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Abstract. Graph theory and the study of complex networks have, over the last 
decade, received increasing attention from the neuroscience research communi-
ty. It allows for the description of the brain as a full network of connections, a 
connectome, as well as for the quantitative characterization of its topological 
properties. Still, there is a clear lack of standard procedures for building these 
networks. In this work we describe a specifically designed full workflow for the 
pre-processing of resting state functional Magnetic Resonance Imaging (rs-
fMRI) data and connectome. The proposed workflow focuses on the removal of 
confound data, the minimization of resampling effects and increasing subject 
specificity. It is implemented using open source software and libraries through 
shell and python scripting, allowing its easy integration into other systems such 
as BrainCAT. With this work we provide the neuroscience research community 
with a standardized framework for the construction of functional connectomes, 
simplifying the interpretation and comparison of different studies. 
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1 Introduction 

The world of neuroscience research is constantly marked by the development of new 
methodologies that seek to deliver new tools to allow researchers to better study the 
structure and function of the brain. While these developments are key to the success of 
the field, their translation into practice is neither necessarily direct nor simple in terms of 
application and interpretation. There exists a gap between the highly subject focused and 
specialized research in charge of developing these methodologies and the more broadly 
competent research who needs to apply them in the laboratories. To complete this 
process it is then necessary the creation of tools and frameworks that will allow the appli-
cation of these new methodologies to every day research situations. 

One such development that has received a great deal of attention over the last dec-
ade is the application of graph theory and the principle of complex networks to the 
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Using the Brain Con-
nectivity Toolbox [17] 
the key network proper-
ties were calculated. 
When compared to 
equivalent random net-
works, the network built 
was found to have a 
much higher tendency to 
from clusters (ratio of 
5.11) and a slightly low-
er global efficiency (ratio of 0.7), meaning that they are small-world networks, as was 
expected. Finally, a modularity algorithm was applied to determine communities 
within the network. BrainNet Viewer [18] was used to build a 3D visualization of the 
graph (Figure 6). It is possible to observe a tendency for communities to be composed 
of spatially proximal areas. 

6 Conclusion 

In the present work we have described the implementation of a complete framework 
for the construction of connectivity graphs from functional MRI data, as well as the 
necessary pre-processing steps. The framework uses open source software, capable of 
running on any Unix system. It uses shell and python scripts, in such a way that it can 
be easily integrated into other frameworks.  

The implemented fMRI data pre-processing workflow was specifically designed 
for the construction of connectivity graphs and tested in a dataset of real rs-fMRI data.  

Our team in the ICVS is currently applying the complete framework for the analy-
sis of larges amount of data in projects related to the study of aging, stress, education, 
neurological and psychiatric disorders such as obsessive compulsive disorders. 
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