesmen, m salesmen are placed at the depot location - each ant corresponding
to a team of m salesmen. At each step, one salesman is chosen at random (selec-
tion with replacement). The selected salesman chooses the next city in its subtour
in agreement with the route selection mechanism in ACS, detailed in Sect. 3.1;
the candidate set of nodes consists of the nodes that are not selected in any of
the m subtours under construction. This process is repeated until a complete
solution is obtained (when the candidate set of nodes is empty). Each traversed
edge receives the quantity of pheromone computed with Eq. (12), regardless of
which salesman traverses it.

At each iteration of the algorithm, several groups of salesmen, each of size
m, build complete solutions as explained above. From these solutions, the one
with the smallest cost - measured as the sum of the costs of the m subtours - is
considered to be the global best at the given iteration. The best-so-far solution
(global best - the best solution encountered during the run) is updated if neces-
sary. Then, the edges encountered in the subtours of the global best solution are
updated with Eq. (13), where Lgb is the total cost of the global solution. This
version of the ACS algorithm is denoted in the experimental section as g−ACS.

4.3 ACS with Subtour Pheromone Update (s-ACS)

Another version we propose, denoted as s − ACS, is a small variation of the
previous algorithm. The difference between the two consists only in the third
phase of the ACS algorithm - the global pheromone update. s − ACS does not
use the same pheromone quantity on each edge, but differentiates the edges based
on the subtour to which they are assigned. Thus, we refine/update Eq. (13) by
including subtour information as follows:

τ(r, s) = (1 − α) · τ(r, s) + α · Δτ(r, s) (14)

where

Δτ(r, s) =
{

(Lk)−1, if (r, s) ∈ subtour k in global-best-tour
0, otherwise

Performance Evaluation of ACS for the Single-Depot Multiple TSP 263

According to the new equation, each edge included in the best solution
encountered so far (the global best solution) receives a quantity of pheromone
inverse proportional with the cost of the subtour to which it belongs.

4.4 ACS with Global-Solution Pheromone Update and Bounded
Tours (gb-ACS)

Another variation we propose, is to enforce within the g − ACS algorithm the
bounds imposed by the problem with regard to the number of cities to be
included in each subtour. Although in the phase of solution construction, the
salesman designated to add one more city to its subtour is uniformly drawn
at random (i.e. each salesman has the same probability), experimental studies
showed that the solution built is sometimes highly unbalanced with regard to
the number of cities included in the subtours. This is justified, since the law of
large numbers from statistics is not applicable to the size of the problems we deal
with. The bounds on the size of each subtour are imposed by changing the way
salesmen are selected when constructing the solution. Here, we use a selection
strategy without replacement: in a first step, the lower bound K on the number
of cities to be included in each subtour is guaranteed by sampling at random
from a population of size K · m without replacement, consisting of K instances
of each of the m salesmen. When this sampling procedure ends (all instances
are used during solution construction), all m subtours consist of the minimum
number of cities allowed. A similar salesman selection scheme begins (without
replacement) with a population of size (L−K)·m (L−K instances of each of the
m salesmen) to guarantee that the maximum bound imposed on the size of each
subtour is not exceeded. This sampling phase ends when a complete solution
is built. This variant of the g − ACS algorithm where bounds are enforced, is
called gb-ACS.

4.5 ACS with Subtour Pheromone Update and Bounded Tours
(sb-ACS)

The bounds on the size of the subtours are imposed in the same manner in
the ACS algorithm with pheromone updates based on the cost of the subtours
(s − ACS). This leads to new variant denoted as sb − ACS.

5 Experiments

5.1 Problem Instances

Although multiple-TSP is, by its formulation, only one step away from the stan-
dard TSP problem which provides very popular benchmarks such as TSPLIB1,
there is no freely available benchmark for multiple-TSP at this moment to test
1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

264 R. Necula et al.

the performance of various heuristics. To fill this gap, we formulate several prob-
lem instances for multiple-TSP and provide exact solutions by solving them in
CPLEX2. The problem instances we propose are based on the TSPLIB bench-
mark. Specifically, we extracted from TSPLIB four instances of various size and
distribution and we transformed them in multiple-TSP instances by setting the
number of salesmen to be, by turn, 2, 3, 5 and 7. The selected TSPLIB instances
were chosen so that to reflect different distributions of cities and different posi-
tions of the depot city. These settings generate from each TSPLIB instance, 4
multiple-TSP instances. The depot, for each instance, is considered to be the first
city in the file. The problem instances along with the distribution of cities and
position of depot city, the optimal solutions and their visualisations are publicly
available as multiple-TSPLIB.3

As stated in Sect. 2, we impose bounds on the number of cities each sales-
man needs to visit. If considered as a problem with a single objective - that of
minimising the total cost of visiting all the cities - and no bounds are imposed
on the number of cities to be visited by each salesman, the multiple-TSP with
single depot is an ill-posed problem: the optimal solution is obtained when one
salesman visits all the cities while the rest do not have assigned any work. This
is obvious by comparing the total costs obtained on the same TSPLIB instance
with different numbers of salesmen: when increasing the number of salesmen,
the total cost increases.

The use of several salesmen in practice for single-depot-multiple-TSP does
not aim to obtain better costs compared to the case when a single salesman is
used, but aims at shortening the time needed to serve all the clients or is triggered
by the limited capacity of each agent - problem closely related to the Capaci-
tated Vehicle Routing. From the first point of view, single-depot-multiple-TSP
is inherently a bi-objective optimization problem: the total cost should be min-
imized while maintaining the subtours as balanced as possible; the bi-objective
formulation will be the scope of our future studies. In fact, imposing bounds on
the number of cities visited by each salesman, increases significantly the com-
plexity of the multiple-TSP problem being solved. Obtaining with CPLEX the
optimal solution for MTSPLIB instances, when no bounding constraints were
considered, lasted at most 17 min. This is a major difference compared with
the time required by CPLEX to solve MTSPLIB instances when these bound-
ing constraints are included; the reported solution for the rat99-m7 problem
instance was obtained with CPLEX after 14 h. All the runs were performed on a
PC with 8 GB RAM, processor Intel Core i5-4590S 3.00 GHz using 4 processing
units (multi-threaded implementation of CPLEX). In comparison, one run of
any ACS variant described in this paper required on average 1 s and 11 ms in a
single-threaded implementation.

With the aim of obtaining balanced solutions, we chose to set the bounds
(L and K) on the number of cities to be included in each subtour, by running

2 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.
3 The address where it can be visualized the multiple-TSP instances is www.infoiasi.

ro/∼mtsplib.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
www.infoiasi.ro/~mtsplib
www.infoiasi.ro/~mtsplib

Performance Evaluation of ACS for the Single-Depot Multiple TSP 265

30 times k-Means clustering algorithm, on the same problem instance to split
the cities in m groups; the partition with the lowest sum of the within-cluster
variances was used to set K equal to the size of the smallest cluster and L equal
to the size of the largest cluster.

5.2 Parameters Setup

The standard ACS algorithm introduces some numerical parameters which, usu-
ally, are empirically optimized. As suggested in [21], we set q0 = 0.9, α = 0.1,
ρ = 0.1, β = 2.0 in all tested algorithms. The number of ants in kM −ACS was
set to 10 for each TSP subproblem (corresponding to each of the m clusters),
corresponding to a total of 10 · m ants used to solve each of the multiple-TSP
problem instances. The number of ants used in all the other versions is also set
to 10 · m in the following way: at each iteration of these algorithms 10 groups
of ants, each of size m, build in parallel, independently, 10 complete candidate
solutions. Each algorithm is ran for 1 400 iterations for the problem instances
with 51 and 52 cities, 1 800 iterations for eil76 problem instances and 2 200
iterations for rat99 problem instances.

5.3 Results

We provide results for each investigated algorithm regarding both the total cost
of the solutions and the balancing degree of the subtours. For all algorithms, we
report the average cost of the solutions over 50 runs.

In order to evaluate the balancing degree, for each solution returned at the
end of a run we compute the amplitude of the costs of its subtours as the differ-
ence between the cost of the longest subtour and the cost of the shortest subtour
of the solution. We report the average amplitude over 50 runs for each algorithm.
Please note that the amplitude is computed taking into account subtour costs
and not subtour cardinalities (the number of cities in each subtour), because the
two criteria are not equivalent.

Figure 1 illustrates the evolution of the best cost (best solution) during the
run of the algorithms for the eil76-m5 problem; the curves are obtained as aver-
ages over 10 runs for each algorithm. As anticipated, kM-ACS shows the highest
convergence rate, because it solves in parallel several smaller and simpler prob-
lems. However, the performance with regard to the best solution it can achieve
is limited, because of the problem decomposition scheme which imposes rigid
boundaries on the candidate solution space; in this regard, the non-deterministic
character of k-Means introduced by random initializations is an advantage. The
best performance on this problem instance is recorded by gb-ACS - the bounded
version of g-ACS which uses the cost of the global solution (and not of the
individual subtours) for pheromone update.

Table 1 report the costs of the optimal solutions and their corresponding
amplitudes, as obtained with CPLEX, and the performance of all the ACS vari-
ants we propose - as averages over 50 runs. For each problem instance and ACS
variant, along with the average cost we also report the standard error of the

266 R. Necula et al.

 720

 740

 760

 780

 800

 820

 840

 860

 880

 0 200 400 600 800 1000 1200 1400 1600 1800

co
st

iterations

kM-ACS
g-ACS
s-ACS

gb-ACS
sb-ACS

Fig. 1. Evolution of the cost of the best solution during the run of the algorithms for
eil76-m5, averaged over 10 runs.

mean multiplied with the 0.975 quantile of the Student’s t distribution (used
to compute confidence intervals). Where CPLEX was stopped before finding the
optimal solution, both the upper (corresponding to the best known solution) and
the lower bound on the cost are given; the amplitude in this case is computed
on the best known solution. In each table, the best value from a row was high-
lighted with boldface. Similar graphics for berlin52, eil76 and rat99 instances
can be found at this address4. They weren’t included here due to page limits.

Table 1. The performance of the ACS variants for the eil51 instance

m measure optimum kM-ACS g-ACS s-ACS gb-ACS sb-ACS

2 cost 442.32 454.30± 0.84 452.66± 1.77 454.96 ± 2.04 452.22 ± 1.48 453.81 ± 1.63

amplitude 14.18 57.69 72.29 47.54 30.42 28.79

3 cost 464.11 500.00 ± 0.24 485.73 ± 3.44 489.64 ± 3.59 479.51 ± 3.37 483.39 ± 3.75

amplitude 41.78 25.97 98.47 98.68 49.41 47.51

5 cost [519.10, 529.70] 563.58 ± 0.52 582.36 ± 3.58 590.63 ± 4.64 585.76 ± 4.34 598.61 ±5.16

amplitude 62.19 114.35 104.65 99.11 58.09 57.45

7 cost [584.02, 605.21] 634.47 ± 0.04 674.78 ± 4.32 680.38 ± 3.84 688.26 ± 3.57 699.47 ± 4.34

amplitude 86.17 77.44 100.19 62.13 70.01 68.27

Figure 2 illustrate, for eil51 problem, the distribution of the costs and the
amplitudes of subtour costs for the solutions obtained in 50 runs of each algo-
rithm. On each chart corresponding to a TSP instance, 4 groups are emphasized,
corresponding to the 4 distinct settings of the number of salesmen (2, 3, 5 and 7).
The increase in the total cost with the increase of parameter m is evident. For
each of the four groups in each chart, we have 6 sets of solutions: correspond-
ing to the best known solution - obtained with CPLEX (this behaves as lower
bound for the ACS-based algorithms), to kM − ACS, to the two versions of
ACS adapted for multiple-TSP that do not enforce bounds on the size of the
subtours and the two ACS versions with bounds. Similar figures along with the
4 www.infoiasi.ro/∼mtsplib.

www.infoiasi.ro/~mtsplib

Performance Evaluation of ACS for the Single-Depot Multiple TSP 267

representation of the confidence intervals for the mean of the costs can be found
at this address5. They weren’t included here due to page limits.

Evident in the boxplots but also from the size of the confidence intervals, kM-
ACS is the most stable algorithm. With a quick convergence, this algorithm even
achieves on some problem instances (eil51-m5, eil76-m7, rat99-5, rat99-7) the
best cost (proven by statistical tests on the means). It seems that this algorithm
is a good choice for very large instances, with high number of cities and many
salesmen. Among the two bounded variants - gb−ACS and sb−ACS - gb−ACS
converges more quickly, achieving at the same time better solutions. Comparing
the two unbounded variants - g − ACS and s − ACS - the same conclusion can
be drawn: the version laying equal pheromone quantities on the edges of the best
solutions (irrespective of the cost of the subtour) achieves better costs. However,
g − ACS returns solutions which are highly unbalanced compared to s − ACS
and this is a real concern for its applicability in practice.

op
t

kM
−A

C
S

g−
AC

S
s−

AC
S

gb
−A

C
S

sb
−A

C
S

op
t

kM
−A

C
S

g−
AC

S
s−

AC
S

gb
−A

C
S

sb
−A

C
S

op
t

kM
−A

C
S

g−
AC

S
s−

AC
S

gb
−A

C
S

sb
−A

C
S

op
t

kM
−A

C
S

g−
AC

S
s−

AC
S

gb
−A

C
S

sb
−A

C
S

450

500

550

600

650

700

750
op

t
kM

−A
C

S
g−

AC
S

s−
AC

S
gb

−A
C

S
sb

−A
C

S

op
t

kM
−A

C
S

g−
AC

S
s−

AC
S

gb
−A

C
S

sb
−A

C
S

op
t

kM
−A

C
S

g−
AC

S
s−

AC
S

gb
−A

C
S

sb
−A

C
S

op
t

kM
−A

C
S

g−
AC

S
s−

AC
S

gb
−A

C
S

sb
−A

C
S

0

50

100

150

200

Fig. 2. Results obtained in 50 runs for eil51: (a) total cost, (b) amplitude of the costs
of subtours; the groups correspond to different settings for m: 2, 3, 5, 7

6 Conclusions

Inspired by the ant colonies behavior in nature, the Ant Colony System proved
to be an efficient approach for searching for an optimal path in a graph. As
shown in our study, this meta-heuristic can be easily adapted for the multiple
traveling salesman problem. For real world, large instances of multiple-TSP,
which become untractable with exact deterministic algorithms, the ant colony
system is a viable solution. Future work will be conducted towards studying the
bi-objective formulation of multiple-TSP, by means of ACSs.

References

1. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3), 209–219 (2006)

5 www.infoiasi.ro/∼mtsplib.

www.infoiasi.ro/~mtsplib

268 R. Necula et al.

2. Laporte, G.G., Nobert, Y.A.: Cutting planes algorithm for the m-salesmen prob-
lem. J. Oper. Res. Soc. 31, 1017–1023 (1980)

3. Ali, A., Kennington, J.L.: Exact solution of multiple traveling salesman problems.
Discrete Appl. Math. 13, 259–276 (1986)

4. Russell, R.A.: An effective heuristic for the m-tour traveling salesman problem
with some side conditions. Oper. Res. 25(3), 517–524 (1977)

5. Ryan, J.L., Bailey, T.G., Moore, J.T., Carlton, W.B.: Reactive Tabu search in
unmanned aerial reconnaissance simulations. In: WSC 1998, pp. 873–880 (1998)

6. Yuan, S., Skinner, B., Huang, S., Liu, D.: A new crossover approach for solving the
multiple travelling salesmen problem using genetic algorithms. EJOR 228, 72–82
(2013)

7. Singh, A., Baghel, A.S.: A new grouping genetic algorithm approach to the multiple
traveling salesperson problem. Soft Comput. 13(1), 95–101 (2009)

8. Li, J., Sun, Q., Zhou, MC., Dai, X.: A new multiple traveling salesman problem
and its genetic algorithm-based solution. In: SMC 2013, pp. 627–632 (2013)

9. Andrade, C.E., Miyazawa, F.K., Resende, M.G.C.: Evolutionary algorithm for the
k-interconnected multi-depot multi-traveling salesmen problem. In: GECCO 2013,
pp. 463–470 (2013)

10. Liu, W., Li, S., Zhao, F., Zheng, A.: An ant colony optimization algorithm for the
multiple traveling salesmen problem. ICIEA 2009, 1533–1537 (2009)

11. Somhom, S., Modares, A., Enkawa, T.: Competition-based neural network for the
multiple travelling salesmen problem with minmax objective. Comput. Oper. Res.
26, 395–407 (1999)

12. Venkatesh, P., Singh, A.: Two metaheuristic approaches for the multiple traveling
salesperson problem. Appl. Soft. Comput. 26, 74–89 (2015)

13. Kivelevitch, E., Cohen, K., Kumar, M.: A market-based solution to the multiple
traveling salesmen problem. JIRS J. 72(1), 21–40 (2013)

14. Junjie, P., Dingwei, W.: An ant colony optimization algorithm for multiple travel-
ling salesman problem. In: ICICIC 2006, vol. 1, pp. 210–213 (2006)

15. Salas, Y.J.C., Ledn, R.A., Machado, N.I.C., Now, A.: Multi-type ant colony system
for solving the multiple traveling salesman problem. Rev. Tc. Ing. Univ. Zulia
35(3), 311–320 (2012)

16. Ghafurian, S., Javadian, N.: An ant colony algorithm for solving fixed destina-
tion multi-depot multiple traveling salesmen problems. Appl. Soft. Comput. 11(1),
1256–1262 (2011)

17. Vallivaara, I.: A team ant colony optimization algorithm for the multiple travelling
salesmen problem with minmax objective. In: MIC 2008, pp. 387–392 (2008)

18. Sofge, D.A., Schultz, A., De Jong, K.A.: Evolutionary computational approaches
to solving the multiple traveling salesman problem using a neighborhood attractor
schema. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.)
EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan
2002. LNCS, vol. 2279, pp. 153–162. Springer, Heidelberg (2002)

19. Chandran, N., Narendran, T.T., Ganesh, K.: A clustering approach to solve the
multiple traveling salesmen problem. IJISE 1(3), 372–387 (2006)

20. Kara, I., Bektas, T.: Integer linear programming formulations of multiple salesman
problems and its variations. EJOR 174(3), 1449–1458 (2006)

21. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning app-
roach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66
(1997)

	Performance Evaluation of Ant Colony Systems for the Single-Depot Multiple Traveling Salesman Problem
	1 Introduction
	2 The Single-Depot Multiple Traveling Salesman Problem
	3 The Ant Colony System
	3.1 Route Selection
	3.2 Local Pheromone Update
	3.3 Global Pheromone Update

	4 Algorithms Investigated for Multiple-TSP
	4.1 Problem Decomposition with k-Means Followed by ACS for TSP (kM-ACS)
	4.2 ACS with Global-Solution Pheromone Update (g-ACS)
	4.3 ACS with Subtour Pheromone Update (s-ACS)
	4.4 ACS with Global-Solution Pheromone Update and Bounded Tours (gb-ACS)
	4.5 ACS with Subtour Pheromone Update and Bounded Tours (sb-ACS)

	5 Experiments
	5.1 Problem Instances
	5.2 Parameters Setup
	5.3 Results

	6 Conclusions
	References

