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Abstract. This research deals with the hybridization of the two soft computing
fields, which are the chaos theory and evolutionary computation. This paper
aims on the investigations on the adaptive multi-chaos-driven evolutionary
algorithm Differential Evolution (DE) concept. This paper is aimed at the
embedding and adaptive alternating of set of two discrete dissipative chaotic
systems in the form of chaotic pseudo random number generators for the DE. In
this paper the novel adaptive concept of DE/rand/1/bin strategy driven alter-
nately by two chaotic maps (systems) is introduced. From the previous research,
it follows that very promising results were obtained through the utilization of
different chaotic maps, which have unique properties with connection to DE.
The idea is then to connect these two different influences to the performance of
DE into the one adaptive multi-chaotic concept with automatic switching
without prior knowledge of the optimization problem and without any manual
setting of the “switching point”. Repeated simulations were performed on the
IEEE CEC 13 benchmark set. Finally, the obtained results are compared with
state of the art adaptive representative jDE.
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1 Introduction

This research deals with the hybridization of the two softcomputing fields, which are
chaos theory and evolutionary computation. This paper is aimed at investigating the
novel adaptive control scheme for multi-chaos driven Differential Evolution algorithm
(DE) [1]. Although a number of DE variants have been recently developed, the focus of
this paper is the further development of ChaosDE concept, which is based on the
embedding of chaotic systems in the form of Chaos Pseudo Random Number Gen-
erators (CPRNG) into the DE.

A chaotic approach generally uses the chaotic map in the place of a pseudo random
number generator [2]. This causes the heuristic to map unique regions, since the chaotic
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map iterates to new regions. The task is then to select a very good chaotic map as the
pseudo random number generator.

The focus of our research is the direct embedding of chaotic dynamics in the form
of CPRNG for evolutionary algorithms. The initial concept of embedding chaotic
dynamics into the evolutionary algorithms is given in [3]. Later, the initial study [4]
was focused on the simple embedding of chaotic systems in the form of chaos pseudo
random number generator (CPRNG) for DE and Self Organizing Migration Algorithm
(SOMA) [5] in the task of optimal PID tuning. Also the PSO (Particle Swarm Opti-
mization) algorithm with elements of chaos was introduced as CPSO [6]. The concept
of ChaosDE proved itself to be a powerful heuristic also in combinatorial problems
domain [7]. At the same time the chaos embedded PSO with inertia weigh strategy was
closely investigated [8], followed by the introduction of a PSO strategy driven alter-
nately by two chaotic systems [9].

And based on the promising experimental results with PSO algorithm driven
adaptively by two different chaotic systems, the idea was to extend this approach also
on DE algorithm.

Firstly, the motivation for this research is proposed. The next section is focused on
the description of evolutionary algorithm DE. The core of methodology of your pre-
sented research, which is the concept of adaptive chaos driven DE is explained in
section four, followed by the experiment description. Results and conclusion follow
afterwards.

2 Related Work and Motivation

This research is an extension and continuation of the previous successful initial
experiments with multi-chaos driven PSO and DE algorithms [10, 11]. Recent research
[12–14] shows that chaos driven heuristics applied to many interdisciplinary problems
have better overall performance than canonical (original) versions of such heuristics.
Furthermore there exist many possible approaches for hybridization, injection and
control of chaotic complex dynamics into the heuristics.

In this paper the novel adaptive control concept for DE/rand/1/bin strategy driven
alternately by two chaotic maps (systems) is introduced. From the aforementioned
previous research it follows, that very promising experimental results were obtained
through the utilization of different chaotic dynamics. And at the same time it was
clear that different chaotic systems have different effects on the performance of the
algorithm. The idea was then to connect these two different influences to the per-
formance of DE into the one multi-chaotic concept. The previous research was aimed
at the determining of the switching time (certain number of generations/iterations)
between different chaotic systems. Such a “manual” approach proved to be suc-
cessful, but also many open issues have arisen (i.e. when to start the switching, how
many times, etc.). The novelty of the proposed adaptive approach is that, the chaotic
pseudorandom number generators are switched over automatically without prior
knowledge of the optimization problem and without any manual setting of the
“switching point”.
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3 Differential Evolution

DE is a population-based optimization method that works on real-number-coded
individuals [1, 15]. DE is quite robust, fast, and effective, with global optimization
ability. A schematic of the canonical DE strategy is given in Fig. 1. There are essen-
tially five sections to the code depicted in Fig. 1.

Section 1 describes the input to the DE. D is the size of the problem, Gmax is the
maximum number of generations, NP is the total number of solutions, F is the scaling
factor, CR is the factor for crossover, x(lo) and x(hi) represents the initial bounds of the
solutions. F and CR together make the internal tuning parameters for the heuristic.

Section 2 in Fig. 1 outlines the initialization of the heuristic, i.e. creation of the
initial population. Each solution xi,j,G=0 is created randomly between the two bounds
x(lo) and x(hi). The parameter j represents the index to the values within the solution and
parameter i indexes the solutions within the population. So, to illustrate, x4,2,0 repre-
sents the fourth value of the second solution at the initial generation.

After initialization, the population is subjected to repeated iterations in Sect. 3.
Section 4 describes the conversion routines of DE. Initially, three random numbers

r1, r2, r3 are selected, unique to each other and to the current indexed solution i in the
population in 4.1. Henceforth, a new index jrand is selected in the solution. jrand points
to the value being modified in the solution as given in 4.2. In 4.3, two solutions, xj,r1,G
and xj,r2,G are selected through the index r1 and r2 and their values subtracted. This
value is then multiplied by F, the predefined scaling factor. This is added to the value
indexed by r3.

However, this solution is not arbitrarily accepted in the solution. A new random
number is generated, and if this random number is less than the value of CR, then the

Fig. 1. DE schematic
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new value replaces the old value in the current solution. The fitness of the resulting
solution, referred to as a perturbed vector uj,i,G, is then compared with the fitness of
xj,i,G. If the fitness of uj,i,G is greater than the fitness of xj,i,G, then xj,i,G is replaced with
uj,i,G; otherwise, xj,i,G remains in the population as xj,i,G+1. Hence the competition is
only between the new child solution and its parent solution.

4 The Concept of Adaptive Multi-chaotic DE

The general idea of ChaosDE and CPRNG is to replace the default pseudorandom
number generator (PRNG) with the discrete chaotic map. As the discrete chaotic map is
a set of equations with a static start position, we created a random start position of the
map, in order to have different start position for different experiments (runs of EA’s).
This random position is initialized with the default PRNG, as a one-off randomizer.
Once the start position of the chaotic map has been obtained, the map generates the
next sequence using its current position.

In this research, direct output iterations of the chaotic maps (iteration x or y – see
Sect. 5) were used for the generation of real numbers in the process of crossover based
on the user defined CR value and for the generation of the integer values used for
selection of individuals.

Previous successful initial experiments with multi-chaos driven PSO and DE
algorithms [10, 11] have manifested that very promising experimental results were
obtained through the utilization of Delayed Logistic, Lozi, Burgers and Tinkerbelt
maps. The last two mentioned chaotic maps have unique properties with connection to
DE: strong progress towards global extreme, but weak overall statistical results, like
average cost function (CF) value and std. dev., and tendency to premature stagnation.
While through the utilization of the Lozi and Delayed Logistic map the continuously
stable and very satisfactory performance of ChaosDE was achieved. The above
described influences around switching point (500 or 1500 generations) are visible from
the Fig. 2, which depicts the illustrative example of time evolution of average CF values
for all 50 runs of four combinations of Multi-Chaotic DE and canonical DE/rand/1/bin
strategies.

To maximize the benefit from the influences of different chaotic dynamics a new
adaptive control approach was developed. It does not require any prior knowledge of
the optimization problem and any manual setting of the one ore more “switching
points”. The exact transition point is determined by following simple rule: If the change
of global best value between two subsequent generations is less than 0.001 over
more than 1 % of total number of generations, the chaotic systems used as the CPRNGs
are alternated.

5 Chaotic Maps

This section contains the description of discrete dissipative chaotic maps used as the
chaotic pseudo random generators for DE. Following chaotic maps were used:
Burgers (1), and Lozi map (2).
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The Burgers mapping is a discretization of a pair of coupled differential equations
which were used by Burgers [16] to illustrate the relevance of the concept of bifur-
cation to the study of hydrodynamics flows. The map equations are given in (1) with
control parameters a = 0.75 and b = 1.75 as suggested in [17].

Xnþ1 ¼ aXn � Y2
n

Ynþ1 ¼ bYn þ XnYn
ð1Þ

The Lozi map is a discrete two-dimensional chaotic map. The map equations are
given in (2). The parameters used in this work are: a = 1.7 and b = 0.5 as suggested in
[17]. For these values, the system exhibits typical chaotic behavior and with this
parameter setting it is used in the most research papers and other literature sources.

Xnþ1 ¼ 1� a Xnj j þ bYn
Ynþ1 ¼ Xn

ð2Þ

6 Results

IEEE CEC 2013 benchmark set [18] was utilized within this experimental research for
the purpose of performance comparison of Multi-Chaotic DE and state of the art
adaptive representative jDE.

Experiments were performed in the combined environments of Wolfram Math-
ematica and C language; jDE therefore used the built-in C language pseudo random

Fig. 2. Comparison of the time evolution of avg. CF values for the all 50 runs of Canonical DE,
and all four versions of Multi-ChaosDE; shifted Ackley’s original function, D = 30.
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number generator Mersenne Twister C representing traditional pseudorandom number
generators in comparisons. All experiments used different initialization, i.e. different
initial population was generated in each run.

Table 1. Parameter set up for ChaosDE, multi-Chaos DE and jDE

DE Parameter Value

Popsize 75
F 0.4
CR 0.4
Dim 30
Max. Generations 1500
Max Cost Function Evaluations (CFE) 112500

Table 2. Final average CF values: Performance comparison for ChaosDE, Multi-Chaos DE and
jDE on CEC 13 Benchmark Set, dim = 30, max. Generations = 1500

DE
version/
function

f min ChaosDE
Lozi

ChaosDE
Burgers

Multi-chaos DE
Lozi-Bur

Multi-chaos DE
Bur-lozi

jDE

f1 −1400 −1400 −1396,27 −1400 −1396,11 −1400
f2 −1300 8.26E07 4.42 E06 7.76E06 5.19E06 1.20 E07
f3 −1200 4.02 E05 5.89 E07 3.94 E05 4.35 E07 2.27 E06
f4 −1100 54253,37 44554,04 53146,18 43651,36 24176.48
f5 −1000 −1000 −976,96 −1000 −924,734 −1000
f6 −900 −879,406 −837,74 −879,877 −837,617 −883.662
f7 −800 −794,683 −785,823 −794,907 −785,744 −787.59
f8 −700 −679,014 −679,024 −679,011 −679,011 −679.031
f9 −600 −559,911 −566,911 −560,081 −568,102 −565.196
f10 −500 −499,703 −493,783 −499,793 −489,324 −498.97
f11 −400 −283,176 −367,734 −282,657 −368,74 −365.637
f12 −300 −110,399 −123,585 −109,368 −117,521 −134.237
f13 −200 −13,4393 −24,4889 −14,8037 −21,165 −22.0975
f14 −100 5208,844 4263,938 5212,473 3925,126 2120.024
f15 100 7525,375 7596,434 7514,516 7550,981 7340.324
f16 200 202,661 202,7216 202,7273 202,7534 202.6974
f17 300 457,0986 433,8154 455,6688 429,3077 385.4481
f18 400 617,938 603,0269 619,7844 604,9512 620.9147
f19 500 514,2732 747,2032 514,1383 512,6819 507.8474
f20 600 612,4499 612,0908 612,4901 612,0437 612.5353
f21 700 976,2085 1061,987 984,6014 1071,636 1015.886
f22 800 6109,917 5137,034 6185,512 4970,348 3610.891
f23 900 8682,76 8527,86 8717,706 8557,785 8575.498
f24 1000 1200,494 1214,893 1200,494 1214,61 1208.364
f25 1100 1409,554 1355,86 1408,71 1354,989 1398.31
f26 1200 1416,277 1434,2 1405,164 1407,463 1400.423
f27 1300 1670,244 1722,026 1662,702 1747,692 1886.461
f28 1400 1700 1711,01 1700 1747,365 1700
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Within this research, one type of experiment was performed. It utilizes the maxi-
mum number of generations fixed at 1500 generations, Population size of 75 and
dimension dim = 30. This allowed the possibility to analyze the progress of all studied
DE variants within a limited number of generations and cost function evaluations.

The parameter settings (see Table 1) for Multi-Chaos DE were obtained based on
numerous experiments and simulations. ChaosDE requires lower values of CR and
F for almost any CPRNG and benchmark test function. The same settings was used
also for the jDE, except values of mutation and crossover control parameters F and CR
(see Sect. 3), which are not required, since they are adaptively tuned during the run of
the algorithm.

Table 3. Best solutions - minimal CF values: Performance comparison for ChaosDE, Multi-
Chaos DE and jDE on CEC 13 Benchmark Set, dim = 30, max. Generations = 1500

DE
version/
function

f min ChaosDE
Lozi

ChaosDE
Burgers

Multi-chaos
DE Lozi-
Bur

Multi-chaos
DE Bur-lozi

jDE

f1 −1400 −1400 −1400 −1400 −1400 −1400
f2 −1300 5.16 E07 1.35 E06 4.70 E07 1.25 E06 3.88 E06
f3 −1200 −1165,34 2177953 −653,822 2969479 175895,6
f4 −1100 36762,6 34658,47 35599,14 22393,15 17535,48
f5 −1000 −1000 −999,966 −1000 −999,96 −1000
f6 −900 −883,984 −882,853 −884,208 −882,963 −884,505
f7 −800 −798,224 −798,612 −798,772 −797,954 −795,117
f8 −700 −679,132 −679,249 −679,158 −679,134 −679,145
f9 −600 −564,836 −592,694 −562,608 −591,792 −569,265
f10 −500 −499,995 −499,361 −499,99 −499,464 −499,158
f11 −400 −309,348 −390,523 −302,912 −393,035 −371,654
f12 −300 −133,452 −153,452 −139,953 −140,463 −161,821
f13 −200 −49,4624 −52,423 −40,1887 −48,0608 −49,5397
f14 −100 4571,05 2656,683 4587,607 244,2955 1490,476
f15 100 6508,819 7167,982 6488,74 6965,063 6880,111
f16 200 201,7184 201,7998 202,0703 201,7819 202,134
f17 300 436,168 387,3263 433,179 376,9962 371,9252
f18 400 588,5691 572,2911 599,705 583,1972 599,8971
f19 500 511,9499 506,9294 512,1244 503,2695 505,9997
f20 600 611,4797 611,3011 611,7701 611,3222 611,8896
f21 700 900 900,6238 900 900,0088 900
f22 800 5238,421 2006,774 4986,105 1335,865 3149,514
f23 900 7734,353 7981,328 8075,904 7964,318 8024,026
f24 1000 1200,273 1205,897 1200,23 1203,53 1203,392
f25 1100 1354,924 1315,61 1379,102 1310,948 1383,773
f26 1200 1403,552 1400,055 1402,663 1400,042 1400,212
f27 1300 1606,48 1626,16 1607,371 1641,696 1717,833
f28 1400 1700 1700 1700 1700 1700
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To track the influence of adaptive multi-chaotic approach, an experiment encom-
passes three groups:

• Two versions of ChaosDE with Lozi map or Burgers map (i.e. single chaos
approach – no alternation).

• Two versions of adaptive Multi-Chaos DE: Initialized with Lozi map or Burgers
map.

• State of the art adaptive representative jDE.

The results of the experiments are shown in Tables 2 and 3. Table 2 contains the final
average CF values, whereas Table 3 shows the minimum found CF values representing
the best individual solution for all 50 repeated runs of ChaosDE, Multi-Chaos DE
and jDE. Finally the Table 4 shows the overall performance comparison for afore-
mentioned three groups of DE versions. Within Tables 2 and 3, the bold values rep-
resent the best performance, italic equal. Detailed results analysis is present in the
conclusion section.

7 Conclusion

The primary aim of this work is to use and test the hybridization of natural chaotic
dynamics with evolutionary algorithm as the multi-chaotic pseudo random number
generator. In this paper the novel adaptive concept of DE/rand/1/bin strategy driven
alternately by two chaotic maps (systems) is introduced. These two different influences
to the performance of DE were connected here into the one adaptive multi-chaotic
concept with automatic switching without prior knowledge of the optimization problem
and without any manual setting of the “switching point”. Repeated simulations were
performed on the IEEE CEC 13 benchmark set. The obtained results were compared
with the original predecessor ChaosDE and state of the art adaptive representative jDE.
The findings can be summarized as follows:

• The high sensitivity of the DE to the internal dynamics of the chaotic PRNG is fully
manifested.

• When comparing simple ChaosDE and adaptive Multi-Chaos DE, the both multi-
chaotic versions have kept stable performance for both average and minimal
observed final CF values. While through the utilization of simple ChaosDE, the
aforementioned different influences of two chaotic dynamics have been revealed.
Both versions of ChasoDE have outperformed all other studied heuristic in the case
of min CF value (i.e. the best individual solution founded). Nevertheless in case of
average results, the performance was the worst. This supports the claim, that
adaptive multi chaotic approach suppresses the weak spots of particular CPRNGs,

Table 4. Overall statistical performance comparison

ChaosDE Multi-chaos DE jDE

Average CF value 5+, 4=, 19− 9+, 4=, 15− 10+, 3=, 15−
Min. CF value 11+, 4=, 13− 9+, 4=, 15− 4+, 4=, 20−
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which are the weak overall statistical results, like average CF value and std. dev.;
and tendency to stagnation; thus that adaptive multi chaotic approach connects such
strong progress towards global extreme with stable searching process without
premature stagnation issues given by particular CPRNGs.

• When comparing the adaptive Multi-Chaos DE and adaptive jDE, the performance
is comparable in case of final average CF values; whereas in case of min. CF values
the chaos driven heuristic has outperformed the adaptive jDE.

• Based on the previous point, we can assume that in case of differential evolution,
the sensitivity to the adaptive changes of internal chaotic dynamics driving the
selection of individuals and crossover process may be higher than sensitivity to the
adaptive tuning of control parameters. Nevertheless this will be more experimen-
tally investigated in future work and research experiments.

• Furthermore the direct embedding of chaotic dynamics into the evolutionary/swarm
based algorithms is advantageous, since it can be easily implemented into any
existing algorithm or strategy. Also there are no major adjustments in the code
required (instead of calling function Rand(), one iteration of chaotic system is
taken).
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