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Abstract This research explores the usage of freely available open-source
resources for the deployment of a plug-in free web-application interface for 3D
geospatial data to visualize energy related modelling and simulation results. Such
plug-in free web mapping applications will be essential for future cartographic web
applications as forthcoming web browsers will no longer support the usage and
installation of those plug-ins used in the past. As a proof of concept, a 3D city
model of the city of Karlsruhe in Germany consisting of over 87,000 buildings is
used as a case study. This data set was compiled using OpenStreetMap data and
outputs from energy simulation models. The CityGML format is used for data
storage of this multi-domain data set. In order to ensure independence from browser
plug-ins, HTML5 and freely available JavaScript libraries are used for the creation
of this application. Multiple analytical cartographic and geospatial functions such as
cartographic classification, attribute selection, descriptive statistics, spatial buffer
analysis and the retrieval of modelling results from a PostgreSQL and PostGIS data
infrastructure are implemented in this interface. This paper further discusses some
case studies, future enhancement opportunities of the proposed interface and
experiences gathered during the interface development process that would help
other cartographers and GIScientists in developing future native 3D web mapping
applications.
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1 Introduction

The visualization of urban energy modelling and simulation results is a crucial part
in energy research as they act as the main communication tool among scientists and
decisions makers. Results from energy modelling and simulations are usually
directly linked to spatial objects such as buildings or city furniture. 2D visualisation
techniques have been implemented since many years but with the recent emergence
of detailed 3D urban data models and their advantages in energy modelling, the
visualization in 3D plays a significant role. In some cases, the results are usually not
aggregated by the building object but at a finer scale such as building surfaces. This
requires a higher grade of visualization and therefore 3D becomes a necessity
(Nouvel et al. 2014). Furthermore, the presentation of energy simulation results in
3D enables the decision makes and users to better explore and comprehend out-
comes from multiple perspectives (Bahu et al. 2014).

Recently, numerous 3D web Application Programming Interfaces (API) ranging
from GoogleEarth1 to Unity’s Game Engine2 have evolved, but most of the
web-mapping services that visualize 3D data are either based on browser plug-ins
and require the users to install one or more programs locally on their computing
devices. The installation of those plug-ins is often cumbersome and raises com-
patibility issues with different web browsers. Furthermore, browser plug-ins, espe-
cially those that do graphically represent information such as Adobe Flash or Java
are prone to security issues (Barth et al. 2010; Soltani et al. 2010). In the future, new
releases of major web browsers from Apple, Google, Mozilla and Microsoft will no
longer support any plug-ins. This is particularly important to cartographers and
GIScientists as many of those 2D and 3D web mapping applications still rely on
plug-ins. In addition to those functional limitations, most proprietary web browser
plug-ins do not provide a wide range of custom functionalities specific to the
application area of urban energy analysis (Wendel and Nicerhsu 2015).

This research focuses on the development of a plug-in free 3D web mapping
application for the display of different energy related simulation andmodelling results
at the urban scale (Fig. 1). The focus is thereby on the usage of free and open software
libraries that can be natively run in any web browser. Given the complex multidis-
ciplinary nature of energy related modelling data sets commonly differ in spatial and
temporal resolution, data structure or data storage format that requires an intensive
data integration workload. A major obstacle in this process is the current proprietary
nature ofmajor commercial software packages (Wendel andNichersu 2015). The lack
of interoperability among software packages makes it difficult to share and further
process research results. Therefore, all data sets can be stored in an open source data
infrastructure that is based on a PostgreSQL database and PostGIS, for spatial capa-
bilities (Simons and Nichersu 2014). A major requirement of this research is the
connectively to a PostgreSQL databases and the usage of open-source Geographic
Information Systems (GIS) functionality with PostGIS directly from the interface.

1https://www.google.com/earth/.
2https://unity3d.com/.
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In addition to the interface development, this research further focuses on the
lessons learned from this experiment as well as gives an outlook in the field of
open-source 3D web mapping interfaces.

In the following section, the evolution of different web-mapping technologies for
the visualization of 3D data are summarized. Sections 3 and 4 describes the data and
technologies used to develop the web-mapping platform. The methodology and the
description of the interface are illustrated in Sects. 5 and 6. Finally, a discussion and
future direction of such a plug-in free 3Dweb visualization are explained in the Sect. 7.

2 The Evolution of Related Research

The visualization of spatial 3D information has experienced multiple popularity
peaks during the last two decades. These peaks were tightly coupled with major
breakthrough in technological enhancements (Peterson 2015). In establishing
visualization technologies, 2D data visualization developments were always on the
forefront before this trend was adopted to the visualization of 3D cartographic
displays such as the development of HTML and VRLM. Figure 2 highlights major
breakthroughs in 2D and 3D web mapping applications and technologies ranging
from early GIS desktop systems (Goodchild 1991; Dix et al. 2004) and web
mapping applications such as Xerox PARC MapViewer (1993), GRASSLinks
(1995), MapQuest (1996) and TIGER Map Server (1997), that mostly provided
static displays, to web technologies such as Web Feature Service (WFS), Web Map
Service (WMS) and Web Coverage Service (WCS) that made the distribution of
geospatial data on the web easier and thus helped to increase web-based 2D
mapping applications drastically. These web mapping services provide static image
tiles of maps or XML (Extensible Markup Language), using Open Geospatial
Consortium (OGC) web-service standards, formatted feature details and coverage
data in GML (Geography Markup Language) format, respectively. While Fig. 2
does not show all milestones on 2D and 3D visualization technologies it clearly
highlights the trend to web technologies that can visualized both, 2D and 3D.

Fig. 1 Proposed 3D web interface for visualization and analysis of different energy related
simulation and modelling results
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On the visualisation front, all the above mentioned services were limited to
displaying static geographic data, with exception to browser plug-ins such as Flash,
Shockwave and VRML. After 2005 the adoption of these plug-ins for geospatial
data (e.g. Google Earth plug-in) and X3D, the successor of VRML was observed.
However, due to the lack of native graphics processing (GPU) support, VRML
X3D was unable to handle larger amount of data (Ming 2008). Since 2010, with the
emergence of OpenStreetMap (OSM), several 3D research projects such as OSM3D
Globe3 (University of Heidelberg), OSM Buildings,4 etc.5 have been initiated at
experimental stages which demonstrate the popularity of 3D city models. With the
advancement in graphics technology these plug-ins have evolved to display 3D
objects or models that were exported from specialised 3D Desktop software
(Fig. 2). Recently the adoption of Unity’s powerful gaming engine towards the
usage of 3D geospatial data in web mapping applications have been demonstrated
(Raghothama and Meijer 2015; Jenny et al. 2015). Although Unity provides a
preformat way to visualize large quantity of data, it is still reliant on web browser
plugins in its current version.

With the support of webGL in all major web browsers, many new libraries were
developed in the last few years. For example, the open source library project
Cesium.js, based on webGL and not reliant on any browser plug-in gained

Fig. 2 The evolution of 2D and 3D web mapping milestones

3http://osm-3d.org/home.en.htm.
4http://osmbuildings.org/.
5http://wiki.openstreetmap.org/wiki/3D_Development.
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increased popularity among cartographers and web developers. For example, the
Sunshine project made use of an early adoption of cesium.js for cartographically
displaying urban services and energy consumption at the urban scale (Giovannini
et al. 2014).

3 Data Sets for 3D Visualization

The generation of 3D city models can be costly and time extensive process (Thiele
et al. 2013; Döllner et al. 2006; Huber et al. 2003). Currently, many major cities
such as New York, Berlin or Lyon started to provide detailed 3D models of their
cities which could be used by any cartographer for visualization and analysis
purposes. In addition, OSM provides building data as building footprints and often
additional height information, mainly for public buildings. However, the avail-
ability highly varies among regions. Out of 5.5 million mapped buildings in
Germany, only 5 % have the height information tagged in OSM data, only 7 % of
the buildings have the number of floors and 2 % have roof type information
specified (Goetz and Zipf 2012).

In this research, the city of Karlsruhe in Germany is considered as a case study
area. Karlsruhe is a medium sized city of 300,000 inhabitants located near the
Franco-German border in the southwestern part of Germany. The city does not
provide any public access to its 3D spatial data. Although building footprints were
available for the whole city, the height information was missing or unusable for the
objective of this experiment. Instead, the height information of each building was
estimated by the number of floors of each building obtained from areal imagery. In
total 86,000 buildings were generated at a Level of Detail 1 (LoD1). For each floor,
a standard height value in meters, depending on the building type, is used to
estimate the total height of a building that provided higher accuracy levels of
92.4 % within a 95 % confidence interval for the whole data set (Saed and Wendel
2015).

Due to interoperability requirements with energy simulation models, the data set
is stored in a PostgreSQL database using the CityGML standard.6 A benefit of using
the CityGML standard over other geospatial data formats is that semantic infor-
mation of each surface or element of a building or object can be stored. This would
be particularly interesting to cartographers when designing multi-scale cartography
data bases for the definition of cartographic visualization rules across multiple
scales (Brewer and Buttenfield 2007).

6CityGML is an open data model standard developed by the OGC (Open Geospatial Consortium).
See: http://www.opengeospatial.org/standards/citygml.
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4 Technological Requirements

The process of designing and implementing a 3D web mapping application that
natively runs in any web browser requires the exploitation of different technologies,
software and programming APIs. Table 1 summarizes the resources, technologies,
software libraries and data formats utilized in this study.

4.1 Technologies

The implementation of the 3D web interface and visualisation requires different
technologies and software such as WebGL, HTML, JavaScript, Python and SQL, in
a client and server side configuration. HTML and CSS are used for the functional
aspect of the front-end of the interface, while other components that interact with
data and provide functionality of the web pages, are controlled using scripting
languages, namely JavaScript and Python. JavaScript is used to control all the
elements in the interface and to manipulate the data which is in the JSON format
that constitutes the client-side processing in this application. In contrast, Python and
related adapter such as psycopg7 are used to access functions in PostgreSQL
through scripts, to query the database, and to run energy simulation scripts.
Regarding the display of 3D data, the WebGL standard is used. It enables the
implementation of 3D graphics directly in the web browser without the use of any
plug-ins.

Table 1 Resources used in interface development

Technologies

WebGL 3D web standard

HTML Functional control of web page

JavaScript Control of elements and data conversion

Python Database and server connection

Structured Query Language (SQL) Data base queries

Data exchange format
GeoJSON Data transfer to WebGL

Software libraries/APIs
EXT JS Interactive web applications

Three.js 3D visualization

D3.js Conversion of geographic coordinates

D3-ThreeD.js Link Three.js with D3.js

7http://initd.org/psycopg/.
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4.2 Data Exchange Formats

The GeoJSON format is applied for encoding a variety of geographic data struc-
tures and for interchanging geospatial data that is based on JSON (Butler et al.
2008). JSON enables easy access and manipulation of objects not only with
JavaScript, but also SQL and Python. In addition, it is also advantageous to use this
format since it is possible to convert GeoJSON to and from many other spatial data
formats such as KML, GML and ESRI shapefiles. For example, using GeoJSON,
ViziCities9, an open source project inspired by the massive online multi-player
game SimCity, aims to visualize the entire world in 3D.

4.3 Software Libraries/APIs

Several software libraries are utilised to develop the visualisation interface. Ext JS
is used for designing the user interaction of the web mapping interface. It is a pure
JavaScript application framework for building interactive web applications and is
developed by Sencha.Inc.8 It leverages HTML5 features to provide pre-defined web
page elements such as button, text field panels and layouts that can be customised
and used in building cross platform web applications. Some advantages of using
this API are its Model-View-Controller (MVC) architecture, theming and styling
using CSS and SASS, extensive documentation and support (Suderaraman 2013).

Three.js handles the entire 3D visualisation part in this interface. It is a relatively
new open-source JavaScript library (released in 2010) that uses the WebGL
capability of a browser to create, display and animate 3D objects with a very low
level of complexity (Doob 2010). Apart from native geometries such as line, sphere
or cube, this library also supports visualization of 3D models exported in JSON
format from other software such as Blender, 3D Max and hence supports interaction
with GeoJSON. Although Three.js is employed mainly for interactive games
development, it has been recently demonstrated to be useful in geographical data
representation and web mapping applications (Sandvik 2013).

D3.js is a JavaScript library for manipulating documents based on data using HTML,
SVG and CSS and has been used in many web mapping applications (Ledermann and
Gartner 2015; Bostock 2011). It combines powerful visualization components and a
data-driven approach to Document Object Model (DOM) manipulation. D3.js has a
module called Geo that can convert the geographic coordinates between 12 major pro-
jection systems. It is used in this research for converting geographic coordinates to screen
coordinated.

8http://www.sencha.com/products/extjs.
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d3-ThreeD.js a small library of functions that aims to link Three.js with D3.js
(Sutherland 2012). The ability to transform SVG path from D3.js to Three.js object
is offered by one of the functions provided by this library. It is used in facilitating
the extrusion of the building footprints within the interface.

5 Interface Development and 3D Data Handling

This section describes the methodology of the interface development process as
well as the handling of 3D data and their visualization challenges. The interface
development process can be further divided into design of interface architecture,
interface workflow and interface visualisation. Furthermore, a detailed description
of the geometric transformations from 2D to 3D and resulting challenges are
described in this section.

5.1 Interface Architecture

A typical client–server (e.g., PostgreSQL database) is used for the architecture of
the interface (Bell 2005). Using WebGL, all visualization and rendering processing
are performed on the client side while data storage and analytical capabilities are
executed on the server side. While the complexity of WebGL is higher than pro-
priety plug-in based environments such as Microsoft Silverlight or Adobe Flash,
support and performance of 3d spatial data is more efficient, interactive and
responsive (Resch et al. 2014).

5.2 Interface Workflow

In order to visualize and analyse data from the PostgreSQL database, several steps
are required. Figure 3 highlights the detailed flow of process between the interface
and the database. For data input (Fig. 3 (1)) multiple Python scripts are used
depending on the data type. All data Processing (Fig. 3 (2)) is done on the server
side. When the request from the interface is sent to the server with the required
connection parameters, the data is processed based on the query and sent back to the
interface in the GeoJSON format. The spatial coordinates and attributes are
retrieved by using the ExtJs functions and subsequently visualised using functions
from the Three.js library.

Data processing and visualization is handled on the server and client side. The
connection to spatial data sever is established by a Python script using the ‘psy-
copg’ adapter and then an SQL query is executed. The SQL query performs the
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necessary manipulation of the data through PostGIS extension functions. For
instance, ST_AsGeoJSON converts the resulting rows from the PostgreSQL to
GeoJSON file and ST_Transform function converts the spatial coordinates to
WGS84 (defined by EPSG:4326) adopted in the interface (Fig. 3 (3)).

The data infrastructures presented in Fig. 3 is particularly of interested when
developing an interface to visualize multi-domain datasets. The PostgreSQL data-
base with the PostGIS functionality enables the merger of results from energy
model outputs and spatial data. Furthermore, by strictly using a Python environment
each independent energy model can be extended and visualized further by directly
using PostGIS functions in the PostgreSQL database.

Fig. 3 Detailed interface workflow illustrating data input, data processing, data transformation
and visualisation steps
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5.3 3D Data Handling and Visualization Challenges

The transformation and handling of spatial 3D data is a major challenge in this
research since no out of the box programming libraries that could handle the
technical requirements to natively display urban energy data, such as Cesium.js,
were available at the start of this experiment. Therefore, coordinate conversion and
extrusion had to be handled by custom implementation. The majority of objects in
the Karlsruhe 3D city model that are displayed in the interface are buildings, natural
features and roads. While the former two can be stored as polygons (Polygon or
MultiPolygon), roads are usually stored as lines (LineString or MultiLineString) in
a GeoJSON file. Hence, the basic flow of data from PostgreSQL to Three.js for both
buildings and roads is common but the handling of these two data types for
visualisation is different from each other. The flow of data conversion undergone by
a polygon feature footprint is as shown in Fig. 4.

Once retrieved from the database, the coordinates are used to generate an inter-
mediate SVG path using the D3.js library function. This path is then converted to a 3D
object. In the scope of Three.js, each object added to the 3D scene is called amesh. In
order to be rendered on screen, a mesh requires two parameters namely, THREE.
Material and THREE.Geometry, whereas the latter is provided by the building
footprints. The transformSVGpath function from the d3-threeD.js library converts the
path generated by d3.geo object to a Three.js 2D path (THREE.Shape) object. An
arbitrary extrusion value is applied to each of the meshes to make them three-
dimensional. No extrusion value is applied for the objects representing natural fea-
tures so that they appear flat and an even lower value of 1 or 2 is applied for water
bodies so the water-type polygons overlapping the natural features polygons appear
above. An arbitrary extrusion value of 10 (determined through testing) multiplied by
the number of floors is applied to the building meshes to give them the required 3D
perspective. All the extrusion values are following the Three.js coordinate system.

Several challenges have been encountered when displaying spatial 3D objects
natively in a web browser. For example, in the process of converting building objects
from a GeoJSON file to SVG using the D3.js library, it was found that the building
footprints were not displayed as expected due to their polygon winding order
(Grünbaum and Shephard 1990; Neumann andWinter 2001) In order to allow efficient
data handling on the client side, the order of coordinatesmust be reversed directly in the
PostgreSQL database before the conversion into a GeoJSON object takes place.
Another challenge appearedwhile displaying line features. For example, in the database
road features are stored asLineStrings in theGeoJSONfilewhere each vertex of the line
segment is a pair of latitude and longitude coordinates. If converted to SVG, the ends of
the line segments are connected resulting in a polygon. In trying to overcome this
limitation, the coordinates are directly converted to screen coordinates using d3.geo
object and passed to the Three.js function to create a THREE.Line object. However, this
line object, if extruded, will result in a wall rather than a road (Fig. 5, left). Therefore, a
rectangular shape was chosen (Fig. 5, right) and extruded along the line object created
to build a road. A detailed discussion about line extrusions for WebGL web mapping
applications can be found in McNamara et al. (2000) and Deslauriers (2015).
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Fig. 4 Dataflow and processes required to extrude 3D features natively in the web browser
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5.4 Interface Visualization

The main focus of this research lies in the usage and implementation of open-source
libraries for a plug-in free 3D browser based visualization. Therefore, the user
interface that has been implemented in the research, has not been gone through user
testing or design adaptation phases. However, common Human-Commuter
Interaction (HCI) guidelines, for example layout by Dix et al. (2004) were con-
sidered in the design process. The main components of the interface layout are:

1. Viewer window
2. Navigation controls
3. Toolbar
4. Action panel
5. Information windows

Furthermore, the interface is divided into front-and back-end. The front-end
includes elements such as buttons, windows and message boxes, and the appear-
ance of the interface, whereas the back-end includes the general organization of the
files containing the code so that the application remains readable and expandable.
Figure 6 shows the buildings and natural features layers directly derived from the
PostgreSQL database displayed in the interface while the action panel shows
classification options of the data.

6 Interface Functionality and Case Studies

The proposed interface not only allows cartographic visualisation of the 3D fea-
tures, but also supports the exploration of the results from energy simulation with
several functionalities such as layer navigation, feature selection, information
retrieval, visibility control, data classification and spatial buffer functions. These
functionalities are made accessible through a toolbar available at the top of the
browser window (Fig. 6). In this way, scientific cartographic visualisation such as
well-defined symbols, harmonious use of colour through ColorBrewer.org
(Harrower and Brewer 2003) of spatial data derived from energy modelling is
ensured. Moreover, several case studies consisting of the outcomes of energy
modelling and simulations are integrated into the interface as a proof of concept.

Fig. 5 Extrusion of road features: direct extrusion (left), shape extrusion (right)
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6.1 Retrieval of Information

The user can select and retrieve basic information and energy model outcomes of
particular features such as buildings from the database via the interface. When a
client request is executed data, in form of a database table with the requested
information is loaded from the PostgreSQL server on to the interface and the
information is saved in the browser’s cache memory. The geometry details of the
loaded features get stored in the THREE.Mesh object of the Three.js library and the
attributes are programmed to be stored as an Ext.data.JsonStore object which acts
as a local database at the client-side. On selecting or deselecting a building, the
osm_id of the building is accessed by id of the mesh and added to or subtracted
respectively from an array. This id serves to access the type of a selected feature,
retrieve corresponding entry in the Ext.data.JsonStore previously constructed and
display them in grid format provided by ExtJs (Fig. 7). The Ids stored in the array
can be later used for further analysis such as creating charts or buffer.

Fig. 6 A 3D web interface layout consisting of Viewer window (1), Navigation controls (2),
Toolbar (3), Action panel (4), and Information windows (5)
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6.2 Cartographic and GIS Functionality

Several visualization and spatial functions have been implemented as a proof of
concept. As an initial proof of concept for visualization functionalities, the classi-
fication of building attributes are demonstrated by the ‘Equal-interval’ method has
been implemented (Slocum et al. 2009). A corresponding legend displays the
harmonious colour code while the corresponding class intervals are based on
building classification (Fig. 6). Color schemas were derived from the recommen-
dation of ColorBrewer9 and the symbols were drawn on the screen using the
Ext.draw.Sprite object from the Ext Js library. This powerful library allows several
other built-in cartographic representations of 3D objects.

As a proof of concept for spatial functionalities, buffer analysis has been
implemented to identify buildings or any other feature, within a certain search
radius of another feature or to find the extent of impact of any phenomenon around
points or lines or polygons. 3D buffers enable further explorative analysis, such as
noise emission mapping and emergency route planning (Zipf 2010), costs and risks
of urban networks (e.g. district heating networks), dynamic air flow analysis
(Autodesk Ecotect Analysis 2010), spread or visibility analysis, fire exposure or
explosion and are commonly represented as a polyline feature with extruded
z-values. In energy research, 3D buffers can be exploited such as to identify the
coverage of street lights in order to optimally plan their setting. The implementation
of buffers in this research are created by using PostGIS functions and the results are
saved back to the PostgreSQL database (Fig. 8).

Fig. 7 Retrieval of sample information displaying building attributes

9http://colorbrewer2.org/.
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6.3 Case Studies

Several energy simulation and modelling results are incorporated into the interface
platform in order to test the capability of the interface in terms of technical feasi-
bility, visualization and explorative analysis of results. The outcomes of these
energy models are generally stored in a different database and the interface was able
to successfully connect to them. In the first case study, the modelling of vertical
solar radiation potential of LOD1 and LOD2 buildings facades resulted in a set of
values as attributes of a building and building surfaces (Wieland et al. 2015). This
included six fields which are comprised of beam and diffuse solar radiation on
building surfaces with clear and overcast sky conditions in kilowatt hour (kWh) for
each month of a year. Since the values are distributed over certain time intervals
line charts are well suited to visualise the distribution and are hence demonstrated in
this application (Fig. 9). Charts can be saved and exported into multiple formats as
well. Further case studies are tested for example, by incorporating the
socio-demographic energy behaviour research on energy consumption for the city
of Karlsruhe (Saed and Wendel 2015) and an energy balance model to calculate
heat losses from LoD1 and LoD2 buildings (Simons and Nichersu 2014).

Fig. 8 Line buffer function showing a 10 m 2D circular buffer around a building
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6.4 Performance of the Interface

The interface represents the usage of various software technologies, large number of 3D
objects, cartographic functionalities, and data from several energy model. Moreover,
powerful computer systems (e.g., client, server, and network) have been exploited to
load and to display the 3D objects in real time. Therefore, the performance of the
interface and its capabilities need to be tested to evaluate its performance.

Generally, three types of the testing strategies such as functional testing,
non-functional testing and acceptance testing are conducted for a web application
(Liang 2010). The functionalities listed in the earlier section are forms of functional
testing. The non-functional testing includes the usage of memory space in the
browser, the time required to load the data on the interface and the frames per
second (FPS) value of the renderer measure the performance of this interface
(Table 2). This test is particularly of interest when developing an interface for
displaying buildings as it sets the threshold of how many 3D objects can be

Table 2 Comparison of the performance of the interface in standard browsers

Browser With 1874 building parts With 14,000 building parts

Memory (MB) FPS Memory (MB) FPS

Chrome *200 35–45 *400 7

Firefox *240 57–60 _*940 3

Safari *273 25–40 *1.73 9–15

Internet explorer *350 24–38 *960 6–10

Benchmark was run a regular laptop, running Windows 7 64bit (Core I5-4310U, 8 GB DDR3
Ram, Samsung PM851 256 GB SSD, Intel HD 4400 graphics)

Fig. 9 Visualization of energy modelling results in charts and colour codes
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displayed simultaneously in the interface. Furthermore, the acceptance or bench-
marking tests defines target level scales for visualization of 3D as well as 2D data.
A comparative assessment of the performance of the interface with varying number
of building parts are performed. The memory and FPS required by some standard
browsers are displayed in Table 2. It is important to note that the FPS are monitored
by the Three.js library’s stats object when one or more datasets of buildings are
loaded on to the interface.

Googles’ Chrome browser provides the best support for visualisation with higher
FPS and lower memory because of its compatibility with the WebGL, compared to
the Firefox and Safari browsers. Internet Explorer browser indicated difficulty to
run the interface because of its limited compatibility with WebGL. However, it
indicates better FPS after implementing the Detector.js object which is provided by
the Three.js library. This object identifies whether the web browser is able to run
WebGL and in case of its absence, THREE.CanvasRenderer is used, however,
results are then displayed in lower graphics quality. The performance assessment
helps to identify the best suitable browser and the limited capability of certain
browsers, ascertains the optimal number of buildings or parts to be displayed.

7 Discussion of Results and Future Direction

The process of developing the 3D web mapping interface led to the identification
and explanation of different resources, technologies, data exchange formats,
libraries, and APIs. Moreover, during different implementation stages, the potential,
limitations and opportunities in the field of current 3D web mapping technologies
are explored systematically. From these experiences, cartographers and GIScientists
could gain a comprehensive overview of current web mapping technologies as well
as gain lessons to implement similar application.

Along with the visualization of basic 3D data, several functionalities, such as
buffer analysis, and classification of data are integrated into the interface. The
suitability of the interface has been demonstrated by integrating several energy
research related case studies such as 3D solar potential assessment and visualization
of the energy consumption per building. Finally, a comparative assessment on the
performance of the interface has been tested in several web browsers. The interface
would allow users and energy policy makers not only to visualize different data and
modelling results but also enable to use the interface as a tool for analytical and
explorative purposes. As the developed open-source data infrastructure of the
interface allows flexibility for extensions, other models and simulation such as
results from urban simulation or environmental modelling could be shown in the
interface.

It is observed that the developed interface for the LOD1 building model, though
functional and adequate in certain application areas, demonstrated that the depiction
of the real-world on a computer screen is a tedious process and leaves opportunities
for further research and enhancement. For instance, improvements in computing
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power such as computer graphics to handle the implementation of textures as well
as standardization (OGC and W3C) to obtain building height information are
especially subject to further development. While new implementations in 3D web
mapping such as cesium.js has seen an increase in performance for visualizing 3D
objects in a higher resolution than LoD2, WebGL is still reliant on the performance
of the client side computer system. To overcome this major bottleneck some 3D
web mapping services that do visualized high detailed and textured spatial data,
such as CyperCity3D10 are based on streaming services. Thereby, the rendering of
all 3D objects is done on the server side and content is streamed to the client.
However, the interactive remote visualization of 3D graphic data in a web browser
remains a challenging issue due to latency (data volume) and the adoption of
heterogeneous networks (Lavoué et al. 2013).

Moreover, the lack of standardization in data models and data-exchange was a
major obstacle in this development process. For example, the user must know how
data is structured if the data source is unknown. It was observed during the retrieval
of data for the chart (Fig. 9) that the SQL query contained the exact field names of
calculated energy modelling related output attributes. This will not be an issue if a
standardized naming convention such as conventions from the INSPIRE initiative
or the CityGML Application Domain Extension (ADE) Energy is followed for the
attributes of a building. Furthermore, data formats and tools have to be constantly
modified to suit changing technology. For example, O3D11 is a free API for gen-
erating 3D graphics built basically as a plug-in for desktop and web browsers.
Recently, this API was re-built to suit the growing interest in WebGL. It is the same
case with X3D12 which is an open standard for 3D graphics. X3D files can be
incorporated into web pages by Applets which is a type of plug-in. Due to WebGL,
a X3DOM13 JavaScript library was developed to include 3D graphics without
plug-in. These changes are however reasonable considering that most of the APIs
were built predominantly for gaming or CAD applications and not necessarily for
geographic data.

Open standards do exist for 2D geographical data services such as WFS and
WMS where the request for information is returned in formats such as GML, SVG
and images, respectively. However, such standards for 3D geodata (e.g., W3DS,
Web 3D service) are still in a draft versions and need to be further defined. W3DS
will however, be the standard portrayal service for 3D geodata such as landscape
models, city models, textured building models, vegetation objects, and street fur-
niture (Open Geospatial Consortium 2010).

The variety of data sources and in particular the storage of this data for 3D
visualization showed that the adoption of open-standards is a promising solution to
interoperability, scalability and to harvest the maximum benefit from a 3D

10http://www.cybercity3d.com/#!streaming/r2pa2.
11https://code.google.com/p/o3d/.
12http://www.web3d.org/x3d/what-x3d.
13http://x3dom.org/.
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web-based GIS interface not only for data models (e.g. CityGML and X3D) but
also for data distribution services such as W3DS across different platforms and
visualization (WebGL).

Future enhancements of this interface will include further cartographic func-
tionalities such as integration of map tiles from 2Dmapping services such as OSM or
other topographic map providers, integration of a Digital Elevation Model
(DEM) for terrain visualization and incorporation of textures as well as shading of
buildings. Furthermore, at the time of the development of this interface, libraries
such as Cesium.js weren’t fully available to use and future development should be
focused in incorporating these recent technologies. In addition further benchmarking
will be undertaken with a focus on user experience such as browsing (panning) of 3D
models as well as a comparison of the performance of different implementation
strategies such as the usage of different open-source APIs versus proprietary plug-in
based approaches by using the same 3D data set and spatial extent.
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