
Towards a Typification of Software Ecosystems

Jens Knodel1(�) and Konstantinos Manikas2

1 Fraunhofer Institute for Experimental Software Engineering (IESE),
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

jens.knodel@iese.fraunhofer.de
2 Department of Computer Science (DIKU),

University of Copenhagen, Copenhagen, Denmark
kmanikas@di.ku.dk

Abstract. Traditionally, software engineering has been dominated by
stand-alone development organizations and collaborations between con-
tractors, integrators and suppliers. In the last decade, the notion of soft-
ware ecosystems has been established as a new paradigm in software
engineering. In its essence it proposes participative engineering across
independent development organizations centered on a common technol-
ogy.

This paper reviews the current state-of-the-art and presents a first step
towards a typification of successful software ecosystems. We discuss key
characteristic of the ecosystem types and present a set of example cases.
The characterization reviews and consolidates existing research and dis-
cusses variations within the key building block of a software ecosystem.
It further enables sharpening the borders of what an ecosystem is (and
what not) and how the individual types can be differentiated. Thus, this
paper contributes to widening the understanding of software ecosystems
and serves to prepare a software ecosystem taxonomy.

Keywords: Software ecosystems · Software engineering · Ecosystem
types · Ecosystem taxonomy

1 Introduction

Software systems have been traditionally developed by a single organization in
isolation and within a collaboration of several organizations, whereby one or-
ganization subcontracted other suppliers to deliver parts of or whole software
systems according to some kind of specification. Today, we can observe an in-
creasing number of software systems that strongly gain value by contributions
added by other organizations - without being bound to contracted specification
of what to deliver at what point in time. Prominent examples of such so-called
software ecosystems (SECOs) are for instance, Eclipse an open platform with
plugins for all kinds of purposes or mobile device platforms like iOS or Android
which are enriched by millions of apps.

The term software ecosystem was first coined more than a decade ago [1].
The research community has been successful in scattering various definitions

c© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 60–65, 2015.
DOI: 10.1007/978-3-319-19593-3_5



Towards a Typification of Software Ecosystems 61

of software ecosystems1 since then. Those partially overlapping definitions de-
fine the space and the borders of the current shared understanding of software
ecosystems in the research community.

In this paper, we argue for a having wider understanding on the range of ex-
isting kinds of software ecosystems. We derive our observations from ecosystems
in operation (either by analysis of open, active ecosystems or of closed ecosystem
where we had insights due to collaborations with industrial partners). We distill
the key building blocks of software ecosystems observed and provide a first set
of ecosystem types. By this we aim at paving the way towards an ecosystem
taxonomy in order to enable a better understanding of ecosystems in general
and its research challenges and implication in particular.

2 Setting the Scene

The work by Manikas and Hansen [7] analyzed the definitions in the litera-
ture (published until 2012). They propose a definition of software ecosystems
by analyzing the existing definitions and identify three main elements that form
software ecosystems: (i) common software and (a) technological platform(s), (ii)
business or interests, and (iii) connecting relationships or interaction. However,
today there exists a number of examples of ecosystems that fail that definition,
as much as several of the alternatives definitions for software ecosystems, because
although they demonstrate actor interaction that results in software solutions
or services, they are not structured on top of a common platform. Examples
of such types of ecosystems emerged around OSGi, Open Design Alliance, or
BitTorrent.

The lack of technological platform in ecosystems has been recognized as well
by Jansen and Cusumano in their survey on software ecosystems [8] where they
identify that a type of “underpinning technology” for software ecosystems can
also be a standard apart from a (service) platform. Similarly, Manikas and
Hansen [9], examine the Danish telemedicine ecosystem as a software ecosys-
tem although the lack of a common technological platform identifying that the
ecosystem under study demonstrates symbiotic relationships in actor and soft-
ware level, motivated by a set of business models, and resulting in software prod-
ucts or services. Knodel et al. [10] report on an example of smart ecosystems
in the agricultural domain based on a standard without a common platform.
Thus, the concept of software ecosystems is evolving and we perceive the need
to redefine the borders of software ecosystems. In this study we focus mainly
on the common software (in particular the common technological platform) and
reveal that there are different types of software ecosystems that do not neces-
sarily include a common platform (at least in the traditional sense of a software
platform).

1 For instance, [2,3,4,5,6,7], please note that the list is not complete.



62 J. Knodel and K. Manikas

3 Ecosystem Building Blocks

We propose the meta-model of generic ecosystem building blocks depicted in Fig.
1 as the basis of our subsequent analysis of ecosystem types. The meta-model
has been derived on the one hand from the analysis of existing literature and on
the other hand from observations made in software ecosystems in practice. The
building blocks are the following:

Fig. 1. Metamodel of ecosystem building blocks

– Actor: Ecosystems are driven by multiple actors interacting directly or indi-
rectly with each other in collaborative or competitive nature. Actors provide
a contribution to the ecosystem thus, the union of all contributions consti-
tutes the moving target “ecosystem continuum”. The number of actors is
directly dependent on how open the ecosystem is to new actors, i.e. the en-
try barriers to the ecosystem. Typical instances of actors of an ecosystem
may be individuals (developers, contributors, users, customer), commercial
organizations, governmental entities, non-profit associations, and social com-
munities.

– Incentive: Actors pursue some kind of incentive, which motivates their par-
ticipation in the ecosystem. Typical instances comprise personal or busi-
ness interest, fame, legal or standard regulations, legal or commercial forces,
shared market needs or requirements.

– Common Technology: Ecosystems emerge around a shared technology.
Instances of this technical linchpin can be twofold: (1) at engineering time
(e.g., infrastructure, IDEs, SDKs, APIs, or standards) or (2) at execution
time while the ecosystem is in operation (RTEs, platforms, frameworks, or
protocols).

– Contribution: Actors provide contributions (with the linchpin being a spe-
cial contribution as it is the key enabler of the ecosystem). Typical contri-
bution may be software (functionality in form of apps, software service, or



Towards a Typification of Software Ecosystems 63

stand-alone solutions; data in its raw form, aggregations, or context infor-
mation) or services (management, integration, customization, etc.).

– Environment: The environment of the software ecosystem can be physical
(interacting with the real world) or digital (IT only). It sets constraints for
the software it is operating. Constraints may be imposed by special hardware,
physical laws, social rules, or legal policies.

4 Analysis of Ecosystem Types

In this section we present different types of software ecosystems identified while
discuss their characteristics according to the software ecosystem building blocks.

– Cornerstone Ecosystems

Cornerstones are the more “traditional” types of software ecosystems: ac-
tors develop contributions on top of a common software platform typically
extending the platform’s functionality. Thus the existence of a technological
platform is of central importance for the ecosystem of this type. The lit-
erature provides a number of examples of ecosystems of this kind like the
iPhone AppStore, Android, or Eclipse. Cornerstone ecosystems and different
perspectives of ecosystems of this type have been in focus of the research so
far.

– Standard-based Ecosystems

Compliance to standards is the key requirement for contribution in this kind
of ecosystem. The standards replace a common technological platform and
provide rather a specification of desired and required behavior of contri-
butions, independent from their concrete realization as long as compliant.
Standard-based ecosystem was initially proposed by Jansen and Cusumano
[8]. Ecosystem standards usually are maintained and evolved organized by
consortia with (paid) memberships. Standards often define rules to guaran-
tee certain non-functional properties across individual contributions (e.g.,
safety in the ISOBUS standard in agricultural domain).

– Protocol-based Ecosystems

Protocols are a less restrictive and more flexible technical linchpin of ecosys-
tems. They provide a predefined specification of interaction of contributions
with each other (e.g., exchange of data, call of software services).

– Infrastructure-based Ecosystems

Infrastructure-based ecosystems share the same technical environment or
tools at development time, but at the same time they provide independent
contribution (e.g., Gnome, Github). The interactions between actors across
individual contributions are often on a social level. Contributors themselves
share their output and dedicate their efforts towards more than just one
contributions (e.g., see [6] or [11]).



64 J. Knodel and K. Manikas

Table 1. Analysis of software ecosystem types

Category Cornerstone Standard Protocol Infrastructure

Emergence successful product
or actor(s)

specifications need for use successful product

Leadership often run by single
organization

often run by consor-
tia

often run by commu-
nity or organization

often run by (open
source) community
or company

Structure (Exe-
cution)

centralized, close
collaboration, plat-
form provides for
governance, com-
mon technology
part of the product

high level of actor
& product indepen-
dence, commitment
to specific version

actor & product in-
dependence

different products,
common technology
not part of the
product

Structure (Engi-
neering)

cornerstone SDK
shared across all
actors

specification shared
across all actors

API shared across
all actors

common technology
shared across all ac-
tors

Governance
(common tech-
nology)

monarchic or aris-
tocratic decisions
about products (few
decide, others have
to follow)

federal decisions
(no one can’t do
anything without
shared agreement of
all (key) parties)

democratic decisions
(anyone can do any-
thing, as long as the
majority agrees

monarchic, demo-
cratic, or federal
decisions about
shared infrastruc-
ture

Governance
(contribution)

obey the integrator
(threat of being
overruled)

stick to the rules follow the guidelines freedom of choice
(anything possible)

Changeability
(common tech-
nology)

orchestration depen-
dent

slow, common agree-
ment, backwards
compatible

slow, common agree-
ment, backwards
compatible

orchestration depen-
dent

Change Adop-
tion (contribu-
tion)

orchestration depen-
dent

painless (as long
compliant)

painless (as long
compliant)

independent of com-
mon technology

5 Discussion

The four types of software ecosystems are our starting point towards a typifica-
tion of software ecosystems. In Table 1 we present the initial results on analyzing
the major differences among the four types. In future work we aim at formaliz-
ing and extending the analysis and as well as adding a comparison to classical
software product development outside an ecosystem.

We believe that the typification of software ecosystems must consider two dis-
tinct viewpoints: engineering and execution. Depending on its type, ecosystem
expose different characteristics in their structure, governance, and the adop-
tion of changes. Further, the leadership and emergence are key differentiators
of ecosystem types. Based on these findings we argue that software ecosystem
research has to adopt a broader view. In particular, the commonalities and spe-
cialties of each type should be analyzed to push software ecosystem research
forward.

Goal of our future work is to come up with a well-defined taxonomy of soft-
ware ecosystems and their characteristics. The taxonomy shall serve to guide
researchers to focus on open challenges on the one hand and practitioners to
learn from typical patterns and anti-patterns when participating in a software
ecosystem on the other.



Towards a Typification of Software Ecosystems 65

References

1. Messerschmitt, D., Szyperski, C.: Software ecosystem: understanding an indispens-
able technology and industry. MIT Press Books 1 (2003)

2. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 31st International Conference on Software En-
gineering - Companion, ICSE-Companion 2009, vol. 2009, pp. 187–190 (May 2009)

3. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference, SPLC 2009, Pittsburgh,
PA, USA, pp. 111–119. Carnegie Mellon University (2009)

4. Bosch, J., Bosch-Sijtsema, P.M.: Softwares product lines, global development and
ecosystems: Collaboration in software engineering. In: Mistrik, I., van der Hoek, A.,
Grundy, J., Whitehead, J. (eds.) Collaborative Software Engineering, pp. 77–92.
Springer, Heidelberg (2010), doi: 10.1007/978-3-642-10294-3 4

5. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems and
Software 83(1), 67–76 (2010)

6. Lungu, M., Lanza, M., Ĝırba, T., Robbes, R.: The small project observatory:
Visualizing software ecosystems. Science of Computer Programming 75(4),
264–275 (2010); Experimental Software and Toolkits (EST 3): A special issue of the
Workshop on Academic Software Development Tools and Techniques (WASDeTT
2008)

7. Manikas, K., Hansen, K.M.: Software ecosystems – A systematic literature review.
Journal of Systems and Software 86(5), 1294–1306 (2013)

8. Jansen, S., Cusumano, M.A.: Software ecosystems – analyzing and managing busi-
ness netowrks in the software industry. In: Jansen, S., Brinkkemper, S., Cusumano,
M.A. (eds.) Software Ecosystems – Analyzing and Managing Business Netowrks in
the Software Industry, pp. 13–28. Edward Elgar, Cheltenham (2013)

9. Manikas, K., Hansen, K.M.: Characterizing the danish telemedicine ecosystem:
Making sense of actor relationships. In: Proceedings of the Fifth International
Conference on Management of Emergent Digital EcoSystems, MEDES 2013,
pp. 211–218 (2013)

10. Knodel, J., Naab, M., Rost, D.: Supporting architects in mastering the complexity
of open software ecosystems. In: Proceedings of the 2014 European Conference on
Software Architecture Workshops, ECSAW 2014, pp. 1–13. ACM, New York (2014)

11. Mens, M.G.T., Goeminne, M.: Analysing ecosystems for open source software
developer communities. Software Ecosystems: Analyzing and Managing Business
Networks in the Software Industry. Edward Elgar (2013)


	Towards a Typification of Software Ecosystems
	1 Introduction
	2 Setting the Scene
	3 Ecosystem Building Blocks
	4 Analysis of Ecosystem Types
	5 Discussion




