
 123

LN
BI

P
21

0

6th International Conference, ICSOB 2015
Braga, Portugal, June 10–12, 2015
Proceedings

Software Business

João M. Fernandes
Ricardo J. Machado
Krzysztof Wnuk (Eds.)

Lecture Notes
in Business Information Processing 210

Series Editors

Wil van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Povo, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

João M. Fernandes · Ricardo J. Machado
Krzysztof Wnuk (Eds.)

Software Business
6th International Conference, ICSOB 2015
Braga, Portugal, June 10–12, 2015
Proceedings

ABC

Editors
João M. Fernandes
University of Minho
Braga
Portugal

Ricardo J. Machado
University of Minho
Guimarães
Portugal

Krzysztof Wnuk
Blekinge Institute of Technology
Karlskrona
Sweden

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-19592-6 ISBN 978-3-319-19593-3 (eBook)
DOI 10.1007/978-3-319-19593-3

Library of Congress Control Number: 2015940442

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions
that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Welcome to the proceedings of the 6th International Conference on Software Business!
Universidade do Minho (UMinho) hosted the 6th International Conference on Soft-

ware Business (ICSOB 2015) held during June 10–12, 2015, in Braga, Portugal. Founded
in 1973, UMinho is currently among the most prestigious institutions of higher educa-
tion in Portugal, and it has also gradually come to assert itself on the international scene.
The recent Times Higher Education Ranking 2013 included only two Portuguese univer-
sities, listing UMinho as one of the top 400 universities in the world. The Times Higher
Education 100 under 50 years University Ranking 2015 ranked UMinho in 64th position
worldwide. UMinho is also the best Portuguese university in the CWTS Leiden Ranking
2014.

Minho is a former province of Portugal with its capital in the city of Braga and 23
municipalities. The area included the districts of Braga and Viana do Castelo. Minho
has substantial Celtic influences and shares many cultural traits with the neighboring
Galicia in Spain. The region was a part of the Roman Province and early medieval
Kingdom of Gallaecia. Historical remains of Celtic Minho include Briteiros Iron Age
Hillfort, the largest Gallaecian native stronghold in the Entre Douro e Minho region, in
north Portugal.

Braga is considered the oldest Christian archdiocese in the country and one of the
oldest in the world. Under the Roman Empire, known as Bracara Augusta, the settle-
ment was the center of the province of Gallaecia. Guimarães, located in the district of
Braga, is one of the country’s most important historical cities and is often referred to as
the “birthplace of the Portuguese nationality” or “the cradle city.” Its historical center
is a UNESCO World Heritage Site, making it one of the largest tourist centers in the
region.

ICSOB was first launched in 2010 to address contemporary issues emerging in the
intersection of software and business domains and to bring together researchers inter-
ested in the software industry, with a specific focus on the business of software. Since
then, ICSOB has been established as a series of annual conferences. Previous confer-
ences were held in Boston (USA), Brussels (Belgium), Jyvaskyla (Finland), Paphos
(Cyprus), and Potsdam (Germany).

This year, we selected as the conference theme “Enterprising Cities” to focus on a no-
ticeable spillover of software within other industries (e.g., manufacturing, entertainment
industry) enabling new business models: Companies bundle their physical products and
software services into solutions (e.g., using subscription models or in-app purchases)
and start to sell independent software products in addition to physical products.

Software business carries many inherent features with other international knowledge-
intensive businesses making it a challenging domain for research. In particular, software
companies have to depend on one another to deliver a unique value proposition to their
customers or a unique experience to their users. This year, the conference attracted re-
searchers and practitioners who are concerned with software business in different ways

VI Preface

as well as the start-up community, which is increasingly focusing on mobile and social
software. The main theme of 2015 focused on addressing the challenges that modern
cities face regarding the innovative software products and services.

This year’s two exciting keynotes spanned both the reach and the new developments
in the software business economy:

– “One Size Does NOT Fit All – Software Product Management for Speedboats vs.
Cruise Ships,” by Hans-Bernd Kittlaus, InnoTivum Consulting, Germany

– “Trends and Lookout of the Automotive Software Industries,” by Christoph Gaertner,
Bosch Car Multimedia Portugal

The conference received 42 submissions. Each submission was reviewed by at least
two, typically three, Program Committee members. The committee decided to accept
16 full, five short, and three doctoral symposium papers. For full papers, this gives
an acceptance rate of 38%. The accepted papers follow various methodologies, and
represent the diversity in research in our community.

The papers span a wide range of issues related to contemporary software
business-from strategic aspects that include external reuse, ecosystem participation, and
acquisitions to operational challenges associated with running software business, e.g.,
the effects of workaround, communication in global software development, or business
modeling and experimentation. The strong presence of software ecosystem papers con-
firms its importance and influence on software business. At the same time, we observed
interesting emerging topics, e.g., open innovation as a form of leveraging external in-
novation sources, continuous customer validation, and the usage of customer feedback
data. Finally, (Lean) start-up and innovation also appeared among the topics for this
year’s program. We arranged the program into eight sessions that together provided a
good insight into current software business research. The industry papers are included
at the end of the proceedings.

We acknowledge the following institutions for the support, sponsoring, and coop-
eration they kindly established with ICSOB 2015: Universidade do Minho, Blekinge
Institute of Technology, InvestBraga, Startup Braga, ISPMA, and Young Minho Enter-
prise. Last, but not the least, we also want to show appreciation for the work of those
who created and maintain the EasyChair conference system. It has definitely eased our
work.

We would like to extend our warm thank you to the members of the Program Com-
mittee, who did a fantastic job in reviewing the papers, ensuring the quality of the
conference, as well to the local organization team, whose engagement was essential in
making this event a special experience. Furthermore, we extend our heartfelt thanks to
Anna-Lena Lamprecht from the University of Potsdam and Tobias Tauterat from the
University of Stuttgart for managing the ICSOB 2015 Doctoral Consortium.

We sincerely trust that your participation in the ICSOB 2015 conference was a re-
warding experience.

April 2015 João M. Fernandes
Krzysztof Wnuk

Ricardo J. Machado

Organization

General Chair

João M. Fernandes University of Minho, Portugal

Program Chairs

Ricardo J. Machado University of Minho, Portugal
Krzysztof Wnuk Blekinge Institute of Technology, Sweden

Program Committee

Sergey Avdoshin Higher School of Economics, Russia
Richard Berntsson Svenson Chalmers University of Technology and University

of Gothenburg, Sweden
Jan Bosch Chalmers University of Technology, Sweden
Sjaak Brinkkemper Utrecht University, The Netherlands
David Callele University of Saskatchewan, Canada
Michael Cusumano MIT, USA
Torgeir Dingsøyr SINTEF, Norway
Samuel Fricker Blekinge Institute of Technology, Sweden
Georg Herzwurm University of Stuttgart, Germany
Thomas Hess LMU Munich, Germany
Slinger Jansen Utrecht University, The Netherlands
Thomas Kude University of Mannheim, Germany
Olli Kuivalainen Lappeenranta University of Technology, Finland
Stig Larsson SICS, Sweden
Casper Lassenius Aalto University, Finland
Ulrike Lechner Universität der Bundeswehr München, Germany
Andrey Maglyas Lappeenranta University of Technology, Finland
Konstantinos Manikas University of Copenhagen, Denmark
Tiziana Margaria University of Limerick and Lero, Ireland
John McGregor Clemson University, USA
Rory O’Connor Dublin City University, Ireland
Samuli Pekkola Tampere University of Technology, Finland
Wolfram Pietsch FH Aachen, Germany
Maryam Razavian VU Amsterdam, The Netherlands

VIII Organization

Björn Regnell Lund University, Sweden
Dirk Riehle Friedrich-Alexander University, Germany
Matti Rossi Aalto University, Finland
Gunter Ruhe University of Calgary, Canada
Kari Smolander Lappeenranta University of Technology, Finland
Pasi Tyrväinen University of Jyväskylä, Finland
Krzysztof Wnuk Blekinge Institute of Technology, Sweden
Donald Wynn University of Dayton, USA

Steering Committee

Jan Bosch Chalmers University of Technology, Sweden
Sjaak Brinkkemper Utrecht University, The Netherlands
João M. Fernandes University of Minho, Portugal
Georg Herzwurm University of Stuttgart, Germany
Slinger Jansen Utrecht University, The Netherlands (Chair)
Casper Lassenius Aalto University, Finland
Eetu Luoma Jyväskylä University, Finland (Chair)
Ricardo J. Machado University of Minho, Portugal
Tiziana Margaria University of Limerick and Lero, Ireland
Björn Regnell Lund University, Sweden
Kari Smolander Lappeenranta University of Technology, Finland
Pasi Tyrväinen Jyväskylä University, Finland
Krzysztof Wnuk Blekinge Institute of Technology, Sweden

Additional Reviewers

Saskia Bick
Jens Förderer
Johan Linåker
Paula Monteiro
Maleknaz Nayebi
Maike Winkler

Keynotes

Trends and Lookout of the Automotive Software
Industries

Christoph Gaertner

Software Development Department for Bosch in Braga, Portugal

Abstract. Modern low-end cars have embedded more than 30 to 50 so-called
Electronic Control Units (ECUs), featuring around 50 million lines of code (LOC).
At commercial rate, it represents $1,500 Mio (1.5 billion/milliard). However,
a modern high-end car features around 100 million LOC, and this number is
planned to grow to 200–300 millions in the near future. As a comparison, a F-22
fighter jet features less than 2 million LOC and a Boeing 787 around 14 mil-
lion LOC. This presentation focuses on the Automotive Software Development
market, the value chain in this market, and how to be part of it. Upcoming new
trends as autonomous driving and the car as part of the Internet of Things lead the
future automotive software development. Software engineers play an important
role in the automotive industry to build up more sophisticated and added-value
technology. I will talk about the balance act between being predictable by using
processes conform to ASPICE and the need to be cost efficient and agile in the
fast changing environment pushed by the influence of Consumer Electronic and
Internet Services. I will be discussing the AUTOSAR approach as the upcoming
industry standard in this business area, mentioning safety requirements and the
ISO 26262. This talk will be interesting to professionals and students who intend
to understand and know more about Automotive Software, and to clarify concepts
of the car industries.

Christoph Gaertner is responsible for building up a Software Development Depart-
ment for Bosch in Braga. He is working for Bosch since 2008 and before coming to
Portugal he was a section head at Bosch Car Multimedia in Leonberg developing aug-
mented reality solutions for the car driver. He was leading Software Projects for devel-
oping display based Instrument Cluster for a German premium car brand. He was an
Software Developer and Architect for Head-Unit System at Harman Becker.

He started his career in a consultancy company during the new economy hype end
of the 90ies where he already researched and developed smart appliances for the con-
nected home. He has a Diploma in software engineering from the University of applied
sciences Esslingen, Germany.

One Size Does Not Fit All: Software Product Management
For Speedboats vs. Cruiseships

Hans-Bernd Kittlaus

InnoTivum Consulting
Im Sand 86, 53619 Rheinbreitbach, Germany

hbk@innotivum.com

Abstract. A product manager responsible for an established licensed software
product that is used by hundreds or thousands of enterprise customers in regu-
lated industries feels hopelessly old-fashioned when she listens to a Silicon Val-
ley consultant talking about his latest experiences. Multiple releases per day?
“Very funny! We are happy if our customers install one release per year.” So there
is certainly business justification for different scenarios. Which scenarios do we
need to consider? Which factors influence the way SPM needs to be implemented
and applied so much that they define the scenarios? Which SPM approaches and
methods fit which scenario best? The presentation will provide a taxonomy of rel-
evant scenarios with their defining characteristics and suggest appropriate SPM
approaches for the scenarios based on practical experience in different customer
environments.

Keywords: Software product management · Software product scenarios

Hans-Bernd Kittlaus is the owner and CEO of InnoTivum Consulting
(www.innotivum.com) which he founded in 2001. Before he was Director of SIZ GmbH
(Computing Center of the German Savings Banks Organization, Germany) and Head
of Software Product Management and Development units of IBM. His main focus area
is software product management. Hans-Bernd has been working as a trainer, coach and
consultant for both corporate IT organizations and companies in the IT industry. He has
published numerous books and articles, his latest being “Software Product Manage-
ment and Pricing” [1]. He is Diplom-Informatiker (corresponds to M.S. in Computer
Science) and certified as ISPMA Certified Software Product Manager, Certified Scrum
Product Owner (CSPO), and PRINCE2 Practitioner. He is a member of ACM (Associ-
ation for Computing Machinery, USA), GI (Gesellschaft für Informatik, Germany) and
board member of ISPMA (International Software Product Management Association).

Over the last ten years, the software industry has seen an increasing heterogeneity
in a large spectrum of aspects, from hardware and software platforms through develop-
ment methodologies to business models. This makes life more difficult for everybody,
be it customers, vendors, researchers or consultants. It does not mean that proven meth-
ods and techniques do not work anymore, but we need new approaches for the classi-
fication of scenarios and we need to study the applicability of methods and techniques
in these scenarios. This talk is focussed on software product management (SPM) and

Software Product Management For Speedboats vs. Cruiseships XIII

is intended as food for thought by providing some ideas based on extensive consulting
and training experience with a large number of different companies.

New Product
Revolution

Existing Product
Evolution

Vendor-Controlled Powerboat Speedboat

Customer-Controlled Icebreaker Cruiseship

Life Cycle Phase

R
un

tim
e

En
vi

ro
nm

en
t

Software Product Scenarios

Fig. 1. Software Product Scenarios

Fig. 1 suggests a classification by using two types of runtime environments and
two life cycle phases. Vendor-controlled means that the software vendor decides which
changes are made when in the runtime environment. This is typical for rather unregu-
lated environments like B2C internet platforms and SaaS or B2C license products that
offer automated maintenance over the internet. In this scenario continuous agile de-
velopment has become a de-facto standard, usually at a high frequency of incremental
small releases, and often without a traditional project management structure. Trial-and-
error approaches, known as customer discovery, are common.

If customers want to be in charge of the runtime environment, often for quality
and/or regulatory concerns, we use the term customer-controlled. This is typical for a
lot of B2B software license products, and also for software provided by corporate IT
organizations. In this scenario, a broad range of development methodologies continue to
be in use, from waterfall through iterative to agile, usually combined with a traditional
project management structure. Releases tend to be bigger and less frequent.

It also makes a difference whether we consider the initial development of a new
product or the evolutionary development of a product that already exists and has cus-
tomers. With new product development, there is a high level of uncertainty and risk,
and the focus is on releasing a minimum viable product as fast as possible. Once the
product is rolled out, the focus shifts to extending the product scope and target market
while compatibility and migration aspects become relevant. In this paper, we do not
consider later phases of the life cycle.

Combining these two classification criteria leads to four scenarios that we can now
analyze from a software product management perspective:

Powerboat: SPM is focused on defining the minimum viable product for the first cus-
tomers. This requires a close link with development, often by assuming the product
owner role (in Scrum terminology), and extensive prototyping. In parallel SPM needs
to work on positioning and pricing with Marketing. Investments need to be justified

XIV H.-B. Kittlaus

based on a more strategic perspective, i.e. business model (one-page canvas), business
plan (aggressive), product vision (aggressive), product strategy (very high-level), and
roadmap (high-level). Release planning is not applicable, requirements engineering is
more experimental than analytical.

Speedboat: SPM is focused on extending the product scope and thereby increasing the
target market. This requires ongoing analysis of the actual usage of the product, of the
market and competition. Depending on the organization’s size, SPM and product owner
roles may be separated, but closely linked. Product strategy and roadmapping become
more important in combination with life cycle management. Release planning continues
not to be applicable, requirements engineering is a mix of analysis and experimentation
through customer discovery. If the organization does not implement some governance
functions like Architecture things can become messy very quickly. Aspects like gover-
nance, compatibility and migration tend to slow the organization down a bit compared
to the Powerboat phase.

Icebreaker: SPM is focused on defining the minimum viable product for the first cus-
tomers. This requires extensive domain analysis as a basis for requirements engineer-
ing and planning of the first release with special emphasis on regulatory requirements.
If a pilot customer is involved a major SPM task is making sure that requirements
are sufficiently generalized so that the first release does not become totally customer-
specific. The interface between SPM and Development depends on the chosen devel-
opment methodology. Product strategy and roadmap already need some focus not only
for internal investment decisions, but also since B2B customers want to understand the
longer-term perspective before they make their investment decisions.

Cruiseship: SPM is focused on extending the product scope and thereby increasing
the target market. Since customers do not want to test and install new releases often, the
frequency of releases is rather low, often one or two per year. As a consequence, the new
and changed contents of these releases is more significant and requires thorough release
planning based on analytical requirements engineering. Product strategy and roadmap
continue to be important as is life cycle management.

The increasing heterogeneity of the software industry poses challenging new oppor-
tunities for research. Do we need different criteria for defining scenarios? Do we need
to differentiate more scenarios?

References

1. Kittlaus, H.-B., Clough, P.: Software Product Management and Pricing – Key Success Fac-
tors for Software Organizations. Springer, Heidelberg (2009)

Contents

The Benefits and Consequences of Workarounds in Software
Development Projects . 1

Jesse Yli-Huumo, Andrey Maglyas, and Kari Smolander

The Relationship between Business Model Experimentation and
Technical Debt . 17

Jesse Yli-Huumo, Tommi Rissanen, Andrey Maglyas,
Kari Smolander, and Liisa-Maija Sainio

Network Analysis of Platform Ecosystems: The Case of Internet of
Things Ecosystem . 30

Teemu Toivanen, Oleksiy Mazhelis, and Eetu Luoma

Exploring Network Modelling and Strategy in the Dutch Software
Business Ecosystem . 45

Wesley Crooymans, Priyanka Pradhan, and Slinger Jansen

Towards a Typification of Software Ecosystems . 60
Jens Knodel and Konstantinos Manikas

A Survey on the Perception of Innovation in a Large Product-Focused
Software Organization . 66

Johan Lin̊aker, Husan Munir, Per Runeson, Björn Regnell,
and Claes Schrewelius

Ecosystems and Open Innovation for Embedded Systems: A Systematic
Mapping Study . 81

Efi Papatheocharous, Jesper Andersson, and Jakob Axelsson

Assessing the Value Blueprint to Support the Design of a Business
Ecosystem . 96

Luciana A. Almeida, Cleidson R.B. de Souza, Adailton M. Lima,
and Rodrigo Q. Reis

Effects of Technological Change on Acquisition Behavior: An Empirical
Analysis of Electronic Design Automation . 102

Thomas Lücking and Marcus Wagner

Hitting the Target: Practices for Moving Toward Innovation Experiment
Systems . 117

Teemu Karvonen, Lucy Ellen Lwakatare, Tanja Sauvola, Jan Bosch,
Helena Holmström Olsson, Pasi Kuvaja, and Markku Oivo

XVI Contents

Communication in Firm-Internal Global Software Development with
China . 132

Bilal Zaghloul, Dirk Riehle, and Minghui Zhou

Customer Feedback and Data Collection Techniques in Software R&D:
A Literature Review . 139

Aleksander Fabijan, Helena Holmström Olsson, and Jan Bosch

Towards Continuous Customer Validation: A Conceptual Model
for Combining Qualitative Customer Feedback with Quantitative
Customer Observation . 154

Helena Holmström Olsson and Jan Bosch

Business Model Patterns for the Connected Car and the Example of
Data Orchestrator . 167

Martin Mikusz, Christopher Jud, and Tobias Schäfer

Business Models for Platform-Based Digital Services: Stakeholder
Expectations . 174

Christopher Jud

Development of a Method for the Economic Evaluation of Predictive
Maintenance . 179

Tobias Tauterat

Towards Standardization of Custom Projects via Project Profile
Matching . 186

Axel Hessenkämper and Barbara Steffen

To Develop or to Reuse? Two Perspectives on External Reuse in
Software Projects . 192

Anisa Stefi and Thomas Hess

Internationalization and Export of Software Products 207
Maarten Huijs, Slinger Jansen, and Sjaak Brinkkemper

Acquisition of Software Firms: A Survival Analysis 223
Marcus Wagner

Lean Software Startup – An Experience Report from an Entrepreneurial
Software Business Course . 230

Antero Järvi, Ville Taajamaa, and Sami Hyrynsalmi

Software Engineering Knowledge Areas in Startup Companies:
A Mapping Study . 245

Eriks Klotins, Michael Unterkalmsteiner, and Tony Gorschek

Value Creation in SaaS Development . 258
Ivan Aaen and Nikolai Gjerløff

Contents XVII

Wealthy, Healthy and/or Happy — What does ‘Ecosystem Health’
Stand for? . 272

Sami Hyrynsalmi, Marko Seppänen, Tiina Nokkala, Arho Suominen,
and Antero Järvi

Author Index . 289

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 1–16, 2015.
DOI: 10.1007/978-3-319-19593-3_1

The Benefits and Consequences of Workarounds
in Software Development Projects

Jesse Yli-Huumo(), Andrey Maglyas, and Kari Smolander

School of Business and Management, Innovation and Software,
Lappeenranta University of Technology, Lappeenranta, Finland

{jesse.yli-huumo,andrey.maglyas,kari.smolander}@lut.fi

Abstract. Workarounds have existed in software from the very beginning. Be-
ing a formalized collection of knowledge rather than a physical artifact, soft-
ware allows shortcuts in its development process. The shortcuts serve various
purposes, like releasing a product to the market faster or postponing the solu-
tion of a problem. In this article, we present the findings of an investigation of
workarounds in two software companies. Our analysis reveals that the decisions
to take a workaround to resolve a technical issue are often intentional and
forced by time-to-market requirements. However, the stakeholders are not
always familiar with the negative consequences of taking workarounds, like
additional hours, costs, and poor quality. We argue that the decision to take a
workaround is often made by business managers who see short-term benefits
only while developers have to deal with negative consequences in long-term.

Keywords: Workarounds · Technical debt · Case study · Software development
project

1 Introduction

Starting from the release of the first software systems, the “software crisis” has been
discussed widely by researchers and practitioners [1]. Many development and process
management approaches have been developed to increase the productivity of pro-
grammers and to deliver products of higher quality to the market [2,3]. However,
software companies are still constantly looking for new competitive advantages that
would allow them to release new versions to the market faster than their competitors
[4]. In the business of software, this can be achieved sometimes by taking worka-
rounds in the development process. A workaround is a temporary solution that can be
implemented in a shorter time than a proper solution, but it can also have a negative
impact on the maintainability of the code base.

Workarounds are not specific for software business only, they have also been
widely discussed in relation to management and public administration [5]. Although
they have been applied in technological fields for a long time, workarounds have
recently become known as technical debt. The concept of technical debt was intro-
duced by Cunningham as “every minute spent on not-quite-right code counts as
interest on debt. Entire engineering organizations can be brought to a stand-still under

2 J. Yli-Huumo et al.

the debt load of an unconsolidated implementation, object-oriented or otherwise” [6].
Initially defined as related to coding, technical debt has also been extended to other
software development processes and artifacts. Therefore, it is common nowadays to
talk about quality debt, testing debt, documentation debt and other debts [7]. To avoid
misinterpretation of what technical debt is, we use the term workaround in this article
and understand it similarly to [8] as “a plan or method to circumvent a problem
without eliminating it.”

The aim of this study is to identify the benefits and consequences of taking worka-
rounds, and to discuss the observations of how the decisions to take them are made in
practice. The empirical data for the study has been collected from two case organiza-
tions. The first case is a middle-sized software development company with two sepa-
rate product lines. The second case is a large telecommunication company currently
conducting a software development project with subcontractors. To gain deeper un-
derstanding of the companies’ processes, we interviewed managers and technical
specialists, which provided us with different perspectives to the studied phenomenon.

2 Background

Alter [9] defines a workaround as a goal-driven adaptation and improvisation aiming
at minimizing negative consequences like anomalies or structural changes. Alter also
proposes four preconditions for taking a workaround. These preconditions include (1)
the existing workflow or work practice, (2) personal or organizational goal for taking
a workaround, (3) an issue that requires taking a workaround to resolve or overcome
it, and (4) skills to develop the workaround for this particular issue [9]. All these pre-
conditions are not specific for software development processes only, but can be used
to describe also structural changes in organizations. In software engineering, a more
precise definition of a workaround is given by IBM as “some action that results in
alleviating a computing or hardware problem, but which does not solve the problem”
[10]. The term workaround has been widely used in information systems research
when studying the use and development of various information systems like customer
relationship management (CRM) and medical information systems (e.g. [11,12]). In
software engineering, the term technical debt is also used to describe workarounds
and other pitfalls of software development [7]. Guo and Seaman [13] discuss tech-
nical debt from the viewpoint of the portfolio theory, and conclude that up-to-date
documentation is critical for the modules in which workarounds have been taken.
Without documentation, changes in the module may lead to taking new workarounds.
In addition, the authors confirm theoretically that several small workarounds are bet-
ter to have than a big one, because it reduces the risk of breaking the system through
diversification [13].

Since workarounds are often associated with making some changes in the code base,
they can be described as “code smells” [14]. The perceived quality of code varies a lot
among developers, and their evaluation of the code quality is subjective without uniform
criteria [14]. This has a negative effect on code maintainability, as software developers’
viewpoints on what tricks are allowed to be used in the code differ.

 The Benefits and Consequences of Workarounds 3

Tom et al. [7] describe the two primary interrelated reasons for taking workarounds
as pragmatism and prioritization. Pragmatism relates to setting goals, like releasing a
minimal viable product (MVP) to the market quickly rather than developing it until its
quality is high. Prioritization is about implementing the most critical tasks first, even
if the overall product quality remains low. In this regard, prioritization involves
pragmatism unconsciously in deciding the limitations and constraints of the project.
Since prioritization is a collaborative process that involves technical and business
people, the priorities of different parties may differ. Nagarjuna and Mamidenna [15]
have studied engineering and business students. According to their results, engineer-
ing students have a tendency to perfectionism. Although the authors studied students
only, this conclusion may also hold with real practitioners. For example, business-
minded people, e.g. managers, aim at developing a minimum viable product in a
shorter time with an appropriate level of quality, while engineers often aim at devel-
oping a cutting-edge solution [16,17].

When releasing a product to the market, a company aims at satisfying customers'
needs [18]. Therefore, the perceived product quality is essential for product success.
Dzida et al. [19] have identified seven dimensions of perceived quality as (1) self-
descriptiveness, (2) user control, (3) ease of learning, (4) problem adequate usability,
(5) correspondence with user expectations, (6) flexibility in task handling, and (7)
fault tolerance. Out of these seven dimensions, only the last is directly related to the
technical problems in the code base that could be raised because of the taken worka-
rounds. The other six dimensions are primarily associated with usability and user
experience. The perceived quality of web applications can be measured by four di-
mensions: technical adequacy, specific content, content quality, and appearance [20].
Only the first dimension of technical adequacy, which includes security, reliability
and availability can be affected directly by taking workarounds in the code base. In
both models of perceived quality, the quality of the code base itself plays only a par-
tial role in how the user perceives the product. Therefore, technical excellence is only
one dimension of how the product is perceived by customers.

Overall, the research on workarounds covers different aspects from organizational
workarounds to shortcuts in the source code. In this study we focus on the latter case
and contribute to the theory of workarounds, as e.g. Alter [9] states that workarounds
are understudied and undertheorized. In this regard, we contribute to the theory of
workarounds by providing empirical results of real practice of workarounds in the
industry. Alter’s theory of workarounds is a model consisting of seven layers: (1)
intentions, goals, interest; (2) structure; (3) perceived need for a workaround; (4)
identification of possible workarounds; (5) selection of workarounds to pursue, if any;
(6) development and execution of the workaround; and (7) consequences [9]. In this
study, we focus particularly on the first and last layers in order to understand how the
idea of taking a workaround is born and the workaround then taken, and what benefits
and consequences workarounds bring to the organization.

4 J. Yli-Huumo et al.

3 Research Methodology

Interpretive case study was selected as the research method for the study. We fol-
lowed the guidelines of Klein and Myers [21] for conducting interpretive case studies,
because the selected topic focuses on understanding of social processes and interac-
tions between development and management teams within a company that lead to
making the decision about taking a workaround. To make a valuable contribution to
theory and practice, interpretive case studies should be carried out and written up
carefully, and therefore we adopted the principles for reporting interpretive case stud-
ies presented by Walsham [22]. These principles enumerate a minimum information
required to be reported such as “details of the research sites chosen, the reasons for
this choice, the number of people interviewed, their hierarchical positions, what other
sources of data were used, and over what period the study was conducted” [22].

3.1 Case A

Company A is a middle-sized software company that offers SaaS business solutions.
It has three product lines that are managed independently. We selected two of the
product lines for this study. The first product line provides a financial management
solution as a cloud service that has more than 10 000 customers. The second product
line is a SaaS-based project management solution for multi-organization projects. The
solution is used by around 1000 companies worldwide. Both development teams use
agile methodologies and especially practices from Scrum. The development teams of
the product lines are rather small and consist of 13 and 18 employees, respectively.

3.2 Case B

Company B is a telecommunications company offering services for communication and
entertainment. The company employs around 4200 people and has about 2.3 million
customers. We chose one of the projects conducted by Company B for this study. Five
subcontractor companies have participated in this project, but the project has been mainly
developed by Company C, which is a middle-sized development company. The project
started in 2007 and is still running today. It has over one million lines of code and it has
been integrated to over 70 background systems. The goal of the project is to create a self-
service channel for customers and switch manual work to automated processes inside the
system. The organization had used Scrum during the first years of the project, but has
currently moved to the use of Kanban.

3.3 Selection of Companies, Data Collection, and Data Analysis

The selection of the companies for this study was primarily dictated by a list of part-
ners (in total 30) in a research project. Out of several potential candidates for the
study, the selected companies were chosen on the basis of various reasons. The first
reason for the selection of Case A was related to the phase of the lifecycle of

 The Benefits and Consequences of Workarounds 5

the company. Company A has been growing through mergers and acquisitions of
several smaller companies. In addition, the company itself is nowadays a part of a
larger international enterprise. Due to these mergers and acquisitions, the company
combines several product lines. We assumed that studying workarounds in the two
product lines of this company should produce insightful details of how two product
lines and teams coming from different backgrounds and cultures, but currently shar-
ing the same environment, deal with workarounds. This also allowed us to constantly
compare and cross check the information collected by interviews in two product lines.
The second reason for the selection of the company was related to the type of prod-
ucts the company develops. Both product lines are SaaS products that share such
characteristics as a common set of features for all users and short release cycles. The-
se characteristics, together with the increasing number of SaaS products attracted our
attention to their connection to taking workarounds in the development process. The
selection of case B was primarily done based on the company size and the interesting
nature of the project they were working with. We assumed that the development pro-
cesses in large organizations are more mature than in smaller organizations, and there-
fore there should be less workarounds.

In both cases we focused on understanding why workarounds had been taken and
what positive and negative effects they had. We conducted semi-structured interviews
with 17 representatives related to the cases during February-June 2014. The positions
of the interviewees are listed in Table 1. All interviews were sound-recorded and later
transcribed. The interviews lasted from 25 to 105 minutes with an average of 50
minutes.

Table 1. Roles of the interviewees

ID Company Product line Role
I1 A a Software architect
I2 A a Software designer
I3 A a Project manager
I4 A a Software test engineer
I5 A a Production director
I6 A b Software architect
I7 A b Software developer
I8 A b Product line manager
I9 A b Software test engineer
I10 A b Software architect
I11 A b Software developer
I12 A b UI designer
I13 B - Software architect
I14 B - Project owner
I15 B - Project owner
I16 C - Senior consultant
I17 C - Software architect

6 J. Yli-Huumo et al.

The data analysis was done by identifying categories related to workarounds. We used
an iterative approach of data collection and analysis, and coded the data using a proce-
dure similar to open coding in the grounded theory [23]. The interview transcripts
were read and their workaround-related parts categorized into labelled concepts. These
initial concepts guided us to an explanation of how and why workarounds are taken in
practice.

4 Findings and Results

We identified seven scenarios related to taking a workaround during software devel-
opment in the studied cases. Below, we explain the context and environment in which
the workarounds were taken with the reasons, benefits, and consequences.

4.1 Scenario 1: Upcoming Deadline

In Case B the company decided to develop a new feature to their system. The devel-
opment task was given to a team that consisted of a few junior coders only. The man-
agement asked for a preliminary timetable from the development team in order to
create a marketing campaign for the feature. The development team gave an estimate
of the development time, and the marketing team started to plan the campaign.
However, it was discovered later on that the development team had estimated the
release date wrong, and they would not be able to deliver the feature before the dead-
line. At this point the company did not have the option to postpone the release date
anymore, and they decided to implement heavy workarounds to the feature in order to
get it released in time.

“A media campaign was designed, radio commercials were starting, and commer-
cials for magazines were ordered. So at that point there were just no more options.
There would have been so much business damage to us.” – I15.

In this scenario the feature itself was not very important for the company’s overall
strategy. However, the company decided to use a workaround to reach the given deadline
in order to meet the promised release date. With taking the workaround, the company
was able to release the feature in time, and therefore damage to the company’s reputation
by releasing late was prevented. If the company had announced that the feature release
will be postponed, it could have had a significant effect on the company’s reputation and
customer satisfaction.

The workaround for releasing the feature in time had some consequences. The re-
leased feature was taken in production unfinished and unstable. The feature itself
looked the same in the user interface as it would have looked when done properly.
However, the code base was unfinished and consisted of several critical components.
This forced the company to fix and refactor the feature right after the release, which
required extra working hours and costs for the project, in order to fix critical errors
and to be able to develop the product further.

 The Benefits and Consequences of Workarounds 7

“Well, of course everything was working from the outside, but we knew that there
are scary things inside. However, we appointed developers immediately to fix them
after the release.” – I15.

4.2 Scenario 2: Complex Part of the Code Base

In case A (product line a), the software designer described a scenario that often re-
quired a workaround during the development. He explained a situation where fixing a
feature demanded a lot of time due to the complexity of the code base. The complexi-
ty of the code base meant that some parts of the features were developed with bad
solutions and architecture. Therefore, refactoring them was challenging and risky.
Since the deadlines were strict, there was not enough time to analyze the whole code
base. This was the reason why it was faster just to implement a simple workaround
instead of fixing the bigger problem of the feature. Also the risk that the code base
might not work anymore due to changes in a complex part of the code base was seen
as a reason why it was safer to implement a workaround.

“Yeah, we often have to do some kind of a fix because it is complex and we can’t
go any further. So we need to release a hotfix pretty soon and we don’t have enough
time to make it work as it should be because of time.” – I2.

The benefit that the company gained from taking a workaround in this scenario
was customer satisfaction, because the fix was released earlier. Also sometimes even
the development team was happy for getting rid of the problem fast and being able to
move on to other tasks.

“In the short term, the customer will be happy because the problem is fixed. Some-
times the development team is also happy because we can start different kind of work
and tasks. So sometimes for us it is okay to have shortcuts.” – I2.

According to a company survey on user satisfaction, the users were happy with this
workaround strategy and were not eager to switch to another solution by a competitor.
Therefore, the company’s internal policy allowed taking workarounds and fixing them
later.

However, these workarounds started to produce negative consequences later on.
Sometimes the workarounds created temporary system breakdowns or slowness that
needed to be fixed with other fast workarounds. This required many extra working
hours for fixing and refactoring that were not planned in the beginning, and in some
cases even a completed rewrite of the feature was required.

“For example let’s say we do one fix and take a shortcut and then after a while,
like after a month or two months, something else comes up and we need to do an-
other hotfix because of this previous fix. When time progresses, that feature needs
to be redone because it is getting out of date or other fixes are getting slower or
whatever.” – I2.

8 J. Yli-Huumo et al.

4.3 Scenario 3: Unpleasant Work

Case B has a long history, and the system has been developed for many years. During
the project, the code base has grown to be large and complex, and there are features in
the code base that have been implemented either properly or with workarounds. When
the code base grows and becomes inconsistent, development becomes much harder.
This was the situation in case B, and the senior consultant in the project felt that this
generated serious effects on the developers’ mindset towards the code base.

“The pattern that the developers were talking about was this thing called princess-
driven development. In other words, “This code is so ugly, I don’t want to do it like
this. I will implement something else.”” – I16.

In this scenario some of the developers experienced that the old part of the code
base that had been developed with complex solutions was not pleasant to work with.
Instead of refactoring the entire code base, it was just easier to implement a worka-
round. The only benefit that this type of workarounds had was the faster release of the
solution. The developer could move to other tasks sooner and start to implement fea-
tures with more interest to him. However, when workarounds were implemented and
not fixed afterwards, it turned the code base difficult to understand, especially for new
developers.

“This led to a situation where you don’t clean up the old code and you implement
something else next to it. When a new guy comes after a year and looks at this and
sees “ok, well it has been done like this in here, and then this is implemented like
this…” and it says nowhere how it should be done, and what our common way of
implementing things is.” – I16.

This incomprehensible code base increased the lack of interest in developing solu-
tions properly and therefore increased the amount of workarounds taken because it
did not require much effort.

4.4 Scenario 4: Significant Economic Benefits

A large number of workarounds were taken at the early stages of case B to create
significant internal financial saving for the company. The reason for this was that the
company would be able to change their manual work to automated processes within
the system. With the change, the company would be able to cut down personnel costs.
A software consultant in company C estimated that by creating the feature, company
B would save a significant amount of money.

“Roughly estimating, if the levels are correct, when we got a certain order type,
like for example closing a subscription to self-service and automation, it started to
save 30 000 euros a month to company B.” – I16.

When it was noticed that the savings were so significant, it was understood that the
features had to be released as soon as possible. This created pressure for the develop-
ment team to get the features released. The development team was able to release the

 The Benefits and Consequences of Workarounds 9

features really quickly, but it required some workarounds. However, with the worka-
rounds the company started to make significant savings early. One of the product
owners considered the decision to take workarounds as a smart one, even if it required
extra effort from the company.

“If we had started to build this project really well and with a really fancy architec-
ture, it might be that we might have been cut out of funding before it got to the pro-
duction and we wouldn’t have gotten anything done. It has paid back a multiple
amount of money, probably tens of times.” – I15.

The decision to take workarounds resulted later in extra working hours and slower
development. Another negative consequence of these workarounds was difficulties in
further development. Whenever the development team wanted to implement some-
thing to a certain part of the code base, it broke down something else.

4.5 Scenario 5: Unnecessary Work

In case A (product line a) we found that the company did not document the worka-
rounds, as they were considered as temporary solutions. When a developer decided to
take a workaround in a certain task, it was not documented. The developers relied on
the information of workarounds as they remembered it and paid no attention to docu-
mentation. This way the developers could work faster, and large amount of documen-
tation work would not slow them down.

The consequences of not documenting workarounds were especially well observed
when new developers joined the team. When a new developer started to work with the
code base that included workarounds, it was challenging because the code base was
not self-documenting and actually no documentation existed.

“At least it affects situations when someone new comes to work for us. There has to
be a place where people can get answers without asking, if they will have to work
alone someday.” – I10.

The lack of documentation affected the future development a lot. When the devel-
opers had no documentation available about workarounds, they could just copy/paste
the old code because it worked. In the situation where the old code was done with
workarounds, the workaround code started to accumulate and show in the overall
quality of the code base.

“They should be listed somewhere and we should be fixing them all the time, but
we would need time for it. The reason is that every bad solution we implement inten-
tionally, will be used also as copy/paste code and that is really bad for the future. I
think that bad solutions will multiply in time and spread to other parts.” – I10.

4.6 Scenario 6: Outdated Version of Components

In case A (product line b), the workarounds had effects on compatibility with other
systems. A software designer mentioned compatibility problems in integration with

10 J. Yli-Huumo et al.

different versions of the database. The current version of the database server used in
the company was from 2012, but due to the workarounds taken previously, the
database server worked in the compatibility mode with the 2008 version and in some
cases even with the 2005 version.

“Well, when you think about it, there are compatibility problems between different
versions. Now we have the 2012 version of the Microsoft SQL server, but it is up and
running in compatibility mode with the version of 2005. So we can’t use new com-
mands because of this.”- I2.

Due to this workaround, new commands were not available and the developers had
to implement low-level features already implemented in the newer version of the
database server. For example, some commands could be run in the default server
mode but not in the compatibility mode, and the team had to implement the database
features already available in the newer version by themselves. If this had been done
properly from the beginning and kept up to date continuously, these problems could
have been avoided. Now the team had to put additional efforts into implementing the
middleware between the product and the database.

4.7 Scenario 7: Low Priority Features

In case A (product line b), the development team intentionally did not implement
some of the features properly, as they were requested by a couple of customers only.
The company put only minimal effort to this type of features because it was not
planned to scale the feature to all customers.

“There might be some cases where there is a certain need coming from a customer
that is really valuable to that customer, but it is not a scalable feature, so it is not
valuable to any other customer. So in that kind of cases we can only put minimum
effort to that feature, because it is not a scalable feature. Customers are happy if they
just get what they want.” – I3.

A project manager in company A explained that the company evaluates the value
of every feature and then decides what the planned effort for them is. If the business
value of the feature is low for the company, it just simply gets done as easily as possi-
ble, with workarounds.

“Well, everything is based on the value of the feature. If the value of the feature is
low from the business point of view, you always have to weigh the time used by the
coder. Let’s say that implementing a feature takes one week, and we know that we can
go with that solution like one or two years forward, it could be a good decision now,
because we don’t have those two or three weeks to implement that.” – I3.

However, the company also faced situations where some of these low value fea-
tures were so successful that the decision to release them to all customers was made
later. Because these features were developed with a minimum effort, this led to a
situation where the features had to be refactored and developed more as scalable when
the number of users started to grow.

 The Benefits and Consequences of Workarounds 11

4.8 Summary of Scenarios

In Table 2 we summarize the scenarios observed in the studied cases with identified
categories of reasons for workarounds, their benefits and consequences. The main
reason for taking a workaround was related to the challenge of meeting a deadline
(category: time pressure, Scenarios 1-5). The release planning of features defined by
business managers was so important that the developers had to take workarounds in
order to reach deadlines. Time pressure from business managers also affected archi-
tectural decisions because developers had no time to change the selected software
components (Scenario 6) even if it would be beneficial for the development. The other
reason was the complicated code base, which increased the number of workarounds to
be taken, as the workarounds were easier to implement than refactoring the complex
code. In Scenario 7 prioritization of the features based on their business values led to
workarounds in implementing low priority features.

Table 2. Summary of scenarios

Scenario # Case Reason for
workaround

Benefits of workaround Consequences of
workaround

1 B Time pressure. Time-to-market,
Company reputation,
Increased customer
satisfaction.

Decreased code main-
tainability,
Extra working hours,
Extra costs.

2 A (a) Time pressure,
Complicated code
base.

Time-to-market,
Increased customer
satisfaction.

Decreased code main-
tainability,
Extra working hours,
Major refactoring.

3 B Time pressure,
Complicated code
base.

Time-to-market. Decreased code main-
tainability,
Lack of motivation to
work with the code
base.

4 B Time pressure. Time-to-market,
Significant financial sav-
ings due to early release.

Decreased code main-
tainability,
Extra working hours.

5 A (a) Time pressure. Time-to-market,
Increased speed of
development.

Decreased code main-
tainability,
Increased time for new-
comers to start.

6 A (b) No time for chang-
ing the selected
software
components.

Time-to-market. Outdated software
components,
Lack of new features
available in newer ver-
sions of components,
Decreased code main-
tainability

7 A (b) Prioritization of
features based on
their business
value.

Increased speed of devel-
oping high priority fea-
tures.

Decreased code main-
tainability when scaling
the feature.

12 J. Yli-Huumo et al.

The primary benefit of workarounds observed in the scenarios was time-to-market
(Scenario 1-6). Taking workarounds was helpful for companies to deliver the needed
features in time, which resulted in increasing customer satisfaction and saving com-
pany reputation. In Scenario 4 implementing the feature was critically important for
the company because its implementation instantly allowed getting significant finan-
cial savings by using the feature in production. Workarounds in processes like docu-
mentation in Scenario 5 allow allocating more time for other processes, e.g. increased
speed of development due to lack of documentation. Similarly, Scenario 7 is an exam-
ple of increased speed of developing high priority features due to workarounds made
in lower priority features.

However, when the workarounds gave the companies the ability to deliver the fea-
tures in time and development seemed faster, they also had negative consequences. In
all scenarios the workarounds resulted in decreased code maintainability and
consequently extra working hours and extra costs. In Scenario 2 this required major
refactoring of the code base. It seems that other scenarios will end up with major
refactoring too because workarounds lead to lack of motivation to work with the code
base (Scenario 3). In Scenario 5, increased speed of development led to increased
time for newcomers to start working on the project due to lack of documentation.
Being under pressure of time-to-market developers had to use outdated software com-
ponents and introduce new workarounds due to lack of new features available in new-
er versions of components. The lack of time for architectural changes prevented the
company from reducing the effects of accumulated workarounds and decreased code
maintainability (Scenario 6). Focusing on high priority features (Scenario 7) led to
the situation when workarounds in lower priority features were implemented on top of
each other without any documentation. Finally it led to decreased code maintainabil-
ity when scaling the feature, when the feature was so valued by customers that its
priority had to be increased.

5 Discussion

The results of the study of the two cases show that taking workarounds is a daily prac-
tice in software development. This does not necessarily lead to business disruption,
but it has negative consequences that a company should be aware of. Lim et al. [24]
report that developers always try to make the best decisions based on the information,
knowledge, and experience they have, but these decisions can lead to workarounds
quickly and unintentionally. In the two companies in our study the decision to take a
workaround was often intentional. This decision was often made by business manag-
ers who understood the negative consequences, but could underestimate their
long-term impact. Regardless of their awareness of the consequences, they made the
decision intentionally to benefit from releasing a product to the market faster. This
was particularly done to satisfy customers, save company reputation, and gain an edge
over competitors.

Kekre et al. [25] have developed a model of seven drivers of customer satisfaction
for software products. The authors conclude that capability and usability are the main

 The Benefits and Consequences of Workarounds 13

drivers for customer satisfaction. Capability presents the product functionality in
terms of its key features. Usability is a multidimensional driver itself, but it is not
related to the product code base where workarounds have been taken. In this study,
we identified decreased code maintainability as a major consequence of taking worka-
rounds that has limited direct impact to seven drivers of customer satisfaction but has
impact to the company ability to maintain releasing new versions of the product with
increasing time and costs to maintain the code base in long term.

The negative consequences of workarounds have been already identified separately.
For example, Li and Shatnawi [26] have studied the relationships between workarounds
associated with “code smells” and class error probability. They revealed that refactoring
a bad code is difficult after release, and associated with introducing new errors to the
code. In addition, the authors argue that “code smells” should be constantly identified to
find problematic pieces of code and refactored. In the studied companies, only one sce-
nario went through major refactoring and we expect to other scenarios will also end up in
refactoring the code base. Other consequences like a lack of documentation were already
identified back in 1979 [27], but this problem still remains like in Scenario 5. In this
regard, we do not consider the identified negative consequences of workarounds as a
significantly new contribution. The value of this list is in the consideration of the impact
of workarounds to the maintainability of the code base. Developers are aware of these
consequences, and therefore our primary aim is to attract the attention of decision makers
who see the immediate benefits of workarounds, but do not fully understand their draw-
backs. It is important to release a product quickly to the market, but it is also important to
understand the accumulation of workarounds and the related waste of time and resources
in the future.

Alter [9] provides an integrative view on workarounds and states that the theory of
workarounds will evolve over time. The study contributes to the theory by providing
an explanation for the intentions of taking workarounds and their consequences. Alter
believes that the theory of workarounds could be used in making “more realistic
assumptions for systems analysis and design” [9]. Although the theory can be used
this way, we see the underlying problem of workarounds is in misunderstanding and
underestimation of their impact by decision makers. By pointing out that workarounds
have consequences and these consequences impact on how further releases should be
planned, we bridge the gap and provide a communication tool for developers and
managers to find a balance between maintaining the code base and releasing a product
to the market.

With this study we contribute to the theory of workarounds [9] in the context of
software development organizations that take shortcuts in the code base. According to
Gregor’s taxonomy of theories in information systems research [28], Alter’s theory of
workarounds can be considered as an explanation theory that defines the phenome-
non, describes and explains it, but does not make attempts to specify hypotheses for
prediction. The present study contributes to the theory by providing an empirical
investigation of the phenomenon in a real environment, and extends the scope of
validity of the theory [29]. Rather than making a prediction on the long-term impact
of workarounds to the business success, we explain the reasons behind taking worka-
rounds and the ability of workarounds to accumulate over time.

14 J. Yli-Huumo et al.

The study has also limitations. The selection of the case organizations was partially
limited to project partners. However, out of several organizations, the selected organi-
zations could meet all our criteria. In addition, as we had two unrelated cases to study,
we were not limited to one team only and could interview and compare the results
from two cases to avoid the bias of interviewing only one team with its own experi-
ences and culture. Both companies develop customer SaaS kind of software, therefore
the transferability of the results is primary related to similar companies while it
requires additional study to investigate workarounds in other types of products like
embedded systems.

6 Conclusion

In this study, we explored how the decisions of taking workarounds are made in the
organization, and used the qualitative case study approach as recommended by Klein
and Myers [21]. The use of the interpretive case study allowed us to investigate social
processes in the organizations in an attempt to understand how business and technical
professionals communicate with each other regarding taking workarounds, and how
they consider their benefits and consequences. We found that business people often
deal with the benefit of time-to-market only and therefore can underestimate the nega-
tive consequences of workarounds, like decreased maintainability of the code base. In
contrast, engineering people have to deal with all consequences and therefore they
hesitate to take workarounds. However, they are often under the pressure from the
business and have little power to make the final decision. We observed that the deci-
sions to take workarounds are often made intentionally but the consequences of these
decisions can be underestimated by the business people due to the lack of technical
knowledge.

Acknowledgements. We would like to thank the companies for being a valuable source of
information and all interviewees who found time to share their experiences. This research has
been carried out in Digile Need for Speed program, and funded by Tekes (the Finnish Funding
Agency for Technology and Innovation).

References

1. Brooks, F.: The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition. Addison-Wesley Professional (1995)

2. Boehm, B.: A spiral model of software development and enhancement. Computer 21(5),
61–72 (1988)

3. McConnell, S.: Rapid Development: Taming Wild Software Schedules. Microsoft Pr.
(1996)

4. Fan, M., Kumar, S., Whinston, A.: Short-term and long-term competition between
providers of shrink-wrap software and software as a service. European Journal of Opera-
tional Research 196(2), 661–671 (2009)

 The Benefits and Consequences of Workarounds 15

5. Azad, B., King, N.: Enacting computer workaround practices within a medication dispensing
system. European Journal of Information Systems 17(3), 264–278 (2008)

6. Cunningham, W.: The WyCash Portfolio Management System. In: OOPSLA Addendum
to the Proceedings, pp. 29–30 (1992)

7. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. Journal of Systems and
Software 86(6), 1498–1516 (2013)

8. Halbesleben, J., Wakefield, D., Wakefield, B.: Workarounds in health care settings:
Literature review and research agenda. Health Care Management Review 33(1), 2–12
(2008)

9. Alter, S.: Theory of Workarounds. Communications of the Association for Information
Systems 34, Article 55 (2014)

10. IBM, Customer Care Handbook (2004)
11. Koppel, R., Wetterneck, T., Telles, J.L., Karsh, B.-T.: Workarounds to Barcode Medication

Administration Systems: Their Occurrences, Causes, and Threats to Patient Safety. Journal of
American Medical Information Association 15(4), 408–423 (2008)

12. Russell, B.: You gotta lie to it: software applications and the management of technological
change in a call centre. New Technology, Work and Employment 22(2), 132–145 (2007)

13. Guo, Y., Seaman, S.: A Portfolio Approach to Technical Debt Management. In: 2nd
Workshop on Managing Technical Debt, New York, NY, USA, pp. 31–34 (2011)

14. Mäntylä, M., Lassenius, C.: Subjective evaluation of software evolvability using code
smells: An empirical study. Empirical Software Engineering 11(3), 395–431 (2006)

15. Nagarjuna, V., Mamidenna, S.: Personality Characteristics of Commerce and Engineering
Graduates – A Comparative Study. Journal of the Indian Academy of Applied Psycholo-
gy 34(2), 303–308 (2008)

16. Perrow, C.: The Analysis of Goals in Complex Organizations. American Sociological
Review 26(6), 854–866 (1961)

17. Ritti, R.: Work Goals of Scientists and Engineers. Industrial Relations: A Journal of
Economy and Society 7(2), 118–131 (1968)

18. Dver, A.: Software Product Management Essentials, 2nd edn. Anclote Press (2008)
19. Dzida, W., Herda, S., Itzfeldt, W.D.: User-perceived Quality of Interactive Systems. In:

Proceedings of the 3rd International Conference on Software Engineering, Piscataway, NJ,
USA, pp. 188–195 (1978)

20. Aladwani, A., Palvia, P.: Developing and validating an instrument for measuring user-
perceived web quality. Information & Management 39(6), 467–476 (2002)

21. Klein, H., Myers, M.: A Set of Principles for Conducting and Evaluating Interpretive Field
Studies in Information Systems. MIS Quarterly 23(1), 67–93 (1999)

22. Walsham, G.: Interpretive case studies in IS research: nature and method. European
Journal of Information Systems 4(2), 74–81 (1995)

23. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 3rd edn. SAGE Publications, Los Angeles (2007)

24. Lim, E., Taksande, N., Seaman, C.: A Balancing Act: What Software Practitioners Have to
Say about Technical Debt. IEEE Software 29(6), 22–27 (2012)

25. Kekre, S., Krishnan, M., Srinivasan, K.: Drivers of Customer Satisfaction for Software
Products: Implications for Design and Service Support. Management Science 41(9),
1456–1470 (1995)

16 J. Yli-Huumo et al.

26. Li, W., Shatnawi, R.: An empirical study of the bad smells and class error probability in
the post-release object-oriented system evolution. Journal of Systems and Software 80(7),
1120–1128 (2007)

27. Boehm, B.: Software Engineering-as It is. In: 4th International Conference on Software
Engineering, Piscataway, NJ, USA, pp. 11–21 (1979)

28. Gregor, S.: The Nature of Theory in Information Systems. MIS Quarterly 30(3), 611–642
(2006)

29. Sjøberg, D., Dybå, T., Anda, B., Hannay, J.: Building Theories in Software Engineering.
In: Shull, F., Singer, J., Sjøberg, D. (eds.) Guide to Advanced Empirical Software
Engineering, pp. 312–336. Springer, London (2008)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 17–29, 2015.
DOI: 10.1007/978-3-319-19593-3_2

The Relationship Between Business Model
Experimentation and Technical Debt

Jesse Yli-Huumo(), Tommi Rissanen, Andrey Maglyas, Kari Smolander,
and Liisa-Maija Sainio

Lappeenranta University of Technology, Lappeenranta, Finland
{jesse.yli-huumo,tommi.rissanen,andrey.maglyas,kari.smolander,

liisa-maija.sainio}@lut.fi

Abstract. The use of lean software development methodology and business
model experimentation has become popular in software companies in recent
years. Business model experimentation is used to validate assumptions made on
a product from real customers before the actual product is created. A minimum
viable product is used to test the business model by gathering and measuring
customer feedback. However, in many cases creating a minimum viable prod-
uct requires the development team to take shortcuts and workarounds in the
product. This phenomenon in software development is called ‘technical debt’,
where companies trade long-term software quality to short-term gain in time-to-
market. We investigated four software companies and conducted nine inter-
views to understand the relationship between business model experimentation
and technical debt. The goal was to study how business model experimentation
is affecting to technical debt. The results showed that business model experi-
mentation has a clear relationship to technical debt.

Keywords: Business model experimentation · Technical debt · Case study ·
Startup company · Large company · Software development lifecycle · Minimum
viable product

1 Introduction

Startups and increasingly also larger companies use business model experimentation
as a way to accelerate their product development cycles. The well-known process of
business model experimentation is the lean startup framework introduced by Ries [1].
The lean startup framework considers learning to be the essence of the product
development process and everything else is waste, following the lean manufacturing
thinking. A lean startup creates a minimum viable product (MVP) that is a simple
prototype of the product attached with a business model. The product team measures
different elements of the product functionality and the business model, learns from the
customer feedback and builds a better product with an adjusted business model to
start the cycle again.

When a company accelerates its product development cycle to create a minimum
viable product instead of releasing a ready and complete product, the development

18 J. Yli-Huumo et al.

team has to make shortcuts in the implementation of the product. In the software de-
velopment lifecycle this is called ‘technical debt’ [2]. The term technical debt refers
to a situation in the software development lifecycle, where long-term quality is traded
for short-term gains. Taking shortcuts and workarounds in the development can give a
company an advantage to release faster and to acquire customer feedback earlier, but
if this ‘debt’ is not paid back later, it can affect to the quality and further development
of the product.

When a new product is launched, it rarely has the optimal business model. The
business model has so many elements and variables that it is impossible to predict
how all components of the business model pan out when it is in the market. The lean
startup process allows the tweaking of the business model efficiently.

The objective of this paper is to study the relationship between business model ex-
perimentation and technical debt. We explore if conducting business model experi-
mentation has any effect to the amount of technical debt occurring during the software
development lifecycle. We study four case companies and interview their key persons
related to business models and technical debt and analyze the interviews for theoreti-
cal results.

The rest of the paper is organized as follows. Chapter 2 provides the background
and the terminology related to this research. Chapter 3 describes the research process
and methodology used in this study. Chapter 4 introduces the results analyzed from
the gathered data. In Chapter 5 we discuss about the results and Chapter 6 concludes
the paper.

2 Background

2.1 Business Model Experimentation

Every business enterprise either explicitly or implicitly employs a particular business
model [3]. There are multiple interpretations of the concept, however. The business
model can be defined as a system of interdependent activities that enables the firm to
create value and also to appropriate a share of that value [4]. It can also be defined as
the logic of the firm, the way it operates and how it creates value for its stakeholders
[5] or the basic unit of business and process or operational advantages [6]. Business
models generate feedback loops or virtuous cycles that strengthen components of the
business model through iteration [5]. There are many other slightly different interpre-
tations of the concept. In this study the business model is defined as the way a firm
creates value and appropriates a share of that value following the definition by Zott &
Amit [4]. The difference between a strategy and a business model is not always clear.
Casadesus-Masanell & Ricart [5] see the business model as a reflection of the firm’s
realized strategy.

Many business model studies take the dynamic nature of the business model into
consideration. The current dynamic business environment with a multitude of simul-
taneous changes shortens the lifecycles of business models and requires companies to
be constantly able and ready to adapt their business models. McGrath [6] points out
that business models can rarely be anticipated in advance but rather learned over time

 The Relationship Between Business Model Experimentation and Technical Debt 19

based on experiences and learning. Doz & Kosonen [7] also emphasize the need for
companies to transform their business models more rapidly, more frequently and
more far-reachingly now at the era of global competition, discontinuities and disrup-
tions. Business model innovation is the term often used to refer the development of
new business models. Business model innovation has been described as “a type of
organizational innovation in which firms identify and adopt novel opportunity portfo-
lios” [8] , “the discovery of a fundamentally different business model in an existing
business” [9] and “the search for new logics of the firm and new ways to create and
capture value for its stakeholders: it focuses primarily on finding new ways to gener-
ate revenues and define value propositions for customers, suppliers and partners”
[10]. Following the chosen business model definition, the business model innovation
definition of Casadesus-Masanell & Zhu [10] is best suited for this study.

Minzberg & Waters [11] separated deliberate and emergent strategies and defined
entrepreneurial strategy to be relatively emergent but able to emerge depending on the
entrepreneur. Emergent strategy formation is therefore closely linked to business
model experimentation, which is one distinct way of doing business model innova-
tion. McGrath [6] sees experimentation as a way to discover which are the most effec-
tive models of allocating resources in the market, considering the constraints that are
set by the competitive environment. Dunford et al. [12] see experimentation as one of
the four processes in business model replication of an internationalizing multi-
national company. Companies conduct business model experimentation in most cases
only after external innovations have disrupted their existing business model, because
there are several barriers especially in large companies for creating experiments [13].
Many startup companies have utilized business model experimentation using the spe-
cific lean startup method, which originates from Steve Blank’s Customer develop-
ment methodology [14] and was made popular by Eric Ries with his book The Lean
Startup [1]. The lean startup methodology is based on validated learning where every
action a startup does that does not increase learning how its products can serve cus-
tomers better is considered waste. In addition to startups, also larger companies have
started using the lean startup method for boosting their internal startup activities.

2.2 Technical Debt

The concept of technical debt was introduced by Cunningham as a metaphor to finan-
cial debt: “every minute spent on not-quite-right code counts as interest on debt. En-
tire engineering organizations can be brought to a stand-still under the debt load of an
unconsolidated implementation, object-oriented or otherwise” [2]. Technical debt has
recently become widely used for describing all shortcuts and workarounds in software
development processes and artifacts though it was initially used for coding only [15].
As a result, there is a number of corresponding terms to describe shortcuts and worka-
rounds related to other than coding processes and artifacts like quality debt, testing
debt, documentation debt [15]. These types of technical debt are considered as sub-
types of technical debt but their distinctive characteristics has not been established
[16]. Therefore, this article uses the term technical debt to refer to any type of debt
taken in the process of developing a minimal viable product.

20 J. Yli-Huumo et al.

In general, technical debt is an action or plan to circumvent a problem without de-
veloping a proper solution to solve it [17]. This is often done through developing a
quick fix that is supposed to be replaced with a proper solution later but it is never
done in practice. The temporary solutions that can be implemented in a shorter time in
comparison with proper solutions provide companies with a competitive advantage to
release new products to the market faster than their competitors. In a longer perspec-
tive, temporary solutions accumulate over time having a negative impact to the code-
base maintainability [15].

The development of a minimal viable product done in startup companies or special
internal startup departments of large companies through corporate venturing and ex-
perimentation requires the generation and testing of numerous ideas [18]. However,
only a few ideas can potentially generate significant revenue to the company. The
selection of the ideas for implementation is often done through experimentation by
developing a product that is not fully functional but has primary features partially
implemented for testing the product in the market [19]. The trade-off between releas-
ing the product faster and having features properly implemented requires a company
to take technical debt. By accepting that time-to-market is more critical than code
quality, the company incurs intentional technical debt according to the McConnell’s
taxonomy [20]. In addition to intentional technical debt, any company is prone to
unintentional technical debt. The sources of unintentional technical debt are out of
control and the company can be even unaware of them. For example, it can be the
result of significant changes in the product architecture that were not planned in ad-
vance but suddenly became essential for the product success in the market.

Overall, intentional and unintentional technical debt contribute to uncertainty of
the environment in which the company operates [21] by setting limitations on features
that can be implement and time required for their implementation. Finding the right
balance between time-to-market and amount of technical debt accumulated in the
product can be seen a success factor of experimenting with various ideas and deliver-
ing these ideas to the market in forms of products that provide value to the customer.

3 Research Methodology

The study began with a literature review on business model experimentation and
technical debt. Based on the literature, we argue that the current knowledge about the
relationship between technical debt and business model is not well-studied and re-
quires more examination. Therefore, this study is exploratory in nature and the goal is
to find the linkages between the constructs and understand the relationship. We decid-
ed to use case study as the research methodology. We conducted multiple inductive
case-studies with semi-structured interviews to gather data from the companies’ rep-
resentatives. Semi-structured interviews can provide rich and detailed data for a spe-
cific research question. Interviews bring forth the respondents’ own perspective and
provide insight to particular experiences they have had with the topic [22].

The cases selected for this study were three large companies in different fields of
business and one small startup. From one of the large companies multiple informants

 The Relationship Between Business Model Experimentation and Technical Debt 21

were interviewed to ensure the understanding of the whole phenomena of conducting
business model experimentation and the effect on technical debt. In other companies
only one informant was interviewed in a company. These interviews were used to
confirm the findings in the first company with multiple interviewees.

The data collection was initiated with the large company that had multiple inform-
ants. They are studying technical debt in their own processes quite closely and the
idea of investigating the relationship between technical debt and business model ex-
perimentation came up in discussions with this first case company. The research ques-
tions were drawn from those discussions and more informants were selected to in-
crease the understanding in this company. In order to validate the findings, other
companies were needed to be interviewed. The initial large case company is in the
software development industry. The three other companies were chosen to represent
other industries and company sizes; one large media company, one medium-sized
software consultancy and one startup in software services business. Interviews with
representatives from these companies enforced and proved the findings made in inter-
views with the first large case company.

The fact that there are six informants in one case company and one from each of the
remaining three companies is a limitation in this paper. A wider selection of informants
from the other three companies would have validated the findings more soundly.

The informants were experts in the particular area in companies. The interviews
were semi-structured and conducted in November-December 2014. The duration of
the interviews varied from 28 minutes to 52 minutes. In total there were nine inter-
views. The roles of the interviewees are shown in Table 1.

We analyzed the interview data with Atlas.ti software by making a thematic analy-
sis, concentrating on the aspects related to technical debt and business model experi-
mentation and identifying elements that played a role in their relationship. In the
analysis, the following elements emerged: intentional and unintentional technical
debt, the amount of focus on business model experimentation, emphasis on product
quality and competence of the development team. As this was not a cross-case analy-
sis trying to identify and examine the possible company-specific differences in the
relationships between technical debt and business model experimentation, we present
our findings by discussing the results on the level of the phenomenon itself.

Table 1. The roles of the interviewees

ID Company Role

A1 A Test manager / project manager
A2 A Project owner
A3 A Technical coordinator
A4 A Software developer
A5 A Software developer
A6 A Lead developer
B1 B Development manager
C1 C Managing partner
D1 D Chief executive officer

22 J. Yli-Huumo et al.

4 Results

4.1 Finding 1: Business Model Experimentation Creates and Requires
Intentional Technical Debt

We were able to identify a clear relationship between business model experimentation
and technical debt. The studied companies used often a lean methodology and exper-
imentation to build new idea, feature or service in iterative cycle with a minimal effort
to product quality to receive faster feedback from the customer. The companies’ goal
was to test the assumptions of the current business model by experimenting the idea
first at the customer before the actual development. To have minimal effort to the
quality and fast feedback cycle, the development team had to take shortcuts and
workarounds to produce a simple demo or prototype for the customers to use. This
demo or prototype consisted only the most minimal amount of source code necessary
and sometimes they were just graphical presentations done on the paper to demon-
strate the possible functionality in the real version.

“We have done this product in few iterative steps and always tried to produce the
minimal amount to validate the next steps and hypotheses. This has worked for us
really well and we have gone always one step forward, but on the other hand we have
accumulated technical debt there during that.” – B1.

When companies got an idea to improve the current business model by creating a
new feature or a service, the assumption that it would improve the current business
model needed to be validated with an experimentation before the actual development
phase could start. The companies did not want to waste time and money to first build
something and realize afterwards that the assumption of beneficial feature or service
was not correct. The reason was that it would have resulted to a significant loss in the
development time, because the feature or service would not have been valuable to the
customer and therefore to companies’ new business models. This was the reason why
the case companies first created a demo or a prototype from the idea and experiment-
ed it at the customer to receive a fast feedback that would help the company to make
the decision for further development.

“Every thought, idea, or a single feature in the product that you have in mind must
be validated somehow before you start to implement it. Otherwise you could use valu-
able time to build something that does not necessarily have value.” – B1.

The demo or prototype created by the companies were usually developed as fast as
possible with minimal amount of source code. At this stage companies made a deci-
sion to intentionally take technical debt to the product, as the quality of the feature
was really low compared to what it should have to be in the future if the experimenta-
tion turned out to be successful. This resulted to situations where a company gave the
customer a demo or a prototype of the feature that had a lot of usability issues and
bugs, but that would still somehow demonstrate the main functionality that the com-
pany assumed would make customers interested.

 The Relationship Between Business Model Experimentation and Technical Debt 23

“The goal is not to code everything when you have an idea. For example we had a
lot of weird usability issues in the prototypes we had this summer, or actually in the
beta version, but we decided not to fix them. It is in the accordance of MVP method
that you must be little bit ashamed of your product that is going to customer first
time.” – B1.

The opinion of most interviewees was that technical debt is bad for the company
and product, because it starts to hurt overall quality and it is challenging to manage.
However, one informant thought that taking technical debt is not necessarily a bad
thing to do in the beginning of the business model experimentation. The reason was
that when companies are looking for the correct business model, it does not matter if
technical debt keeps accumulating, because the goal is to find the correct business
instead of developing something that does not have value to the business model. It
would be easy for companies to just throw away the demo or prototype consisting of
technical debt, if it would not be good part of the business model.

”I think that in the beginning start-up does not have to be worried about technical
debt, because at that point you have not even validated if your idea good and does it
grow to actual business. So technical debt at that point… just get features released
and it might even be that the whole product will go to trashcan and also the technical
debt at the same time. At that point let’s just do something else.” – D1.

The results indicate that while business model experimentation was clearly creating
intentional technical debt, it was also required to be taken. The goal of the business
model experimentation was to acquire customer feedback as fast as possible to con-
firm the assumptions made in the business model. This is the reason why companies
had to take technical debt intentionally. It made the customer feedback cycle much
faster and hypothetically decreased the possibility of unintentional technical debt as
the next software development steps were validated with customer.

4.2 Finding 2: Development without Business Model Experimentation can
Create Unintentional Technical Debt

Business model experimentation has also a relationship to unintentional technical
debt. The interviewees described situations where the companies did not use business
model experimentation as a tool to develop the business model. Instead, when com-
panies got an idea to improve the business model with a new feature or a service, the
software development was begun immediately without conducting customer valida-
tion first. We were able to see scenarios where the new ideas were successful without
experimentation and the companies were able to improve the business model. How-
ever, we also saw scenarios where the idea got developed and after the release the
company realized that customers had no need for that certain feature or service.

“When you think portfolio companies we have worked with that have not used any
iterative development of business model, instead they have just gone after some big
idea, they have also made huge mis-steps in their technology.” – C1.

24 J. Yli-Huumo et al.

The reason for not to use experimentation was that the new idea appeared to be so
good that the company decided to begin the development immediately. In addition,
experimentation was seen as time consuming and expensive practice to do that could
give competitor an edge to be first on the market. Instead, the company could just
develop the feature instantly without losing any time while trying to get the feedback
from the customers. One of the interviewees also mentioned that reason not to con-
duct experimentation was that customers were not always willing to take part to the
experimentations, since the customer might not be interested in intermediate results.

“Sometimes it happens like that but not all the time customers are actually Inter-
ested in the intermediate results, so sometimes they don’t want to be involved in that
cycle. They just want the feature because they have a business need for it and they
think everything is clear and it should be just implemented.” – A3.

Sometimes companies go after a big idea and start the development instantly with-
out first conducting customer validation through experimentation. These are examples
where companies can incur technical debt to the product unintentionally. Even if the
new idea would be developed really well with good scalability for the future ideas, if
the idea does not fit to the current business model and the customer does not have any
need for it, the unnecessary time used for the development can be seen as technical
debt.

“Actually you could say that if we would now put a lot of effort and development to
the idea we think is good and would develop it really well, we would not make a lot of
technical debt. But actually if the business model would be wrong at that point, we
would great a huge amount of technical debt.” – A6.

4.3 Finding 3: Both Intentional and Unintentional Technical Debt can be
Reduced with Business Model Experimentation

Business model experimentation can cause accumulation of technical debt because
the goal of lean startup methodology and business model experimentation is to create
a viable product with minimum effort. It requires shortcuts and workarounds in the
development that is considered technical debt. However, business model experimenta-
tion can reduce both intentional and unintentional technical debt if used properly. We
were able to identify situations where the business model experimentation was used to
reduce intentional technical debt and to prevent unintentional technical debt.

The reason for the reduction of intentional technical debt was the customer feed-
back, which was acquired through business model experimentation that gave compa-
nies information how to prioritize the developed components in the product. With
customer feedback, the companies were able see what was the most important for
customers and were able to reduce previously intentionally taken technical debt from
those areas.

The benefit of lean startup methodology and business model experimentation was
the identification of wrong assumptions in the business model early and avoid wasting
developer time on matters that customer’s do not need or want. In these cases there is

 The Relationship Between Business Model Experimentation and Technical Debt 25

a possibility for a quick adaptation based on customer feedback. If the company
learned that some feature did not have any business value, it was easy to just throw
that part of the product to the trash without having a huge damage, since the solution
was done already with major shortcuts and it would in any case have required refac-
toring and rewriting.

“I think that if we move forward by doing demos it is a good thing. When we have
like weekly sprints, it does not matter if we go to wrong direction, we have only lost
that one week by then, and sometimes not even that much.” – A4.

“On the other hand we have thrown so much stuff to the trash can that we devel-
oped really fast previously and they should have been refactored, but we did not need
them anymore because they were not important to customer.” – D1.

Business model experimentation was also used to prevent unintentional technical debt.
One of the interviewees explained us a situation that happened when a team had a great
new business idea. One of the managers in the company assumed that the feature was so
brilliant that there was no need for experimentation and customer feedback before devel-
opment. However, the lean startup team insisted on gathering customer feedback to
confirm the assumptions. The result was that the majority of customers thought the
feature was useless and there was no need for it.

“So we had this good idea and we had little time to do the experiment design. But
one of the managers was like “well I think that this is not necessary because it is so
good idea”. Anyways a team went to interview 20-30 customers and when they came
back they said “Dammit, no one was interested, people thought it sucks.” – B1.

In this case, by conducting the experimentation, the company was able to prevent
unnecessary work and technical debt from happening. If the company would have
skipped the experimentation and started to develop the feature, the amount of tech-
nical debt would have been huge, since all the work of the developers would have
gone to waste and company would have not needed that feature in the business. How-
ever, now the company was able to prove that the assumptions of the current business
model were wrong and it got valuable customer feedback to not develop the feature.

4.4 Finding 4: Focusing Too much on Business Model Experimentation and
not on Technical Debt Reduction can have Consequences to the Product
Quality

Business model experimentation is a great way for companies to receive fast customer
feedback and to realize how to improve or change the current business model and the
product. However, it can also create some challenging consequences in a long-term.
We were able to identify some long-term problems that the case companies were fac-
ing when using the business model experimentation. The biggest challenge was the
balance between developing new features and improving already existing features.
Some of the interviewees felt that the business model experimentation is creating too
much pressure to the development team and it is hard to improve features already
consisting technical debt, because there is all the time a need for new features and

26 J. Yli-Huumo et al.

prototypes demanded by customers. It can be argued that this has not been business
model experimentation in the same sense that the lean startup method suggests, how-
ever.

“That is the problem because you also get a lot of features requested by the prod-
uct line, and the problem is because they actually set deadlines on them. The thing is
that those deadlines are not even related to the release window that we have. Alt-
hough writing the code is quite easy, getting it in requires this downtime cycle. The
downtime cycle is the biggest legacy or technical debt that we have. So architectural
decisions have been made based on our customer and those decisions are killing us.”
– A3.

The consequence of continuing business model experimentation instead of paying
technical debt back in already existing product was that the code base started to be-
come too complex and challenging for further development. This resulted to slow-
ness, breakdowns, bugs and scalability problems and the companies had to conduct a
lot of refactoring and rewriting to fix the issues.

“Yes it is really complex at the moment and you really do not know what happens
if you change some part of the code. Another problem is the scalability issues that is
currently really weak. So we have had discussions that should we write this again.” –
A3.

“For example we talk now a lot about architecture because we just got three new
developers and they told us that the product is slow and when you change something
you will break something else. The team and product is getting bigger, so we must
have some process to get technical debt in control, because otherwise nothing gets
developed anymore.” – D1.

The balance between business model experimentation and technical debt reduction
is something that companies need to improve in the future. However, it is challenging
because the competitive business environment forces companies to constantly im-
prove and change their business model to gain advantages over competition. When
the majority of company’s focus goes into finding new business model possibilities
through a series of experimentations, the focus on technical debt decreases and that
can have consequences to the product quality.

5 Discussion

When combining the experiences and examples described by the interviewees, we can
see that the growth of the business and product quality were connected with business
model experimentation, reduction of technical debt and competence of the develop-
ment team. We were able to see that companies had two ways to test their current
business model and its assumptions. The first one was to develop the idea with a good
design and scalability and release it to a customer when it was ready. We saw situa-
tions where companies developed the idea with a good design and then the release
was a success. However, we could also identify cases where the well-designed new

 The Relationship Between Business Model Experimentation and Technical Debt 27

features were not that successful. The reason was in most cases wrong assumptions
about the actual customer needs. According to McGrath [6] business model cannot be
fully anticipated in advance and it should be rather learned through experimentation
in discovery and development.

The second way was to test the business model with experimentation. There the
companies figured out the minimal way to experiment with the customer if the as-
sumptions were right or wrong before even starting the actual development. When a
company had a clear vision about the business model and all the assumptions were
confirmed, the company started to improve the feature that was previously developed
with shortcuts for experimentation purposes. In these situations the overall develop-
ment time was often longer and more expensive, since companies had to conduct
series of experimentations before starting the development. Chesbrough [23] claims
that some companies do not use business model experimentation, because it is time-
consuming to create, conduct, obtain, interpret and understand the experimentations.
This is why some companies prefer to just grow the current business model [23].
However, the experimentations conducted in studied cases helped a company to find
the correct business model instead of using the wrong one. Most of the interviewees
thought that even though using experimentations might take a longer time to create
and release the features to the customer, it is still a better way to grow the business
and create a good-quality product.

Another factor for a business to grow and create a quality product is the compe-
tence of the development team [24]. The use of a lean methodology and business
model experimentation required a lot of competence to experiment and develop fea-
tures in fast iterative cycles with a product in minimum viable state. When the devel-
opment team had to work with the code base that had incurred already technical debt
during the experimentation, it required a lot of experience and knowledge to be able
to create solutions that have high quality and scalability, when the business model is
evolving in the future.

Having a growing business and quality product can also depend on the reduction of
technical debt. The companies in this case study were eager to make experimentations
and try out demos and prototypes in fast phase to find out possible new business ideas
and areas to great more successful business. However, when companies had a high
focus on creating new businesses and features to answer to the demand of customer,
the focus on improving existing features and reducing technical debt was low. The
improvement and refactoring of existing code is important part of product overall
quality [25,26]. We were able to identify situations where technical debt started to
affect to the success of business and product quality. Sometimes there were situations
where too much technical debt started to show as slowness and bug errors in the
product. The quality of the product has a strong relationship with the customer
satisfaction [27]. The problems in the product could transfer to negative customer
satisfaction that can have consequences to the business of the company. At this stage
companies had to start massive operation to refactor and rewrite parts of the product,
which led to significant economic costs.

28 J. Yli-Huumo et al.

6 Conclusion

This paper has explored the relationship of business model experimentation and tech-
nical debt in the context of software development. Our analysis reveals that technical
debt should be divided into intentional and unintentional in this context, and that
product quality and the competence of the development team are elements that need
to be considered. The overall result is that with business model experimentation, the
amount of technical debt can be reduced. However, there may be an inverted U-
shaped curve concerning the benefits of business model experimentation – it is a bal-
ancing act to do enough experimentation but not too extensively, and simultaneously
pay careful attention on the amount of accumulating technical debt. The targets of
experiments must be well-chosen and the competence of the development team sets
pragmatic limitations on the amount of experiments that can be executed with a rea-
sonable time-to-market goal. Further research could compare and measure both the
amounts of technical debt and business model experimentation in specific projects
and compare the levels to the success of the products and business model launch to
learn more about the interrelationships of these constructs. As a limitation, this re-
search mainly used informants from R & D. To get a more complete picture of this
phenomenon, also marketing and product managers’ viewpoints could be incorpo-
rated in the analysis more strongly.

Acknowledgement. We would like to thank the companies for being a valuable source of in-
formation and all interviewees who found time to share their experiences. This research has
been carried out in Digile Need for Speed program, and funded by Tekes (the Finnish Funding
Agency for Technology and Innovation).

References

1. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses, 1st edn. Crown Business, New York (2011)

2. Cunningham, W.: The WyCash Portfolio Management System, Experience Report (1992)
3. Teece, D.J.: Business Models, Business Strategy and Innovation. Long Range

Planning 43(2-3), 172–194 (2010)
4. Zott, C., Amit, R.: Business Model Design: An Activity System Perspective. Long Range

Planning 43(2-3), 216–226 (2010)
5. Casadesus-Masanell, R., Ricart, J.E.: From Strategy to Business Models and onto Tactics.

Long Range Planning 43(2-3), 195–215 (2010)
6. McGrath, R.G.: Business Models: A Discovery Driven Approach. Long Range

Planning 43(2-3), 247–261 (2010)
7. Doz, Y.L., Kosonen, M.: Embedding Strategic Agility: A Leadership Agenda for

Accelerating Business Model Renewal. Long Range Planning 43(2-3), 370–382 (2010)
8. Bock, A.J., Opsahl, T., George, G., Gann, D.M.: The Effects of Culture and Structure on

Strategic Flexibility during Business Model Innovation. Journal of Management
Studies 49(2), 279–305 (2012)

9. Markides, C.: Disruptive Innovation: In Need of Better Theory*. Journal of Product
Innovation Management 23(1), 19–25 (2006)

 The Relationship Between Business Model Experimentation and Technical Debt 29

10. Casadesus-Masanell, R., Zhu, F.: Business model innovation and competitive imitation:
The case of sponsor-based business models. Strat. Mgmt. J. 34(4), 464–482 (2013)

11. Mintzberg, H., Waters, J.A.: Of strategies, deliberate and emergent. Strat. Mgmt. J. 6(3),
257–272 (1985)

12. Dunford, R., Palmer, I., Benveniste, J.: Business Model Replication for Early and Rapid
Internationalisation: The ING Direct Experience. Long Range Planning 43(5-6), 655–674
(2010)

13. Chesbrough, H.: Business Model Innovation: Opportunities and Barriers. Long Range
Planning 43(2-3), 354–363 (2010)

14. Blank, S.: The Four Steps to the Epiphany, 2nd edn. K&S Ranch (2013)
15. Yli-Huumo, J., Maglyas, A., Smolander, K.: The Sources and Approaches to Management

of Technical Debt: A Case Study of Two Product Lines in a Middle-Size Finnish Software
Company. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J.,
Raatikainen, M. (eds.) Product-Focused Software Process Improvement, pp. 93–107.
Springer International Publishing (2014)

16. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. Journal of Systems and
Software 86(6), 1498–1516 (2013)

17. Halbesleben, J.R.B., Wakefield, D.S., Wakefield, B.J.: Work-arounds in health care set-
tings: Literature review and research agenda. Health Care Manage. Rev. 33(1), 2–12
(2008)

18. Corbett, A., Covin, J.G., O’Connor, G.C., Tucci, C.L.: Corporate Entrepreneurship: State-
of-the-Art Research and a Future Research Agenda. J. Prod. Innov. Manag. 30(5),
812–820 (2013)

19. C. ©. M. I. of Technology and 1977-2015 All rights reserved, “Why Companies Should
Have Open Business Models. MIT Sloan Management Review

20. McConnell, S.: Technical Debt-10x Software Development | Construx (November 1, 2007),
http://www.construx.com/10x_Software_Development/Technical_Deb
t/ (accessed: December 02, 2014)

21. Bourgeois III., L.J.: Strategic Goals, Perceived Uncertainty, and Economic Performance in
Volatile Environments. The Academy of Management Journal 28(3), 548–573 (1985)

22. Hannabuss, S.: Research interviews. New Library World 97(5), 22–30 (1996)
23. Chesbrough, H.: Business model innovation: it’s not just about technology anymore. Strat-

egy & Leadership 35(6), 12–17 (2007)
24. Chow, T., Cao, D.-B.: A survey study of critical success factors in agile software projects.

Journal of Systems and Software 81(6), 961–971 (2008)
25. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Softw. Eng. 30(2),

126–139 (2004)
26. Middleton, P., Joyce, D.: Lean Software Management: BBC Worldwide Case Study. IEEE

Transactions on Engineering Management 59(1), 20–32 (2012)
27. Jun, M., Yang, Z., Kim, D.: Customers’ perceptions of online retailing service quality and

their satisfaction. Int. J. Qual. & Reliability Mgmt. 21(8), 817–840 (2004)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 30–44, 2015.
DOI: 10.1007/978-3-319-19593-3_3

Network Analysis of Platform Ecosystems:
The Case of Internet of Things Ecosystem

Teemu Toivanen, Oleksiy Mazhelis(), and Eetu Luoma

Department of Computer Science and Information Systems,
University of Jyväskylä, Jyväskylä, Finland

{oleksiy.mazhelis,eetu.luoma}@jyu.fi

Abstract. Software platform providers are often seen as the cornerstone of their
business ecosystem, where the other ecosystem players utilize the platform’s
standardized components together with complementary components for making
applications. These platforms are also becoming a cornerstone of the emerging
Internet of Things (IoT) business ecosystem comprised of the companies who
provide Internet-enabled devices, applications, connectivity solutions, and the
platforms for the IoT usage. While a number of enabling technologies for IoT is
available, the question remains what kind of ecosystem emerges around IoT
platform providers and whether this ecosystem is evolving in line with the
theoretical models describing business ecosystem development. In order to
address this question, we constructed a network model for the IoT ecosystem
and considered how it had changed over the period of a year and a half. Our
findings indicate that the ecosystem is still in early evolutionary phase, although
some signs of consolidation are starting to appear. A mainstream solution is still
missing and many vendors are trying to make their platform a dominating one.

Keywords: Internet of things · Software platform · Business ecosystem ·
Network analysis

1 Introduction

A platform can be defined as a cluster of technically standardized components that are
used together with complementary components for making applications [1]. Platforms
are known to be a critical element of successful businesses [2,3]; often they also serve
as a core element of the business ecosystem to be built around it by the platform
vendor, along with the producers of complementary elements and end users, among
other players [4,5].

Recently, the importance of platforms was emphasized in the domain of the Internet of
Things (IoT) that envisions a future worldwide intelligent network, where smart devices
and people are all connected and can communicate with each other over standard Internet
technologies [6,7,8]. Some parts of the IoT vision already exist in small scale: the smart
devices connect to software platforms and applications use the data sent by the devices.
Platforms are a critical element of IoT as they mediating heterogeneous smart devices
and the applications and are enabling them to interoperate, and they can thus be seen as

 Network Analysis of Platform Ecosystems 31

an integral part of IoT [9]. For the purposes of this study, we define an IoT platform as
performing the following three functions: (i) managing and controlling devices connected
to it, (ii) gathering and storing data from those devices, and (iii) offering tools to develop,
publish and use applications benefiting from the gathered data. At the moment, the
market of IoT platforms is fragmented, and there are dozens of different platforms that
compete with each other [10].

There is a business ecosystem forming around the companies that provide devices,
applications, connectivity and platforms for IoT usage [7]. In such an ecosystem,
every participant has its own role and purpose [11]. The roles of the members and
leader positions can change as the time passes, but all participants strive for the
common goal and vision of developing the IoT domain further. Platform providers are
often forming the core of the ecosystem and they supply the crucial building blocks
for the other businesses [4,9]. Therefore, studying the partnerships of the platform
providers is important for understanding the ecosystem development.

While the IoT enabling technologies – such as sensing and actuating devices,
communication protocols, and cloud computing platforms – have been available for
several years, the widespread diffusion of the IoT is still awaited. Numerous
predictions exist in trade literature on the scale and the timing of such diffusion,
though little transparency is usually provided on the background for these estimates.
This paper is aimed at systematically assessing the diffusion of the IoT technologies,
by comparing the developments in the IoT ecosystem against technology diffusion
models described in the next section. Since platforms are the core and the building
blocks of the IoT business, the platform providers and their partnerships were chosen
for a closer look. The research question addressed in the paper can be formulated as
follows: Is the IoT platform ecosystem, as reflected in the structure and relationships
between the platform vendors and the other players, evolving in line with known
theoretical models?

In this paper, we model the IoT platform ecosystem as a network of business
partnerships formed around platform providers. By doing this for two distinct points
in time (January 2013 and September 2014), we determine if and how the ecosystem
had changed – for instance, if there have been changes in companies roles, or if the
central players had changed. The model is then analyzed by using social network
analysis tools and metrics.

The paper is organized as follows. In the next section, related research works are
briefly overviewed. Section 3 describes the data gathering and analysis method used
in this study. In section 4, the results of the analysis, i.e. the ecosystem model and its
metrics, are presented. Section 5 considers how the results answer the stated research
question, and discuss their implications. Finally, section 6 provides conclusions to the
paper.

2 Related Work

By offering a set of components that are reusable across a spectrum of applications,
platforms often form a core of a business ecosystem, where the platform vendor, the

32 T. Toivanen et al.

producers of the complementing services and the end users, among other players, co-
exist and co-evolve [3,4]. Previous research on software platforms clearly indicates
their importance for the business of individual players and for the prosperity of the
ecosystem as a whole. In particular, Basole [9] had studied mobile ecosystems and
came to the conclusion that platform providers have a central role in the ecosystem.
Similarly, the key role of the platform vendors was found in other ecosystems, such as
credit card ecosystem and game console ecosystem [12], as well as in the software
ecosystem in general [13]. Likewise, in the context of IoT ecosystem, Schlautmann
[14] states that the service enabler (i.e., platform provider) will likely occupy the most
important and critical position in the IoT value chain, appropriating 30-40% share of
total value.

The recent introduction of IoT platforms can be also seen as the phenomenon of
technology diffusion, where a new technology is introduced to the market and is
eventually adopted in the population of end users. Gort and Klepper [15] have studied
the diffusion of product innovations and market entry for new products. They suggest
that the markets for new products pass through five distinguishable stages in the
course of their evolution. The stages include the commercial introduction of a new
product and the first competing products (stage 1), the phase of rapid increase in the
entry of competing products (stage 2) the period when the net entry of firms is largely
equal to the net exit (stage 3), the period when structural changes in the industry result
in a rapid decline in the net entry of new firms (stage 4), and the eventual product
obsolescence or displacement with a new technology (stage 5).

The evolution of the IoT domain can be also seen as the vertical software industry
evolution. According to Tyrväinen’s model [16], a vertical software industry develops
through the five phases of innovation, productization and standardization, adoption
and transition, service and variation, and finally renewal phase. In the innovation
phase, the software to support key business processes is developed mostly in-house by
firms in the vertical industry. In the following phases, firms start to imitate each
other’s best practices in their solutions, which erode the difference between them.
Some of these solutions are becoming a basis for spin-offs and, consequently,
independent software vendors start developing competing offerings. In the adoption
and transition phase, the competition among the solutions intensifies, eventually
resulting in one-two leaders whose solutions shape the dominant design for the
emerged class of solutions in the service and variation phase.

Several researchers have claimed that device heterogeneity and the lack of
standardization is keeping IoT from further development. The rise of cheap sensors,
new wireless communication technologies, sensor and actuator networks, and cloud
computing has resulted in the application of these technologies to several vertical
markets, creating heterogeneity [17]. Therefore, as emphasized by Delicato [18], the
need emerges for IoT solutions to scale with millions of devices, as well as for the
ability to deal with software and hardware heterogeneity, uncertainty detection and
conflict resolution. In a similar manner, Biswas et al. [19] claims that in order to
realize IoT vision targeting future markets, several requirements have to be taken into
account, including ubiquitous accessibility and connectivity, as well as commonly
agreed APIs and standards. To address the heterogeneity and standardization issue,

 Network Analysis of Platform Ecosystems 33

for instance, ETSI and OneM2M alliances are attempting to unify standardization
between IoT devices [10]. Nevertheless, due to these and other challenges, is has been
noted in Gartner’s IT Hype Cycle and forecast that it will take 5 to 10 years for any
mature market for Internet of Things to emerge [20].

3 Modeling the Evolution of IoT Platform Ecosystem

The present study aims at building a view of the structure of IoT platform ecosystem
and relationships between the firms in the ecosystem. This view can be employed to
discuss the current phase and the evolution of the ecosystem. In this section we
describe our approach towards modeling the IoT platform ecosystem as a network of
inter-firm partnerships. Specifically, the section provides the details of the data
gathering and introduces the employed network metrics.

3.1 Research Data

To build a view of the IoT ecosystem, data was collected and classified regarding the
IoT firms and their relationships. The initial set of IoT firms to be included in the
study was assembled by merging the lists of companies contributing to or following
IoT standardization activities. In particular, this was accomplished by merging the
member lists of ZigBee, ETSI M2M, and oneM2M alliances that are focusing on
standardization of IoT-related communication technologies. In order to categorize the
companies, we utilized a subset of five roles from the list of IoT ecosystem roles
defined in [7]. The definitions of these roles are provided in Table 1, along with the
number of firms found to play this role.

Table 1. IoT ecosystem roles that were included in the study

Role Definition Number of
firms

Device manufacturer Makes components and physical devices for IoT use 414

Gateway Connects IoT-enabled devices to Internet through
single access point

20

Network operator Provides Internet connection to users 47

Platform Gathers and stores data from IoT-devices and allows
applications to use the data

32

Application
developer

Creates and deploys software applications on the
platform for end users

176

Each company’s website was studied and the company was labeled with one or

several roles. The total number of companies across these alliances was 1412 (in
2013). Many companies had only the roles irrelevant to this study, such as
consultancy or research companies; those were excluded from further consideration.

34 T. Toivanen et al.

The connections between platform providers were primarily identified by studying
the companies’ websites and searching for the list of partners or for other clues
indicating partnerships. As a secondary information source, the trade outlets such as
M2M Magazine and M2M World News were used to search for the news articles
reporting or analyzing partnerships involving platform providers. The data was
originally gathered and stored in January 2013, and then verified and expanded in
September 2014.

3.2 Data Analysis

A set of network analysis techniques was employed to create a view of the IoT
platform ecosystem as a network of inter-firm partnerships. Visualizing the research
data helps to distinguish various network elements and they relevance in complex
systems [9]. In cases when an exploratory visual representation of the actors and their
connectivity is required, a node-link diagram is frequently preferred [21]. This
diagram includes only two elements in the network: the nodes (firms) and the links
(partnerships). The links can be directed or non-directed. In this study, we created a
diagram with non-directed links, for the partnerships implies both firms to be
interacting with each other.

In addition, a number of metrics have been calculated and analyzed in order to
assess the development of IoT platform ecosystem. Some metrics analyze only a
single node, e.g., degree, closeness and betweenness centralities, while the other
metrics analyze the whole network [22]. The metrics that were used in this study are
summarized in Table 2. The network analysis was executed using Pajek [23], which
both produces visual presentations of the network and calculates the relevant metrics.

Table 2. Metrics utilized in the study

Name Affects Description
Degree centrality Single node Number of links a node has
Closeness centrality Single node How close a node is to all other nodes
Betweenness centrality Single node Number of shortest paths passing trough a node
Eigenvector centrality Single node How connected a node is to other highly

connected nodes
Network density Whole network Relations between nodes/All possible relations
Network degree
centralization

Whole network How central the most central node is to all
other nodes

Network clustering
coefficient (Transitivity)

Whole network How close nodes are clustered

Watts-Strogatz clustering
coefficient

Whole network How easy it is for nodes to reach each other

Number of unreachable
pairs

Whole network Nodes which can't connect with each other

Average distance among
reachable pairs

Whole network Number of nodes on average path length

The most distance
between vertices

Whole network Longest path in the network between two nodes

 Network Analysis of Platform Ecosystems 35

4 Results

Fig. 1 shows the node-link diagrams of the IoT platform ecosystem for 2013 and
2014, where the large black hubs represent platforms, and the nodes around them
represent their partners. Nodes in the middle are partners who have links to at least
two platforms, and on the outer edge of the network are partners with one link only.

The network for 2013 has 32 platforms, 399 partners and 555 connecting links,
while the network for 2014 has 34 platforms, 548 partners and 870 connecting links.
Thus, in 2014, there are significantly more links between platform vendors and their
partners compared to a year and a half earlier, i.e. the companies became more inter-
connected. Still, no clear “platform leader” can be identified in the figure.

Fig. 1. Ecosystem of IoT platform providers and their partners in (a) January 2013 and
(b) September 2014 (Fruchterman-Reingold algorithm)

The partnerships between platform providers are shown in Fig. 2. The graph on
the left side portraying the situation in January 2013 indicates that there are some
platforms that have little or no interaction with other platforms. These companies
have vertically integrated their own product built on top of their platforms, and they
are selling these products directly to their customers.

The graph on the right side depicts the situation in September 2014. We notice a
change in the structure; there are only four platforms, which are not connected with
the other platforms in the ecosystem. Also, the platforms have much more
connections with each other. We also observed some changes in ownerships. For

(a) (b)

36 T. Toivanen et al.

instance, iDigi has been integrated into Etherios, Sensorlogic was acquired by
Gemalto, and SmartThings was acquired by Samsung.

Fig. 2. Partnerships between platform providers in (a) January 2013 and (b) September 2014

Degree centrality. Table 3 ranks IoT platforms according to their degree centrality in
2014, which reflects the number of links a node has. According to Freeman [22], high
degree centrality nodes are important in the sense that they can control information
flow going to other nodes trough them. However, the degree centrality itself does not
tell how important nodes’ links are. Table 3 also reports the changes in degree
centrality. For instance, Novatel Wireless and ILS Technology had the highest degree
centrality in 2013, but over the period of one and half year only two new partnerships
were added. Overall, we observe a change of much more balanced degree centrality,
after the other companies added more links with each other.

Table 3. Top 15 IoT firms ranked according to their degree centrality

Rank Name Links
in 2014

% of whole network New links
in 2014

Change in %

1 Axeda 94 5,40 % 37 0,26 %
2 Novatel Wireless 93 5,34 % 2 -2,86 %
3 ThingWorx 61 3,51 % 42 1,80 %
4 ILS Technology 60 3,45 % 2 -1,78 %
5 SeeControl 55 3,16 % 22 0,19 %
6 Vodafone 42 2,41 % 35 1,78 %
7 Cumulocity 36 2,07 % 11 -0,18 %
8 Sierra Wireless 35 2,01 % 14 0,12 %
9 Wyless Group 35 2,01 % 30 1,56 %

10 Gemalto 34 1,95 % 10 -0,21 %
11 Airbiquity 30 1,72 % 2 -0,80 %
12 Arkessa 30 1,72 % 19 0,73 %
13 CalAmp 28 1,61 % 4 -0,55 %
14 Aeris Communications 24 1,38 % 7 -0,15 %
15 Verizon 24 1,38 % 13 0,39 %

 (a) (b)

 Network Analysis of Platform Ecosystems 37

Closeness centrality. Closeness centrality, reported in Table 4, indicate how close a
node is to all other nodes. A high closeness for a node means that it is related to all
others through a small number of paths [25,22]. The closer the node is to other nodes,
the easier it is for the node to receive information in the network [23]. As can be seen
from the table, the closeness centrality has increased for the companies between the
two data points from the year 2013 and the year 2014. This can be attributed to the
increase in number of nodes and links in the network. Similarly to the degree
centrality, the scores between the companies on closeness centrality have become
more leveled.

Access to the information can be seen as a success factor in becoming a central
player in IoT ecosystem. According to [26], companies benefit also from indirect
links, which closeness centrality reflects. They can get information through indirect
links without the need to use resources to maintain the relationships. Because IoT
ecosystem is not yet fully established, the access to information is critical. Companies
with many indirect links gain more information and can use that to get competitive
advantage.

Table 4. Top 15 IoT firms ranked according to their closeness centrality

Rank Name Closeness
centrality in 2014

Closeness
centrality in 2013

Change

1 Vodafone 0,4265 0,3540 20,49 %
2 Axeda 0,4154 0,3694 12,44 %
3 Novatel Wireless 0,4136 0,3701 11,75 %
4 Kore Telematics 0,3974 0,3318 19,76 %
5 Verizon 0,3896 0,3363 15,84 %
6 Oracle 0,3862 0,3094 24,83 %
7 Wyless Group 0,3816 0,2814 35,62 %
8 CalAmp 0,3766 0,3121 20,68 %
9 SeeControl 0,3740 0,3375 10,83 %
10 Aeris Communications 0,3740 0,3158 18,44 %
11 Sprint 0,3701 0,3433 7,81 %
12 AT&T 0,3687 0,3442 7,12 %
13 ILS Technology 0,3634 0,3386 7,32 %
14 ThingWorx 0,3634 0,2887 25,86 %
15 Tech Mahindra 0,3620 0,2822 28,29 %

Betweenness centrality. Betweenness centrality is the number of shortest paths that
pass through a given node. It tells how central position the node has in the network
based on the amount of traffic that goes trough it [23]. If high betweenness node is
removed, a number of links may get disconnected. These nodes are valued in the
network and their existence helps the network to grow and function [22].

The betweenness centrality of the IoT firms in the study and the change of the
scores are reported in Table 5. Again, we notice some companies – i.e. Novatel and
ILS – with decreasing scores balancing the overall differences between company
scores. Some companies like Wyless Group (ranked 9th) and Tech Mahindra (ranked
18th) have risen in the rankings, which suggests that these firms are becoming more
important in interconnecting other IoT companies.

38 T. Toivanen et al.

Table 5. Top 15 IoT firms ranked according to their betweenness centrality

Rank Name Betweenness
centrality in 2014

Betweenness
centrality in 2013

Change

1 Novatel Wireless 0,2643 0,3512 -24,74 %
2 Axeda 0,222 0,2641 -15,94 %
3 Vodafone 0,213 0,0993 114,47 %
4 ThingWorx 0,1624 0,0471 244,79 %
5 ILS Technology 0,1275 0,2062 -38,17 %
6 SeeControl 0,1166 0,1111 4,95 %
7 Cumulocity 0,1002 0,0891 12,46 %
8 Arkessa 0,0804 0,0396 102,96 %
9 Wyless Group 0,0748 0,0128 484,34 %

10 CalAmp 0,0712 0,0930 -23,44 %
11 Gemalto 0,0674 0,0695 -3,09 %
12 AmpliaSoluciones 0,0647 0,0890 -27,30 %
13 Verizon 0,0618 0,0488 26,70 %
14 Airbiquity 0,0603 0,0959 -37,12 %
15 Sierra Wireless 0,0548 0,1161 -52,80 %
(18 Tech Mahindra 0,0417 0,0032 1191,98 %)

Eigenvector centrality. Eigenvector centrality is calculated by assessing how well a
node is connected to the parts of the network with the greatest connectivity. This is
similar to Google’s page rankings, where links from highly linked-to pages are more
valued [27]. High eigenvector centrality nodes can be leaders of the network, e.g.,
public figures with many connections to other high-profile individuals [28].

Table 6. Top 15 IoT firms ranked according to their eigenvector centrality

Rank Name Eigenvector
centrality in 2014

Eigenvector
centrality in 2013

Change

1 Axeda 0,4159 0,3517 18,23 %
2 Novatel Wireless 0,3386 0,5211 -35,01 %
3 Vodafone 0,2183 0,1138 91,77 %
4 SeeControl 0,2023 0,2190 -7,61 %
5 ILS Technology 0,1774 0,2291 -22,58 %
6 Aeris Communications 0,1630 0,1036 57,29 %
7 Wyless Group 0,1627 0,0563 188,85 %
8 ThingWorx 0,1591 0,0935 70,05 %
9 Verizon 0,1531 0,1682 -9,02 %

10 Kore Telematics 0,1518 0,1310 15,91 %
11 AT&T 0,1474 0,1843 -20,04 %
12 Sprint 0,1405 0,1248 12,54 %
13 Etherios 0,1362 0,0166 721,23 %
14 CalAmp 0,1349 0,1311 2,93 %
15 Sierra Wireless 0,1260 0,1043 20,82 %
(16 Oracle 0,1109 0,0851 30,41 %)

 Network Analysis of Platform Ecosystems 39

As Table 6 indicates, in this study the overall eigenvector centrality is increasing
over the period of one and half year. This is associated with the increased number of
connections between the platforms. We notice some major changes in the companies’
scores. For instance, eigenvector centrality for Novatel and ILS has decreased
significantly. However, this is again related to the increase in the number of
connections of the other platforms vendors, whereas for these two vendors the number
of partnerships has largely remained intact.

Network-wide metrics are summarized in Table 7. Network density is the number
of actual relations between nodes divided by the number of possible relations. In
inter-firm relation networks, higher density indicates a greater degree of interaction
among the firms [9]. In our case, the density has decreased by approximately 12
percent. This can be explained by the increased number of new nodes in the network
(149) and by the fact that most of the new partners have connection to only a single
platform. Note that in the ecosystem where platform end users or customers would be
partnering with each other at a large scale is highly unlikely, and therefore the density
can never be very high (0.005 density means 0.5 percent of all possible links are
present).

Table 7. Network-wide metrics values for the IoT ecosystem

Metric 2014 2013 Change

Network density 0,00503 0,00571 -11,94 %
Network degree centralization 0,15384 0,19517 -21,18 %
Network clustering coefficient (Transitivity) 0,02211 0,00776 184,89 %
Watts-Strogatz clustering coefficient 0,20469 0,09502 115,43 %
Number of unreachable pairs 2320 16052 -85,55 %
Average distance among reachable pairs 3,68941 4,09916 -10,00 %
The most distance between vertices 6 10 -40,00 %

Degree centralization reflects how central the most central node is in relation to the

centrality of all the other nodes. A network with high degree centralization is likely to
have a few nodes with many ties and many nodes with few ties, such as a hub in a
pinwheel structure [9]. Degree centralization has also decreased in 2014, indicating
that smaller platform vendors have gained more links to balance themselves out with
the larger ones. In 2013, Novatel, ILS and Axeda had 18,6 percent of all the links in
the network, and in 2014 that ratio has decreased to 14,1 percent.

Network clustering coefficient describes clustering in the whole network. In social
network context, this means that the friend of your friend is also likely to be your
friend [29]. Clustering has almost tripled from 2013, implying that if two platform
providers work with a partner, they became more likely to work with each other, too.

Watts-Strogatz clustering, also referred to as “small world network”, measures how
easy it is for nodes to reach each other [30]. This is related to the largest distance
between nodes. While Watts-Strogratz clustering has doubled, largest distance has
lowered almost by half. These metrics seem to correlate with each other, reflecting the
consolidation starting to take place in the IoT ecosystem.

40 T. Toivanen et al.

The number of unreachable pairs measures how many pairs of nodes in the
network cannot connect to each other. Decrease from 16052 to 2320 is quite
remarkable, meaning that the network is way more interconnected in 2014. Finally,
the average distance among reachable pairs – indicating how many nodes are in the
path between two nodes – has decreased as well, but not that significantly.

5 Discussion

In the previous sections, the IoT ecosystem was modeled as a network of partnerships
formed around IoT platforms, and the development of the ecosystem has been
assessed in terms of various network metrics. Given that the data gathering was
centered on the IoT platforms, or more specifically, on the partnerships thereof, it
comes at no surprise, that platform providers exhibit the most connectivity in the
produced network model: according to the degree centrality, all the top ranked
companies are platforms providers. It is therefore interesting to consider the cases
when the high connectivity is exhibited by the firms other than platform vendors.

Such well-connected non-platform firms are, e.g., Oracle and Sprint, which are
ranked high in terms of closeness and eigenvector centralities. Oracle’s top position
can be attributed to the fact that its database and cloud solutions are often used along
with the IoT platforms. Sprint, on the other hand, is a network operator with
numerous M2M-related solutions making its various partners to bring complementing
capabilities, albeit Sprint does not offer an open platform itself. Another exemplary
firm that comes up in closeness and betweenness centrality is Tech Mahindra, an
Indian IT firm that had climbed up to the top betweenness ranks with an 1100 percent
increase from 2013. The company offers many M2M-related services and solutions,
and is partnered with several big platforms including Axeda, Aeris Communications,
PowerWatch, Sierra Wireless, ThingWorx and Vodafone. Due to their central position
in the information flows within the IoT ecosystem, these three companies have the
higher possibilities to become major players in the ecosystem in future.

According to Schlautmann [14], network operators are expected to expand their
business model to encompass other roles in the IoT value chain, besides serving as a
network operator, in order to become more valuable in the ecosystem and gain a
better position to make revenue. Likewise, Visionmobile’s research on telecom
operator’s role in M2M ecosystem implies that most operators are attempting to move
up in the value chain towards vertical solutions, even if it is not their core business
[31]. This is also visible in our study: in our list of platforms, there are few network
operators, including Novatel Wireless, Vodafone, Verizon, and AT&T; among these,
Vodafone is pushing towards the top, while Novatel has barely any increase in new
partnerships. Nevertheless, all of these operators have taken interest towards IoT
development, expanding their roles beyond network provider.

Let us now consider how these network metrics match the technology diffusion
models available in the literature. In Gort and Klepper’s lifecycle model, the first
stage begins with a new product introduction [15]. In the context of IoT, the first
products using key enabling technologies, such as RFID-chips and wireless sensor

 Network Analysis of Platform Ecosystems 41

networks, have emerged years ago, although it is difficult to determine who pioneered
their use in products. In the stage two, a rapid growth in the number of producers
takes place, with dozens of software platforms, many component manufacturers and
application developers emerging. This is apparently where the IoT ecosystem is at the
moment, as it is still growing and trying to evolve and adapt. In particular, network-
wide metrics show that the ecosystem has increased in size, but also tightened up,
since there is more clustering, and since platform providers are making more
partnerships with each other and with same third parties. This is in line with suggested
second stage in the Gort and Klepper’s model. The stage three would occur when the
number of entering and exiting firms balances net entry to zero; there is no data in the
gathered data set to suggest the IoT ecosystem is entering this stage yet.

Tyrväinen’s model of vertical software industry evolution [16] suggests that in the
first – innovation phase – the leading vendors are reluctant to share their knowledge
with external software companies, and hence tend to keep the innovative software
development in-house, thereby creating barriers for new competitors. Also, some
other competitors may join forces to provide an alternative solution. However, as the
technological development continues, in the second phase – productization and
standardization phase – the firms competing in an industry start imitating the
emerging best solutions and practices. As a result, the differentiation between the
competing offerings eventually dissolves, and the companies start replacing in-house
development with purchasing software from the other vendors.

This kind of behavior appears to take place in the IoT ecosystem’s development.
Specifically, there are two platform vendors in our study – Novatel and ILS – that
seem to be decreasing their score in every metric. They might have been early
adopters of the technology, becoming strong ecosystem players while the competition
was relatively low. Later on, however, other platforms emerged and gained success;
as a result, while Novatel’s closed platform worked for them in the past, now it seems
to be hurting their growth. Overall, though the best practices haven’t been fully
distilled in the IoT field yet, and the rapid proliferation of the platforms indicates the
trend towards acquiring software products from external providers – both are
indications of the IoT ecosystem being in the productization and standardization
phase. The consolidation in the IoT platform ecosystem, which is reflected in the
increasing clustering coefficients and decreasing distance among reachable pairs,
suggests that the ecosystem is in the productization and standardization phase, too.

Tyrväinen’s model also suggests that industry evolution may halt because the lack
of sufficient customer base of commonly accepted technology standards needed for
proceeding to the further phases [16]. This reflects straight to the previous
observations that IoT standardization needs to be develop further.

Based on the available data, it is challenging, if at all possible, to forecast which
platform vendor will become the dominant player in the IoT ecosystem. The
ecosystem is evolving, and the best practices and standards are still being distilled.
One of the keys to success is creating value to the end users and finding such business
model constellations that would allow various ecosystem players to co-exist and
successfully co-evolve [32]. Further, whereas connectivity and smart devices are
enablers, the real value for the end users is likely created by making sense of the data

42 T. Toivanen et al.

that those devices generate [33]. Many of upcoming IoT platforms today are focused
on solving technical challenges, rather than on empowering developers with the tools
for efficiently implementing innovative applications. Finally, due to the multi-sided
nature of the platform business, managing successful platforms also means managing
various people, including users, developers, individuals and companies. We quote
Schuermans & Vakulenko [33]: “You can buy an audience, but you can’t buy a
community”. It appears that Vodafone, ThingWorx and Wyless Group are fastest
rising platforms in all metrics in 2014, so they might be approaching their community
building correctly.

6 Conclusions

Platforms are known to be a critical element of successful software business, and they
are often a core element of the business ecosystem built around them. In this paper, in
order to assess how the IoT ecosystem is evolving, the IoT platform ecosystem has
been modeled as a network of business partnerships formed around platform
providers. Furthermore, the change that had happened in this partnership network
over the period of a year and a half has been investigated.

The results of the analysis can be summarized as follows:

• The number of connections (partnerships) among the ecosystem players has
increased significantly. Furthermore, the former leaders with closed platforms,
such as Novatel Wireless and ILS Technology, are losing their positions, as
the network metrics demonstrate.

• Meanwhile, some other roles – specifically, integrators (e.g. Tech Mahindra)
and network operators (e.g. Vodafone, Sprint) – gain weight in the ecosystem.
In line with Schlautmann’s prediction, it has been found that the network
operators aim for the role of the platform vendor in the ecosystem.

• As of September 2014, no clear “platform leader” can be identified in the IoT
ecosystem. Some consolidation is taking place, as reflected in the increasing
clustering coefficients and decreasing distance among reachable pairs, in line
with the productization and standardization phase of vertical software industry
evolution model. An intensifying competition among platforms, common for
the adoption and transition phase, can thus be envisioned in near future,
followed by the eventual appearance of a dominant design.

The present study signifies the effectiveness of network analysis in studying
software and other IT-based ecosystems. Combined with technology diffusion
models, the study provides an analysis and an explanation of the IoT diffusion as the
phenomenon of interest. This is to say, the combination of network analysis and
diffusion models reveals insights to the current state of the IoT diffusion as well as
some future predictions. It seems that the IoT diffusion has been slow due to lack of
commonly accepted standards and dominant design in general. Under such
conditions, majority of the companies are holding back their investments to this novel
technology. We expect increased competition in the IoT domain while companies
strive for achieving the dominant design.

 Network Analysis of Platform Ecosystems 43

It shall be noted that, due to the data gathering approach used, the study suffers
from some limitations. In particular, only platform provider’s partnerships were
studied, therefore leaving the second-tier partners out. Further, since not all platform
vendors have been included in the studied sample, and since not all platform vendors
kept their partnership list available and up to date, the resulting data set is rather
limited, and only provides a subset of the partnerships in the IoT ecosystem. In future
work, professional databases such as SDC Platinum or LexisNexis will be used in
order to gather a more comprehensive list of relevant players and partnerships.

Acknowledgments. This work was partially supported by TEKES as part of the Internet of
Things program of DIGILE (Finnish Strategic Centre for Science, Technology and Innovation
in the field of ICT and digital business).

References

1. Greenstein, S.: Industrial economics and strategy: computing platforms. IEEE
Micro 18(3), 43–53 (1998)

2. Baldwin, C.Y., Clark, K.B.: Design Rules. The Power of Modularity, vol. 1. MIT Press,
Cambridge (2000)

3. Baldwin, C.Y., Woodard, C.J.: The Architecture of Platforms: A Unified View. Platforms,
Markets and Innovation, 19–44 (2009)

4. Gawer, A., Cusumano, M.A.: Industry Platforms and Ecosystem Innovation. Journal of
Product Innovation Management 31, 417–433 (2014)

5. Woodard, C.J., Clemons, E.K.: The Evolution of Modular Product Architectures and the
Emergence of Platform Ecosystems, Research Collection School Of Information Systems
(2013), http://ink.library.smu.edu.sg/sis_research/1929

6. Haller, S., Karnouskos, S., Schroth, C.: The internet of things in an enterprise context, pp.
14–28. Springer, Heidelberg (2009)

7. Mazhelis, O., Luoma, E., Warma, H.: Defining an internet-of-things ecosystem. In:
Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2012. LNCS,
vol. 7469, pp. 1–14. Springer, Heidelberg (2012)

8. Kim, J., Lee, J., Kim, J., Yun, J.: M2M Service Platforms: Survey, Issues, and Enabling
Technologies. IEEE Communications Surveys & Tutorials 16(1), 61–76 (2014)

9. Basole, R.: Visualization of interfirm relations in a converging mobile ecosystem. Journal
of Information Technology 24(2), 144–159 (2009)

10. Balamuralidhara, P., Misra, P., Pal, A.: Software Platforms for Internet of Things and
M2M. Journal of the Indian Institute of Science 93(3), 487–498 (2013)

11. Moore, J.F.: The Death of Competition: Leadership & Strategy in the Age of Business
Ecosystems. HarperBusiness, New York (1996)

12. Evans, D., Hagiu, A., Schmalensee, R.: Invisible Engines: How Software Platforms Drive
Innovation and Transform Industries. MIT Press, Boston (2006)

13. Iyer, B., Lee, C.H., Venkatraman, N.: Managing in a small world ecosystem: Some lessons
from the software sector. California Management Review (2006)

14. Schlautmann, A., Levy, D., Keeping, S., Pankert, G.: Wanted: Smart market-makers for the
‘Internet of Things’ (2011), http://www.adlittle.se/prism_se.html
?&view=383

44 T. Toivanen et al.

15. Gort, M., Klepper, S.: Time paths in the diffusion of product innovations. The Economic
Journal, 630–653 (1982)

16. Tyrvainen, P., Mazhelis, O. (eds.): Vertical Software Industry Evolution. Physica-Verlag
HD (2009)

17. Berkers, F., Roelands, M., Bomhof, F., Bachet, T., van Rijn, M., Koers, W.: Constructing a
multi-sided business model for a smart horizontal IoT service platform. In: ICIN,
pp. 126–132 (October 2013)

18. Delicato, F.C., Pires, P.F., Batista, T., Cavalcante, E., Costa, B., Barros, T.: Towards an
IoT ecosystem. In: Proceedings of the First International Workshop on Software
Engineering for Systems-of-Systems, pp. 25–28. ACM (July 2013)

19. Biswas, A.R., Giaffreda, R.: IoT and cloud convergence: Opportunities and challenges. In:
Internet of Things (WF-IoT), 2014 IEEE World Forum, pp. 375–376 (2014)

20. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A vision,
architectural elements, and future directions. Future Generation Computer Systems 29(7),
1645–1660 (2013)

21. Keller, R., Eckert, C.M., Clarkson, P.J.: Matrices or Node-Link Diagrams: Which visual
representation is better for visualising connectivity models? Information
Visualization 5(1), 62–76 (2006)

22. Freeman, L.: Centrality in social networks conceptual clarification. Social Networks 1(3),
215–239 (1979)

23. de Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek,
vol. 27. Cambridge University Press (2005)

24. Iyer, B.: M-Payment Ecosystem. Babson College (2012), http://www.slideshare.
 net/balaiyer/m-payment-ecosystem-analysis

25. Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the
information sciences. Journal of Information Science 28, 441–453 (2002)

26. Ahuja, G.: Collaboration networks, structural holes, and innovation: A longitudinal study.
Administrative Science Quarterly 45(3), 425–455 (2000)

27. Cheliotis, G.: Social Network Analysis (SNA) including a tutorial on concepts and
methods (2010), http://www.slideshare.net/gcheliotis/social-
network-analysis-3273045

28. Active Networks: Who is central to a social network? It depends on your centrality measure
(2014), http://www.activatenetworks.net/who-is-central-to-a-
social-network-it-depends-on-your-centrality-measure/#

29. Newman, M.E.: The structure and function of complex networks. SIAM Review 45(2),
167–256 (2003)

30. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. Nature 393(6684),
440–442 (1998)

31. Constantinou, A.: The M2M Ecosystem Recipe. How telcos can win the M2M game by
playing by ecosystem rules. VisionMobile, London (2013)

32. Jumira, O., Wolhuter, R.: Value chain scenarios for M2M ecosystem. In: 2011 IEEE
GLOBECOM Workshops (GC Wkshps), pp. 410–415. IEEE (2011)

33. Schuermans, S., Vakulenko, M.: IoT Breaking Free of Internet and Things. VisionMobile,
London (June 2014)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 45–59, 2015.
DOI: 10.1007/978-3-319-19593-3_4

Exploring Network Modelling and Strategy in the Dutch
Software Business Ecosystem

Wesley Crooymans(), Priyanka Pradhan, and Slinger Jansen

Utrecht University, Buys Ballot Laboratorium, Princetonplein 5, Utrecht, The Netherlands
{W.A.S.Crooijmans,P.Pradhan}@students.uu.nl

slinger.jansen@uu.nl

Abstract. In today’s product software market, the practices of re-use, partner-
ing and 3rd party contracting give rise to complex software ecosystems. Over
the duration of a product life-cycle, product software vendors build up relation-
ships with their suppliers and other partners, which range from informal
acknowledgements of each other’s presence to strategic alliances. There is still
a lack of understanding surrounding the roles, connections, relationships, and
resulting networks within software ecosystems. Using modelling techniques and
statistical analysis, these networks can be used as tools to further that under-
standing. In this paper a collection of 67 software supply networks will be mod-
elled as a network graph. Using clustering and two extensions of basic software
supply network data, we identify several major players and domains in the
Dutch software industry. Three business strategy perspectives are then related
to the data to provide an example of their potential practical use.

Keywords: Software ecosystems modeling · Network modeling · Product
software · Software business strategy

1 Introduction

Problem Statement. A Software Ecosystem (SECO) model can be a powerful aid to
describe the position and role of a software business within its environment[1]. With
various modelling methods and algorithms available today, there is no shortage on
fancy visuals and beautiful graphics to shed a light on your ecosystem. The question
to ask is, How can software ecosystem models be used to analyze strategic interests in
a local software ecosystem? In this paper we will answer that question by presenting a
method for modelling, analyzing and interpreting ecosystem data, applied to a study
of the Dutch product software industry. To portray some of the ways in which these
models may be of use as tools to the business world, the data will be related to exist-
ing papers on (SECO) business strategy.

Domain. The work in this paper lies firmly within the domain of SECOs. Throughout
this paper the definition of Jansen, Finkelstein, and Brinkkemper (2009) will be used:
“We define a SECO as a set of businesses functioning as a unit and interacting with a
shared market for software and services, together with the relationships among them.

46 W. Crooymans et al.

These relationships are frequently underpinned by a common technological platform
or market and operate through the exchange of information, resources and
artifacts.”[2]

In a SECO there are number of strategies an organization can adopt. The kind of
strategic decisions that are available depend on the individual organization and their
perspective on the ecosystem. Iansiti and Levien stated that there are three roles that
influence ecosystem health and evolution. Some known strategies are partnering,
membership programs, mergers and acquisition etc. For example Cisco used merger
and acquisition strategy to be the keystone player in their ecosystem, which helped
them to foster success for the whole ecosystem as well as to generate revenue [3].

Our area of interest is business models in the software industry, and particularly the
relationships among the various suppliers, vendors, retailers and customers surround-
ing software products. Software products in this paper include all software packages
and services that are traded as standard products [4], including but not limited to Con-
sumer-Of-The-Shelf (COTS), standard software, shrink-wrapped software, Software
as a Service (SaaS), open source software, and any packages or configurations of the
former.

One way of modelling these SECO relationships, is the so called Software Supply
Network (SSN) model. A software supply network, according to Jansen, Brinkkemper
and Finkelstein (2007), is “a series of linked software, hardware, and service organi-
zations cooperating to satisfy market demands”[5]. The accompanying modelling
method describes SSNs in two parts; the product context and the supply network. The
product context describes which products and services make a complete software
product, and a supply network describes all parties involved in the SSN including the
flows of goods, services and finances between them [5]. The supply network notation
from this modelling method was also used to create the dataset used throughout this
paper, which will be described in more detail in the method section. In the broad
business model definition of Osterwalder, Pigneur, and Tucci, SSN models would
occupy the instance level which consists of representations of real world business
models [6].

Fig. 1. SSN Supply network example

Exploring Network Modelling and Strategy in the Dutch Software Business Ecosystem 47

Suppliers of software, hardware, services or content are drawn as orange rectangles
with a pointed right edge. Intermediaries that act as partners, implementers or re-
sellers are drawn as green rectangles with two pointed edges. Customers are repre-
sented as yellow rectangles with a pointed left edge. Finally, the vendors of a product
are the central focus object of an SSN, and these are drawn as blue rectangles. Flows
between elements in an SSN are represented as simple lines, annotated with the con-
tents of the flow in pointed rectangles. See figure 1 above for an example.

Outline. Section 2 covers the clean-up and preparing of data for the rest of the paper,
as well as the methods used for analysis. In section 3 the dataset will be described in
more detail. This section will also cover the process of modelling the data in Gephi
and the methods used to visualize the data. The additions made for the 2013 extended
case and Microsoft case are also be described. Section 4 will present the results of
community detection and preliminary findings from the extended 2013 case and Mi-
crosoft case. In section 5 these findings will be related to SECO strategy literature in
academia. The paper concludes with a discussion in section 6 and a conclusion in
section 7.

2 Method

In this section, we elaborate on the methods used in this paper, like the collection of
data, the process of conducting statistical analysis and the application of analytical
methods. Many of the concepts explored in this section are closely related to the re-
search area of Social Network Analysis (SNA), where subjects like node centrality
and clustering have long since been explored [7].

Data. The data source for this research was obtained from several SSN modelling
case studies performed in the product software market in the Netherlands. These case
studies were conducted by Utrecht University undergraduate students as part of a
product software course. Our data set consists of supply network models created over
three years (2010, ‘11 and ‘13).

As a part of the undergrad course, students were asked to perform interviews at a
company selling software products. The only criterion on company choices was own-
ership in the Netherlands. The purpose of these interviews was to investigate how
companies built and sold their products, to the point that SSNs could be created by the
students. Not all students performed their assignments up to the same standards of
quality. To assure that only high quality data was available for this project, several
criteria were used to exclude certain low quality cases:

1. Unnamed Partners. In cases where a lot of suppliers and/or intermediaries were
not given a proper company name (e.g. ‘hardware vendor’, ‘consultant’), the data
was considered unusable and the case was removed.

2. Illogical Flows. In some cases students failed to accurately model the flow of
products, services and finances between parties in the SSN (e.g. finances flowing

48 W. Crooymans et al.

from A to B for no product or service from B to A). Singular illogical flows were
removed from the cases. Large numbers of illogical flows led to case removal.

3. Irrelevant for the Vendor Ecosystem. In some cases students included suppliers
that had no interaction with the product or the vendor providing it (e.g. A supplier
selling servers to the customer directly). Suppliers that had no meaningful contri-
bution to the product or relationship with the vendor were removed from their case.

In the 2013 iteration of the course, students were also tasked with registering sev-
eral attributes about the vendors’ relationships with other companies in a central
datasheet. Four of these attributes were of particular interest to us: The relationship
type with a party, the perceived balance of power in that relationship, the perceived
importance of that relationship to the vendor’s business model, and the frequency of
contact with the other party.

The basic data for exploring the Microsoft ecosystem were obtained from the same
source. The original data were filtered so that only the 101 parties with a connection
to Microsoft remained. 50 Organizations were listed in the Microsoft PinPoint search
engine. 47 organizations either claimed a relationship on their website, or made no
information available. Only, 10 out of these 47 organizations replied to an e-mail with
the information needed. Another two organizations were not available for contact and
two more were acquired by Microsoft since the SSNs were made.

Visualization. After collecting data, the open source tool Gephi is used for visualiza-
tion. Gephi has a flexible and multi-task architecture that allows filtering, navigating,
manipulating and clustering for complex graphs of network models [8].

The SSN supply networks from the case studies were converted and used as input
parameters. Parties and relationships from the models are entered as the nodes and
edges of a network. For the example supply network in figure 1, the nodes and edges
in the resulting data tables are visualized in table 1 and 2 respectively.

Table 1. Node table structure

Node ID Label Type SSN

Microsoft 1 Microsoft Supplier 1

AIP 2 AIP Vendor 1

AIP_Customer 3 AIP_Customer Customer 1

Each node in Table 1 is given a name (Node) and a unique ID. The Type attribute
denotes the role of a node in the SECO. The SSN number makes it possible to identify
which SSN every node in the network originated from.

Table 2. Edge table structure

Source Target Type ID Weight Products Services Finances Content Hardware

1 2 Directed 1 5 5

2 1 Directed 2 3 3

2 3 Directed 3 2 1 1

Exploring Network Modelling and Strategy in the Dutch Software Business Ecosystem 49

Edges carry the Source- and Target-IDs of the nodes that they connect. Gephi au-
tomatically gives these source-to-target relationships the Type attribute ‘Directed’.
The total amount of resources exchanged within a single relationship (i.e. products,
services, finances, content and hardware) forms the Weight of the relationship.

For the 2013 dataset the edge tables were expanded with the four relationship at-
tributes (partner importance, relationship type, contact, and balance of power), con-
verted to integer values from their original Likert scale rankings. A partner with
‘monthly’ contact would, for instance, get a score of 4 on the matching attribute.

Table 3. 2013 extended case relationship attribute coding

Partner Importance Relationship type Contact Balance of Power

Crucial 5 Cooperation agreement 5 Weekly 5 Partner more powerful 5

Very important 4 Partnership program 4 Monthly 4

Important 3 License agreement 3 Yearly 3 Power is equal 3

Not very important 2 Informal relationship 2 Rarely 2

Trivial 1 Animosity 1 Never 1 We are more powerful 1

Edge weights were recalculated as the sum of all four relationship attributes. Edge

types were set to ‘Undirected’, as the direction of edges no longer holds any meaning
in this case.

Microsoft certainly seems to be the keystone player of the Dutch ecosystem from
previous visualizations. Therefore, we expanded the data related to Microsoft to get
the inside view of its ecosystem, as outlined in section 2.1. For Microsoft partnership
data structure, the format of nodes is depicted in table 4. The ‘partner’ attribute de-
scribes which type of partnership the organizations has with Microsoft. Partner total is
the sum of gold and silver certificates the organization has with Microsoft.

Table 4. Node table structure for the Microsoft case

Node ID Label Type SSN Partner Partner Total

HP 3 HP Supplier 1 Gold 14

AIP 19 AIP Vendor 2 Silver 1

Centric 33 Centric Vendor 3 Gold 11

Edge type is once again undirected, the reason being the same as for the 2013 case.
The edge tables were extended with attributes for the amount of gold and silver certi-
fications, and the Weight attribute was made the sum of all certifications.

For the sake of exploration three distinctly different structuring algorithms will be
used to draw network graphs throughout this paper. The Fruchterman-Reingold-,
Force Atlas-, and Force Atlas 2 - algorithms each offer a different degree of user con-
trol, but more control always comes at the cost of ease-of-use.

Clustering. For extracting clusters from the data, the Louvain clustering algorithm is
used [9]. The Louvain algorithm is proposed by Blondel, Guillaume, Lambiotte and
Lefebvre. This algorithm works by calculating and optimizing the modularity (the

50 W. Crooymans et al.

density of edges) of groups
placed in its own communit

1. Calculate the modular
2. For each community,
were to merge with that n
3. For the highest detecte
4. Recalculate modularit
5. Repeat from step 1 un

3 Describing the D

After elimination in accord
cases were removed from t
cases remained in the final
section 2, a network model
es. Using the Fruchterman-
resulted in the network sho
placed within a predefined
distances based on the wei
easy to create and control,
used by Rahul Basole in his

Fig. 2. Full network diagram
combining all the data

This diagram was creat

(amount of incoming and ou

s of nodes. On the first pass of the algorithm, each nod
ty. From there the algorithm follows this pattern:

rity of all communities in the network.
, for each neighbor, calculate the gain in modularity i
neighbor
ed modularity gain, merge the two neighbors
ty for all communities that remain.
ntil no modularity gains are possible.

Dataset

dance to the criteria outlined in section 2, a total of se
the dataset for their lacking quality. A total of sixty se
 dataset. After entering the data into Gephi, as outlined
l was created containing 398 nodes connected by 984 e
-Reingold algorithm for force directed graph drawing[
own in figure 2. Fruchterman-Reingold forces nodes to
d circular space, with only minor variations in inter-n
ight of their connections. This makes the resulting gra
 particularly for large networks. The same algorithm w
s visualizations of the mobile ecosystem [11]

as generated by Fig. 3. 2013 extended case diagram with ed
brightness reflecting contact frequencies

ted using the following parameters: Node size = deg
utgoing connections); Edge size = Edge weight

de is

if it

even
ven
d in
edg-
[10]
o be
node
aphs
was

dge

gree

Exploring Network Modelling and Strategy in the Dutch Software Business Ecosystem 51

The network has the following composition: 222 suppliers (orange), 52 vendors
(blue), 56 intermediaries (green), 60 customers (yellow), 4 supplier/vendor hybrids
(purple), and 4 supplier/intermediary hybrids (teal).

A total of 572 products change hands in the network. In addition, 191 services are
provided and 6 units of hardware are sold. In return, 40 pieces of content are provided
and 521 payments are made. In total the network captures 1329 exchanges being
made.

Perhaps unsurprisingly, the best connected node in the entire network is Microsoft,
with a total of 79 unique connections. Microsoft is however not the only strongly
connected supplier in the dataset. What follows is a top 10 list of the best connected
suppliers:

1. Microsoft 6. SAP
2. Oracle 7. IBM
3. Apache Foundation 8. Apple
4. HP 9. AMS IX
5. Google 10. Amazon

The top 3 of the Forbes Global 2000 for software companies in 2013 are all present,
namely Microsoft, Oracle and SAP. Also the number one and two hardware provid-
ers, (Apple and HP), and the number one and two software service providers, (IBM
and Google), made the list1. Finding these giants at the centre of ecosystems is not
uncommon in ecosystems research [12, 13] Perhaps a good sign of health for the open
source software market is the Apache Foundation ranking 3rd. Other open source pro-
viders include but are not limited to the Eclipse foundation, The Python foundation,
Debian, FreeBSD, Red Hat and the GNU project. The only natively Dutch supplier to
make the list is the Amsterdam Internet Exchange (AMS IX).

In the extended 2013 case 152 nodes and 155 edges remained. Using Gephi’s own
Force Atlas 2 structuring algorithm results in a structure that makes it easier to identi-
fy outliers, compared to Fruchterman-Reingold [14]. Force Atlas 2 uses attraction,
repulsion and scaling variables to iteratively determine structure. Force Atlas 2 and its
predecessor were similarly used by Yu, Yin, Wang and Wang to visualize social
groups in the Github ecosystem [15] Default values will often result in groups of
connected nodes clustering too tightly and outliers flying off into the void, so some
tweaking on part of the user is required. The resulting graph can be seen above in
figure 3. This diagram was created using the following parameters: Node size = De-
gree; Node color = Same as Figure 2 (Valve is yellow); Edge size = Edge weight;
Edge color = 5 point gradient for Contact frequency. For this diagram the edges were
colored on a 5 point gradient, reflecting the values of the ‘contact frequency’ attribute.
Frequent contact results in a bright purple edge color, whereas no contact whatsoever
results in a black edge. Four more diagrams were created with different color schemes
for the ‘relationship’, ‘power’ and ‘importance’ and overall ‘weight’ attributes.

For the Microsoft case, after filtering 55 nodes remained and 54 edges between
them. The Force Atlas algorithm was used to structure the data in Gephi [8]. Force

1 http://goo.gl/tir5Tx

52 W. Crooymans et al.

Atlas operates on the same
This makes it more flexible
for the inexperienced. The d
size = node weight; Edge si
partnerships have colors t
(green) and four partners w
and/or Silver certificates, 4
as can be seen in Figure 4.

Fi

Microsoft has 33 Gold c
most certifications is Dell w
ners in the network with o
certified partners than silve
section 6.3.

4 Preliminary Fin

In this section the prelimin
discuss the results of cluste
for Microsoft respectively.

Clustering. After running
within the full dataset. 10
described in section 2. Ven
edges can achieve the great
Five of the detected comm
when two central vendors i
supplier or intermediary. W
modularity gain in merging

principles as Force Atlas 2, but allows users more cont
e for creating visualizations, but also more difficult to
diagram was created using the following parameters: N
ize = Edge weight. Nodes for partners with gold and sil
to match. There are also two acquisitions by Micro

without certifications (red). There are 48 partners with G
partners without certificates and 2 companies are acqui

ig. 4. Full Microsoft network diagram

certified partners in our dataset. The organization with
with a total of 25 (21 gold) certificates. There are 15 p

only silver certificates. Comparatively there are more g
er ones. The possible reason for this will be discussed

ndings

ary findings of modelling the dataset are discussed. It w
ering, extending the data for 2013, and extending the d

g the Louvain Algorithm 21 communities were detec
of these are identical to their original SSN diagrams

ndors that are only tied to the larger network through sin
test modularity gain by simply merging into a single no

munities consist of two merged SSNs. This pattern occ
in the SSNs share their strongest connection with a sin

When this occurs the Louvain detects the highest possi
g those SSNs. This leaves 6 more complex communities:

trol.
use

Node
lver
soft

Gold
ired

the
part-
gold
d in

will
data

cted
, as
ngle
ode.
curs
ngle
ible
:

Exploring Network Modelling

The Microsoft Communi
Software vendors that do
sucked into this community
their modularity.

A Taste of Open Source
source. It appears that vend
taste for more. The centra
Foundation and the Eclipse
into this community becaus

Fig. 5. The open source co

The Mobile Developers (f
Apple. Digging back into th
and Android. Those vendo
their products are pulled int

The Cloud Providers. The
hosting services, data cente
community centers around
datacenters and a server-sid

The Oracle Community (
includes Autodesk. This m
tween the two suppliers in e
ever, does not provide any
that are well connected to O

g and Strategy in the Dutch Software Business Ecosystem

ity. The largest,is a community centered on Micros
not have ties with any other large suppliers tend to
y because it is the only way for the algorithm to impr

(fig 5). The second largest community is all about o
dors with ties to one open source supplier tend to get a go
al nodes in the community include Red Hat, the Apa
e foundation. Other closed source suppliers also get pul
se of their strong ties with the open-source-using vendor

ommunity Fig. 6. The mobile developers community

fig 6). The third largest community centers on Google
he original SSNs reveals what drives this community. i

ors that consider mobile platforms a crucial component
to this community.

e fourth largest community is up in the clouds, whether
ers or specific implementations like video-on-demand. T
CloudVPS, Equinix and the PHP group, providing serv

de scripting language respectively.

(fig 7). The fifth largest community centers on Oracle
ay be in part due to a strategic partnership established
early 2007. Their single shared connection to Centric ho
y conclusive evidence for this assumption. Other vend
Oracle also get sucked in.

53

soft.
get

rove

open
ood

ache
lled
rs.

and
iOS
t of

r its
This
vers,

and
be-

ow-
dors

54 W. Crooymans et al.

The Hardware Communi
on established hardware ve
and Cisco. In an age of inc
some vendors still rely on s

Fig. 7. The Oracle c

2013 Case. An immediate
3), is the large discrepancy
contact frequencies/relation
dor for example, has indic
(5/5 rating). When asked on
indicated that there is none
(2/5 rating). This is in an un
others within the network.

On the 1 to 5 rating scal
ings (n=155) averaged -.08
for which, despite the high
formal. The differences be
averaged -.11 (s=1.689). Th
gory is exactly the same.

These differences may b
ware producing companies
their most important suppli

ity (fig 8). The sixth and last complex community cen
endors. Three big names immediately stand out: HP, IB
creasingly affordable hardware, SaaS and Cloud solutio
ervices of these big name suppliers.

community Fig. 8. The Hardware community

pattern that arises from the 2013 case models (see fig
between perceived partner importance for the product

nship types with that partner. One marketing software v
cated that Microsoft is absolutely crucial to their prod
n their relationship with Microsoft however, the vendor
e (1/5 rating) and they rarely have contact with Micro
nexpected contrast, and is repeated on several occasions

e, the differences between importance and relationship
8 (s=1.946). There are 15 outliers (rating difference =
h importance of a partner, the relationship with them is
etween importance and contact frequency ratings (n=1
he amount of outliers (rating difference => 3) in this ca

be indicative of a strategic gap. It is unexpected for s
to have little to no contact and informal relationships w

iers. There may however, be other factors that can expl

nters
BM
ons,

gure
and

ven-
duct
has
soft
s by

rat-
=>3)

 in-
155)
ate-

oft-
with
lain

Exploring Network Modelling and Strategy in the Dutch Software Business Ecosystem 55

these differences. Bigger suppliers may be less available for contact and partnership
programs may be expensive to enroll in. Particularly for smaller companies.

Looking back for a moment at the original SSN models, there were no indicators
that these differences even existed. In the SSN notation all relationships between eco-
system parties are equal. The statistics above show that relationships between parties
cannot be assumed to be the same. Whether this indicates a need for change in the
SSN notation, or whether this change is outside of the intended scope, is a question
for future research. An attempt to include this sort of data in SSN models has been
made before by Handoyo, et al. [16].

Microsoft Case. As can be seen in figure 4, the numbers of gold partners are compar-
atively higher than silver partners. There may be few reasons for the organizations to
become gold certified rather than silver. One of the reasons may be differences in
benefits making gold certification more attractive. For instance, Microsoft gives part-
ners free licenses for the internal use of some Microsoft products; silver partners can
use only up to 25 licenses per product while gold partner can use up to 100 licenses
per product. Also, the enrollment procedures for Gold and Silver certificates are not
that different. In both cases employees of the prospective partner must take exams and
pay license fees (though higher for gold). A minor difference for example: Gold certi-
fied organizations must use the customer satisfaction (CSAT) index survey for per-
formance measurement, which takes extra work but has its own benefits This may
contribute to an attitude that one looking to get certified might as well just ‘go for
Gold’.

5 Relating the Data to Business Strategy

It is worth noting that even without analysis the dataset and accompanying models
already provide interesting information. The model shown in fig. 2 shows SECO
structure, basic information on the SECO parties, their roles, and relationships be-
tween them. Much of SECO strategy literature in academia already uses this data to
identify, classify, create and assess strategies in the business world.

When SECO roles are concerned, most literature will name keystones [17,18] and
niche players [19,20] as the two most prominent. Both of which can be easily identi-
fied in a network diagram by looking at node centrality and modularity. The role of a
company has significant influence on their strategies with regard to their ecosystem.

Ecosystem structure also plays a role in SECO strategy literature. Van den Berk,
Jansen and Luinenburg name it as a factor in a SECO strategy assessment model [1],
and Iyer, Lee and Venkatraman use structural data as a measure for SECO health
[21].

Relationships in ecosystems form the basis for research on partnership programs.
For instance Bosch who defines strategic decisions for ecosystem partners to make
the most out of their (potential) relationships [22]. Another example is given by Popp,
who identifies goals related to partnership programs and communities [23].

56 W. Crooymans et al.

Communities. In their 2011 paper on SECO management practices, Viljainen and
Kauppinen synthesized four major categories of practices [24]. Three of these catego-
ries can play a role in business strategy with model support. Some of those practices
are the following:

Technology Scouting. The communities detected in section 4 can be used to support
these practices. Having an understanding of one’s local community, including its
structure and other participants, can provide a basis for choosing targets in technology
scouting practices. Particularly targets for joint ventures and acquisitions can be justi-
fied by evidence of a shared community.

Orchestration. For keystone players interested in orchestration, the communities can
serve as inspiration for identifying closely related parties that they were not previous-
ly aware of, potentially extending the boundaries of their perceived SECO. These
parties can then be targeted for partnerships and standards adoption.

Technology Asset Management. For those looking to change up their technology
asset management practices, communities can help to identify parties with valuable
knowledge and similar practices. Vendors in the open source community could for
instance find other vendors that use the same open source components. Sharing their
requirements and knowledge can help both parties to get the most out of their open
source components.

2013 Case. The 2013 extended case provides interesting information on vendor per-
ceived metrics of ecosystems. The data includes partner importance, relationship type,
contact frequency, and the balance of power. These metrics could be of particular
interest to research in ecosystems health.

Hartigh, Tol and Visscher set out to create formal measures for the concept of
SECO health [25]. Their work extended on an earlier paper by Iansiti and Levien,
who already defined productivity, robustness and niche creation as the three main
categories of SECO health factors [17]. Under the factors “persistence of ecosystem
structure” and “predictability” in the ecosystem Robustness category, Hartigh et al.
name measures like the amount of connections of each agent and the ‘connectedness’
of the entire network as measures.

In section 4 large discrepancies between relationship importance and relationship
types were detected. This begs the question whether a simple tally of relationships
and a number for connectedness are sufficient to measure robustness. The use of such
values can certainly be valuable indicators of SECO health, but they do not paint a
complete picture. Twenty or more connections are hardly an indicator of network
robustness if those connected perceive their relationship as informal. This shortcom-
ing in their measures was also noted by Hartigh et al. Using data and models similar
to the 2013 case could help to further improve the measurement of SECO health.

Microsoft Case. For the Microsoft case the partner ecosystem defined by Popp is
particularly interesting [23]. In an earlier work Meyer identified the following catego-
ries of goals for a software vendor in a partner ecosystem: financial, customer related,
product related, network effect related and market related goals [26]. Popp makes
these goals explicit for his view of the partner ecosystem. Microsoft already takes its

Exploring Network Modelling and Strategy in the Dutch Software Business Ecosystem 57

partner ecosystem goals very seriously, as is said on their website: “Microsoft be-
lieves that their own advantage shines through the success of their partners” [27].
Microsoft’s mission includes partners as a central means to help customers and busi-
ness throughout the world.

Under product related goals innovation and co-innovation in local and regional
markets could be helped by visualizing networks that include geographical data. This
does not just show partners on a map, but also makes it easier to identify local and
regional keystones and niche players. This can be used to analyze their strongest po-
tential partners for co-innovation in a certain region, and to identify the best partners
for reselling Microsoft products in a region.

In the category of financial goals Microsoft gains more from gold certified partners
than from silver certified partners. Accurate information about silver certificates in a
market as shown in figure 4, could help Microsoft find partners for upgrading to a
gold certification in the same competency. These partners could then be contacted or
even helped to achieve an upgrade.

6 Discussion

In this paper we discussed a dataset, several modelling approaches, several analysis
results and several ways of relating these results to SECO strategy goals and practices
from literature. Though there is some research available on SECO modelling and the
use of those models, there is as of yet very little to be found on the inter-seco level of
ecosystems [2]. On the inter-seco level, ecosystem models provide a view of the con-
nections between multiple vendors, suppliers and intermediaries, rather than taking a
single vendor as the Company of Interest as the SSN notation does.

The major validity concern in this paper is the source of data that was used. Three
years of bachelor’s course results are unlikely to all be of equal quality and reliability.
Some filtering was done to exclude particularly bad data, as outlined in section 2, but
there may still be faults left. The validity of the data depends on the assumption that
all remaining students were honest, objective and diligent in their work.

Regardless, the specific contents of the dataset do not directly threaten the validity
of the methods used in sections 4 and 5. Even with a perfect dataset the results would
likely still have indicated gaps between relationship importance and contact/strength,
community clusters of a similar nature, and similar Microsoft Partnership program
results. For future work a systematic data collection method can be used to create a
new dataset.

This paper succeeded in showing the potential use of ecosystem models for the
business strategy field. There are many other focus areas in the SECO field where
models may also contribute to existing practices and goals. A sample of other fields
for future research is provided in the conclusion of the paper. The uses of models
found can help businesses to create more robust and complete strategies and deci-
sions. There may also be some benefits to be had for other parties. Views of SECOs
could for instance help policy makers and market researchers in understanding the
product software market as a whole. This is a good subject for future research.

58 W. Crooymans et al.

7 Conclusion

The original research question was ‘how can software ecosystem models be used to
analyze strategic interests in a local software ecosystem?’. The first step towards
answering this question was the creation of models. SSNs gathered from 3 years of
bachelor level courses in product software were used to create a view of the Dutch
product software ecosystem. This view was then analyzed using a community detec-
tion algorithm, and extended using more specific data about relationships and partner-
ships.

To show that the three created models and the analysis of those models can actual-
ly have a benefit for business, the results section tied the data to strategic practices
and goals described in scientific literature. The community detection results were
related to three categories of SECO management practices, the 2013 case was related
to a SECO health measurement framework, and the Microsoft partners case was relat-
ed to goals for successful SECO partnership models.

In this paper we kept a broad perspective on business strategy. For future research
similar work can be done to show the potential uses of models for focus areas within
the SECO strategy domain. Some examples of focus areas are ecosystem governance
and orchestration, SECO health analysis, partnership management, and software plat-
form development. These subjects were touched upon briefly from the strategy per-
spective in this paper, but could be further expanded upon in later works. Another
option is to move away from software businesses entirely, and to investigate the use
of these models for external parties (e.g. governments, market research, or business
analytics).

Another opportunity for future research that was identified in this paper is the use
of relationship attributes in SSN modelling and SECO health measurement. The po-
tential shortcomings of SSNs without relationship information were discussed in sec-
tion 4. The lack of relationship data in health measurement was discussed in section 5.
Both fields could benefit from the realization that not all relationships are equal when
considering the formality and contact frequency of those relationships.

References

1. Van den Berk, I., Jansen, S., Luinenburg, L.: Software Ecosystems: a Software Ecosystem
Strategy Assessment Model. In: Proc. of the 4th ECSA, New York, NY, pp. 127–134
(2010)

2. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research agenda for
software ecosystems. In: Proc of the 31st ICSE: Companion Volume, pp. 187–190 (2009)

3. Li, Y.: The technological roadmap of Cisco’s business ecosystem. Technovation 29,
379–386 (2009)

4. Xu, L., Brinkkemper, S.: Concepts of product software. Eur. J. Inf. Syst. 16, 531–541
(2007)

5. Jansen, S., Brinkkemper, S.: Providing Transparency In The Business Of Software: A
Modeling Technique For Software Supply Networks. In: Proc. of the 8th IFIP Working
Conference on Virtual Enterprises, pp. 667–686 (2007)

Exploring Network Modelling and Strategy in the Dutch Software Business Ecosystem 59

6. Osterwalder, A., Pigneur, Y., Tucci, C.L.: Clarifying business models: Origins, present,
and future of the concept. Communications of the association for IS 16(1) (2005)

7. Carrington, P.J., Scott, J., Wasserman, S.: Models and methods in social network analysis,
vol. 28. Cambridge University Press (2005)

8. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and
manipulating networks. In: 3rd AAAI CWSM, pp. 361–362 (2009)

9. Isaksen, A.: Knowledge-based clusters and urban location: the clustering of software con-
sultancy in Oslo. Urban Stud. 41, 1157–1174 (2004)

10. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw.
Pract. Exp. 21, 1129–1164 (1991)

11. Basole, R.C.: Visualization of interfirm relations in a converging mobile ecosystem. Jour-
nal of Information Technology 24(2), 144–159 (2009)

12. Iyer, B., Lee, C.H., Venkatraman, N.: Managing in a small world ecosystem: Some lessons
from the software sector. California Management Review 48(3), 28–47 (2006)

13. Iansiti, M., Levien, R.: Keystones and dominators: Framing operating and technology
strategy in a business ecosystem. Harvard Business Press (2004)

14. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2: A Continuous Graph
Layout Algorithm for Handy Network Visualization Designed for the Gephi Software.
PLoS One 9(6) (2014)

15. Yu, Y., Yin, G., Wang, H., Wang, T.: Exploring the patterns of social behavior in GitHub.
In: Proc of the 1st International CrowdSoft Workshop, pp. 31–36 (2014)

16. Handoyo, E., Jansen, S., Brinkkemper, S.: Software ecosystem modeling: the value chains.
In: Proc. of the 5th ICMEDES, pp. 17–24 (2013)

17. Iansiti, M., Levien, R.: The keystone advantage: what the new dynamics of business eco-
systems mean for strategy, innovation, and sustainability. Harvard Business Press (2004)

18. Riis, P.H., Schubert, P.: Upgrading to a new version of an erp system: a multilevel analysis
of influencing factors in a software ecosystem. In: Proc. of the 45th HICSS,
pp. 4709–4718 (2012)

19. Kazman, R., Chen, H.: The metropolis model: a new logic for development of
crowdsourced systems. Commun. ACM 52, 76–84 (2009)

20. Kabbedijk, J., Jansen, S.: Steering insight: An exploration of the ruby software ecosystem.
In: Regnell, B., van de Weerd, I., De Troyer, O. (eds.) ICSOB 2011. LNBIP, vol. 80, pp.
44–55. Springer, Heidelberg (2011)

21. Iyer, B., Lee, C.H., Venkatraman, N.: Managing in a small world ecosystem: Some lessons
from the software sector. Calif. Mgmt. Rev. 48, 28–47 (2006)

22. Bosch, J.: From software product lines to software ecosystems. In: Proc. 13th Int. Softw.
Prod. Line Conf., pp. 111–119 (2009)

23. Popp, K.M.: Goals of Software Vendors for Partner Ecosystems–A Practitioner’s View. In:
Tyrväinen, P., Jansen, S., Cusumano, M.A. (eds.) ICSOB 2010. LNBIP, vol. 51,
pp. 181–186. Springer, Heidelberg (2010)

24. Viljainen, M., Kauppinen, M.: Software ecosystems: A set of management practices for
platform integrators in the telecom industry. In: Regnell, B., van de Weerd, I., De Troyer,
O. (eds.) ICSOB 2011. LNBIP, vol. 80, pp. 32–43. Springer, Heidelberg (2011)

25. Den Hartigh, E., Tol, M., Visscher, W.: The health measurement of a business ecosystem.
In: Proc. of the ECCON 2006 Annual Meeting, pp. 1–39 (2006)

26. Meyer, R.: Business Models for Software Companies. BoD, Hamburg, Germany (2008)
27. Popp, K., Meyer, R.: Profit from Software Ecosystems: Business Models, Ecosystems and

Partnerships in the Software Industry. BoD, Hamburg, Germany (2010)

Towards a Typification of Software Ecosystems

Jens Knodel1(�) and Konstantinos Manikas2

1 Fraunhofer Institute for Experimental Software Engineering (IESE),
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

jens.knodel@iese.fraunhofer.de
2 Department of Computer Science (DIKU),

University of Copenhagen, Copenhagen, Denmark
kmanikas@di.ku.dk

Abstract. Traditionally, software engineering has been dominated by
stand-alone development organizations and collaborations between con-
tractors, integrators and suppliers. In the last decade, the notion of soft-
ware ecosystems has been established as a new paradigm in software
engineering. In its essence it proposes participative engineering across
independent development organizations centered on a common technol-
ogy.

This paper reviews the current state-of-the-art and presents a first step
towards a typification of successful software ecosystems. We discuss key
characteristic of the ecosystem types and present a set of example cases.
The characterization reviews and consolidates existing research and dis-
cusses variations within the key building block of a software ecosystem.
It further enables sharpening the borders of what an ecosystem is (and
what not) and how the individual types can be differentiated. Thus, this
paper contributes to widening the understanding of software ecosystems
and serves to prepare a software ecosystem taxonomy.

Keywords: Software ecosystems · Software engineering · Ecosystem
types · Ecosystem taxonomy

1 Introduction

Software systems have been traditionally developed by a single organization in
isolation and within a collaboration of several organizations, whereby one or-
ganization subcontracted other suppliers to deliver parts of or whole software
systems according to some kind of specification. Today, we can observe an in-
creasing number of software systems that strongly gain value by contributions
added by other organizations - without being bound to contracted specification
of what to deliver at what point in time. Prominent examples of such so-called
software ecosystems (SECOs) are for instance, Eclipse an open platform with
plugins for all kinds of purposes or mobile device platforms like iOS or Android
which are enriched by millions of apps.

The term software ecosystem was first coined more than a decade ago [1].
The research community has been successful in scattering various definitions

c© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 60–65, 2015.
DOI: 10.1007/978-3-319-19593-3_5

Towards a Typification of Software Ecosystems 61

of software ecosystems1 since then. Those partially overlapping definitions de-
fine the space and the borders of the current shared understanding of software
ecosystems in the research community.

In this paper, we argue for a having wider understanding on the range of ex-
isting kinds of software ecosystems. We derive our observations from ecosystems
in operation (either by analysis of open, active ecosystems or of closed ecosystem
where we had insights due to collaborations with industrial partners). We distill
the key building blocks of software ecosystems observed and provide a first set
of ecosystem types. By this we aim at paving the way towards an ecosystem
taxonomy in order to enable a better understanding of ecosystems in general
and its research challenges and implication in particular.

2 Setting the Scene

The work by Manikas and Hansen [7] analyzed the definitions in the litera-
ture (published until 2012). They propose a definition of software ecosystems
by analyzing the existing definitions and identify three main elements that form
software ecosystems: (i) common software and (a) technological platform(s), (ii)
business or interests, and (iii) connecting relationships or interaction. However,
today there exists a number of examples of ecosystems that fail that definition,
as much as several of the alternatives definitions for software ecosystems, because
although they demonstrate actor interaction that results in software solutions
or services, they are not structured on top of a common platform. Examples
of such types of ecosystems emerged around OSGi, Open Design Alliance, or
BitTorrent.

The lack of technological platform in ecosystems has been recognized as well
by Jansen and Cusumano in their survey on software ecosystems [8] where they
identify that a type of “underpinning technology” for software ecosystems can
also be a standard apart from a (service) platform. Similarly, Manikas and
Hansen [9], examine the Danish telemedicine ecosystem as a software ecosys-
tem although the lack of a common technological platform identifying that the
ecosystem under study demonstrates symbiotic relationships in actor and soft-
ware level, motivated by a set of business models, and resulting in software prod-
ucts or services. Knodel et al. [10] report on an example of smart ecosystems
in the agricultural domain based on a standard without a common platform.
Thus, the concept of software ecosystems is evolving and we perceive the need
to redefine the borders of software ecosystems. In this study we focus mainly
on the common software (in particular the common technological platform) and
reveal that there are different types of software ecosystems that do not neces-
sarily include a common platform (at least in the traditional sense of a software
platform).

1 For instance, [2,3,4,5,6,7], please note that the list is not complete.

62 J. Knodel and K. Manikas

3 Ecosystem Building Blocks

We propose the meta-model of generic ecosystem building blocks depicted in Fig.
1 as the basis of our subsequent analysis of ecosystem types. The meta-model
has been derived on the one hand from the analysis of existing literature and on
the other hand from observations made in software ecosystems in practice. The
building blocks are the following:

Fig. 1. Metamodel of ecosystem building blocks

– Actor: Ecosystems are driven by multiple actors interacting directly or indi-
rectly with each other in collaborative or competitive nature. Actors provide
a contribution to the ecosystem thus, the union of all contributions consti-
tutes the moving target “ecosystem continuum”. The number of actors is
directly dependent on how open the ecosystem is to new actors, i.e. the en-
try barriers to the ecosystem. Typical instances of actors of an ecosystem
may be individuals (developers, contributors, users, customer), commercial
organizations, governmental entities, non-profit associations, and social com-
munities.

– Incentive: Actors pursue some kind of incentive, which motivates their par-
ticipation in the ecosystem. Typical instances comprise personal or busi-
ness interest, fame, legal or standard regulations, legal or commercial forces,
shared market needs or requirements.

– Common Technology: Ecosystems emerge around a shared technology.
Instances of this technical linchpin can be twofold: (1) at engineering time
(e.g., infrastructure, IDEs, SDKs, APIs, or standards) or (2) at execution
time while the ecosystem is in operation (RTEs, platforms, frameworks, or
protocols).

– Contribution: Actors provide contributions (with the linchpin being a spe-
cial contribution as it is the key enabler of the ecosystem). Typical contri-
bution may be software (functionality in form of apps, software service, or

Towards a Typification of Software Ecosystems 63

stand-alone solutions; data in its raw form, aggregations, or context infor-
mation) or services (management, integration, customization, etc.).

– Environment: The environment of the software ecosystem can be physical
(interacting with the real world) or digital (IT only). It sets constraints for
the software it is operating. Constraints may be imposed by special hardware,
physical laws, social rules, or legal policies.

4 Analysis of Ecosystem Types

In this section we present different types of software ecosystems identified while
discuss their characteristics according to the software ecosystem building blocks.

– Cornerstone Ecosystems

Cornerstones are the more “traditional” types of software ecosystems: ac-
tors develop contributions on top of a common software platform typically
extending the platform’s functionality. Thus the existence of a technological
platform is of central importance for the ecosystem of this type. The lit-
erature provides a number of examples of ecosystems of this kind like the
iPhone AppStore, Android, or Eclipse. Cornerstone ecosystems and different
perspectives of ecosystems of this type have been in focus of the research so
far.

– Standard-based Ecosystems

Compliance to standards is the key requirement for contribution in this kind
of ecosystem. The standards replace a common technological platform and
provide rather a specification of desired and required behavior of contri-
butions, independent from their concrete realization as long as compliant.
Standard-based ecosystem was initially proposed by Jansen and Cusumano
[8]. Ecosystem standards usually are maintained and evolved organized by
consortia with (paid) memberships. Standards often define rules to guaran-
tee certain non-functional properties across individual contributions (e.g.,
safety in the ISOBUS standard in agricultural domain).

– Protocol-based Ecosystems

Protocols are a less restrictive and more flexible technical linchpin of ecosys-
tems. They provide a predefined specification of interaction of contributions
with each other (e.g., exchange of data, call of software services).

– Infrastructure-based Ecosystems

Infrastructure-based ecosystems share the same technical environment or
tools at development time, but at the same time they provide independent
contribution (e.g., Gnome, Github). The interactions between actors across
individual contributions are often on a social level. Contributors themselves
share their output and dedicate their efforts towards more than just one
contributions (e.g., see [6] or [11]).

64 J. Knodel and K. Manikas

Table 1. Analysis of software ecosystem types

Category Cornerstone Standard Protocol Infrastructure

Emergence successful product
or actor(s)

specifications need for use successful product

Leadership often run by single
organization

often run by consor-
tia

often run by commu-
nity or organization

often run by (open
source) community
or company

Structure (Exe-
cution)

centralized, close
collaboration, plat-
form provides for
governance, com-
mon technology
part of the product

high level of actor
& product indepen-
dence, commitment
to specific version

actor & product in-
dependence

different products,
common technology
not part of the
product

Structure (Engi-
neering)

cornerstone SDK
shared across all
actors

specification shared
across all actors

API shared across
all actors

common technology
shared across all ac-
tors

Governance
(common tech-
nology)

monarchic or aris-
tocratic decisions
about products (few
decide, others have
to follow)

federal decisions
(no one can’t do
anything without
shared agreement of
all (key) parties)

democratic decisions
(anyone can do any-
thing, as long as the
majority agrees

monarchic, demo-
cratic, or federal
decisions about
shared infrastruc-
ture

Governance
(contribution)

obey the integrator
(threat of being
overruled)

stick to the rules follow the guidelines freedom of choice
(anything possible)

Changeability
(common tech-
nology)

orchestration depen-
dent

slow, common agree-
ment, backwards
compatible

slow, common agree-
ment, backwards
compatible

orchestration depen-
dent

Change Adop-
tion (contribu-
tion)

orchestration depen-
dent

painless (as long
compliant)

painless (as long
compliant)

independent of com-
mon technology

5 Discussion

The four types of software ecosystems are our starting point towards a typifica-
tion of software ecosystems. In Table 1 we present the initial results on analyzing
the major differences among the four types. In future work we aim at formaliz-
ing and extending the analysis and as well as adding a comparison to classical
software product development outside an ecosystem.

We believe that the typification of software ecosystems must consider two dis-
tinct viewpoints: engineering and execution. Depending on its type, ecosystem
expose different characteristics in their structure, governance, and the adop-
tion of changes. Further, the leadership and emergence are key differentiators
of ecosystem types. Based on these findings we argue that software ecosystem
research has to adopt a broader view. In particular, the commonalities and spe-
cialties of each type should be analyzed to push software ecosystem research
forward.

Goal of our future work is to come up with a well-defined taxonomy of soft-
ware ecosystems and their characteristics. The taxonomy shall serve to guide
researchers to focus on open challenges on the one hand and practitioners to
learn from typical patterns and anti-patterns when participating in a software
ecosystem on the other.

Towards a Typification of Software Ecosystems 65

References

1. Messerschmitt, D., Szyperski, C.: Software ecosystem: understanding an indispens-
able technology and industry. MIT Press Books 1 (2003)

2. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 31st International Conference on Software En-
gineering - Companion, ICSE-Companion 2009, vol. 2009, pp. 187–190 (May 2009)

3. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference, SPLC 2009, Pittsburgh,
PA, USA, pp. 111–119. Carnegie Mellon University (2009)

4. Bosch, J., Bosch-Sijtsema, P.M.: Softwares product lines, global development and
ecosystems: Collaboration in software engineering. In: Mistrik, I., van der Hoek, A.,
Grundy, J., Whitehead, J. (eds.) Collaborative Software Engineering, pp. 77–92.
Springer, Heidelberg (2010), doi: 10.1007/978-3-642-10294-3 4

5. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems and
Software 83(1), 67–76 (2010)

6. Lungu, M., Lanza, M., Ĝırba, T., Robbes, R.: The small project observatory:
Visualizing software ecosystems. Science of Computer Programming 75(4),
264–275 (2010); Experimental Software and Toolkits (EST 3): A special issue of the
Workshop on Academic Software Development Tools and Techniques (WASDeTT
2008)

7. Manikas, K., Hansen, K.M.: Software ecosystems – A systematic literature review.
Journal of Systems and Software 86(5), 1294–1306 (2013)

8. Jansen, S., Cusumano, M.A.: Software ecosystems – analyzing and managing busi-
ness netowrks in the software industry. In: Jansen, S., Brinkkemper, S., Cusumano,
M.A. (eds.) Software Ecosystems – Analyzing and Managing Business Netowrks in
the Software Industry, pp. 13–28. Edward Elgar, Cheltenham (2013)

9. Manikas, K., Hansen, K.M.: Characterizing the danish telemedicine ecosystem:
Making sense of actor relationships. In: Proceedings of the Fifth International
Conference on Management of Emergent Digital EcoSystems, MEDES 2013,
pp. 211–218 (2013)

10. Knodel, J., Naab, M., Rost, D.: Supporting architects in mastering the complexity
of open software ecosystems. In: Proceedings of the 2014 European Conference on
Software Architecture Workshops, ECSAW 2014, pp. 1–13. ACM, New York (2014)

11. Mens, M.G.T., Goeminne, M.: Analysing ecosystems for open source software
developer communities. Software Ecosystems: Analyzing and Managing Business
Networks in the Software Industry. Edward Elgar (2013)

A Survey on the Perception of Innovation in a Large
Product-Focused Software Organization

Johan Linåker(�), Husan Munir, Per Runeson, Björn Regnell,
and Claes Schrewelius

Software Engineering Research Group, Computer Science, Lund University, Lund, Sweden
{johan.linaker,hussan.munir,per.runeson,bjorn.regnell}@cs.lth.se

Abstract. Context. Innovation is promoted in companies to help them stay com-
petitive. Four types of innovation are defined: product, process, business, and
organizational. Objective. We want to understand the perception of the innova-
tion concept in industry, and particularly how the innovation types relate to each
other. Method. We launched a survey at a branch of a multi-national corpora-
tion. Results. From a qualitative analysis of the 229 responses, we see that the
understanding of the innovation concept is somewhat narrow, and mostly related
to product innovation. A majority of respondents indicate that product innovation
triggers process, business, and organizational innovation, rather than vice versa.
However, there is a complex interdependency between the types. We also iden-
tify challenges related to each of the types. Conclusion. Increasing awareness and
knowledge of different types of innovation, may improve the innovation. Further,
they cannot be handled one by one, but in their interdependent relations.

Keywords: Product innovation · Process innovation · Business innovation ·
Organizational innovation · Software engineering · Software business · Survey ·
Case study · Empirical investigation

1 Introduction

In recent years, the focus on innovation has increased in many lines of business. Novel
products and services have always been important, while with an increasing pace of
change, new technologies and market concepts being launched, with small vendors
coming up and changing the scene in very short time, the need for continuous inno-
vation is stressed in larger companies. Internet technologies for communication and
distribution, and products and services primarily differentiated with respect to software,
enables this shift by lowering the thresholds for new actors, and thereby threatening the
position of existing ones.

Innovation is not only bringing new products to the market. The Organisation for
Economic Co-operation and Development (OECD) Oslo manual [1], which is used
to guide national statistics collection on innovation, distinguishes between four cat-
egories of innovation, i) product, ii) process, iii) marketing, and iv) organizational.
These categories are defined as follows: A product innovation is the introduction of a
good or service that is new or significantly improved with respect to its characteris-
tics or intended uses [1, §156], while a process innovation is the implementation of a

c© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 66–80, 2015.
DOI: 10.1007/978-3-319-19593-3_6

A Survey on the Perception of Innovation in a Large Software Organization 67

new or significantly improved production or delivery method [1, §163]. In the context
of software engineering, we also count software development processes and practices
as “production” methods in the process innovation category. A marketing innovation is
the implementation of a new marketing method involving significant changes in prod-
uct design or packaging, product placement, product promotion or pricing [1, §169].
Note that this involves the whole concept of bringing a product or service to the market,
a kind of innovation we have seen in the software and internet domain, for example,
using information or advertising instead of money as a trade for services. Finally, an
organisational innovation is the implementation of a new organisational method in the
firm’s business practices, workplace organisation or external relations [1, §177]. This
is also prevalent in software, where for example open source software, outsourcing and
offshoring significantly has changed the game in many lines of business.

Given these categories of innovation, we were interested in studying to what extent
these were known and integrated in the culture of a large company, which is under
rapid change, and where innovation is a key survival factor, due to the volatility of the
market. In particular, we wanted to study the awareness of the innovation concepts,
and the interplay between the four types of innovation; which types precedes the other?
There is a similarity to the software process improvement trinity of people, process and
technology, much discussed in the 1990’s [15]. More specifically, this study formulates
three research question:

RQ1 What are the general perceptions of the term innovation?
RQ2 What relations are assumed between product innovation and process, organiza-

tional and marketing innovation, respectively?
RQ3 Which challenges exist with respect to the four types of innovation?

To address the research questions we launched an internal online survey [11] in a
local branch of a multi-national corporation. The target population consisted of approx-
imately 900 employees. On a global level the company employs approximately 5,000.

We found that the understanding of the innovation concept is somewhat narrow, and
mostly related to product innovation. A majority of respondents indicate that product
innovation triggers process, business, and organizational innovation, rather than vice
versa. However, there is a complex interdependency between the types.

The paper is outlined as follows. In Section 2 we summarize empirical studies on
people’s attitudes to innovation in software engineering. Section 3 describes the method-
ology and design of the survey, as well as threats to validity and a characterization of
the case company. In Section 4, we report our findings from the survey, and analyze the
data. Section 5 concludes the paper.

2 Related Work

Innovation related to information technology (IT) has become vital part of most or-
ganizations’ success, primarily for two reasons: i) growing importance of innovation
for organizational life, and ii) the introduction of IT into almost every business unit
of organizations [10]. Lee and Xia [21] addressed the process bottlenecks to innova-
tion, where development teams are inefficient and reactive in most cases. Consequently,

68 J. Linåker et al.

this causes problems with lack of support for business adaptions to shifting demands.
Agile development seem to offer remedy to make the whole process more innovative for
product development and help development teams to quickly deliver innovative, high
quality solutions to an ever increasing demand of business innovation [14].

On the other hand, research evidence [7] also suggest that agile could also be a
hindrance for product innovation. It creates barrier in transferring the ideas outside the
team boundaries due to short iterations and feature backlog reduced the amount of time
that teams could spent trying new things or sharing new ideas across different teams.
Wnuk et al. [30] also hinted the fact that existing requirements processes are designed
to handle mature features and consequently, raises the question of process innovation
by having a separate requirements engineering process to make room for innovative
features (other than featured backlog) in the products.

Lund at al. [23] conducted a survey to explore the effects that reutilization have on
innovation. Results revealed that standardization of process will free up time for inno-
vation and most interestingly, routines are capable of having positive impact on occur-
rence of ideas and follow through on ideas. Furthermore, paring routines with openness
to continuously improve the existing routines leverage positive effects on innovation.
Therefore, take away from the study for managers is to take a look at existing routines
with the spectacle of improving them, which will not only improve the efficiency but
also the innovation aspect.

Moreover, another study was found where Harrison et al. [12] conducted a survey
with 170 Finnish software organizations to explore the impact of human capital on
open innovation. Therefore, it can be used as an example where people are affecting
the innovation activities in the organization. The study findings suggest that software
companies with the larger academically educated staff are more likely to apply open
innovation business strategies to accelerate their internal innovation process. The study
further argued that this could be due the strong ties between communities and universi-
ties. Similarly, Nirjar [25] also performed a survey with 121 software companies across
India to explore the impact of workforce commitment on the innovation capability of
the software enterprises. The study findings highlighted that the commitment of the
managers of software firms can significantly enhance the innovation productivity by
creating certain policies (i.e. open business model) [6] and practices/processes.

3 Methodology

In this section we describe the surveyed company more thoroughly and elaborate on the
survey design, analysis and threats to validity.

3.1 About the Company

The company, which is a multi-national corporation with approximately 5,000 employ-
ees globally, develop embedded devices and the studied branch is focused on software
development for communication hubs and additional connected devices in an internet
of things (IoT) fashion. We consider the studied company a representative case [29] for
similar ones, and hypothesize that the findings have a much broader generality than just

A Survey on the Perception of Innovation in a Large Software Organization 69

this company. The studied branch of the company has 1,600 employees, of which 800
work on software development for the devices, and 100 work on connected devices.

The company develops software in an agile fashion and uses software product line
management (SPL) [26]. The company has defined more than 20,000 features and sys-
tem requirements across all the product lines. Considering the innovation aspect, the
company is moving from a closed innovation model to an open innovation model [6],
through the use of open source software to exploit the external resources to accelerate
their innovation process. The open source solution, referred to as the platform, is the
base for their software product line projects and derived products. New projects on the
product line typically entails 60 to 80 new features with an average of 12 new system
requirements per feature. There are more than 20 to 25 development teams develop
these features.

3.2 Survey Design

An internal online survey [11] was designed in collaboration between the researchers
and company representatives, running an internal project, aimed at assessing and im-
proving the innovation climate in the company. The questionnaire is composed of three
major parts:

1. Factors that contribute to the innovation climate, based on Ekvall’s scheme [9].
2. Questions on the four types of innovation (product, process, organizational and

marketing) and their relation, based on the OECD model [1].
3. Factors that hinder and help innovation, based on Jansen et al.’s Open Software

Enterprise model [16].

In addition to ranking and preference questions, the survey had fields for free input
for most questions. The questions were defined in several iterations between researchers
and company representatives, particularly to make the terminology of the survey un-
derstandable for the participants. Further, the survey was piloted to a small group of
company representatives before the final launch.

One particular term was given certain care, namely marketing innovation. The orig-
inal definition is that a marketing innovation is the implementation of a new marketing
method involving significant changes in product design or packaging, product place-
ment, product promotion or pricing [1, §169]. However, in the company context, the
term was perceived to be only related to what the marketing department was responsible
for, and thus too narrow. Therefore, we replaced the term with business innovation and
extended it to cover the process where the needs of the customers are captured as input
for the product planning. This extends business innovation into the area of Require-
ments Engineering, which can be seen as a software engineering process, i.e. is covered
by the process innovation definition. This area is therefore somewhat overlapped, but
with the general distinction that high level capturing of requirements is mainly covered
by the business innovation definition.

The survey was launched via the company intranet in October and November 2013
to about 900 employees via a census sampling, most of them being developers, of which
229 responded, i.e. a response rate of 25%.

70 J. Linåker et al.

3.3 Survey Analysis

As the surveyed company is product-focused the surveys had a main focus on deter-
mining the level and perception of product innovation. Due to the attempt to address
the more general innovation questions, the analysis focuses on three of the questions,
connecting product innovation to process, business and organizational innovation.

The respondents were asked to “select the more likely scenario” in the following
questions:

– The product innovation triggers the process innovation, or vice versa
– The product innovation triggers the business innovation, or vice versa
– The product innovation triggers the organizational innovation, or vice versa

This gave an ordinal scale with two options to answer which makes any attempt
of drawing conclusions limited, although a general pattern was observed, as shown in
Figure 1. The survey generated 469 free text comments. Except for the three earlier
mentioned questions, comments were mainly gathered from four questions where the
respondents were asked how innovative (s)he perceived the organization to be with
respect to the four types of innovation.

Qualitative analysis with a thematic approach [8] was used to analyze the data, which
was codified in up to three levels. Based on the codified data and the comments in gen-
eral, perception of innovation concepts were analyzed (Subsection 4.1) and the connec-
tions between product innovation and process, business and organizational innovation,
respectively were identified (Subsections 4.2–4.4). Further on, based on the themes and
comments in general, challenges were then identified and generalized in regards to the
four types of innovations (Subsections 4.5–4.8).

3.4 Threats to Validity

The construct validity [18], refers to whether the survey measured what it was intended
to. This can be addressed through e.g. pilot studies, which was performed before the
official launch. Further on, the questions were developed iteratively and based on estab-
lished literature.

In regards to the analysis, a threat to the construct validity is the risk of researcher
subjectivity as the first author performed the mapping and main analysis. This was
addressed by having the second and third authors perform their own individual analysis
of the data, and could compare their findings with that of the first author.

External validity regards whether the results be generalized to outside of the surveyed
sample [29]. In this paper, we analyze the questions, which can be published from the
company’s confidentiality perspective. Thus, we do not focus on their perceived current
innovation status, but rather on the general understanding of innovation factors and
their relations. Thereby, we also focus on the most generalizable aspects, which we
hypothesize are valid for other companies of similar characteristic to the studied one,
as a representative case [29].

A surveys reliability [18] concerns whether the same results can be obtained if the
survey process was repeated. As the sample was obtained through a census sampling
frame and had a response rate of 25% we regard this optimistically. Although, this

A Survey on the Perception of Innovation in a Large Software Organization 71

Fig. 1. Triggering relation between the four types of innovation: product, process, business and
organizational. Percentage value shows the share of respondents that select X → Y as the most
likely scenario.

cannot be strengthened until follow-up surveys are performed. This is something that
will be done in the future as the company wants to measure how the internal perception
of innovation develops over time.

4 Results

In this section we present our findings from the qualitative analysis of the survey re-
sponses. First the general perceptions of innovation is presented based on survey re-
sponses in 1. Then connections between product innovation and process, business and
organizational innovation is presented respectively. Direction of arrows show the in-
novation type triggering the leading innovation (see fig. 1). For instance, the arrow
from process innovation to product innovation shows that 28.9% respondents think that
process innovation leads to product innovation. Similarly, the arrow from product inno-
vation to process innovation suggest that 71.1% respondents think that product innova-
tion lead to process innovation and the same arrow pattern applies for other innovation
types. Finally, the challenges identified in regards to each innovation type is listed. As
the types of innovation relate to each other, the challenges are structured accruing to the
type where it relates the most, although a challenge may affect more

4.1 Perceptions of Innovation

Although not general, it was observed among the comments that some had trouble relat-
ing to the term innovation as such. The borderline between when something goes from
being an improvement or common functionality to an innovation is fluid. “I recognize
that [company] does this often [. . .] But I’m not sure if it’s really innovative or just
mindless changes.”

Some respondents consider innovation as part of their everyday work, while others
are a bit more unclear on the distinction between their everyday work and innovative
activities, or just creativity as a process. “As a designer the largest part of the task when
bringing forward is to be creative. However there is a difference between being creative
and being innovative.”

72 J. Linåker et al.

A reason could be unawareness of what the company counts as innovations and ex-
amples of different types of innovations. “I don’t know much about the innovations that
we do. I didn’t know about the [example feature] for instance”.

Some may not be aware of what they do could actually count as an innovative activ-
ity. “I work with support systems and not product development. Some part of the time
goes into improving how we produce products.”

Further on, some believed that they were not able to perform any innovative activities
as it was not a part of their work description or role. A tester expressed how he was
not able to innovate as he assumed this was a task dedicated to developers. Another
tester reasoned similarly. “Working with testing so not much improvement in the product
besides some ideas that pops up occasionally.”

This thinking was present on a general level in connection to all of the four types of
innovation. As mentioned, this could be due to that the awareness is limited of how and
where they can innovate. A better understanding needs to be achieved for the different
types of innovations and how these interplay. “Most of all, I would say that I have only
minor insight and understanding of this field [of organizational innovation].”

A consequence may be that some believe innovation is not possible. “I don’t think it
is possible to be innovative in this area [organizational innovation].”

Apart from spreading awareness and knowledge, another important factor that needs
consideration is the mindset. “Since I’m not involved in this part of our business then
it’s not in my mindset, but when you now mentioned it I will take it into my consideration
of innovation.”.

4.2 Product Innovation vs Process Innovation

On the question whether product innovation triggers process innovation, or the other
way around, 71 percent answered the former (see fig.1). Although the percentage points
in one direction, it is clear from the free text answers that this question is more complex
than so.

Processes can be strict and complex, creating overhead and distraction, occupying
time that could have been focused on creative thinking, as pointed out by a respondent.
“If the development process is driven as a rigid framework that is complex and difficult
to understand who decides what and why, then you do not get in the dynamics of ideas.”

This is also identified as a challenge of process complexity in Subsection 4.6. Al-
though processes can force a static frame on employees, it can help to bring structure
to the innovation process and thereby still encourage innovation and creative thinking.
“. . . well defined and established processes leads to innovative products.”

Another challenge is idea tracing and execution uncertainty (see Subsection 4.5),
which is an area where we hypothesize that well-designed processes can help to clarify
what happens to ideas and the roadmap for how innovations can be pushed through.
Similarly, processes can also help to increase the awareness of the product scope and
the innovation strategies in the organization.

Process innovation may help the organization become more efficient and reduce
waste as can be interpreted by the OECD definition [1] and as pointed out by a re-
spondent: “. . . process innovation improve performance, simplifies and speeds-up de-
velopment process - thus allowing to have more resources in true product innovation”.

A Survey on the Perception of Innovation in a Large Software Organization 73

This aligns with the area of Software Process Improvement [13], which includes possi-
ble implications from new or improved tools and techniques. As put by another
respondent: “. . . We need to have the proper techniques, equipment and SW in order
to develop new and improved products.”

The resources made available can be defined as freed-up budget-hours, which can
be used for other purposes, such as time dedicated to activities focused on rendering
product innovation. An organizational and cultural challenge in this case is to actually
make this dedication which demands a committed management. “The process innova-
tions are often meant to make development faster with more quality, but I’m not sure
the gained resources are spent on product innovation.”

Beneficial factors from a process change, other than freed up resources, may also in-
clude an increase in performance and quality as confirmed by the respondents.
Although, it is a matter of definition how software quality relate to product innova-
tion [27], this will hopefully render in a better product offering which further down the
release ladder may prove to be a trigger of future product innovations.

Hence, by innovating and improving the processes in the correct way and dedicating
the freed up resources to product innovation, process innovation can be seen as a trigger
for product innovation. This is in line with findings by Lund and Magnusson [23]. On
the other hand, processes are not decoupled from the products. There needs to be an
awareness of product roadmaps and an adaptive mindset as some processes may require
continuous tailoring as a consequence. “I think the general mindset is ”keeping the eye
on the prize”, you see the upcoming releases in the horizon and you adjust the process
to meet those releases.”

The need to adapt is not a simple task and requires both resources and dedication.
Keeping pace with new features and products can be very demanding for an organiza-
tion as pointed out by the respondents. Process changes needs to be quickly adopted for
the organization not to fall behind or get confused, as described in the process innova-
tion challenges (Subsection 4.6).

Just as new products may create a demand for new processes and tools, they can also
be an inspiration for new techniques and solutions. “On the other hand, new products
can also inspire new techniques and HW/SW solutions.”.

4.3 Product Innovation vs Business Innovation

On the question whether product innovation triggers business innovation, or the other
way around, 75 percent answered the former (see fig.1). As with the previous ques-
tion, although there is a clear majority in one direction, this does not give the complete
answer.

Some see product innovation as the driver with respect to business innovation due to
that “Innovative products are a great source for new business opportunities and mar-
keting”. Innovative features affects which consumer groups that should be targeted,
and in effect which marketing channels that can be used. The nature of the innova-
tive features also has implications on how the marketing message can be phrased and
communicated. From this point of view, the products both enable and set a demand for
a continuous business innovation that can adapt to changing functionality and feature

74 J. Linåker et al.

sets. A good product as foundation, can even be seen as a source of inspiration to ex-
cel business innovation as hinted by the following respondent. “I think everything starts
with the product. If you are a company with ”Wow!”-products then the rest will come. A
consumer will see through (eventually) if the company is only selling a mediocre prod-
uct but have brilliant marketing. However, if we have good products, it will be more
motivating bringing it to the market, which will inspire us to excel also in business
innovation”

From the other perspective, innovative marketing may be a requirement for what oth-
erwise would be considered a normal product. Competitive products, which are tech-
nically inferior, may very well prove more popular compared to a technically superior
product, due to the awareness and visibility towards the customers, as identified by the
respondents. Business innovation can create the hype needed to tell about what the in-
novative features are, how they differentiate and how they fit in the customers’ context.
However, as pointed out by the previous quote, if the product does not fill the expecta-
tions, innovative marketing will not be a viable solution in the long run.

New innovative ways are continuously needed to keep pace and capture the demands
from the existing and emerging customer channels, e.g. through end-user feedback [2].
An awareness of what needs the customers have today and will have tomorrow, is
an important input from business and marketing to push the product innovations for-
ward in the right directions. “Because business innovation brings in new experience
directly from market, new demands and requirements and thus giving a product a right
direction”

This creates a challenge for the organization in terms of synchronization. The view of
what features are to be considered game-changers and prioritized in the release planning
process [5], may prove troublesome due to internal communication gaps between mar-
keting and product development [17], which may lead to wrong features being promoted
as a consequence. “Scope/product planning, business side and development [should be]
in sync regarding both our innovation initiative [. . .] and how to drive innovations all
the way to product.”

As explained, there is a dual sided relationship. There is a dependency going in both
directions where one can trigger the other. One respondent provided a concrete example
which summarizes the relationship. “It is pretty much both. Look at the music and film
business which has invented new ways of marketing and distribution, but I believe the
wish of distribute TV via satellite has created new products for making it possible and
to get paid for it. Then again we have the Google glasses. Right now they are cool,
but not very useful until we find a useful feature for them and that itself will create a
business for them.”

4.4 Product Innovation vs Organizational Innovation

On the question whether product innovation triggers organizational innovation, or the
other way around, 55 percent answered the former (see fig.1). Opposed to the previous
questions, this was not as clear majority for the product innovation centric view.

Improving and innovating the way in which a company collaborates and interacts
with external parties and stakeholder, can trigger product innovations in several ways.

A Survey on the Perception of Innovation in a Large Software Organization 75

Application of open innovation business strategies is one way to accelerate their in-
ternal innovation process [12]. Crowdsourcing ideas, engaging in Open Source com-
munities, welcoming third-party developers, acquiring promising startups and starting
joint-ventures or ecosystems are a couple of activities that falls into the open innova-
tion paradigm originally defined by Chesbrough [6], that may render in new product
innovations.

Creating a more innovative organizational environment with committed employees
is another way that can lead to more product innovations [25], as described by a respon-
dent: “With a flexible and happy organization that makes people get looser boundaries
I believe we can get a more innovative climate” Bringing people from different back-
grounds and functional areas creates diversity and enables for new discussion to arise
and to discuss ideas from new angles [4, 19], or as put by the following respondent:
“Connecting colleagues which hadn’t possibility to communicate before allows to dis-
cuss more problems and ideas.”. Calantone et al. [4] adds that this cross-functional
integration also allows for the employees to evolve their skills by learning and sharing
knowledge amongst each other, which is important for product development.

This connects to a need for a general awareness of what has been done, and what
is being worked on. “. . . more often than not these innovations are ”hidden” in small
segments of the company, not actively promoted and spread (and that’s both good and
bad, many projects dies when they need to become too big).” By communicating items
such as features, functionality, experienced problems and related solution across inter-
nal borders, cross-functional views can be established more automatically. A solution in
one project may turn out to solve the same issue or create new ideas in another project,
which could either be considered a process or a product innovation. This relates to the
concept of inner source [22] and how it can help organizations work more open and
cross-functional, and in the end become more innovative [24].

Organizational barriers and communication issues is another area, where organiza-
tional innovation may trigger product innovation in the long term perspective. When
products or processes stretch over multiple business units or projects, this can create
room for bureaucracy, different prioritization schemes, culture and politics, to mention
a few factors [19]. “Some sections within the company are quite innovative, but when it
comes to cross-functional agreements and alignment, there always seems to be a resis-
tance to change and adapt to new ways of working and safeguarding what seems to the
best for ”me/my team” is more important than what’s best for the company.”

Pushing through and spreading an idea across these borders require a high level of in-
ternal permeability. “Organization organized for better collaboration (=no filtering, no
proxies, smaller proximity, time zone, etc. . .) is more likely to produce more innovative
ideas. Layering, direct reporting, micro management, and similar old-school practices
are killing innovation.”

Looking from the other perspective, new product innovations will create new de-
mands and implications which will give rise for possibilities and triggers for organi-
zational innovation [4]. “New and exciting products means we have to adapt how we
work to support these in the best-possible, not only from an engineering or software
perspective, but for example from the launch projects etc.”

76 J. Linåker et al.

As has been discussed in regards to previous sections on the matter of product inno-
vation versus process and business innovation, there exists a dual relationship here as
well as exemplified by the response: “Organizational innovation increases our capabil-
ity to handle new and complex tasks. Innovative products will require us to handle new
or more complex tasks and without room for growth, product innovation will fizzle.”

4.5 Product Innovation Challenges

In the responses, several aspects were mentioned as challenges to the product innovation.
a) Idea tracing and execution uncertainty – Even though there may be a rich pool

of innovative ideas being produced and a general will to contribute, it is important to
maintain and support it. Knowledge and awareness of what happens to ideas contributed
to the innovation development process is important for the contributors to feel that they
are taken seriously and that it is worth to continue contributing, which in turn gives an
increased innovation capacity for the company [19]. When the ideas come bottom-up
there needs to be a feedback loop top-down that stimulates this need of information as
confirmed by Koc and Ceylan [20], and Wnuk et al. [30].

b) Short term perspective – By having a narrowed foresight, release planning tend to
prioritize non-unique features which renders in low diversity in the product range, thus
making the company being a follower of competitors rather than a leader. A longer time
perspective needs to be integrated into the company culture, together with a positive
mindset for game changers and innovative features to be created.

c) Product scope and innovation strategy – Uncertainty about the product roadmap
and feature scope leads to risks that the creative minds of the company are misdirected.
A common and established innovation strategy can help defining the product scope and
frame where ideas are needed suggested by Koc and Ceylan [20], and Wnuk et al. [30].

d) Limiting environment and mindset – Soft factors such as employees feeling that
they can have a free mindset and share ideas openly is important for an innovative envi-
ronment. It must be okay to test new ideas, but also to fail. These are factors, triggered
by Ekvall’s innovation climate model [9].

e) Restriction by external stakeholders – A commercial product company can have
many stakeholders, some not being the end customer. This may include distributors and
service providers further down the value chain, adding value and modifications to the
product before they reach the final buyers. These stakeholders put requirements that
may prevent and limit the feature scope possible to address. This filter risks to kill ideas
inside the company and ignore needs, both identified and unidentified, from the end
customers. This challenge is in line with Conboy and Morgan’s findings [7].

f) Limited time for innovation activities – Tight project budgets and short deadlines
are two factors that can restrict time available for idea creation. Developers usually
have pet projects and ideas they would like to work on, some even dedicate their spare
time for this purpose. By allowing the time, this can prove a valuable source of product
innovation as suggested by Conboy and Morgan [7].

g) Cross-functional resources – Bringing new people together creates new prod-
uct ideas and can boost innovation development. Cross-functional labs-sections and
dedicated innovation team are two examples suggested by Conboy and Morgan [7], and
Koc [19].

A Survey on the Perception of Innovation in a Large Software Organization 77

4.6 Process Innovation Challenges

This section presents the challenges, directly related to process innovations.
a) Process change too slow – The introduction of a new process may be cumbersome

for several reasons, with the effect that the changes are implemented slowly. This can
cause confusion for employees being caught between two states – before and after the
change – and also result in an unsynchronized organization as different parts may adapt
faster than others.

b) Process change too often – Another issue with respect to process change is that they
may happen too often. This can be a cause effect relationship with an adoption process,
as old processes risk being outdated once introduced if done in a too slow and inefficient
manner. When the environment changes, for example technology and dependencies to-
wards partner’s progress, so does the requirements on the internal tools and processes
have to change at the same pace. This can also relate to organizational innovation.

c) Process change top down – Problems can arise when a process is introduced top-
down instead of bottom-up. Managers may not always know what is the most efficient
way to work compared to those actually performing the work. This challenge is also in
line with the findings of Qin [28], and Wnuk et al. [30].

4.7 Business Innovation Challenges

Challenges related to business innovation are about alignment with the market and end
users.

a) Reaching the end-customers – When there are layers between the producer and
end-customer, for example, distributors and service providers, promotion of new ideas
and product innovations to end-customers gets complicated. As technology and social
habits evolve, new innovative ways are needed to keep pace with the different forums
for communication used by the end-customers of today and tomorrow. Examples of
such phenomena are software ecosystems [31].

b) Product and marketing synchronization – The views on what the top innovative
features are may differ between different parts of the company. A misalignment like this
can create confusion between marketing and product development. This could render in
the wrong features being promoted. The suggested needs of the end customers should
be communicated and synchronized to all relevant parts of the organization, e.g. product
planning, marketing and development.

4.8 Organizational Innovation Challenges

Organizational innovation challenges relate to collaboration, communication and
change.

a) Closed organizational borders – If the organization is too introvert and closed,
opportunities, possible collaborations, sources of ideas and other possible inputs to their
internal innovation process might be missed. By opening up the company borders for
external collaboration and influence, new possibilities can arise both in regards to new
innovations and markets, as described by the Open Innovation paradigm [6].

b) Intra organizational collaboration – Barriers and layers can prevent otherwise
prosperous and potential collaborations between business units in organizations.

78 J. Linåker et al.

Examples may be different sub-priorities of features between projects and multiple
number of mangers creating a complex and bureaucratic hierarchy as identified among
the respondents and confirmed by Koc [19]. These are related to what Bjarnason et al
refer to as “gaps” [3]. Koc further points out that such cross-functional integration de-
mands a high level of coordination, otherwise it will rather have a negative impact on
the product innovation.

c) Intra organizational learning – Unawareness of what has been done in other parts
of the company can create inefficiency and missed possibilities. In regards to process
innovation, tools, technologies and processes from one part may prove its self superior
or complementary to those used in other parts. And in regards to product innovation,
a commoditized good or service from one business unit may turn out as innovative
if added to the value proposition in another business unit’s product chain. This is a
challenge in-common with inner source [22], but also one of the ways in how it can
help organizations become more innovative by using it as a type of intra-organizational
open innovation [24].

5 Conclusions

The view on what innovation is and where it can be performed is a diversified topic.
OECD [1] differentiates between four types: product, process, market and organiza-
tional innovation. These were adopted in the survey on which this paper is based on,
with a redefinition of market innovation into business innovation. The original defini-
tions are general and applicable on a multiple number of fields. This paper puts them in
the context of software engineering characterized by the opinions of people involved in
different levels of a large software development organization.

The perception of the term innovation, to answer the first research question (See
RQ1, Section 1), is diversified. Even though it is not general, some had trouble relating
to the term innovation as such and when a feature or certain work can be classified ac-
cordingly. Some believed that they were not able to perform any innovative activities as
it was not a part of their work description or role, which was present in connection to all
of the four types of innovation. Apart from awareness and knowledge, another impor-
tant factor that also needs consideration is the mindset of the employees that innovation
is possible and something that they can help to create.

The different types cannot be considered isolated or decoupled which answers the
second research question (See RQ2, Section 1). Connections between product
innovation and process, business and organizational innovation exists in both direc-
tions. Introduction of product innovations creates demand and possibilities for pro-
cesses, marketing and organization to adapt and optimize as the conditions has been
changed. Interdependencies may require tailoring being done, either as a direct conse-
quence or as a side effect. On the other way around, introduction of a process, business
or organizational innovation can change the environment and conditions for how prod-
uct development is being done. Inputs such as new technologies, ideas, resources and
know-how are example factors which can be considered a cause behind a product inno-
vation effect. Open innovation could be classified as an organizational innovation that
can render inputs to the internal innovation process [6].

A Survey on the Perception of Innovation in a Large Software Organization 79

Challenges correlated to the different innovation types were also identified, with re-
spect to the third research question (See RQ3, Section 1). These give a context to the
term of innovation that covers parts other than the more normal conception of inno-
vation in regards to just products. Some challenges may target more than one type of
innovation, e.g. internal communication which can cause issues for introduction on new
processes and organizations as well as hinder ideas to be spread and discussed.

For future research it would be interesting with studies confirming and exemplifying
the connections described, for example how process innovation could trigger product
innovation. An anticipated challenge will be to trace a cause effect relationship and con-
necting the two areas. Another area also includes confirming the challenges identified,
and further characterizing the innovation types from a software engineering perspective.

References

1. Oslo Manual – Guidelines for collecting and interpreting innovation data. OECD and Euro-
stat, 3rd edn. (2005)

2. Bano, M.: Aligning services and requirements with user feedback. In: 2014 IEEE 22nd
International Requirements Engineering Conference (RE), pp. 473–478 (2014)

3. Bjarnason, E., Wnuk, K., Regnell, B.: Requirements are slipping through the gaps - A case
study on causes & effects of communication gaps in large-scale software development. In:
19th IEEE International Requirements Engineering Conference, RE 2011, Trento, Italy, Au-
gust 29-September 2, pp. 37–46 (2011)

4. Calantone, R.J., Tamer Cavusgil, S., Zhao, Y.: Learning orientation, firm innovation capabil-
ity, and firm performance. Industrial Marketing Management 31(6), 515–524 (2002)

5. Carlshamre, P.: Release planning in market-driven software product development: Provoking
an understanding. Requirements Engineering 7(3), 139–151 (2002)

6. Chesbrough, H.W.: Open innovation: the new imperative for creating and profiting from
technology. Harvard Business School Press, Boston (2003)

7. Conboy, K., Morgan, L.: Beyond the customer: Opening the agile systems development
process. Information and Software Technology 53(5), 535–542 (2011)

8. Cruzes, D.S., Dybå, T., Runeson, P., Höst, M.: Case studies synthesis: A thematic, cross-case,
and narrative synthesis worked example. Empirical Software Engineering (2014)

9. Ekvall, G.: Organizational climate for creativity and innovation. European Journal of Work
and Organizational Psychology 5(1), 105–123 (1996)

10. Fichman, R.G.: Going beyond the dominant paradigm for information technology innova-
tion research: Emerging concepts and methods. Journal of the Association for Information
Systems 5(8), 11 (2004)

11. Fink, A.: The Survey Handbook, 2nd edn. Sage (2003)
12. Harison, E., Koski, H.: Applying open innovation in business strategies: Evidence from

finnish software firms. Research Policy 39(3), 351–359 (2010)
13. Harter, D.E., Krishnan, M.S., Slaughter, S.A.: Effects of process maturity on quality,

cycle time, and effort in software product development. Management Science 46(4),
451–466 (2000)

14. Highsmith, J., Cockburn, A.: Agile software development: The business of innovation. Com-
puter 34(9), 120–127 (2001)

15. Humphrey, W.S.: Managing the software process. SEI Series in Software Engineering.
Software Engineering Institute (1989)

80 J. Linåker et al.

16. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: Opening up a software
producing organization with the open software enterprise model. Journal of Systems and
Software 85(7), 1495–1510 (2012)

17. Karlsson, L., Dahlstedt, Å.G., Regnell, B., Natt och Dag, J., Persson, A.: Requirements
engineering challenges in market-driven software development an interview study with prac-
titioners. Information and Software Technology 49(6), 588–604 (2007)

18. Kitchenham, B.A., Pfleeger, S.L.: Personal opinion surveys. In: Guide to Advanced
Empirical Software Engineering, pp. 63–92. Springer (2008)

19. Koc, T.: Organizational determinants of innovation capacity in software companies. Com-
puters & Industrial Engineering 53(3), 373–385 (2007)

20. Koc, T., Ceylan, C.: Factors impacting the innovative capacity in large-scale companies.
Technovation 27(3), 105–114 (2007)

21. Lee, G., Xia, W.: The ability of information systems development project teams to respond
to business and technology changes: a study of flexibility measures. European Journal of
Information Systems 14, 75–92 (2005)

22. Linåker, J., Krantz, M., Höst, M.: On infrastructure for facilitation of inner source in small
development teams. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J.,
Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 149–163. Springer, Heidelberg
(2014)

23. Lund, K., Magnusson, M.: The delicate coexistence of standardized work routines and inno-
vation. In: Proceedings of the 19th International Product Development Management Confer-
ence, Manchester, UK (June 2012)

24. Morgan, L., Feller, J., Finnegan, P.: Exploring inner source as a form of intraorganisational
open innovation (2011)

25. Nirjar, A.: Accruing innovation in software firms through employees commitment.
International Journal of Indian Culture and Business Management 6(4), 391–409 (2013)

26. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer-Verlag New York, Inc., Secaucus (2005)

27. Prahalad, C.K., Krishnan, M.S.: The new meaning of quality in the information age. Harvard
Business Review 77(5), 109–118 (1998)

28. Qin, S.: Managing process change in software organizations: Experience and reflection.
Software Process: Improvement and Practice 12(5), 429–435 (2007)

29. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering
– Guidelines and Examples. Wiley (2012)

30. Wnuk, K., Pfahl, D., Callele, D., Karlsson, E.A.: How can open source software development
help requirements management gain the potential of open innovation: an exploratory study.
In: Proceedings of the 2012 6th ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), Piscataway, NJ, USA, pp. 271–279 (2012)

31. Wnuk, K., Runeson, P., Lantz, M., Weijden, O.: Bridges and barriers to software ecosystem
participation - a case study. Information and Software Technology 56(11), 1493–1507 (2014)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 81–95, 2015.
DOI: 10.1007/978-3-319-19593-3_7

Ecosystems and Open Innovation for Embedded Systems:
A Systematic Mapping Study

Efi Papatheocharous1(), Jesper Andersson2, and Jakob Axelsson1

1 Swedish Institute of Computer Science (SICS), SE-164 29 Kista, Sweden
{efi.papatheocharous,jakob.axelsson}@sics.se

2 Department of Computer Science, Linneaus University, SE-351 95 Växjö, Sweden
jesper.andersson@lnu.se

Abstract. This paper surveys work on ecosystems and open innovation of
systems in the context of software engineering for embedded systems. The
primary research goal is to develop a research agenda based on the topics
identified within the research publications on the topic. The agenda is based on
a systematic mapping study of 260 publications obtained from digital libraries
and is influenced by a set of areas of interest, i.e., product lines, open source,
third party, business models, open innovation, and strategy. The results from
the study include analysis of the type of research conducted in the field, its
origin and research contribution. The study identifies the need for more
solutions to specific open innovation problems such as mapping business
models to technical platforms; defining open ecosystem processes that foster
open innovation; and improving how ecosystem players can leverage on tool
support for open innovation. A direction for future research is also provided.

Keywords: Software ecosystems · Open innovation · Embedded systems

1 Introduction

Technological advances allow more and more systems to be connected to one another
nowadays. The technology is straightforward and flexible and removes several
impediments for innovation and new business opportunities. It has already been
recognised in the software domain, that an increasing number of companies make
their products and services available to offer opportunities for extended services and
increase the value of existing products to customers that exceeds the typical company
boundaries [1].

From the engineering perspective however, the challenge is larger and it involves
to satisfy the compelling needs for more flexibility, shorter time-to-market, and
greater ability to build systems of systems. We have introduced in our previous work
[2] a specific form of these systems where plug-ins can be installed in different
products (i.e., embedded systems) giving them the opportunity to collaborate for
higher-order functionality or with data-intensive applications. We have highlighted
the need for new or innovative business models, sustainable networks, ecologies or
federations in the embedded systems domain, as they are less flexible and resilient to

82 E. Papatheocharous et al.

change, than for example in comparison to other domains, like pure software
products. Some connected topics that both interest us as researchers and the industrial
community we have interviewed, are software ecosystems, open innovation processes
methods and tools, organisational and business architectures, product lines, open
source and third party options for collaborations and sustainability [2].

Much of the research related to the open-innovation part of ecosystems of
embedded systems is empirical, and drawn from specific domains, such as mobile
phones [3] or the automotive [4]. To the best of our knowledge no domain-
independent study exists that aims at understanding the quantities and trends of
research, types of existing research and contributions on innovation for embedded
software, its origin and application domains. Conducting research on this topic is
challenging and no mature examples have been made available to the public or
reported in scientific publications. The reasons for this are many, for instance that
these systems are difficult to investigate empirically due to the number of
stakeholders involved. Therefore, some of the definitions do not have much
theoretical support and current research is still explorative.

This paper summarises the results from a systematic mapping study [5] on aspects
of ecosystems, product lines, open source or third party collaborations and business
models, open strategic innovations in product development of embedded systems and
software. The aim is to identify what there is already research on (which research
domains) and pro-actively explore prospective venues of research. Thus, the study
maps the existing research and practice in the literature providing a foundation for
where does the research originate from, what are the trends during the last years,
which are the main application domains and what kind of research and research
contributions exist. This information can enhance the researchers’ understanding of
the quantities and trends in the literature of the area. The mapping study provides an
overview and quantification of the research contributions in the field, and as reported
in [5], systematic studies are considered necessary to conduct especially when
researchers are entering a new or unknown field of research, which is true for the field
we are interested in. The results help us to define a direction for future research on
open innovation for embedded systems’ software and their ecosystems.

The interest in ecosystems and in particular the software ecosystem, has expanded
beyond company platforms, business models and definitions. The systematic literature
by Manikas and Hansen [6] focuses primarily on definitions in this context from a
software engineering perspective. The authors conclude that analytical descriptions
and monitoring of real-world ecosystems is limited. The consequences are that
research results do not feed from industry and vice-versa, and that industry misses out
on innovation improvements and efficiency when is not influenced by research. The
objective of our research is to improve our understanding on the nature of existing
research on ecosystems of open innovation and connections between different types
of research and contributions, primarily from academia and practitioners. Our study
uses a different strategy and scope compared to study [6]. It examines the literature
body that includes these notions and the primary contribution is a research agenda that
can direct future research towards challenges relevant for industry and academia and
leverage on existing research in the field.

Ecosystems and Open Innovation for Embedded Systems: A Systematic Mapping Study 83

The remainder of this paper is organised as follows: the next section summarises
the design of the study, Section 3 describes the findings, Section 4 presents analysis
of the results, a research agenda, and Section 5 concludes the paper and describes of
our future work.

2 Research Method

A modified version of the systematic mapping process described in [5] was used for
the study. The process steps and the results (marked in grey) are illustrated in Fig. 1.
The process contains five distinct steps: planning, scoping (including searching),
selecting, classifying and mapping. This section is structured according to these steps.

Fig. 1. Systematic mapping process and results of the study

2.1 Planning

In the planning phase, we defined the research scope by a set of Research Questions
(RQ), which is summarised in Table 1. They aim at collecting fundamental
demographic information that characterises the field.

2.2 Scoping

The research questions guided the second phase (scoping) where the search scope was
defined. The search scope included a set of scientific databases as data sources, namely
ACM, Springer Link, Engineering Village, Science Direct and IEEE Explore digital
libraries. As recommended in [5] we defined the search string by performing iterative
search of publication databases and evaluating the results each time. The search string
was revised and modified accordingly based on the quality of the results obtained.

The final search string was: “embedded AND (software OR system) AND
("product development") AND (ecosystem OR "eco system" OR "eco-system" OR
"product-line" OR "product line" OR productline OR "open-source" OR "open
source" OR "third party" OR "third-party") AND ("business model" OR "business-
model" OR businessmodel OR "innovation system" OR "open innovation" OR
"strategic innovation")”.

84 E. Papatheocharous et al.

Table 1. Research Questions of the study

RQ # Description Evidence
RQ1 What is the origin of the

research?
Identify the affiliations of the authors and specify the
country from which the publication originates.

RQ2 Which are the main
publication venues of the
research?

Identify the publication type of the research (book
chapter, conference paper, journal paper or standard),
and the primary venues that publish the research.

RQ3 What is the affiliation of
the researchers?

Identify the affiliations of the authors either as
academia, industry, professional organisation, or
governmental.

RQ4 What is the research
domain of the research
conducted?

Classify the primary research domain(s) where research
is conducted (many times more than one domain applies
and domains are identified using the abstract keywords).

RQ5 When is the research
conducted?

Identify the publication year of the research.

RQ6 What is the application
domain of the research?

Identify the application domain(s) of the research, if
available.

RQ7 What type of research is
conducted?

Classify papers according to the research type facets
(Table 3) as described in [7].

RQ8 What is the contribution of
the research conducted?

Classify papers according to the research contribution
(Table 4) as described in [8].

This search string was designed to target papers in the domain of product
development embedded systems, dealing with software-related systems, and then
qualify them in aspects of ecosystems, product lines, open source software, third party
or business models, or innovation. The same search string was applied to the selected
databases, where we searched the full paper, abstract and keywords. In total we
identified 73 papers from ACM Digital library, 294 papers from Springer Link, 5
papers from Engineering Village, 558 papers from Science Direct and 192 papers
from IEEE Xplore digital library. The search scoping data is summarised in Table 2.

Table 2. Search scoping and selection results from the study

Database Resulting Papers Included Papers
ACM 73 18
Springer Link 294 25
Engineering Village 5 4
Science Direct 558 109
IEEE Xplore 192 104
Total 1122 260

2.3 Selecting

As keyword searches are considered to be too coarse-grained [5], a more precise
selection method must be applied to identify the most relevant publications.
Two researchers carried out this step independently and any differences were
discussed until an agreement was reached.

Ecosystems and Open Innovation for Embedded Systems: A Systematic Mapping Study 85

In the selection phase the primary studies were selected by the application of the
following inclusion/exclusion criteria that the researchers defined together:

1. Exclude search results that contain "Table of Contents", "Contents", "Index",
"Front Matter", "Proceedings", or "from the editor" in the title, or have an empty
title, are duplicate results, or are interviews, standards, full books, encyclopaedia
sections, dictionary sections, or written in other languages than English.

2. Include search results that contain in the title something near any of the terms
"software", "development", "embedded", "product" or "system".

3. Include search results that contain in the title something near any of the terms
"innovation", "business", or "market" and check if in the list of keywords of the
publication any of the terms "software", "development", "embedded", "product"
or "system" appear. ‘Something near’ here, implies a subjective selection that
required discussions before an agreement could be reached.

4. Screen the abstracts of the papers that after conducting steps 1-3 a disagreement
between the researchers is reached and resolve the conflict by deciding which
ones to include or exclude in the final paper selection.

5. Exclude papers where the full text was not available for the synthesis part only (3
papers from Science Direct).

The searching and screening steps should include all papers that match the search
criteria and exclude papers deemed as ‘not relevant’ for the study. Parts of the
screening process was subjective and sometimes discussions where required to reach
an agreement. In the screening step the disagreement level was low, less than 3%.

The process finished with 18 papers from the ACM, 25 papers from the Springer
Link, 4 papers from the Engineering Village, 109 papers from the Science Direct and
104 papers from the IEEE Xplore digital library, all together 260 studies. Table 2
summarises how the number of studies evolved during the process.

2.4 Classifying

In the classification step, the abstracts were processed to validate that the search string
used was meaningful and helped in the definition of the classification scheme (i.e.,
ensured that the scheme takes the type of words used in the studies into account). Text
mining was used to derive major topic clusters and derive preliminary hierarchies,
i.e., lists topics that frequently appear. Then, keywording was used to identify the
primary concepts (keywords) found in the abstracts of the publications, extracting
topics of interest. The papers were classified based on a set of classification schemes
(related to the RQs in Table 1 and explained in the last column). Tables 3 and 4
summarise the type of research facet [7] and type of research result [8] (or
contribution) in software engineering.

2.5 Mapping

With the classification schemes in place the publications were mapped on them.
Again, this step was carried out independently by two researchers and any differences

86 E. Papatheocharous et al.

were discussed until an agreement was reached. On average the disagreement level
was around 30% (79 studies were analytically discussed). From the studies that were
analytically discussed, there were 6 papers for which classification was not possible.
These papers were either part of a book (not a single book chapter and not a full book
and thus were not excluded in the first step of the Inclusion/Exclusion process) or
could not be analysed as stand-alone publications. Thus, these papers were reported as
“None”, “Other” or “NA”. The map was used to create different frequency plots, to
answer the RQs (Table 1) and highlight a direction for future research (Table 7).

Table 3. Type of research as described in [7]

Type Description
Validation
research
papers

Techniques investigated are novel and have not yet been implemented in
practice. Techniques used are for example experiments, i.e., work done in the
lab. Papers investigate the properties of a solution proposal that has not yet
been implemented in practice. The solution may have been proposed
elsewhere, by the author or by someone else. The investigation uses a
systematic, thorough, methodologically sound research setup. Possible
research methods are experiments, simulation, prototyping, mathematical
analysis, mathematical proof of properties, etc.

Evaluation
research
papers

Techniques are implemented in practice and an evaluation of the technique is
conducted. That means, it is shown how the technique is implemented in
practice (solution implementation) and what are the consequences of the
implementation in terms of benefits and drawbacks (implementation
evaluation). Papers identify problems in industry.

Solution
proposal
papers

A solution for a problem is proposed, the solution can be either novel or a
significant extension of an existing technique. The potential benefits and the
applicability of the solution is shown by a small example or a good line of
argumentation. Papers propose a solution technique and argue for its
relevance, without a full-blown validation. The technique must be novel, or at
least a significant improvement of an existing technique. A proof-of-concept
may be offered by means of a small example, sound argument, or some other
means.

Philosophical
papers

Papers sketch a new way of looking at existing things by structuring the field
in form of a taxonomy or conceptual framework.

Opinion
papers

Papers express the personal opinion of somebody whether a certain technique
is good or bad, or how things should been done. They do not rely on related
work and research methodologies. Papers contain the author’s opinion about
what is wrong or good about something, how we should do something, etc.

Experience
papers

Explain on what and how something has been done in practice. It has to be the
personal experience of the author. Papers' emphasis is on what and not on
why. The experience may concern one project or more, but it must be the
author’s personal experience. The papers should contain a list of lessons
learned by the author from his or her experience. Papers in this category will
often come from industry practitioners or from researchers who have used
their tools in practice, and the experience will be reported without a
discussion of research methods. The evidence presented in the paper can be
anecdotal.

Ecosystems and Open Innovation for Embedded Systems: A Systematic Mapping Study 87

Table 4. Type of research results in software engineering as described in [8]

Type Description
Procedure or technique New or better way to do some task, such as design, implementation,

measurement, evaluation, selection from alternatives. Includes
operational techniques for implementation, representation,
management and analysis, but not advice or guidelines.

Qualitative or
descriptive model

Structure or taxonomy for a problem area; architectural style,
framework, or design pattern; non-formal domain analysis. Well-
grounded checklists, well-argued informal generalisations, guidance
for integrating other results.

Empirical model Empirical predictive model based on observed data.

Analytic model Structural model precise enough to support formal analysis or
automatic manipulation.

Notation or tool Formal language to support technique or model (should have a
calculus, semantics, or other basis for computing or inference).
Implemented tool that embodies a technique.

Specific solution Solution to application problem that shows use of software engineering
principles – may be design, rather than implementation. Careful
analysis of a system or its development.
Running system that embodies a result; it may be the carrier of the
result, or tis implementation may illustrate a principle that can be
applied elsewhere.

Answer or judgement Result of a specific analysis, evaluation, or comparison.

Report Interesting observations, rules of thumb.

3 Findings

This section reports on the study’s findings obtained from the classification and
mapping. The classification was based on the kind of data that we found about the
publications and we present the results according to the RQs (Table 1).

RQ1: What is the origin of the research? The researchers scanned the studies and
produced a list of countries based on the affiliations of all authors. The count was
based on the number of papers affiliated with each one of the authors for each country
(i.e., one count was made for a country per paper if one of the authors’ affiliation
originated from that country). 42 unique countries were identified and the top
countries publishing in the area were: USA (24%), Germany (17%), Sweden (10%),
UK (10%), and Finland (10%). More than 60% of the research originates from one of
these countries; an indication that the field does not attract worldwide attention.

RQ2: Which are the main publication venues of the research? The researchers
identified first the publication type (book chapter, conference paper, journal paper or
standard) and then there the top venues publishing the research were found. The total
unique publication venues found was relatively high, 112, which shows that the
research is scattered in many publication venues. Most of the research is published in
journals (54%) and more than one third of the papers appear in conference
proceedings (36%). We collected the h5-index values as reported in Google Scholar

88 E. Papatheocharous et al.

of the top venues (accounting for 29% of the total publications). The papers’ venues
were highly ranked and even though no specific publication venues exist, they
represent qualitative publications and results present some additional value.

RQ3: What is the affiliation of the researchers? The researchers classified the
origin of the research contribution to one or more affiliation categories. The results
are shown in Table 5. In total 249 papers are listed, as 2 papers included the
combination of affiliations industry, academic and professional organisation and 9
papers could not be classified due to lack of information (affiliation was not reported
and could not be found from searching the internet).

Table 5. Answer to RQ3: What is the affiliation of the researchers?

Affiliation Academic Industry Professional organisation Governmental

Academic 167 - - -
Industry 31 30 - -
Professional organisation 5 2 7 -
Governmental 5 0 0 2
Total (249) 208 32 7 2

The majority of the affiliations are academia and the type of research they carry out
is mostly evaluation research (34%) and then philosophical papers (21%). More rarely
validation research (10%) and solution proposals (9%) appear in their work. As
expected, academics dominate in the publications (they are typically more interested
in publishing than industry), the number of authors that originate industry is
considered high. The research carried out by industrial authors is distributed in
various types of research. In some cases, industrial partners didn’t co-author papers,
i.e., they appear in the acknowledgements’ section and thus the real industry
participation in the field is not corresponded in our data.

RQ4: What is the research domain of the research conducted? The union of the
domains listed by each researcher individually while scanning the papers is reported.
A ranking scheme was used to prioritise to primary, secondary and tertiary domains.
Table 6 shows the results. Innovation research is the domain that has received the
least attention regarding solutions. The results have highlighted the interest in the
field of research from both academia and industrial practitioners and researchers, but
an indication was visible on lack of specific solutions, answers and judgements of
specific questions and implementations is needed.

Table 6. Answer to RQ4: What is the research domain of the research conducted?

Domain Primary domain Secondary domain Tertiary domain
Product 91 34 2
Software 88 31 5
Innovation 0 24 0
Business 0 15 0
Other 1 154 253
Total 180 259 260

Ecosystems and Open Innovation for Embedded Systems: A Systematic Mapping Study 89

Fig. 2. Answer to RQ5: When is the research conducted?

RQ5: When is the research conducted? The researchers identified the chronological
year that the publications were available. Most of the research is conducted in the past
few years (2007-2013) as shown in Fig. 2. There is an increasing number of publications
happening in years after 2007 on the topic, a peak was reached in 2012 and then it
decreased for the next year (2013). This is primarily due to the timing of this study and
the limited availability of more recent articles from the scientific databases.

RQ6: What type of research is conducted? The researchers collected all the
application domains the papers belonged to. 45% of the papers belonged to 41 unique
domains and the predominant domains found were 12% open source, 10%
manufacturing, 8% telecom and mobile phones, 7% automotive and 6% information
systems.

Fig. 3. Answer to RQ6: What type of research is conducted?

RQ7: What type of research is conducted? Two researchers individually classified
the papers based on the type facets as described by Wieringa at al. [7]. While papers
were classified individually, the researchers resolved all disagreements by thoroughly
discussing the papers and the consolidated results are reported in Fig. 3 They provide

90 E. Papatheocharous et al.

an indication on what kind of research is conducted in the particular field. The
majority of the research is found in the category of evaluation research and then
philosophical papers follow.

Fig. 4. Answer to RQ8: What is the contribution of the research conducted?

RQ8: What is the contribution of the research conducted? Two researchers
individually classified the papers in terms of research contribution based on the
categories described by Shaw [8] and any disagreements on the classification were
resolved by discussing the papers. The consolidated results are shown in Fig. 4.

4 Analysis and Discussion

This section includes an analysis of the results, presented as synthesis from selected
observations that lead up to an agenda for directing future research.

4.1 Analysis of the Results

The literature collected contributes mostly in identifying requirements and ways to
manage change in business environments, and assess the evolution of technologies
due to this change. One example, is the framework (presented in [9]) “for
understanding innovation management as digital technology is integrated in
traditionally physical products” which discusses issues like organising logic, market

Ecosystems and Open Innovation for Embedded Systems: A Systematic Mapping Study 91

dynamics and architecture design. The literature study showed that product innovation
and IT innovation have a significantly different and competing outlook on innovation.
For instance, product innovation cultivates centralised firm control while the IT
innovation ecosystem supports network centricity and creation of digital options. A
consequence mentioned in horizontally structured industries, networked collaborative
environments with highly non-linear open innovation processes, is that governance
mechanisms are useless. The CEO of a company (co-authoring [10]) overseeing
methodology, software and strategy for the company’s products, confirms the theory
in [11] that differentiates business for software innovation into primary and secondary
innovations. Innovation is expressed as applied knowledge, and results in the
following four types of innovation: new and competitive architecture, organisational
capability, product platform and, finally, product family and product. These need to
be aligned to become the “source of innovation extensions that will keep the
architecture alive for a realistic commercial timeframe” [11]. An interesting
observation is that “organizational processes for the adoption of open innovation are
reliant on practices for closed innovation” [12].

The topic of innovation and performance enhancement of the offerings provided by
organisations if opened to external partners is also discussed. Among the benefits,
services, as mentioned in [13], are to be improved in descending order from the
collective contribution of customers, suppliers and competitors. The first are the only
ones to actually contribute to the development of new innovative services, while
universities and consultants are reported as not likely to immediately effect innovation
performance, at least in the specific services industry. In other cases, a survey
conducted on software product companies [14] showed that their biggest challenge to
growth was not technical, but related to management and marketing. The competence
of the personnel is a contributing factor, but also the networks developed in particular
for younger companies are important for improvement. Other factors that enable new
product development management argued, are for example the degree of networks
coupling in collaboration environments, while negative effect is attributed to high
rates of entry and exit of parties [15].

Most of the research describes how a solution is implemented and what are the
consequences, i.e., benefits and drawbacks, and many times industrial problems are
identified. Another aspect found in the literature is that risks are highlighted for
businesses opening up to outsiders, third parties, or open source communities, but also
benefits from doing so. The common risks mentioned are related to intellectual property
rights, interoperability, ownership, control, cost of adaptation, technology evolution and
complexity, market shift, and cover legal, managerial and business aspects. Many cases
report open innovation processes (e.g., outside-in, inside-out and coupled [12]), methods
(e.g., agile and knowledge management [16]) or policies (e.g., selectively revealing code
[17]) and tools (e.g., cloud-computing for collaboration spaces [18]). In [18] challenging
new requirements for complex industrial infrastructures and products are emphasised that
“require added manufacturing know-how along the value chain to drive the next level of
operational efficiency and performance. The development of these complex interlaced
systems over the entire product lifecycle represents an increasing challenge for all
manufacturers and their suppliers.”

92 E. Papatheocharous et al.

In the literature we found most of the above aspects are highlighted from a single
industry or company perspective and only in a few studies are ecosystems and systems of
ecosystems discussed. A study [19] conducted with decision makers from European
companies showed that even though they “look to open innovation for value creation and
capture, there is still a desire to remain self-reliant” and thus limited cases exist on
decision making together with value network partners. A few examples of mentioning
collaborative and across-company networks with multiple players exist and we
exemplify them next. The glocal enterprise notion [18] is about “value creation from
global networked operations and involving global supply chain management, product-
service linkage, and management of distributed manufacturing units”. In particular
domains, even after several years of development “the concrete result of the open
innovation process seems rather scarce” [20]. In product lines, a requirement would be
that the software needs to carry more information than traditional software packages [21],
and a lot of work needs to be done on the coordination and management regarding the
federation aspect. In [22] it is mentioned that “the power of the platform leader depends
on the degree of dependence of other agents in the ecosystem of platform leaders” and
based on examples in the US IT industry the authors try to understand better the role of
the platform leader in the business ecosystem. In [23] cases are indicated where
companies became more flexible and applied more free managerial practices based on
the expectations of open source communities while in [24] the theoretical gap of business
ecosystems and network structures, strategy and evolution is emphasised.

4.2 Research Agenda

Based on the discussion above we have identified areas that require additional
research. Clearly, ecosystems for embedded software require additional research to
better understand innovation, business, and organisational aspects for that specific
area. Miller and Morris [11] describe innovation in two levels; primary innovation
that creates a new competitive architecture based on knowledge from existing markets
and products, which requires new organisational capability to transform innovations
into products. The primary innovations are prerequisites for efficient open-innovation
of products, that is, secondary innovations in the ecosystem.

The product is based on a product platform, which is a reflection of the
organisational capabilities and forms the basis for product families. More specifically,
better understanding of the mechanisms for primary innovations, that is, the learning
knowledge processes that form the innovation system, its organisational and
architectural aspects in an ecosystem context, is needed and how capabilities can be
transformed into supporting ecosystem platforms.

Table 7 presents an agenda with research topics that target the primary innovations
as discussed above. The research focus is initially on learning from existing product
platforms and ecosystems, which is reflected in the agenda. New knowledge is the
basis for primary innovations. Based on new knowledge the community can innovate
solutions, such as specific patterns, methods and techniques, which can then be
validated. The items on the agenda are thus concerned with deriving knowledge about
the competitive architecture and organisational capability for open innovation.

Ecosystems and Open Innovation for Embedded Systems: A Systematic Mapping Study 93

Table 7. Research agenda

Topic Research need
Software
innovation

In the context of software ecosystems we need to further understand the
competitive architecture and organisational capabilities that foster open-
innovation, for example, investigate if some specific ecosystem structures better
support software innovation than the rest.

Competitive
architectures
for innovation

An important aspect of the innovation system is the competitive architecture.
We need to better understand the transition from learning about existing
products and markets to knowledge and further to the definition of a new
competitive architecture in ecosystems. Beyond defining the architecture, what
descriptions (e.g., technical, architectural, quality assurance) are parts of the
organisational capability that enable open innovation in a software ecosystem?

Process
flexibility in
the ecosystem

One important aspect of the competitive architecture and organisational
capability that we may learn from existing markets and product families is
which kind of ecosystem processes support software innovation across domains
and players. There is currently a lack of generalizable results here.

Ecosystem
procedures and
techniques

On a more detailed level, we may derive knowledge from studies about
procedures and techniques that support innovation in ecosystems that could be
part of the organisational capabilities and strengths.

Business
innovation for
software

The other important aspect of innovation in ecosystems is business innovation,
which could be equally useful for the creation of new organisational capability.
For a start we need to research best current practices for business innovation in
the software domain. Currently there are no general answers to what works and
what doesn’t as existing knowledge is based on single data points reported by
industry or academia in experience papers.

Business
environments
for innovation
in ecosystems

On the more detailed level business agreements with respect to relationships
and operations that enable software innovation and collaboration across
organisational borders are currently not well understood and more research is
required. Ensuring understandability and analysability require support from
models and it is unclear which business environment characteristics need to be
included in such models, for example size, type of offering, resources, existing
and planned networks, roles.

Business
processes and
software
innovation

The final capability we include in our agenda is concerned with understanding
how ecosystem processes and practices support business innovation and
software innovation combined. Jansen et al. [25] categorises processes into five
core areas (i.e., governance, R&D, software product management, marketing
and sales, consulting and support services). Thus, further research is needed for
them to be better understood in the context of open-innovation in ecosystems.

5 Conclusions and Future Work

This paper is the first step in charting the research on ecosystems and open innovation
of systems in the context of software engineering for embedded systems based on the
specific research questions we posed. We have identified several areas researched and
others that require additional research. The systematic map provides and overview of
this field of research that includes information about the origin of the research,
publication venues, and publication frequency from 1993 until when this research was

94 E. Papatheocharous et al.

conducted (early 2014). In addition the map emphasized on the type of research
conducted, the research and application domains and the research results and
contributions achieved. The map was analysed for trends and patterns.

Overall, the result shows that the field is an emerging field of research. The type of
research is primarily explorative, that is, philosophical, experience or evaluation
research producing reports, opinions, or descriptive models from specific parts of the
world. Finding concrete answers to most questions the studies we found pose is very
difficult, something that our analysis confirms. Here lies the community challenges
and thus, we provide a research agenda based on the mapping analysis. In the future,
we plan to extract more results from the systematic study conducted and present them
in an extended publication.

Acknowledgments. The research was funded by VINNOVA, the Swedish Agency
for Innovation Systems and Innovative Product Development (Grants No. 2012-
03782 and 2013-03492).

References

1. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indispensable
Technology and Industry. MIT Press, Cambridge (2003)

2. Axelsson, J., Papatheocharous, E., Andersson, J.: Characteristics of Software Ecosystems
for Federated Embedded Systems: A Case Study. Inform. Software Tech. 51(6),
1457–1475 (2014)

3. Trew, T., Botterweck, G., Nuseibeh, B.: A Reference Architecture for Consumer
Electronics Products and Its Application in Requirements Engineering. In: Avgeriou, P.,
Grundy, J., Hall, J.G., Lago, P., Mistrík, I. (eds.) Relating Software Requirements and
Architectures, pp. 203–231. Springer, Heidelberg (2011), http://link.springer.com/chapter/
10.1007/978-3-642-21001-3_13

4. Kuschel, J., Remneland, B., Holmqvist, M.: Open Innovation and Control: A Case from
Volvo. In: 43rd Hawaii International Conference on System Sciences, pp. 1–10 (2010)

5. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic Mapping Studies in
Software Engineering. In: Proceedings of the 12th International Conference on Evaluation
and Assessment in Software Engineering, Swinton, UK, pp. 68–77 (2008)

6. Manikas, K., Hansen, K.M.: Software Ecosystems – A Systematic Literature Review. J.
Syst. Software 86(5), 1294–1306 (2013)

7. Wieringa, R., Maiden, N.A.M., Mead, N.R., Rolland, C.: Requirements Engineering Paper
Classification and Evaluation Criteria: A Proposal and a Discussion. Requir. Eng. 11(1),
102–107 (2006)

8. Shaw, M.: What makes good research in software engineering? International Journal on
Software Tools for Technology Transfer 4(1), 1–7 (2002)

9. [S55] Svahn, F., Henfridsson, O.: The Dual Regimes of Digital Innovation Management.
In: 45th Hawaii International Conference on System Science, pp. 3347–3356 (2012)

10. [S42] Van Zyl, J.: Process Innovation Imperative (Software Product Development
Organisation). In: Proceedings of the Change Management and the New Industrial
Revolution, pp. 454–459 (2001)

11. Miller, W.L., Morris, L.: Fourth Generation R&D, Managing Knowledge, Technology and
Innovation. Wiley Publishers (1999)

Ecosystems and Open Innovation for Embedded Systems: A Systematic Mapping Study 95

12. [S251] Morgan, L., Finnegan, P.: Open Innovation in Secondary Software Firms: An
Exploration of Managers’ Perceptions of Open Source Software. SIGMIS Database 41(1),
76–95 (2010)

13. [S70] Wagner, S.M.: Partners for Business-to-Business Service Innovation. IEEE
Transactions on Engineering Management 60(1), 113–123 (2013)

14. [S72] Hietala, J., Kontio, J., Jokinen, J.-P., Pyysiainen, J.: Challenges of Software Product
Companies: Results of a National Survey in Finland. In: 10th International Symposium on
Software Metrics, pp. 232–243 (2004)

15. [S74] Uzuegbunam, I.S.: Managing Collaborative New Product Development of Complex
Software Systems: Mythical Man-Month Re-Visited. In: IEEE International Engineering
Management Conference, pp. 494–498 (2005)

16. [S91] Gourova, E., Toteva, K.: Enhancing Knowledge Creation and Innovation in SMEs.
In: 2012 Mediterranean Conference on Embedded Computing, pp. 292–297 (2012)

17. [S147] Henkel, J.: Selective Revealing in Open Innovation Processes: The Case of
Embedded Linux. Research Policy 35(7), 953–969 (2006)

18. [S238] Camarinha-Matos, L.M., Afsarmanesh, H., Koelmel, B.: Collaborative Networks in
Support of Service-Enhanced Products. In: Camarinha-Matos, L.M., Pereira-Klen, A.,
Afsarmanesh, H. (eds.) PRO-VE 2011. IFIP AICT, vol. 362, pp. 95–104. Springer,
Heidelberg (2011), http://link.springer.com/chapter/10.1007/978-3-
642-23330-2_11

19. [S219] Morgan, L., Finnegan, P.: Deciding on Open Innovation: An Exploration of How
Firms Create and Capture Value with Open Source Software. In: León, G., Bernardos, A.M.,
Casar, J.R., Kautz, K., De Gross, J.I. (eds.) Open IT-Based Innovation: Moving Towards
Cooperative IT Transfer and Knowledge Diffusion. IFIP, vol. 287, pp. 229–246. Springer,
Boston (2008), http://link.springer.com/chapter/10.1007/978-0-387-
87503-3_13.

20. [S4] Tongia, R., Subrahmanian, E.: Information and Communications Technology for
Development (ICT4D) - A Design Challenge? In: International Conference on Information
and Communication Technologies and Development, pp. 243–255 (2006)

21. [S13] Van der Linden, F.: Software Product Families in Europe: The Esaps Cafe Projects.
IEEE Software 19(4), 41–49 (2002)

22. [S73] Choi, B., Phan, K.: Platform Leadership in Business Ecosystem: Literature-Based
Study on Resource Dependence Theory (RDT). In: Technology Management for Emerging
Technologies, pp. 133–138 (2012)

23. [S19] Shaikh, M., Cornford, T.: ‘Letting Go of Control’ to Embrace Open Source:
Implications for Company and Community. In: 43rd Hawaii International Conference on
System Sciences, pp. 1–10 (2010)

24. [S20] Rong, K., Hou, J., Shi, Y., Lu, O.: From Value Chain, Supply Network, towards
Business Ecosystem (BE): Evaluating the BE Concept’s Implications to Emerging
Industrial Demand. In: IEEE International Conference on Industrial Engineering and
Engineering Management, pp. 2173–2177 (2010)

25. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of Gray: Opening up a
Software Producing Organization with the Open Software Enterprise Model. J. Syst.
Software 85(7), 1495–1510 (2012)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 96–101, 2015.
DOI: 10.1007/978-3-319-19593-3_8

Assessing the Value Blueprint to Support the Design
of a Business Ecosystem

Luciana A. Almeida1, Cleidson R.B. de Souza1,2(), Adailton M. Lima1,
and Rodrigo Q. Reis1

1Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
lu.abdon.si@gmail.com, {adailton,quites}@ufpa.br

2 Instituto Tecnológico Vale, Belém, PA, 66055-090, Brazil
cleidson.desouza@acm.org

Abstract. Ecosystems are an important aspect of today’s software business, and
can be beneficial to companies that can create and organize such ecosystems
around their products. Unfortunately, creating such ecosystems is not an easy
task. The value blueprint is a tool created by Adner, that allows a company to
identify the different types of risks to be faced during the establishment of an
ecosystem. In this paper we describe a case study conducted to assess the value
blueprint as an effective tool to help in the design of new ecosystems. This case
study is based on data about the Apple Watch. We report our evaluation of the
value blueprint tool and provide recommendations for practitioners interested in
establishing their own ecosystems and researchers interested in the design of
ecosystems.

Keywords: Business ecosystem · Ecosystem design · Value blueprint

1 Introduction

Nowadays, innovation is a key point to any companies’ growth and success. In the
past, innovation depended exclusively on the company itself. However, today there is
a increasing recognized importance of the role of, visible or not, collaborators in a
company’s success. Business ecosystem is the term used to refer to this new scenario.
While there are several definitions of business ecosystems, we will adopt Moore’s
definition: “a business ecosystem is a dynamic structure of interconnected organiza-
tions that depend on each other for mutual survival.” [2] Therefore it is an economic
community supported by a foundation of organizations and individuals who interact
through assets and services, produces value to customers, which also belong to the
ecosystem. Members of the ecosystem also include suppliers, inputs producers, com-
petitors and other stakeholders.

The corollary of this new scenario is that companies currently need to be able to
identify, understand and act upon their dependencies if they want to succeed [3]. In
fact, both academics and practitioners recognize the importance of dealing with the
dependencies among the different members of a business ecosystem. For instance,

 Assessing the Value Blueprint to Support the Design of a Business Ecosystem 97

Gawer and Cusumano [1] discuss a framework to be used by managers to design a
strategy to become leaders in their ecosystem. Similarly, Eisenmann, Parker and
Alstyne [4] discuss how relationships among ecosystem members might allow one
provider in one ecosystem enter another ecosystem. However, most of the research in
the area is based on analysis of existing products. Only a few papers have been writ-
ten about the required steps for a company to manage the dependencies among eco-
system parties in the beginning of a process.

In our work we are interested in developing an enterprise business ecosystem, i.e.,
an ecosystem that will be used solely within our organization. However, differently
from other studies [5], this ecosystem will be built from the scratch. Therefore, we
started to look for recommendations, guidelines or methodologies about how to man-
age the dependencies that should be taken into account when designing our own eco-
system. A related work we identified is the Model Business Canvas [7], a tool used to
model, document and present business models. However, the business canvas does
not take into account the broader “context”, i.e. the ecosystem, where this business is
embedded. An extension to the business canvas is proposed by Sniukas [8] who ar-
gues that the canvas should include the current business reality in which businesses
are embedded including partners, suppliers and other parties. Risk, however, is not
explicitly represented in the business canvas. The work that most closely reflected our
interests is the work written by Adner [3]. Adner proposes a tool, called Value Blue-
print, that allows one to identify the risks associated with ecosystem design especially
those risks associated with implicit and explicit dependencies.

This paper reports on our assessment of the value blueprint [3] as a tool to support
the design of software ecosystems. This assessment is done through a case study. In
this case, we decided to focus on the development of innovative ecosystems, and for
this reason the Apple Watch [6, 13] case has been chosen. Since we do not have ac-
cess to internal Apple’s employees, our data collection was based on data available in
the news, articles and the product description currently available at Apple’s website.
Our results suggest that the value blueprint is a simple and powerful tool to design
business ecosystems, but it has some limitations and requires specific background that
might limit its applicability.

2 Designing Ecosystems Using the Value Blueprint

In order to identify, document and reason about risks in the context of ecosystems,
Adner proposes a tool called value blueprint. This tool provides an overview of the
members required to deliver the value proposal of a product as well as different types
of risks associated with them. Beyond the “traditional” execution risks, there are two
additional types of risks, co-innovation and adoption risks, that are essential in the
context of business ecosystems. Co-Innovation risks consist of externally developed
technologies or approaches that should exist so that the company product is success-
ful, while adoption chain risks refer to all the participants in the value chain that
should adopt the innovation so that the customer can have the opportunity to recog-
nize the product’s value proposal.

98 L.A. Almeida et al.

To express these risks, Adner uses a simple metaphor: a continuous traffic sign
represented by green, yellow, or red lights, to indicate the alignment of each member.
For the co-innovation risks, green means the associated members are ready and in
place; yellow means that they are not yet in place, but that they have a plan for this;
and red means that these parties are not in place and there is no clear plan set for
them. For the adoption risks, green means that a member is looking forward to partic-
ipating in the business ecosystem; yellow means that they are neutral, but open to
entering it; and red means that the member has clear reasons for not joining.

Adner [3] argues that it is rare for an innovative product to start with all the lights
green. That is not mandatory, either. Yellow lights are acceptable, as long as they are
followed by a plan to make them turn into green. Red lights, though, are challenging.
Any red light, either by lack of capacity of a collaborator to deliver or by lack of will
to cooperate, or due to a problem of its own, must be addressed, for instance by creat-
ing incentives to find a way to overcome problematic connections in the project.

With the creation of the value blueprint all the components for a minimum viable
ecosystem (MVE)1 are clearly laid out. This blueprint establishes the elements needed
to deliver the value proposal, how they are positioned and their relations. Once the
relationships are identified and mapped, it is possible to have a vision of all the mem-
bers involved in the ecosystem alongside the risk and challenges that extend beyond
the company’s own immediate responsibilities.

3 Method of Research

Adner presents several examples of value blueprints in his book including Apple’s
iPod and iPhone, Nigeria’s M-Pesa, Amazon’s Kindle, among other products. Adner
also presents some recommendations to be used during the creation of one’s own
ecosystem [3, p. 64].

We followed these recommendations to be able to assess the process of creating
value blueprints as well as the blueprints themselves. Therefore, we chose to create a
value blueprint for the Apple Watch. Although, this is not the first of its kind, it is
expected to give birth to a family of products by Apple [6]. We chose Apple due to its
good track of success in the context of business ecosystems in the last years. Another
reason for choosing this product is that in our own company, we are exploring the
usage of wearables. Therefore, we hoped that creating such an ecosystem could pro-
vide a good starting point for our own project.

In this paper the research method applied is the case study [9], which allows the
study of a contemporary phenomena in a broad and uncontrolled context (like the
Apple Watch). Our data collection was exclusively performed by exploratory qualita-
tive procedures [10], extracting data available in the Internet (especially Apple’s web-
site) and from Adner’s book [3]. Other data collection methods were not viable due to

1 Adner defines a minimum viable ecosystem (MVE) as “the simplest ecosystem [one can]

assemble and still create some new value” [2, pg. 198].

 Assessing the Value Blueprint to Support the Design of a Business Ecosystem 99

the case selection, i.e., interviewing or observing Apple developers and management
was not possible despite the potential to uncover a number answers for this study.

It is important to mention that Adner presents the value blueprint for other Apple
products, including the iPod, iPad and iPhone [3]. So, we did not create the blueprint
for the Apple Watch from the scratch, we used some of the ideas from other products
to guide our data collection and analysis methods.

4 Results and Discussion

Figure 1 shows the value Blueprint for the Apple Watch MVE based on the material
we collected and the previous Apple’s ecosystems from Adner [3]. The product is
clear identified, the Apple Watch. The suppliers are characterized as all those who
offer inputs for the product construction, like the inputs for new technologies, the
WatchKit and the investors interested in seeing the results of the product [12]. The
intermediates are the retailers, like the Apple Store and the network operators. The
complementors are those who many times are not in the managers’ field of vision:
they are the retailers who are willing to adopt the Apple Pay system, including the
airline companies who enable their boarding passes through the Passbook, the devel-
opers who write apps for the product and leads the product to have even more value
proposals to the users. End-users include iPhone users, as well as users of other Apple
services including Apple Pay, Apple TV, and iTunes.

Fig. 1. The Value Blueprint representing the Apple
Watch MVE

The blueprint also illustrates the
co-innovation risks and adoption
chain risks. For instance, we can
observe that the Apple Watch is a
device that is launched with a co-
innovation risk [3], since it requires
an iPhone 5 or 6 to unlock other
functionalities. Of course, Apple is
already familiar with this risk and
this is definitely part of its strategy.
In fact, what Apple is doing is what
Adner calls ecosystems carryover,
in which the consolidation of an
ecosystem is used to create ad-
vantage over a new ecosystem.

An example of ecosystem carryover would be how the iPhone leveraged the iPod’s
ecosystem. In the scenario of the Apple Watch, Apple wants to use the iPhone’s eco-
system to establish a new ecosystem for its watch. Apple indeed argues that an im-
portant new value proposition of the Apple Watch is that with this device the user can
control all other Apple devices, like iTunes playlists, Apple’s TV channels, and so on.

Other co-innovation risks we identified in the blueprint are the new technologies
developed to allow the user experience including infrared LEDs; photo sensors;
Touch Force; TapTic Engine; Flexible Screens; among others. Technologies like

100 L.A. Almeida et al.

Wi-Fi, GPS and Bluetooth are necessary to the Apple Watch value proposal [13] and
therefore, are regarded as project execution risks, which are not part of the blueprint.

Adoption chain risks refer to the participants that should adopt the innovation so
that the customer can have the opportunity to recognize the value proposal [3]. In this
case, it is important to recognize that Apple’s usual plan is to induce existing consum-
ers to buy new products and move to the new ecosystem based on the value proposal
of this new product. In our case study, we can find the Apple Pay and Apple Watch
products. Apple Pay is the electronic payment system launched by Apple [11]. It is
already available for the iPhone 6, i.e., an iPhone 6 user is able to perform purchases
with Apple Pay-enabled retailers without an Apple Watch. In other words, Apple
Watch consumers will benefit from the investors and retailers who already support the
Apple Watch, which means that the Apple Watch ecosystem will likely carry along a
number of investors and retailers from the iPhone ecosystem [11].

An example of an adoption chain risk we identified is related to the software de-
velopers who will write applications for the Apple Watch, i.e., for this watch to be
successful, it is important to have developers motivated to contribute to it even before
the product is released. To deal with this risk, Apple has made a number of important
decisions. First of all, software for the Apple Watch will be provided through the App
Store (yet another example of ecosystem carryover). In addition, Apple will provide
the WatchKit with new tools and APIs that will allow developers to create Apple
Watch applications [20]. By providing these, we argue that Apple expects to increase
the likelihood of an ecosystem carryover among the software developers.

Our initial evaluation of the value blueprint tool is that it is a simple, easy to under-
stand and yet powerful tool to design business ecosystems. Our assessment is based
on the fact that in the notation used to express the blueprints has only three types of
(graphical) components: business members (partners, complementors, etc), their sta-
tus regarding the product, and the relationships among them. On the other hand, the
identification of the parties is very subjective, i.e., it depends on the person construct-
ing the blueprint. Furthermore, identifying the relationships among the different blue-
print members is not as straightforward, especially for non-business professionals.
Another challenge we faced was the time and effort required to create a blueprint. It is
not a simple task, and required the first author four weeks to do so even though, as
mentioned, the Apple’s Watch blueprint was based on similar Apple’s blueprints [3].

5 Final Remarks

The value blueprint [3] is a tool proposed to help innovators to design products in the
modern context of business ecosystems. We conducted a case study using the value
blueprint by modeling the Apple’s Watch ecosystem. By modeling partners, suppliers,
investors and other ecosystem members as well as the extent to which they are en-
gaged with the Apple Watch, it was possible to identify the risks associated with this
product. This blueprint, however, is a diagnosis tool: it allows one to identify the
current status of his/her ecosystem, but does not suggest what (s)he needs to do in
order to change this ecosystem towards a more positive outcome. Companies interest-

 Assessing the Value Blueprint to Support the Design of a Business Ecosystem 101

ed in launching ecosystems around their products still have to choose the strategy [1,
2, 4] they will adopt in their ecosystems. This also suggests that the creation of a
blueprint is only the first step, since companies will need to continuously monitor
their ecosystem and update their blueprint accordingly.

As for future work, we will use the lessons learned in this case study to continue
the design of our enterprise ecosystem. In addition, we will also explore computation-
al support for the creation, and analysis, of value blueprints.

Acknowledgements. Authors would like to thank the funding from CNPq (process numbers
485070/2013-8 and 310468/2014-0), Chamada 59/2013 MCTI/CT-Info/CNPq (process number
440880/2013-0) and CAPES through a M.Sc. scholarship granted to the first author.

References

1. Gawer, A., Cusumano, M.: Platform Leadership, p. 2. HBR Press, Cambridge (2002)
2. Moore, J.F.: Predators and Prey, A New Ecology of Competition. HBR (May-June 1993)
3. Adner, R.: The Wide Lens – What Successful Innovators See That Others Miss. Penguin

Group (USA) Inc., USA (2012)
4. Eisenmann, T., Parker, G., Van Alstyne, M.: Platform Envelopment. Strategic Manage-

ment Journal 12(32), 1270–1285 (2011)
5. Ghanam, Y., et al.: Making the leap to a software platform strategy: Issues and challenges.

Information and Software Technology 54(9), 968–984 (2012)
6. TechCrunch, http://techcrunch.com/topic/product/apple-watch/
7. Osterwalder, A., Pigneur, Y.: Business Model Generation – Innovation in Business Models

(2011)
8. Sniukas, M.: Take Your Business Model to the Next Level. In: Innovation Solutions from

Innovation Management (2013)
9. Yin, R.K.: Case study research: design and methods. Sage Publications, Inc. (1994)

10. Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 2nd edn. SAGE publications, Thousand Oaks (1998)

11. The Seattle Times: Apple broadens its ecosystem with its watch, payment system (2014),
Patently Apple: Apple Pay: The Digital Wallet that will Rule the World (2014)

12. Appleinsider: iPhone 6 & Apple Watch reveals lived up to the hype for Wall Street, inves-
tors have high hopes for Apple Pay (2014)

13. Apple Webpage (2015), https://www.apple.com/watch/overview/

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 102–116, 2015.
DOI: 10.1007/978-3-319-19593-3_9

Effects of Technological Change on Acquisition Behavior:
An Empirical Analysis of Electronic Design Automation

Thomas Lücking1 and Marcus Wagner2()

1 Sony Computer Entertainment Europe, 10 Great Marlborough Street,
London W1F 7LP, United Kingdom
thomas.luecking@hotmail.de

2 Augsburg University, Universitätsstr. 16,
86159 Augsburg, Germany

marcus.wagner@wiwi.uni-augsburg.de

Abstract. This paper contains an empirical analysis of acquisition dynamics in
the electronic design automation (EDA) industry. Using qualitative and
quantitative data, we show that particular groups of EDA firms strongly
contribute to acquisition activity in the industry at specific times. Based on this
we provide empirical evidence that specialized firms pursue focused and
‘defensive’ acquisitions during times of uncertainty, indicating that
concentration on existing competencies is preferred over diversification into
promising new, but unfamiliar markets.

1 Introduction

High-technology (high-tech)1 industries are characterized by rapid technological
change during which firms have to maintain their competitive positions based on their
(technological) competencies. Acquisitions (synonymous: takeovers, mergers) are a
means to access such competencies and their analysis thus of high practical relevance
to inform firms how to use them [1]. Although there is a large body of empirical
management research literature on the acquisition phenomenon, most of this work
focuses on outcomes of corporate takeovers. Researchers have acknowledged the
complexity of acquisitions by looking at potential aspects that affect post-merger
performance [2, 3], with factors like the targeted knowledge base, innovation type and
market relatedness emerging [4, 5, 6]. It was found that inconsistency is often due to
substantial lack of explanatory value of the independent variables [7].

Another reason could be simultaneous inclusion of several industries and
insufficient consideration of strategies. Finally, only few studies addressed the
question of why acquisitions are done at a single-industry level [8]. Yet, this is crucial
given that motives behind acquisitions differ in relevance across industries and that
the latter consist of different strategic groups [9]. Therefore, individual firm behavior

1 Our definition refers to the North American Industrial Classification System categories high-tech

manufacturing, communication services, software services, and engineering and tech services [12].

 Effects of Technological Change on Acquisition Behavior: An Empirical Analysis 103

is a function of a particular environment with specific technological changes [10],
firm-specific strategic positions characterized by type and breadth of product
portfolios, and institutional factors [11]. Related to the latter, work on merger waves
empirically identifies drivers for temporal clustering of acquisitions, with
technological shocks being a major one [13, 14, 15].

In order to assess corporate behavior appropriately it is crucial to understand the
competitive environment within which the firm is primarily active. Each firm
competes on the basis of its competencies, which are ultimately embodied in the
specific products and services the firm offers and that its customers are willing to pay
for [16]. Hence, we provide a focused analysis of firm behavior in general and of
acquisition behavior in particular by concentrating on a single industry, EDA,
involving detailed knowledge about that particular business and information about the
types of products of each firm.

This allows to identify different strategic groups as well as relevant industry
specific trends, answering the following research questions: Does technological
change have a significant impact on the acquisition behavior and do firms with
different product portfolios behave differently during that technological change? In
answering this question whose relevance was pointed out in the beginning of the
introduction and motivated further by an exposition of the literature on post-merger
performance, acquisition waves and strategic groups, we contribute to the strategic
management field and the above specific literatures in it.

2 Theoretical Background and Hypotheses Development

The velocity at which modern technological regimes change, makes the concept of
dynamic capabilities in the field of strategic management increasingly relevant [17]. This
is because not changing the resource base of a firm through them gives conservative,
exploitation-oriented projects priority over longer-term, explorative endeavors [18]. In
this case, firms also need to devote large amounts of managerial and financial resources
to address current customers, a situation also known as “the tyranny of the served
market” [19]. Not adapting to changing conditions becomes visible in product portfolios,
since existing offerings are the outcome firm’s past strategy [20].

Eventually, technological change can render existing competencies obsolete [21].
The literature on post-merger performance thus suggests technology-driven
acquisitions as a means to address competency loss, which correlates with the
intensity of technological change [22]. Furthermore, research on merger waves has
shown that industry-specific conditions nuance wider institutional factors in their
effect on acquisition behavior [23].

In order to dissect acquisition behavior for a single industry, it is necessary to go
beyond a simple count of acquisitions. Instead, differences between the industry’s
strategic groups need to be considered. Although all firms are equally exposed to
technological change some might be affected differently since firms within one
industry differ [24]. Therefore, we take the structure of product portfolios into
account to address individual differences across firms. This approach also address

104 T. Lücking and M. Wagner

calls in prior work to address more directly the relevance and importance of within-
industry diversification on performance [25]. Also, to reveal such qualitative
relationships between product portfolios, technological change and acquisition
patterns we need to limit the scope of our study to acquisitions in one specific
industry.2 This is further supported by benefits from diversification into industry-
specific or ‘related’ fields being shown to be transferable to a single-industry level,
and the role of acquisitions for innovation [26].

Following approaches from configuration theory, technological change is
understood here as a cause of environmental turbulence beyond incremental and
modular reconfigurations that implies major technological development [27, 28].
Based on this definition of technological change, we distinguish between two generic
types of takeover strategies within the boundaries of a single industry. The first can be
characterized as ‘expansive’, meaning that the acquirer extends its activities into new
product-/service-categories within the boundaries of its industry. The second generic
type of takeover strategy can be described as ‘defensive’ in that the acquiring firm
purchases an organization that offers products/services in sub-categories or product
segments in which the acquirer already has an established interest.

Our empirical analysis is about U.S. EDA firms. EDA is the general term for the
software tools that are used to design and test semiconductors. As part of the
extremely dynamic semiconductor sector, EDA firms work under a permanent
pressure to innovate. The existence of the so-called ‘design gap’ is a good indicator of
this pressure. This gap embodies the enormous challenge that chip design software
firms face. Manufacturers of silicon-based chips constantly invent smaller-scale
manufacturing processes, and they need corresponding design software to realize the
advantages and address the challenges of miniaturization [29]. In other words, while a
new smaller manufacturing process is being developed, chipmakers approach EDA
software firms to incorporate corresponding features into their products. This leads to
the ‘design gap’ in which design software has to constantly catch up with
technological advancements. This permanently creates fertile niches for EDA
software in which new ideas and technologies can evolve in the form of new ventures,
while entry barriers in terms of required capital are low. As a consequence, we deal
with an industry that is characterized by a high frequency of corporate acquisitions.

We define the type of takeover strategies that emerge from technological change
by observing the targets and their particular products in relation to the introduction of
the 90 nm chip scale, which is a technological change with strong implications for the
EDA industry. At the beginning of 2004, Intel started to release its first 90 nm
microprocessors to end customers [30]. In fact, a discussion about 90 nm can be
observed starting in 2003 [31], which indicates a concern about competencies in light
of this technological change. Given acquisitions can mitigate their erosion, the
following hypothesis is proposed:

H1: The introduction of the 90 nm chip technology has a positive impact on the
number of acquisitions by firms in the EDA industry.

2 See the methodology section for more information on the set of acquisitions analyzed.

 Effects of Technological Change on Acquisition Behavior: An Empirical Analysis 105

Apart from expecting a general increase in acquisition behavior, our industry
knowledge and our data also allows us to differentiate between product categories
within EDA. To understand EDA tool categories, it is important to understand that
chip designers depend on EDA tools providing a high level of abstraction which in
the end can be automatically transformed into a blueprint for physical manufacturing
(including defined placements and routings).

The chip design process flow can be broadly divided into three subcategories/
phases, the Electronic System Level (ESL), IC Front-End (IC-FE) and IC Back-End
(IC-BE) design [29]. ESL encompasses the most abstract software at the beginning of
a design process while IC-BE is closest to the concrete physical layout of the chip.
Because of the ramifications of early design choices in the beginning of the
development process tools at the highest abstraction levels become more and more
valuable as complexity continues to increase. This could also be observed with the
introduction of the 90 nm process in mass production.

Around 2003, experts became vocal on the importance of ESL tools for coping with
challenges from the introduction of 90 nm manufacturing scales [32]. Detailed product
information allows us to distinguish between firms with and without ESL software in
their product portfolios. We consider the acquisition of a target that offers ESL products
as more unrelated or expansive compared to an acquisition of a target with non-ESL
products when the acquirer has no ESL products in its product portfolio.

Since the 90 nm transition induced demand for ESL competencies, we would
expect non-ESL firms to diversify into the ESL segment in their attempt to maintain
competencies and therefore, to pursue expansive acquisition strategies. In addition,
diversification along the value-added design chain is very feasible considering the
integrated nature of the chip design flow, where ESL is a new endpoint extending the
chain by one module. Since for customers, complete design suites from only one EDA
supplier ensure perfect compatibility and reduce implementation efforts from
interfaces with third parties [33], the following hypothesis can be stated:

H2a: Firms without ESL products react to 90 nm chip technology with an
expansive strategy by acquiring targets with ESL products.

Opposed to this expansive acquisition motive, ‘non-ESL firms’ could also prefer
defensive acquisitions in the sense of related takeovers. This would enable firms
without any ESL products to strengthen their existing product lines and to increase
revenue from those by acquiring (innovative) targets. In dynamic environments such a
focused strategy could be more rational since business extension implies more efforts
and operative friction [34]. In addition, by acquiring similar targets, competition in
the industry is decreased and margins can potentially be improved. Thus, a second
(competing) hypothesis can also be posed as follows:

H2b: EDA firms without ESL products react to the 90 nm chip technology through a
defensive strategy by acquiring targets within product segments they already occupy.

Hypotheses 2a and 2b both imply a positive moderating effect on the total number of
acquisitions by firms without ESL products of the technological change to 90 nm.
Testing which of them holds based on acquisition behavior is therefore only possible
using the detailed industry-level data with qualitative information that is at our disposal.

106 T. Lücking and M. Wagner

3 Methodology

To test our above hypotheses we employ a unique panel dataset of U.S. EDA firms
from 1996–2006. Despite an international industry structure, the large majority of
global revenue comes from EDA firms based in the U.S. [35]. This allows us to
control for any country effects without losing global information about specific trends
and developments. Gartner Dataquest and Gary Smith EDA published annual reports
on firms in the global EDA industry for the period 1996–2006 including information
about the specific sub-segments in which firms are active, allowing us to track the
type and breadth of firm-specific activities within the EDA industry over time. For the
U.S. firms in these reports matching financial data for all public U.S. firms from the
Compustat database was obtained and patent information was sourced from the
database of the National Bureau of Economic Research (NBER). Information about
the takeover activity of the firms comes from the Thomson One Banker database.

An acquisition is defined here as a purchase that leads to a corporate equity stake
of more than 50 percent of another company [36]. This excludes deals resulting in
minority stakes and the repurchasing of a company’s own shares. Also excluded are
corporate deals involving non-EDA companies, such as IT service companies.
Through this strict data treatment, we are able to interpret every acquisition as an
event following which the acquiring party has full control over the target and full
formal access to the firm’s technological competencies. Starting with a sample of 468
acquisitions conducted by public U.S. EDA firms between 1996 and 2006, every
acquisition entry was manually evaluated using these rules, resulting in a final set of
247 before any empirical analysis was conducted. Furthermore, qualitative
triangulation through secondary sources (e.g. [32]) ensured the filtering was
appropriate.

From the NBER database 16,446 patents have been extracted, of which 2,748 were
applied for prior to our chosen time period (1996–2006). These latter patents are used
to calculate starting patent stocks in 1996. Before the matching process, 84.2 percent
of all patents are in the IPC categories ‘G’ (Physics) and ‘H’ (Electricity). Almost
13.9 percent are in the ‘B’ (Performing Operations, Transporting) and ‘C’ (Chemistry,
Metallurgy) categories. Due to our narrow industry focus and to avoid any patent
selection bias, we estimated all our models with two versions of our patent data. One
version included only patents belonging to the more industry-related categories ‘G’
and ‘H’ and one version included all patents. The reported models in this analysis
include all patents since the results do not differ significantly.

A proper selection is necessary to account for the arguments about the distinct
dynamics. Since we talk about industry-specific trends we need to make sure that all
included firms experience upcoming technological changes in their direct
environment in a similar way. Therefore, every firm within the dataset generated has
been analyzed regarding its business affiliation to the EDA industry. Thus, for a
condensed set of 36 companies we identified EDA as (at least) one of its core
business and kept them in the final dataset. The years 1996 and 1997 have been
excluded from our analyses owing to there being too few data points. For the purpose
of this analysis, our dataset is sufficiently large, since data of similar size has been

 Effects of Technological Change on Acquisition Behavior: An Empirical Analysis 107

used [37]. VIF values of 1.17 to 3.75 indicate that multicollinearity is unlikely to be
an issue in our analysis [38].

Our dependent variable is the number of acquisitions being conducted by a given
firm in a given year. Since this is a count variable, we employ a negative binomial
model for our regression analysis [39]. The panel structure of our dataset allows us to
address within- and between-differences in our dataset. We used the Hausman test to
decide between fixed- and random effects. Based on the insignificant test results and
our special interest in the behavior of a whole industry, we estimate a random effects
model to also account for time-constant variables and to avoid a bias towards the
subset of “treated” individuals.

Our first explanatory variable represents the change in microchip complexity going
from 130 nm to 90 nm in mass production. The first large-scale introduction of 90 nm
microprocessors happened in 2004 [30]. Considering usual lead times within the
semiconductor industry, we consider this trend to have already been fully established
in 2003. Further confirmation comes from publications and articles about the coming
of the 90 nm chip scale and its implications for chip design in 2003. As our time
period runs from 1998–2006, our new 90 nm variable equals zero up until including
2002, and becomes unity from 2003.3

Utilizing our detailed product information we are able to summarize and
distinguish between the different product-related EDA main categories, namely ESL,
IC-FE, and IC-BE plus ‘others’, which represents all non-categorized product
segments. To distinguish between ESL and non-ESL offering firms we employ two
dummy variables. The (Firm with) ESL products variable is equal to equity if a
respective firm offers products in the ESL sub-segment in a given year. Contrary to
this, the (Firm with) only non-ESL products variable indicates whether a company is
only offering IC-FE and/or IC-BE but no ESL in a given year. The residual sub-
category ‘others’ is not included in the model, i.e. the other two dummies are to be
interpreted relative to this omitted category.4 For the two explanatory variables
included, we allow for a one-year time lag to reduce endogeneity and biases from
different accounting methods [36].

Our employed model controls for different levels of innovative activity, firm size,
and financial performance as these factors showed significant effects on the
propensity to acquire in past acquisition research. Internal R&D can be an alternative
to acquisition of external know-how [40]. Therefore, we consider different levels of
R&D activity, calculating the variable R&D intensity as the ratio of R&D
expenditures to net sales [41]. In addition to R&D input, the level of past output is a
well-accepted indicator of the ability to identify and absorb new intellectual property
[42]. Also known as absorptive capacity, this innovative output is measured by the
patent stock of a firm [43]. The standard perpetual formula is used, which is then

3 Taking absolute years can be a rather rough timeframe for the described trend since high-tech

industries often change quicker than years. That is why we altered the length of the time trend
to check the robustness of our model, as is described in the results section.

4 (Firm with) ESL products and (Firm with) only non-ESL products have a correlation of -0.55
at a significance level below 0.05 (see Table 2).

108 T. Lücking and M. Wagner

normalized by firm size as proxied by net sales [44, 45].5 Normalization allows
addressing the issue of size disparities between firms that could undervalue the patent
stock of smaller EDA firms.

Thus, we calculate R&D output as the ratio of patent stock to net sales, with the
depreciation rate set at 15 percent [43]. Although our data only covers the years
1996–2006 all available patent information before 1996 (2,748 patents) was used to
avoid truncation bias for the calculation. To control for size related differences in firm
behavior, we employ a firm size variable by using the natural logarithm of net sales of
a firm.6 Similarly, we use the change in annual net sales (‘sales’) for each firm and
year to control for firm growth. Controlling for financial success we calculate
profitability as EBITDA to net sales. In order to account for a company’s ability to
meet its short-term obligations from its current assets, liquidity is calculated as the
ratio of current assets to current liabilities. To account for the economic and
institutional environment of the industry, we include the annual industry’s annual
acquisitions as a variable gauging general, industry-wide behavioral patterns. Except
for the latter, we employ a one-year time lag for all described control variables for the
same reasons we lagged two of our independent variables ([Firm with] ESL products
and [Firm with] only non-ESL products). Tables 1 and 2 provide the descriptive
statistics and correlations as well as variance inflation factors.

Table 1. Descriptive statistics

 Variable Mean S.D. Min. Max.

1 Number of annual acquisitions 0.57 1.16 0.00 7.00

2 New 90 nm technology 0.43 0.50 0.00 1.00

3 (Firm with) ESL products 0.31 0.46 0.00 1.00

4 (Firm with) only non-ESL products 0.40 0.49 0.00 1.00

5 90 nm technology (techn.) * ESL products 0.17 0.38 0.00 1.00

6 90 nm techn. * only non-ESL products 0.11 0.32 0.00 1.00

7 R&D intensity 0.27 0.20 0.03 1.99

8 R&D output 0.34 0.46 0.00 3.32

9 Firm size 5.49 1.72 1.70 9.04

10 Growth 0.25 0.70 -0.65 6.46

11 Profitability 0.14 0.29 -1.49 0.78

12 Liquidity 2.91 1.94 0.31 14.81

13 Industry’s annual acquisitions 12.65 5.65 4.00 22.00

5 To normalize patent stock, [44] use assets and [45] uses employees to account for firm size.
6 Compared to the often-employed value of total assets, net total sales are better suited to

represent the size of software firms. The number of employees can act as an alternative to net
sales and produces qualitatively similar results when used in our estimations.

 Effects of Technological Change on Acquisition Behavior: An Empirical Analysis 109

Table 2. Correlation matrix and variance inflation factors

No. 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1.00

2 -0.03 1.00

3 0.45 0.16 1.00

4 -0.27 -0.25 -0.55 1.00

5 0.15 0.52 0.67 -0.37 1.00

6 -0.07 0.41 -0.24 0.43 -0.16 1.00

7 -0.04 -0.03 -0.01 0.20 0.00 0.06 1.00

8 -0.12 0.20 -0.04 -0.13 0.05 0.05 0.25 1.00

9 0.22 0.14 0.17 -0.44 0.14 -0.20 -0.52 -0.31 1.00

10 0.07 -0.21 -0.09 0.10 -0.11 -0.08 0.37 0.12 -0.32 1.00

11 0.24 0.03 0.13 -0.27 0.07 -0.09 -0.50 -0.38 0.62 -0.19 1.00

12 -0.17 -0.07 -0.29 0.19 -0.24 0.08 0.17 0.26 -0.27 0.10 -0.12 1.00

13 0.22 -0.35 -0.11 0.17 -0.22 -0.07 -0.03 -0.11 -0.06 -0.04 -0.02 0.02 1.00

Note: variable numbers refer to Table 1; all correlations > |0.17| significant at p < 0.05

4 Results

Table 3 shows the results of our negative binomial regression models. Most
obviously, our first hypothesis does not hold true in any of the employed models
meaning that the introduction of the 90 nm chip production scale by itself has no
significant effect on the number of acquisitions within the EDA industry. As a
robustness check, we adjusted the length of the 90 nm time dummy and employed
different lengths from one to three years always yielding insignificant results. Models
2 and 3 include all of our three explanatory variables, where Model 3 features
additionally contingency effects (interactions) through which we can simultaneously
test our first and second hypotheses.

Looking at the interaction effects, we can confirm that EDA firms without any ESL
products acquire significantly more from 2003: the time when chip design became
increasingly more complex and ESL products experienced strong demand due to the
smaller manufacturing scale at 90 nm. So far, this empirical result confirms our
reasoning for expecting higher acquisition activity levels from firms without ESL
products, but it does not clarify if firms acquire more in general or with a focus on
ESL targets. Yet, further support for one of our latter hypotheses comes from the fact
that EDA companies that already offered ESL software products did not seem to be
affected by the introduction of smaller chip scales. More precisely, these types of
companies show significantly higher acquisition activities during the entire time
period analyzed (significant in model 2 and 3).

110 T. Lücking and M. Wagner

Table 3. Negative binomial panel regression analyses on the number of annual acquisitions

Variable Model 1 Model 2 Model 3
New 90 nm technology 0.12 (0.26) 0.13 (0.27) -0.41 (0.64)
(Firm with) ESL products 1.41*** (0.54) 1.42** (0.56)

(Firm with) only non-ESL products 0.33 (0.56) -0.21 (0.62)

90 nm techn. * ESL products 0.35 (0.68)

90 nm techn. * only non-ESL products 1.91** (0.87)

R&D intensity -0.34 (1.21) 0.07 (1.11) 0.30 (1.15)

R&D output 0.43 (0.59) 0.47 (0.50) 0.60 (0.50)

Firm size 0.22 (0.19) 0.25 (0.16) 0.32* (0.17)

Growth 0.43** (0.19) 0.55*** (0.19) 0.59*** (0.19)

Profitability 1.34 (0.77) 1.16 (0.75) 1.18 (0.76)

Liquidity -0.23 (0.14) -0.10 (0.13) -0.11 (0.14)

Industry`s annual acquisitions 0.08*** (0.02) 0.09*** (0.02) 0.08*** (0.02)

Likelihood ratio test for nested model 1 6.06** 12.51**

Likelihood ratio test for nested model 2 6.45**

Wald χ2 (df) 37.04 (8)*** 42.89 (10)*** 52.40 (12)***

Log Likelihood -138.23 -135.20 -131.98

Observations (Groups) 178 (36) 178 (36) 178 (36)

Notes: *** p < 0.01; ** p < 0.05; * p < 0.1 (based on two-tailed significance tests); values in
parentheses refer to standard errors

To see whether hypothesis 2a or 2b hold true we provide a simple descriptive

overview of all acquisitions involving ESL offering targets from 1998–2006.
Although 2a and 2b are competing hypotheses, we can find good arguments for both,
since they represent a typical economic trade-off decision. That is why we are
interested in the actual behavior of strategic groups within the single high-tech
industry setting analyzed.

As can be seen in Table 4, out of the six acquirers involved in ESL takeovers, five
had already been offering ESL products prior the respective mergers. Only one
company taking over an ESL target before 2003 (in 2000) did not offer any ESL
related products. Conversely, firms without ESL products apparently kept acquiring
within their already occupied product categories, which means that they followed a
more focused acquisition strategy in relation to their core business. Therefore, we can
reject hypothesis 2a and note strong support for 2b.

As concerns the control and other variables in the regression model reported in
Table 3, Growth and industry’s annual acquisitions continuously show significant
positive effects on the number of acquisitions in all models. Their high significance

 Effects of Technological Change on Acquisition Behavior: An Empirical Analysis 111

levels clearly hint at a strong relationship between recent business growth and its
continuation through corporate takeovers (for the growth variable). Moreover,
unobserved general dynamics seem to play an important role in addition to our
identified industry trend (for industry’s annual acquisitions). Most other control
variables (R&D intensity, patent stock, profitability, and liquidity) remain
insignificant in all tested and reported models.

This can be explained by the analysis’ focus on a single industry where the
similarities in innovation activities, business models, and utilization of internal
resources cannot explain a large portion of the differences between industry players in
terms of acquisition behavior. Likelihood ratio tests confirm the superior explanatory
power of the largest employed model.

Table 4. ESL deals during the analyzed period from 1998 to 2006

Target 1998 1999 2000 2001 2002 2003 2004 2005 2006 Acquirer

Analogy 1 Avant*

Avant 1 Synopsys*

Axis
Systems

 1 Verisity*

C Level
Design

 1 Synopsys*

Cascade 1 Synopsys*

Chrysalis
Symbolic
Design

 1 Avant*

Co-Design
Automa-tion

 1 Synopsys*

First Earth 1 Mentor*

Get2Chip 1 Cadence*

Orcad 1 Cadence*

Summit
Design

 1 Mentor*

Verisity 1 Cadence*

Visual
Software

 1 Xilinx

Total ESL
deals

0 3 1 2 1 3 1 1 1

Total
annual deals

19 24 20 10 12 19 14 6 7

Annual
share of
ESL deals

0% 13% 5% 20% 8% 16% 7% 17% 14%

Note: * = Acquirer has been offering ESL software before.

112 T. Lücking and M. Wagner

5 Discussion and Conclusion

In this study, we proposed to integrate different explanatory factors for acquisition
behavior in order to better understand the dynamics in very dynamic high-tech
industries. Our results show that the rise of the 90 nm process for mass production by
itself had no significant influence on the number of acquisitions within the EDA
industry. Despite the undeniable increase of complexity in chip design, we cannot
identify a corresponding change in general EDA acquisition behavior in terms of
frequency. A possible explanation could be that the constant pressure to innovate (the
so called ‘design gap’) overshadows the specific effects coming from the described
technological change.

Whilst we are far from generalizing the non-impactful nature of any industry trend
on acquisition activities in high-tech industries, the insignificant effect of
technological change by itself further supports our call to utilize firm-specific
characteristics that allow for more differentiated empirical analysis of the acquisition
phenomenon. In fact, the confirmation of one of our competing hypotheses, 2b,
reveals the existence of behavioral differences coming from strategic positions as
mirrored by the different product portfolios. Only by differentiating between different
types of acquirers can we show a significant effect coming from a particular
technological change within the industry. Moreover, the descriptive overview of ESL
targets provides further insights about the takeover behavior of the different acquirers.
Apparently, non-ESL firms do acquire significantly more within their already
occupied product categories, namely IC-FE and IC-BE, making little attempts to
diversify into the promising new ESL fields.

The confirmation of hypothesis 2b instead of hypothesis 2a is very interesting as it
indicates that during times of technological change, firms seem to value their
competency and expertise in already established product categories higher than any
potential revenue growth in new (heavy demanded) but rather unknown product
segments. Thus, we can confirm the existence of some basic principles and
mechanisms of organizational learning.

More related and hence more secure investments are preferred over more
explorative activities [18]. The fact that this behavior happens during a time of greater
technological ferment makes sense as competition over technological leadership
happens particularly during these periods [21]. The majority of corporate acquisitions
take place in related industries. Thus, intra-industry acquisitions should show a
similar picture, but just at a different level. Corporate acquisitions serve very well as a
valid measure for this kind of conclusion especially when controlled for internal R&D
as a potential supplement.

The significant effect of industry’s annual acquisitions suggests the existence of
additional institutional effects in terms of micro- or macro-economic environments
even at the level of a single industry. A stronger form of ‘herd behavior’ could not be
identified since we could not find any support for hypothesis 2a. Nevertheless, our
initial statement about the complexities involved in corporate acquisition decisions is
validated in this control variable. A methodological contribution of our analysis
results from the utilization of detailed product information as an indicator of

 Effects of Technological Change on Acquisition Behavior: An Empirical Analysis 113

technological competence. Together with a comprehensive qualitative understanding
about the actual value creation of the products offered along the chip design process,
we were able to provide explanations for technologically motivated acquisitions that
extend the literature by relating to more disaggregated levels. This more detailed level
of analysis also provides more relevant practical support by acknowledging product
related strategic decisions and the resulting actions on corporate acquisitions.
However, in order to being able to inform these kinds of decisions, more industries
need to be analyzed in a similar manner.

In summary, our analysis focuses on technology-driven acquisitions and provides
empirically tested explanations for certain patterns of acquisition behavior of firms
within an industry at a particular time. The methodology of a single-industry focus
delivers novel insights into the logic underpinning acquisition dynamics. While such
an approach is required to do justice to the complex circumstances in each individual
(high-tech) industry, it also has its limitations. An analysis at this single-industry level
requires detailed data that is not always available, especially in the case of industries
that are larger in terms of aggregate sales volumes, less concentrated and/or more
fragmented in terms of products. This also applies to a deep understanding of the
actual products as well as knowledge of an industry’s relationship with its customers.

Other limitations might come from the exclusion of minority stakes and venture
capital or corporate venturing investments, which are known to be very common in
high-tech industry environments. Although the omission of these activities may be a
weakness of our approach, our strict selection criteria allow for a clearer interpretation
of the included deals, which would not have been much improved by adding the
aforementioned categories since minority stake investments are typically chosen when
uncertainty about future developments is quite high.

Conversely, corporate takeovers that result in full formal control over and
responsibility for the target can be seen as an ex-post confirmation of an already
convincing performance that is worth integrating into the acquirer’s existing business.
Along the same lines, our analysis also leaves out any form of inter-firm cooperation
because again these reflect situations of greater potential uncertainty.

Future research on acquisition behavior might involve a stronger consideration of
the various strategic characteristics of industry players. Our analysis has shown that
the mere existence of a technological change or trend may not be enough to show any
effect on hitherto dynamic industries. We also encourage more empirical research on
acquisition behavior in similar high-tech industries to further corroborate and confirm
our findings, and provide evidence from beyond the EDA industry. One has to
understand the complexities of a firm’s business environment in order to evaluate its
behavior and ultimately to offer better managerial implications. We hope that the
value of following this convincing argument is apparent from this study.

114 T. Lücking and M. Wagner

References

1. Wagner, M.: Acquisition as a means for external technology sourcing: complementary,
substitutive or both? Journal of Engineering and Technology Management 28, 283–299
(2011)

2. Agrawal, A., Jaffe, J.F.: The post-merger performance puzzle. In: Cooper, C., Gregory, A.
(eds.) Advances in Mergers and Acquisitions, pp. 119–156. JAI Press, Stamford (2000)

3. Ahuja, G., Katila, R.: Technological acquisitions and the innovation performance of
acquiring firms: a longitudinal study. Strategic Management Journal 22(3), 197–220
(2001)

4. Wagner, M.: To explore or to exploit? An empirical investigation of acquisitions by large
incumbents. Research Policy 40, 1217–1225 (2011)

5. Cloodt, M., Hagedoorn, J., van Kranenburg, H.: Mergers and acquisitions: Their effect on
the innovative performance of companies in high-tech industries. Research Policy 35(5),
642–654 (2006)

6. Wagner, M.: Acquisitions as a means of innovation sourcing by incumbents and growth of
technology-oriented ventures. Int. J. of Tech. Management 52, 118–134 (2010)

7. King, D.R., Dalton, D.R., Daily, C.M., Covin, J.G.: Meta-analyses of post-acquisition
performance: Indications of unidentified moderators. Strategic Management Journal 25(2),
187–200 (2004)

8. Schoenberg, R., Reeves, R.: What determines acquisition activity within an industry?
European Management Journal 17(1), 93–98 (1999)

9. Porter, M.: Competitive Strategy: Techniques for analyzing industries and competitors.
Free Press, New York (1980)

10. Ahern, K.R., Harford, J.: The importance of industry links in merger waves. Journal of
Finance 69(2), 527–576 (2014)

11. DiMaggio, P.J., Powell, W.W.: The iron cage revisited: Institutional isomorphism and
collective rationality in organizational fields. American Sociological Review 48(2),
147–160 (1983)

12. TechAmerica. TechAmerica’s NAICS-based definition of high tech. (2013),
http://www.techamerica.org/naics-definition

13. Andrade, G., Mitchell, M., Stafford, E.: New evidence and perspectives on mergers.
Journal of Economic Perspectives 15(2), 103–120 (2001)

14. Gort, M.: An Economic Disturbance Theory of Mergers. The Quarterly Journal of
Economics 83(4), 624–642 (1969)

15. Harford, J.: What drives merger waves? Journal of Financial Economics 77(3), 529–560
(2005)

16. Prahalad, C., Hamel, G.: The Core Competence of the Corporation. Harvard Business
Review 68(3), 79–91 (1990)

17. Teece, D.J., Pisano, G., Shuen, A.: Dynamic capabilities and strategic management.
Strategic Management Journal 18(7), 509–533 (1997)

18. March, J.G.: Exploration and exploitation in organizational learning. Organization
Science 2(1), 71–87 (1991)

19. Hamel, G., Prahalad, C.K.: Corporate imagination and expeditionary marketing. Harvard
Business Review 69(4), 81–92 (1991)

20. Garud, R., Kanøe, P. (eds.): Path Dependence and Creation. Psychology Press, Mahwah
(2001)

21. Tushman, M.L., Anderson, P.: Technological Discontinuities and Organizational
Environments. Administrative Science Quarterly 31(3), 439–465 (1986)

 Effects of Technological Change on Acquisition Behavior: An Empirical Analysis 115

22. Dushnitsky, G., Lenox, M.J.: When do firms undertake R&D by investing in new
ventures? Strategic Management Journal 26(10), 947–965 (2005)

23. Mitchell, M.L., Mulherin, H.J.: The impact of industry shocks on takeover and
restructuring activity. Journal of Financial Economics 41, 193–229 (1996)

24. Stern, I., Henderson, A.D.: Within-business diversification in technology-intensive
industries. Strategic Management Journal 25(5), 487–505 (2004)

25. Zahavi, T., Lavie, D.: Intra-industry diversification and firm performance. Strategic
Management Journal 34(8), 978–998 (2013)

26. Henkel, J., Rønde, T., Wagner, M.: And the Winner is – Acquired. Entrepreneurship as a
Contest yielding Radical Innovations. Research Policy 44, 295–310 (2015)

27. El Sawy, O.A., Malhotra, A., YoungKi, P., Pavlou, P.A.: Seeking the Configurations of
Digital Ecodynamics: It Takes Three to Tango. Information Systems Research 21(4),
835–848 (2010)

28. Furlan, A., Cabigiosu, A., Camuffo, A.: When the Mirror Gets Misted up: Modularity and
Technological Change. Strategic Management Journal 35(6), 789–807 (2014)

29. Birnbaum, M.D.: Essential Electronic Design Automation. Prentice Hall International,
Upper Saddle River (2004)

30. Intel: Microprocessor quick reference guide. Intel Corp. (2013), http://www.intel.com
 /pressroom/kits/quickreffam.htm

31. EE Times: ESL tools: Are EDA giants in the game? EETimes.com (2004),
http://www.eetimes.com/document.asp?doc_id=1151215

32. International Business Strategies: Analysis of the relationship between EDA expenditures
and competitive positioning of IC vendors for 2003. A custom study for EDA consortium
and edacentrum e.V (2003),
http://www.edac.org/downloads/04_05_28_IBS_Report.pdf

33. Sperling, E.: Experts at the table: Changing design. System-Level Design Community
(2012), http://chipdesignmag.com/sld/blog/2012/02/10/expertsat-
the-table-changing-design-3/

34. Grant, R.M., Jammine, A.P., Thomas, H.: Diversity, diversification, and profitability
among British manufacturing companies, 1972-84. Academy of Management
Journal 31(4), 771–801 (1988)

35. Lebret, H.: Start-up: What we may still learn from Silicon Valley. CreateSpace, Lausanne
(2007)

36. Desyllas, P., Hughes, A.: Sourcing technological knowledge through corporate acquisition:
Evidence from an international sample of high technology firms. Journal of Technology
Management Research 18(2), 157–172 (2008)

37. Soh, P.: Network patterns and competitive advantage before the emergence of a dominant
design. Strategic Management Journal 31(4), 438–461 (2010)

38. Kleinbaum, D.G., Kupper, L.L., Muller, K.E., Nizam, A.: Applied Regression Analysis
and Multivariable Methods. Duxbury Press, Washington (1998)

39. Cameron, C.A., Trivedi, P.K.: Regression analysis of count data. Cambridge University
Press, Cambridge (1998)

40. Hitt, M.A., Hoskisson, R.E., Ireland, R.D.: Mergers and acquisitions and managerial
commitment to innovation in M-form firms. Strategic Management Journal 11(summer
special issue), 29–47 (1990)

41. Blonigen, B.A., Taylor, C.T.: R&D intensity and acquisitions in high-technology
industries: Evidence from the US electronic and electrical equipment industries. Journal of
Industrial Economics XLVIII(1), 47–70 (2000)

116 T. Lücking and M. Wagner

42. Cohen, W.M., Levinthal, D.A.: Absorptive capacity: A new perspective on learning and
innovation. Administrative Science Quarterly 35(1), 128–152 (1990)

43. Kleer, R., Wagner, M.: Acquisition through Innovation Tournaments in High-Tech
Industries: A Comparative Perspective. Economics of Innovation and
New Technology 22(1), 73–77 (2013)

44. Grimpe, C., Hussinger, K.: Pre-empting technology competition through firm acquisitions.
Economics Letters 100(2), 189–191 (2008)

45. Hussinger, K.: R&D and subsidies at the firm level: An application of parametric and
semiparametric two-step selection models. Journal of Applied Econometrics 23(6),
729–747 (2008)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 117–131, 2015.
DOI: 10.1007/978-3-319-19593-3_10

Hitting the Target: Practices for Moving Toward
Innovation Experiment Systems

Teemu Karvonen1(), Lucy Ellen Lwakatare1, Tanja Sauvola1, Jan Bosch2,
Helena Holmström Olsson3, Pasi Kuvaja1, and Markku Oivo1

1 University of Oulu, Oulu, Finland
{Teemu.3.Karvonen,Lucy.Lwakatare,Tanja.Sauvola,Pasi.Kuvaja,

Markku.Oivo}@oulu.fi
2 Chalmers University of Technology, Göteborg, Sweden

Jan.Bosch@chalmers.se
3 Malmö University, Malmö, Sweden

Helena.Holmstrom.Olsson@mah.se

Abstract. The benefits and barriers that software development companies face
when moving beyond agile development practices are identified in a multiple-
case study in five Finnish companies. The practices that companies need to
adopt when moving towards innovation experiment systems are recognised.
The background of the study is the Stairway to Heaven (StH) model that
describes the path that many software development companies take when
advancing their development practices. The development practices in each case
are investigated and analysed in relation to the StH model. At first the results of
the analysis strengthened the validity of the StH model as a path taken by
software development companies to advance their development practices.
Based on the findings, the StH model was extended with a set of additional
practices and their adoption levels for each step of the model. The extended
model was validated in five case companies.

Keywords: Software development · Agile development · Feedback loops ·
Innovation experiment systems · Continuous deployment

1 Introduction

Traditionally, R&D’s assumptions about desired product functionality are based on a
list of requirements or product backlog items that are gathered by product
management. However, customer needs might change very rapidly, and they are often
difficult to identify. This may lead to a situation in which R&D spends time and effort
on developing product functionality that doesn’t add value for customers. To solve
this problem, agile methods [1] offer a set of practices that allow for shorter
development cycles and more frequent interaction with customers. In conjunction
with agile methodologies, approaches, such as innovation experiment systems (IES)
[2] and continuous experimentation [3], emphasise data collection practices and
continuous validation with customers in order to improve R&D accuracy and

118 T. Karvonen et al.

customer responsiveness. However, while these approaches are attractive to
companies in the software industry, they require an evolution of the company’s
current ways of working. Typically, and as recognised by Olsson et al. [4] in the
Stairway to Heaven (StH) model, software development companies most often evolve
from traditional development to agile R&D, from agile R&D to continuous
integration (CI), from CI to continuous deployment (CD) and from CD to R&D as
IES. While the first step in the StH model is characterised by long feedback loops and
slow cycles, the later steps enforce fast feedback, rapid cycles and data-driven
development practices in which feature value is continuously validated with
customers. As recognised in this research [4], a number of opportunities and
challenges are associated with the evolution from one step to the next.

In this study, and based on multiple-case study research, we investigate how five
Finnish software development companies evolve their software development practices
according to the steps in the StH model. In particular, we identify the benefits and the
barriers they experience when moving beyond agile practices and towards IES.
Therefore, our research questions are:

RQ1 What are the benefits and barriers that software companies experience when
moving towards IES?

RQ2 What are the key practices that software companies need to adopt in order to
evolve their software development practices according to the StH model?

The contribution of this paper is threefold. First, we strengthen the validity of the
StH model, as introduced by Olsson et al. [4], in terms of the typical evolutionary
path that software development companies take when advancing their development
practices. Second, we extend the model with a set of practices required for climbing
the steps in the StH model. We also identify the four levels at which these practices
can be adopted. Third, we validate the extended model in five Finnish software
development companies using a multiple-case study approach involving qualitative
interviews at each company.

The rest of the paper is structured as follows. Section 2 introduces related work
that is relevant to this study and, most importantly, we present the StH model. In
Section 3, we extend the StH model and introduce the practices that companies apply
when evolving towards IES. Section 4 presents our case study design and research
method. In Sections 5 and 6, we validate the extended model and discuss the case
study findings. Section 7 concludes this paper and suggests topics for future research.

2 Related Work

Today, most companies have adopted agile methods, and different flavours of the
methods have become the de facto way of working in the software industry [5]. In
allowing for more flexible ways of working with an emphasis on customer collaboration
and speed of development, agile methods help companies address many of the problems
associated with traditional development [6]. As a way to further advance agile
development practices, companies are moving from release cycles of 6 to 12 months to
more frequent software releases [7, 8, 9, 10]. To achieve this, companies increasingly

 Hitting the Target: Practices for Moving Toward Innovation Experiment Systems 119

adopt practices such as CI [11], continuous delivery [12] and CD [13]. In empirical
studies, Claps et.al [13] and Leppänen et al. [14] recently identified multiple benefits and
challenges associated with the adoption of CD. They noted that some of the benefits
include faster feedback, more frequent releases, reduced risk for each release and
improved productivity and quality; some of the challenges include customer preferences
to non-frequent release, domain constraints and manual testing. The adoption of these
practices reflects an evolution in which companies move beyond agile practices towards
R&D practices characterised by short release cycles, frequent customer validation and
fully automated testing and deployment practices. Although the same agile R&D
principles apply, moving beyond agile practices means: a) integrating business strategy
planning, operations and other corporate functions into shorter development and release
cycles [4], [15]; b) utilising automated testing practices that allow for frequent builds [12]
and c) implementing continuous experimentation and innovation with customers [2, 3, 4]
to better understand real customer needs. The specific aspects involved in going beyond
agile as well as more holistic views of agility have been discussed in recent SE studies
[15, 16] and especially in the context of lean software development [17]. As recognised
in these studies, the main motivation for companies moving beyond agile is that, even
though agile practices can improve R&D efficiency and product quality, they are
insufficient for achieving benefits in a business ecosystem [18] and at the enterprise level
[16]. To realise benefits at these levels, companies need to scale the benefits they
experience at a team level, that is shorter development and feedback cycles, to include
product management and customers. In order to better understand this evolutionary path,
we outline the StH model below. The model describes the steps that companies may take
when moving towards IES and it works as the basis for our discussion on how to
improve company competitiveness and customer responsiveness.

Based on significant empirical experience as well as numerous studies that have
described the transition from traditional development to more agile ways of working and
beyond, the StH model [4] describes the typical evolution path for software development
companies that are evolving their ways of working. In capturing this transition in five
steps, the model reflects much of the prominent research in the field, and it helps
understand the way in which most companies advance their software development
practices. Based on empirical research as well as the authors’ previous experiences of
working with software development companies, the model also outlines the actions that
companies need to take when climbing the different steps and advancing their ways of
working. In previous research [4], the model has been used as a tool to identify where the
company is in its evolutionary path and what actions it needs to take to advance. It has
also been useful for describing the fundamental change that software development goes
through when a company attains the final step on the stairway and when R&D is viewed
as an experiment system in which customers are involved in continuous, real-time
validation of software functionality [19].

The StH model views evolution from the point of view of four stakeholders: 1) the
R&D organisation, 2) the validation and verification organisation, 3) the customers
and 4) the product management organisation. In the StH model, the ‘traditional
development’, step A, is characterised by long development cycles. Development
processes are sequential and teams are typically large and separated into disciplines

120 T. Karvonen et al.

[20]. In step B, the R&D organisation starts adopting agile development practices,
typically by introducing smaller cross-functional development teams that work in
shorter cycles [1]. However, at this step, product management and system verification
still work according to the traditional development approach. In step C, practices for
CI are adopted, including automated builds and automated testing [11]. In this step,
both R&D and system verification work in short cycles and there is always a
shippable product. In step D, CD is adopted and the customers are involved in short
cycles with frequent software releases [13]. Code changes are pushed to the customer
allowing instant feedback on new functionality. In step E, companies adopt data
collection mechanisms to continuously learn about customer behaviour and product
use. Feature experiments are run on a continuous basis and the collected data steer the
R&D organisation [2, 3]. Rather than being specified by the product management in
the early phase of development, requirements evolve based on data collected from
real-time customer use. In this step, the entire organisation, including product
management, is involved in short feedback cycles. In each of the steps, the level of
integration of and interaction between company functions increases. Thus, steps D
and E cannot be achieved without R&D, product management and customers that
work in short development cycles. One implicit premise of the StH model is that
evolution starts from traditional development. While this is typically the case for
large-scale software development companies, it might not be the situation for smaller
companies and new software start-up companies. As described by Ries [21], those
types of companies are typically created much closer to the last steps in the model, i.e.
the CD and the IES steps. However, as a model that pictures the general evolution
path, StH depicts the different steps that are relevant for most companies and the
evolution that most often occurs between those steps.

In this study, we use the StH model as the theoretical basis from which to explore
the benefits and barriers experienced by five Finnish companies as they climb the
steps described in the model. The StH model is outlined in Fig. 1. Although the StH
model has been widely used in many software development companies, and it has
been referred as ‘the typical evolution path’, so far the validation of the model has
been limited to use of the multiple-case study method. However, in the absence of
research that can validate the typical evolution steps towards IES, the assumptions
that the StH model makes about companies that take those steps seem to be well
aligned with recent SE literature and practitioner reports describing the companies’
strategic goals and experiences in adopting agile and CI practices. According to Claps
et al. [13], so far only a few companies have succeeded in deploying software
continuously to their customers. At Gap Inc. [7], the transformation to agile was
started by first selecting a pilot project that made a big investment in the company’s
CI system. At Conject AG [8], the transition from the traditional six-month release
cycle to the continuous flow of small releases was enabled by aligning coding and
testing activities to the same short cycles, by test automation and by implementing the
CI system. At Rally Software [9], the transition from an eight-week release cadence to
continuous delivery of software was enabled by abandoning time-boxed Scrum
sprints and by adopting lean practices, such as Kanban and Kaizen. By first
developing a better understanding of the entire process, the company was able to

 Hitting the Target: Practices for Moving Toward Innovation Experiment Systems 121

make many changes to the development process. In addition, the company’s Sales,
Marketing, Support, Technical Account Managers and User Learning teams were
affected. NASA Ames Research Center [10] was able to move from a six-month
delivery cycle to a three-week cycle within two years due to the evolution of its
development practices. This two-year evolution process was described as a journey
from traditional to lean and then to agile.

3 Extending the Stairway to Heaven Model

In this section, we extend the StH model by integrating it with practices that are
important for companies that are evolving towards IES (Fig. 1). Those practices are
suggested based on empirical research as well as the authors’ previous experiences of
working with software development companies. To categorise the practices, we use
the Business, Architecture, Process, Organisation (BAPO) approach, i.e.
interdependent software development concerns as outlined by Linden et al. [22]:

• Business: How to make a profit from your products;
• Architecture: The technical means to build the software;
• Process: The roles, responsibilities and relationships within software

development;
• Organisation: The actual mapping of roles and responsibilities to organisational

structures.

The purpose of this extension is to allow for a more precise analysis of both the
company’s current ways of working and the practices they may need to adopt to
further evolve. There are four levels at which the adoption of these practices can take
place.

• Not adopted: The practice is not adopted or it is abandoned.
• Team: The practice is adopted in some teams. Some teams inside the

organisation can be ahead of the rest of the organisation.
• Product: The practice is adopted at the product organisation/program level.

Some product organisations can be ahead of the rest of the organisation.
• Institutionalised: Practice is fully adopted; it is the standard way of working

throughout the entire organisation.

The application of the extended StH model in five case companies is demonstrated in
Section 5. It should be noted that there is no “one and right” way for companies to
evolve towards IES. Different software engineering processes have to be tailored to fit
the particular business goals of the organisation, the specific context of the
organisational culture, etc. Thus, we don’t consider the practices we present below as
prescriptive in that they have to be deployed in a certain way in a company. Rather,
they are descriptive, and they suggest actions that are needed when advancing
between the different steps in the model. However, when implemented in a company
context they require careful adjustment to fit the particular company context.

122 T. Karvonen et al.

Fig. 1. The Stairway to Heaven model [4] and (+) the extension

4 Research Design

4.1 Research Method

This study is an in-depth multiple-case study that adopts an interpretive approach
[23]. It includes empirical data from five case companies in the ICT sector in Finland,
allowing for a cross-case analysis of the data. The case study method is a suitable
research approach for an overall study in which researchers act as investigators and
control over the context is not possible [24]. The case study approach is also
beneficial for creating a rich understanding of people’s experiences.

4.2 Data Collection and Analysis

This paper reports on a three-month (November 2014–January 2015) multiple-case
study involving five Finnish software development companies that are moving

 Hitting the Target: Practices for Moving Toward Innovation Experiment Systems 123

towards IES. The main data collection method used was semi-structured individual
interviews with open-ended questions [23]. Altogether, the study included 24
interviews. In all of the interviews, we reused the original StH study [4] set of
interview questions. The interviews had four main themes: (1) organisation and
current way of working, (2) customer interaction mechanisms/models, (3) strengths
and weaknesses in ways of working and (4) benefits and barriers as experienced when
moving towards IES. In companies A, B, C and D, we conducted five interviews in
each company and, in company E, we conducted four interviews. In companies A, B,
C and D, the interviews were conducted face-to-face and in company E the interviews
were conducted via videoconference. The data collection involved case company
stakeholders from Product Management, R&D, Validation & Verification and Sales
& Marketing (Table 1). All of the interviews were held in English. The duration of the
interviews ranged from 90 to 120 minutes; the interviews were recorded and
transcribed. During the interview, the three researchers shared the responsibilities;
one researcher mainly asking the questions and two researchers took notes. Section 4
describes the case companies that participated in the study in more detail as well as
their position in relation to the StH model.

Table 1. Case companies and interviewees' roles

Case Industry Interviewees’ roles
A Embedded systems and

R&D services
1) Special device senior manager, 2) Special device
product owner, 3) Sales and account manager, 4) Senior
specialist in software, 5) Quality manager in wireless
segment

B Telecommunications 1) Test automation manager, 2) Senior developer, 3)
Program manager, 4) Operations manager of the local
site, 5) Technical coordinator

C Telecommunications 1) System verification engineer, 2) Program manager, 3)
Software architect, 4) Product line manager, 5) Software
engineer

D Factory automation 1) Project manager, 2) Program manager, 3) User
experience (UX) designer, 4) Product manager, 5)
Developer

E IT services 1) Product owner, 2) Project manager, 3) Technical
service owner, 4) Technical lead

The data analysis was performed by three researchers in continuous collaboration,

following the general techniques for case study analysis suggested by Runeson et al.
[23] using the QSR NVivo tool.1 During the analysis, all of the materials, including
transcripts, field notes, audio files and other related material, were stored in NVivo.
All of the transcribed interviews were carefully read and coded by themes. For this
study, three main levels of codes were applied for each of the 24 interviews: 1)
‘barriers’ (barriers that prevent companies from moving towards IES), 2) ‘benefits’
(anticipated or identified benefits of moving towards IES) and 3) ‘practices’ (practices

1 Qualitative data analysing software (http://www.qsrinternational.com/).

124 T. Karvonen et al.

for moving towards IES). The results were synthesized in two phases by adopting
within-case analysis and cross-case analysis, as described by Yin [24].

4.3 Validity and Generalisation of the Results

Generally, in case study research, there are different threats to validity, such as
researchers' biases, that can limit the trustworthiness of the results. In our study, we
assess three aspects of validity, i.e. construct validity, external validity and reliability,
as identified by Runeson et al. [23]. Prior to data collection, the research design that
also included the data collection process was carefully considered. The activity
involved acquiring the original interview guide, selecting appropriate companies and
roles for the interviews and providing all interviewees with introductory materials
(e.g. study objectives, the structure of the interview, etc.). This was done to address
construct validity, which is concerned with a clear representation of the studied
constructs. However, company transition may take even several years. Therefore,
interviewees’ memories about transition may not be as accurate as they are for more
recent events in the company. The companies were selected from a group of leading-
edge companies that were participating in a large national research program that
aimed to enhance Finnish ICT companies’ capability to deliver value in real-time.
Convenience sampling was applied. Threats to the reliability of the study findings
were mitigated by having at least three researchers involved in all phases of the
research, particularly in the data collection and analysis phases. This practice helped
reduce the research bias that could arise from having only one researcher participate
in data collection and analysis. Additionally, to lower the risk of errors in the
interviews, the transcripts that were used for data analysis were sent to the
interviewees for review. External validity is mostly concerned with the
generalisability of a study’s findings. The findings of our study are meant to provide
software companies with insights with the intention of helping them move beyond
agile practices.

5 Case Study

This section presents the case companies and main findings, individually, for each
case company by applying the extended StH model introduced in Section 3. We
report benefits (RQ1), barriers (RQ1) and key practices (RQ2) for each company and
analyse them in the StH model. Table 2 summarises the findings for each company by
applying the StH model and extension. Section 6 presents the cross-case analysis
based on the data collected from all five case companies. Three researchers
collectively compiled the information presented in Table 2 and analysis was based on
the researchers’ common interpretation of how practices were adopted in each case
company.

 Hitting the Target: Practices for Moving Toward Innovation Experiment Systems 125

Table 2. Adoption of the extended StH model practices. Not adopted (NA), Team (TE),
Product (PR), Institutionalised (IN).

5.1 Company A

Company A is developing embedded software solutions for specialised markets in the
wireless and automotive industry as well as providing R&D services. The focus is on
customisable software solutions for the automotive industry and the wireless
connectivity of special devices used by specialised market segments such as public
safety. As shown in Table 2, Company A is best described as a company with
institutionalised practices for CI. Architecture, process and organisation practices
were already established in CD in some teams and product programs. We could see
that this company as a whole is moving towards CD. Experiences and lessons learned
from these practices were proactively used to coach other parts of the organisation in
this transition to CD. Interestingly, although this company had not yet
institutionalised CD practices, some product programs had already applied IES
practices in some selected customer cases. According to the interviewees, the main
benefit of moving towards CD is to improve customer feedback cycles and project
transparency. The main barriers are considered to be the lack of a suitable business
model, test automation and common practices for CD. As identified by the

Traditional Agile CI CD IES

Business NA IN IN NA PR

Architecture NA IN IN PR PR

Process NA IN IN TE NA

Organisation NA IN IN PR NA

Business NA IN TE NA NA

Architecture NA IN TE PR TE

Process NA IN TE NA NA

Organisation NA IN NA NA NA

Business NA IN PR NA NA

Architecture NA IN IN PR PR

Process NA IN PR NA NA

Organisation NA PR PR NA NA

Business NA PR PR NA NA

Architecture IN PR PR NA NA

Process IN PR PR NA NA

Organisation NA PR NA NA NA

Business IN TE NA NA NA

Architecture IN TE NA NA NA

Process IN TE TE NA NA

Organisation IN TE TE NA NA

C
om

pa
ny

 A
C

om
pa

ny
 B

C
om

pa
ny

 C
C

om
pa

ny
 D

C
om

pa
ny

 E

126 T. Karvonen et al.

interviewees, in order for the organisation to move forward, management must invest
more in CI build systems and test automation.

5.2 Company B

Company B is a telecommunications equipment manufacturer that also provides
services for managing network operations. In this company, we interviewed
employees from the R&D organisation who are responsible for developing a compact
mobile broadband solution. Company B has institutionalised agile practices, and
several teams within the company have already adopted CI practices. According to
the interviewees, the main benefit of moving towards CD is that product quality will
improve due to frequent and automated test suits. The main barrier is considered to be
the issue of how to adjust and align internal and external stakeholders to shorter
development cycles. As identified by the interviewees, in order to move forward the
level of test automation must be increased, which will require additional resources
and investments.

5.3 Company C

Company C is a manufacturer of data and telecommunication network equipment that
also develops a variety of supporting tools for the management of mobile broadband
networks. In this company, interviews were conducted with employees involved in
the development of a network traffic-monitoring tool. As illustrated in Table 2,
Company C can be best described as a company that has well-established agile
practices and that has adopted CI and CD practices in parts of the organisation.
According to the interviewees, the main benefit of moving towards IES is to improve
competitiveness and product quality, as customer feedback would increasingly impact
product development. The main barrier for CD is that some company functions still
work according to pre-defined milestones, and those functions still support a six-
month release cycle. As identified by the interviewees, in order to move forward the
current product architecture must be updated from a PC platform to a virtualised
cloud computing platform.

5.4 Company D

Company D is developing minerals processing solutions and flow control technology
for its customers in the mining, construction, oil and gas industries. In addition, the
company develops advanced automation solutions, i.e. distributed control systems for
its customers in pulp, paper and power. For the purpose of this study, we interviewed
employees involved in the development of a factory automation platform solution.
Table 2 illustrates the current situation of how Company D has recently adopted both
agile and CI practices in one product program. However, the rest of the company is
still primarily using traditional practices. According to the interviewees, it is not
possible to move towards CD and IES because their systems are performance- and
safety critical. However, while this is the general view, some parts of the systems, e.g.

 Hitting the Target: Practices for Moving Toward Innovation Experiment Systems 127

the user experience (UX) parts, could be improved by applying CD and IES practices.
Thus, in order for Company D to move forward, it must identify which modules or
parts of the system could be deployed and experimented with in a continuous manner.

5.5 Company E

Company E provides product engineering and IT services to a variety of customers
from the telecommunications and consumer electronics industries and the
semiconductor industry. In Company E, we interviewed the employees responsible
for developing the company’s public website. The team is using Scrum as a project
management framework with no CI system or automated test cases. Table 2 illustrates
how Company E is still mostly applying traditional development practices. However,
some teams have adopted agile and CI practices with the intention of having these
practices adopted by more teams. According to the interviewees, moving forward
would improve product quality and reduce time-to-market. The main barrier for
moving forward is the difficulty of aligning the globally distributed development
teams. As identified by the interviewees, in order to move forward employees must
increase their awareness of and competence in agile software development and the
number of cross-functional teams must increase.

6 Discussion

In the previous section, and by using the five steps in the StH model, we identified the
current position and practices of each case company. In addition, the extended model
was used to identify the practices that companies may apply to advance their practices
further. This section summarises and further discusses the benefits, barriers and key
practices as identified from the case study interviews and addresses how the
interviewees in this study have experienced the evolution. As shown in Table 3,we
found multiple similar benefits and barriers that were also identified in earlier studies
[4], [13, 14]. Additionally, the table presents the key practices that are needed to
move to the next step in the StH model.

In our study, all five companies (A-E) have established agile software development
practices within the R&D organisation. Companies A, B and C had already been
using agile practices for a couple of years, whereas D and E had only been using them
for approximately one year. All of the companies held the opinion that the primary
benefit of an agile R&D organisation was that incremental and iterative development
allows for more efficient and flexible product development.

Companies A, B, C and D have advanced their software development practices by
introducing CI practices, i.e. building and testing software functionality automatically.
None of the companies claimed to have achieved fully automated testing. The main
benefit of CI is that production quality software is always available internally. The
main barrier to moving forward to CI and CD seems to be the high investment and
significant effort required to ensure adequate test automation.

128 T. Karvonen et al.

Table 3. Summary of benefits, barriers and key practices for moving towards IES

 Traditional -> Agile
R&D

Agile R&D -> CI CI -> CD CD -> R&D as an
IES

B
en

ef
it

s

Short sprints provide
the possibility of
quickly changing the
course of product
development.

Provides the ability to
build and test
products
incrementally.
Provides high-quality
software functionality
with production
quality.

Customers get fast
and incremental
delivery of relevant
functionality.
Customers can
perform their own
testing and business
activities on top of
deliveries.

The innovation
validation is fast.
Immediate feedback
is obtained. New
business opportunities
are identified and
development
resources are focused

B
ar

ri
er

s

It is difficult
(complex process) to
align different cross-
functional teams
within the R&D
organisations.

There is a lack of
team discipline, Test
Driven Development
(TDD) and module
tests for CI test
automation.

The shortening of the
Validation and
Verification (V&V)
cycle is complex and
expensive.
The lack of trust in
software quality and
missing functions
may cause a negative
impression.

Customer feedback is
integrated into the
short development
and business planning
cycle. It is difficult to
conduct experiments
in safety-critical
systems.

 Key practices

B
us

in
es

s Incorporate product
owner to represent
customer in
development team.

Incorporate supply
chain (component and
technology suppliers)
in the development
cycle.

Incorporate lead
customers in
development. Renew
business model,
contracts, marketing
and sales strategies

Adopt data-driven
strategic decision-
making model.
Implement A/B
testing with the
customer.

A
rc

hi
te

ct
ur

e Architects monitor
and safeguard the
integrity of the
product architecture
in feature-driven
development.

Provide modular
architecture that can
be integrated and
tested continuously.

Provide architecture
where software
functionality can be
deployed
independently.

Adopt product
platform (e.g.
virtualisation, cloud
technologies) that
enables flexible
experimentation.

P
ro

ce
ss

 Develop features in
sprints, frequent
(daily) team
meetings.

Adopt test-driven
development and
daily build practices.

Improve automated
system testing and
adopt a continuous
release process.

Establish a short
customer feedback
loop and process for
data-driven decision
making.

O
rg

an
is

at
io

n

Adopt and empower
cross-
functional/feature
teams.

Integrate validation
and verification
(V&V) in cross-
functional/feature
teams.

Ensure that
System/UX design
and business
development work in
short cycles and in
alignment with R&D.

Synchronise supplier
and customer
organisation in short
development cycles.

 Hitting the Target: Practices for Moving Toward Innovation Experiment Systems 129

In our study, only Company A has evolved its software development practices to
CD at the product and team levels. Therefore, our findings rely on the interviewees’
views of what that transition might require and how it effects the organisation. The
main anticipated benefit of CD is that customers receive relevant software
functionality faster and incrementally. However, moving to CD seems to require
renewing traditional business models as well as identifying customers that are willing
to have continuous releases of software functionality. It also seems that the transition
from CD to IES might not be feasible for all products and business segments.
Interviewees in Company B and Company D consider their current products to be too
safety-critical for introducing any experiments with their customers. This finding
confirms what earlier research has suggested, i.e. that IES may not be feasible for all
products and business segments, and that if pursued, the evolution towards IES
requires changes in both the product and business portfolio.

7 Conclusion, Limitations and Future Research

In this paper, we identify the benefits and barriers that software development
companies face when moving beyond agile development practices. In particular, and
based on a multiple-case study in five Finnish companies, we identify the practices
that companies adopt when moving towards IES. Our findings show that all of the
interviewed companies have established agile software development practices within
their R&D organisations. The primary benefit of doing so is that incremental and
iterative development allow for more flexible product development projects in which
customer feedback informs the organisation’s development efforts and investments.
When moving from agile practices to implementing CI at the team level or product
level, companies A, B, C and D have improved their R&D capability to continuously
integrate and validate software changes at a team and/or component level, and in
some cases even at a system level. In this way, the R&D organisation gets faster
feedback about functionality and they can avoid the many challenges related to
integration of functionality. However, and as recognized by the interviewees, CI is not
free. The main barrier is considered to be the high investment and significant effort
that are required to ensure adequate test automation and the development of
automated test cases. In our study, only Company A has evolved its software
development practices to CD, and then only in some of its products and teams.
Company A has made initial attempts to transition further to IES by experimenting
with customers to validate new software functionality

The contribution of the paper is threefold. First, we apply the StH model in five
Finnish case study companies. This strengthens the validity of the model and
describes the evolution path that software development companies may take when
advancing their development practices. Second, we extend the model with a set of
practices that companies adopt at each step of the StH in order to advance further. In
our case studies, we see that companies tend to institutionalise practices in the lower
steps of the StH, adopt practices at the product level at the step at which they
currently operate, and explore next step practices in individual development teams.

130 T. Karvonen et al.

Finally, we validate the extended model and its practices in five Finnish software
development companies using a multiple-case study and interpretive approach.

The main limitation of our study is related to the generalisability of the results.
Although case study findings may provide important information regarding typical
patterns and a set of practices, they cannot be generalised to the entire software
development domain.

For future research, we suggest additional case studies that focus on stakeholders,
such as customers, suppliers, subcontractors, platform providers, development
partners, etc. This might broaden the understanding of the company’s evolution path
towards IES and expand the StH model view from an internal company perspective to
an external ecosystem perspective.

Acknowledgements. This work was supported by TEKES as part of the Need for Speed project
(http://www.n4s.fi/) of DIGILE (Finnish Strategic Centre for Science, Technology and
Innovation in the field of ICT and digital business). This work was done in co-operation with
the Software Center (www.software-center.se), a Nordic collaboration initiative between eight
companies and three universities.

References

1. Highsmith, J.: Agile Project Management: Creating Innovative Products. Addison-Wesley
Professional, New York (2009)

2. Bosch, J., Eklund, U.: Eternal Embedded Software: Towards Innovation Experiment
Systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 19–31. Springer, Heidelberg (2012)

3. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: Building Blocks for Continuous
Experimentation. In: 1st International Workshop on Rapid Continuous Software
Engineering, pp. 26–35. ACM Press, New York (2014)

4. Olsson, H.H., Bosch, J., Alahyari, H.: Towards R&D as Innovation Experiment Systems:
A Framework for Moving Beyond Agile Software Development. In: IASTED
Multiconferences - Proceedings of the IASTED International Conference on Software
Engineering, pp. 798–805 (2013)

5. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on Agile and Lean Usage in
Finnish Software Industry. In: ACM-IEEE International symposium on Empirical
Software Engineering and Measurement, pp. 139–148. ACM Press, New York (2012)

6. Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology 50, 833–859 (2008)

7. Goodman, D., Elbaz, M.: “It’s Not the Pants, it’s the People in the Pants” Learnings from
the Gap Agile Transformation What Worked, How We Did it, and What Still Puzzles Us.
In: Agile Conference, pp. 112–115. IEEE Press, New York (2008)

8. Marschall, M.: Transforming a Six Month Release Cycle to Continuous Flow. In: Agile
Conference, pp. 395–400. IEEE Press, New York (2007)

9. Neely, S., Stolt, S.: Continuous Delivery? Easy! Just Change Everything (Well, Maybe It
Is Not That Easy). In: Agile Conference, pp. 121–128. IEEE Press, New York (2013)

 Hitting the Target: Practices for Moving Toward Innovation Experiment Systems 131

10. Trimble, J., Webster, C.: From Traditional, to Lean, to Agile Development: Finding the
Optimal Software Engineering Cycle. In: 46th Hawaii International Conference on System
Sciences, pp. 4826–4833. IEEE Press, New York (2013)

11. Ståhl, D., Bosch, J.: Modeling Continuous Integration Practice Differences in Industry
Software Development. Journal of Systems and Software 87, 48–59 (2014)

12. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Addison-Wesley Professional, Boston (2010)

13. Claps, G.G., Berntsson Svensson, R., Aurum, A.: On the Journey to Continuous
Deployment: Technical and Social Challenges Along the Way. Information and Software
Technology 57, 21–31 (2015)

14. Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.-P., Itkönen, J., Mäntylä, M.V.,
Mannisto, T.: The Highways and Country Roads to Continuous Deployment. IEEE
Software 32, 64–72 (2015)

15. Fitzgerald, B., Stol, K.-J.: Continuous Software Engineering and Beyond: Trends and
Challenges. In: 1st International Workshop on Rapid Continuous Software Engineering,
RCoSE 2014, pp. 1–9. ACM Press, New York (2014)

16. Karvonen, T., Rodriguez, P., Kuvaja, P., Mikkonen, K., Oivo, M.: Adapting the Lean
Enterprise Self-Assessment Tool for the Software Development Domain. In: 38th
Euromicro Conference on Software Engineering and Advanced Applications, pp. 266–273.
IEEE Press, New York (2012)

17. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development. Addison-
Wesley, New York (2006)

18. Bosch, J., Bosch-Sijtsema, P.: From Integration to Composition: On the Impact of
Software Product Lines, Global Development and Ecosystems. Journal of Systems and
Software 83, 67–76 (2010)

19. Olsson, H.H., Bosch, J.: From Opinions to Data-Driven Software R&D: A Multi-case
Study on How to Close the “Open Loop” Problem. In: 40th EUROMICRO Conference on
Software Engineering and Advanced Applications, pp. 9–16. IEEE Press, New York
(2014)

20. Pressman, R., Maxim, B.: Software Engineering: A Practitioner’s Approach. McGraw Hill
Education, New York (2014)

21. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Publishing, New York (2011)

22. van der Linden, F.J., Dannenberg, R.B., Kamsties, E., Känsälä, K., Obbink, H.: Software
Product Family Evaluation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154,
pp. 110–129. Springer, Heidelberg (2004)

23. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. John Wiley & Sons, New Jersey (2012)

24. Yin, R.K.: Case Study Research: Design and Methods. SAGE Publications Inc., California
(2009)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 132–138, 2015.
DOI: 10.1007/978-3-319-19593-3_11

Communication in Firm-Internal
Global Software Development with China

Bilal Zaghloul1(), Dirk Riehle2, and Minghui Zhou3

1 Friedrich-Alexander University Erlangen-Nürnberg, Information Systems Department,
Lange Gasse 20, 90403, Nuremberg, Germany

bilal.zaghloul@fau.de
2 Friedrich-Alexander University Erlangen-Nürnberg, Computer Science Department,

Martenstr. 3, 91058, Erlangen, Germany
dirk@riehle.org

3 Peking University, School of Electronics Engineering and Computer Science,
100871, Beijing, China
zhmh@pku.edu.cn

Abstract. Globally distributed software development projects are on the rise.
However, 69% of cross-regional projects fail completely or partially, because of
lack of cross-cultural understanding. This paper presents a qualitative study of
the impact of communication on Global Software Development (GSD) within
firms due to cultural differences. In particular, we provide a model of problems
and solutions related to communication of German/Chinese and Ameri-
can/Chinese collaborations in GSD. The model was derived using grounded
theory to study six globally distributed software development projects. The re-
sults may not only help companies understand cultural problems, but also help
them overcome these problems. To this end, we discuss the solutions adopted
by the multinational software companies that we studied.

Keywords: Global software development · Cultural differences · Communication ·
Qualitative research · China collaboration

1 Introduction

Globally distributed software development, also called global software development
(GSD), is growing as the software industry is experiencing an increase in globalization of
business [1]. The reasons motivating GSD are reduction of costs, access to skilled labor,
getting closer to customers, time difference utilization, and improving the quality of work
[2]. Yet, according to a study by a major auditing firm, 69% of all outsourcing projects
fail completely or partially [3]. Main reasons are the lack of cultural harmony between
the vendor and the client and poor relationship management. In this paper, we present the
results of a qualitative study on how to address cultural differences in GSD. We inter-
viewed six project managers from six different globally distributed software development
projects. All projects were firm-internal projects, with at least one team on each project

 Communication in Firm-Internal Global Software Development with China 133

being based in China. We applied a Grounded Theory (GT) approach to analyze the
interviews and related data and to develop the model.

The two central categories that emerged from our GT-based analysis are communi-
cation and trust, of which this paper reviews the communication category. As a key
result, we present the solutions as best practices, which practitioners in large multi-
national corporations can adopt to address problems of GSD.

2 Related Work

The existing literature provides a number of relevant studies that explore the impact
of communication on GSD.
For example, Persson et al. [4] discover a set of challenges related to the lack of

face-to-face communications in agile distributed software development. Damian &
Zowghi [5] present a model of how remote communication and knowledge manage-
ment, cultural diversity and time differences negatively impact requirements gather-
ing, negotiations and specifications. Holmstrom et al. [6] find that temporal, geo-
graphical, and socio-cultural distances have an impact on communication, and present
solutions based on qualitative interviews of American and Irish companies.

There are also studies that try to understand the reasons of communication issues.
For example, Bjørn & Ngwenyama [7] investigate communication breakdowns that
can be attributed to differences in life world structures, organizational structures, and
work process structures within a virtual team. Keil et al. [8] investigate the effect of
culturally constituted views of face-saving on the willingness to communicate bad
news regarding a software development project in the USA and in South Korea.

Most studies investigate communication issues in GSD, and very few present solu-
tions for the discovered issues. In our study, we show the issues related to communica-
tion and their particular solutions in the projects. Although some of the communication
problems have been already mentioned in other studies, such as, the problem of the lack
of face-to-face communication, the face-saving problem, and the language barriers [4, 6,
8], our study does not describe only problems, but also solutions from industry.

Our findings improve or extend prior work due to different contexts, difference in
data collection, different way of analysis, and novel results.

3 Study Preparation

We use a Grounded Theory (GT) approach for our research [9].
We chose interviews as the main method of data collection. Our interviewee sam-

ple included six individuals in German and American multinational software compa-
nies. Two of them were Germans representing German companies, and four were
Chinese representing American and German companies. All participants held mana-
gerial roles with direct engagement in the development process. Moreover, they have
between four to ten years of cross-cultural experience in the field.

Our research process started by reviewing the existing literature including papers, arti-
cles, books, etc. This allowed us to form the initial research question that served as a
starting point for interview preparation. For each interview, we prepared open-ended

134 B. Zaghloul et al.

questions on various areas of the effects of cultural differences in GSD to be addressed
during the interview. These questions were used solely to navigate the interview, and
were not given to the interviewee beforehand. Furthermore, we refined questions after
each interview based mainly on the analysis results of the previous interview, as well as
the existing literature. The analysis provided us with focus areas that we could address
further in the next interview. After six interviews, we reached data saturation, i.e. we did
not receive new information, rather interviewees were repeating each other. At this point,
we decided to move forward towards forming the model.

We interviewed six individuals in multinational software companies. The inter-
views were divided equally between German and American companies. Moreover, we
interviewed industry partners from different sectors in the software industry, for ex-
ample electronics, energy, or enterprise solutions. This variation allowed us to gain
more knowledge about the effects of culture in software development from different
angles and also to see if different sectors have different problems or not. We had two
personal face-to-face interviews that took place in China, and four interviews over the
phone. “American” person in this paper means a person from the U.S.A. Each inter-
view took around 1 – 1.25 hours.

4 Research Results

The result of our analysis is a model (or theory), consisting of two main categories
Communication and Trust. Communication, in turn, is based on the key concepts
Reporting Failure, Communication Behaviors, and Collaboration across Regions,
while Trust is based on the key concepts Transparency and Delegation and Traveling.
For reasons of brevity, we omit Trust from the discussion. The interested reader is
referred to the first author’s Master Thesis [10].

Our data analysis uncovered fourteen problems and eighteen solutions related to
Communication. All problems and solutions were explicitly mentioned by our inter-
view partners.

4.1 Communication

Data analysis showed that 153 out of 199 quotations are related to Communication,
i.e. 77% of all quotations relate to Communication. Table 1 shows additional details
for each of concept.

4.1.1 Reporting Failure
Half of our participants (3, or 50%) mentioned explicitly some situations where they
encountered this problem. Table 2 shows a list of the encountered problems.

Moreover, the analysis revealed six solutions that were used to overcome some of
the encountered problems in table 2. Table 3 presents a list of these solutions

4.1.2 Communication Behaviors
The majority of our interview partners (4, or 67%) observed several differences in the
communication styles of Chinese developers in comparison with their American or
German peers. Table 4 presents a list of related problems.

 Communication in Firm-Internal Global Software Development with China 135

Moreover, the analysis revealed three solutions that were used to overcome some of
the encountered problems in table 4. Table 5 illustrates a list of these.

Solutions “SL2” and “SL4” that are listed in table 5 were also mentioned to overcome
problems “PR4” and PR5”.

4.1.3 Collaboration Across Regions
This concept presents problems that may occur in managing the collaborations across

regions, as well as some suggested solutions. The majority of our interview part-
ners (5, or 83%) mentioned repeatedly several differences in capturing require-
ments, defining tasks, language barriers, and so on. Table 6 presents a list of related
problems that were explicitly mentioned by our interview partners.

Moreover, the analysis revealed nine solutions that were used to overcome some of
the problems in table 6. Table 7 shows a list of related solutions.

Table 1. Percentage of participants for each concept in “Communication” category

Concept Participants Quotations
Reporting Failure 3 (P1,P3,P4) 50% 34 17%
Communication Behaviors 4 (P1,P2,P3,P5) 67% 37 19%
Collaboration across Regions 5 (P1,P3,P4,P5,P6) 83% 82 41%

Table 2. Problems related to “Reporting Failure”

ID Problem Participants

PR1
Chinese developers are more reluctant than German and American
developers to report mistakes during projects.

2 (P1,P3)

PR2
Chinese make late notifications if not being able to meet the deadline.
Yet, they are willing to spend long after work hours to finish the task.

1 (P3)

PR3
Strictness of Chinese team leaders makes it difficult for some develop-
ers to report mistakes or delays.

1 (P4)

Table 3. Solutions related to “Reporting Failure”

ID Solution (Best Practice)
 Problem

 ID
Participants

SL1
Ask management to appreciate reporting mistakes during pro-
jects. PR1 1 (P1)

SL2
Create workshops to articulate ideas with anonymous identi-
ties, because anonymity helps Chinese avoid sharp direct feed-
back.

 PR1 1 (P1)

SL3
Use a progress-tracking system, where a developer updates
the status of his task daily to avoid late notifications. PR2 1 (P3)

SL4
Choose software development method that encourages
communication, e.g., Scrum, or other agile methods. PR1 1 (P1)

SL5
Assign a local Chinese expert to get back to in case of
problems. - 1 (P4)

SL6
Bring up the message that delays are acceptable in presence
of a strong justification. PR2 1 (P3)

136 B. Zaghloul et al.

Table 4. Problems related to “Communication Behaviors”

ID Problem Participants

PR4
Chinese developers have less tendency than Germans and Americans
towards asking questions in group meetings.

 3 (P1,P5,P3)

PR5 Chinese developers seldom discuss their tasks with their superiors. 2 (P1,P2)
PR6 Chinese’ “yes” or “no” has a different meaning for Americans. 1 (P3)

PR7
Chinese have a formal communication style, while Americans have an
informal style.

 1 (P5)

Table 5. Solutions related to “Communication Behaviors”

ID Solution (Best Practice) Problem ID Participants

SL7
Ask the management to bring up repeatedly the message
of the importance of open conversation.

 PR4,PR5 2 (P2,P5)

SL8
Do not take “yes” or “no” for an answer. Chinese devel-
opers should write a document of their opinion after
important sessions.

 PR6 1 (P3)

SL9
Create a relaxing work environment for Chinese devel-
opers, where you can speak freely and informally with
colleagues, and formally only with clients.

 PR7 1 (P5)

Table 6. Problems related to “Collaboration across Regions”

ID Problem Participants
PR8 Chinese developers need detailed requirements about their tasks. 3 (P1,P3,P4)
PR9 Chinese cannot easily talk in English due to language barriers. 3 (P3,P4,P6)

PR10
Chinese are detail-oriented, while Americans and Germans see the big
picture. 3 (P1,P3,P4)

PR11
The U.S.A. and China have different holidays. For example spring
festival in China, and Christmas in the U.S.A. 1 (P4)

PR12 Chinese developers omit context when discussing tasks. 1 (P5)
PR13 Chinese developers like to be challenged. 2 (P3,P5)

PR14
The terminology is documented only in the country’s language, i.e.
Chinese in China and German in Germany. 1 (P6)

Table 7. Solutions related to “Collaboration across Regions”

ID Solution (Best Practice)
 Problem

 ID
Participants

SL10
Create smaller and deeper tasks deliberately and associate
them with specs and context. PR8 1 (P1)

SL11

Split up the development cycle across regions, where you
can exploit the benefits of each one, for example Ameri-
cans deal with customers, Chinese design, and Indians
implement.

 - 1 (P3)

SL12
Pay more attention when defining requirements in order
not to leave any space for guessing. PR8 2 (P1,P3)

SL13
Use a wiki-like system for technical discussions. Yet, it is
not useful in case of urgent issues. PR9 1 (P4)

SL14
Remind Chinese developers repeatedly of the importance
of providing context when discussing tasks. PR12 1 (P5)

 Communication in Firm-Internal Global Software Development with China 137

Table 7. (continued)

SL15
Create discussion groups, where Chinese developers discuss
technical problems with their American colleagues. PR13 1 (P5)

SL16 Provide Chinese developers with challenging tasks. PR13 1 (P5)

SL17
Create English training sessions in both sides. The training
focuses on business terms used in the industry. PR9 1 (P6)

SL18
Unify the terminology by creating a map table in the three
languages: English, Chinese, and German, where each term
is associated with its corresponding in English.

 PR14 1 (P6)

5 Conclusion

In this research, we present a grounded-theory-based study of problems and solutions
of German/Chinese and American/Chinese collaborations. Our data was gathered
through six interviews with six participants in multinational software companies that
have development centers in China.

As a result, a model with two main categories emerged: Communication and Trust.
In this paper, we reviewed the Communication category for reasons of brevity. Each
category contained a number of concepts, where each concept identified a set of prob-
lems and corresponding solutions. The resulting concepts in the Communication cate-
gory pinpoint major areas where communication problems are likely to occur.

All problems and solutions were explicitly mentioned by our interviewees. Alt-
hough some of the problems were already mentioned in other studies like the problem
of face-to-face communication and language barriers, our model does not describe
only problems, but also solutions from the industry.

This model provides companies with in-depth insights about the problems they
might encounter, and they can turn to the specific solutions adopted by multinational
software companies that we report about.

References

1. Herbsleb, J.D., Moitra, D.: Global software development. IEEE Softw. 18, 16–20 (2001)
2. Carmel, E.: Global software teams: collaborating across borders and time zones. Prentice

Hall PTR (1999)
3. OSF Global Services: Overcome cultural differences in the outsourcing process (2012)
4. Persson, J.S., Mathiassen, L., Aaen, I.: Agile distributed software development: enacting

control through media and context. Inf. Syst. J. 22, 411–433 (2012)
5. Damian, D.E., Zowghi, D.: RE challenges in multi-site software development organisa-

tions. Requir. Eng. 8, 149–160 (2003)
6. Holmstrom, H., Conchúir, E.Ó., Ågerfalk, P.J., Fitzgerald, B.: Global Software Develop-

ment Challenges: A Case Study on Temporal, Geographical and Socio-Cultural Distance
(2006)

138 B. Zaghloul et al.

7. Bjørn, P., Ngwenyama, O.: Virtual team collaboration: building shared meaning, resolving
breakdowns and creating translucence. Inf. Syst. J. 19, 227–253 (2009)

8. Keil, M., Im, G.P., Mähring, M.: Reporting bad news on software projects: the effects of
culturally constituted views of face-saving. Inf. Syst. J. 17, 59–87 (2007)

9. Glaser, B.G., Strauss, A.L.: The discovery of grounded theory: Strategies for qualitative
research. Transaction Books (2009)

10. Zaghloul, B.: A Theory of Problems and Solutions in German/Chinese and American/Chinese
Software Engineering Collaborations (2014), http://goo.gl/1Zcnp7

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 139–153, 2015.
DOI: 10.1007/978-3-319-19593-3_12

Customer Feedback and Data Collection Techniques
in Software R&D: A Literature Review

Aleksander Fabijan1(), Helena Holmström Olsson1, and Jan Bosch2

1 Malmö University, Faculty of Technology and Society, Östra Varvsgatan 11,
205 06 Malmö, Sweden

{Aleksander.Fabijan, Helena.Holmström.Olsson}@mah.se
2 Chalmers University of Technology, Department of Computer Science & Engineering,

Hörselgången 11, 412 96 Göteborg, Sweden
Jan.Bosch@chalmers.se

Abstract. In many companies, product management struggles in getting accurate
customer feedback. Often, validation and confirmation of functionality with
customers takes place only after the product has been deployed, and there are no
mechanisms that help product managers to continuously learn from customers.
Although there are techniques available for collecting customer feedback, these are
typically not applied as part of a continuous feedback loop. As a result, the
selection and prioritization of features becomes far from optimal, and product
deviates from what the customers need. In this paper, we present a literature review
of currently recognized techniques for collecting customer feedback. We develop a
model in which we categorize the techniques according to their characteristics. The
purpose of this literature review is to provide an overview of current software
engineering research in this area and to better understand the different techniques
that are used for collecting customer feedback.

Keywords: Customer feedback · Data collection · The ‘open loop’ problem ·
Qualitative feedback · Quantitative data

1 Introduction

Although the opportunities to learn about customers and customer behaviors are
increasing, most software development companies experience the road mapping and
requirements prioritization process of features as complex. Product management often
finds it difficult to get timely and accurate feedback from customers [2], [20].
Typically, feedback loops are slow and there is a lack of mechanisms that allow for
efficient collection and analysis of customer feedback [1], [2]. Usually, confirmation
of the correctness of product management decisions takes place only after the
finalized product has been deployed to customers, and when there is little opportunity
to adapt to changes. In previous research, we coined the term the ‘open loop’
problem, referring to the challenges for product management to receive accurate
customer feedback to use as a basis in their decision-making processes [2]. Despite
the availability of sophisticated customer feedback techniques, our research shows

140 A. Fabijan et al.

that these are still difficult to apply in a way that improve decision-making processes
in software R&D. As a result, and despite that significant data is being collected,
companies have insufficient knowledge about how their products are used and what
features the customers actually appreciate and desire to use in the future. This means
that there is typically a weak link between customer data and product management
decisions, and no accurate way in which the organizations can assess whether the
features that were prioritized during the road mapping process are also the features
that are appreciated and used by customers and that generate revenue to the company
[4], [17].

In the context of this, we conduct a literature review in the area of customer feedback
and data collection techniques. In our review, we let the basic principles of the systematic
literature review method guide us [5], and we adopt a structured approach to literature
search and selection. The purpose of our review is to provide an overview of current
software engineering research in this area and to better understand the different
techniques that are used for collecting customer feedback in different stages of the
software development process. We summarize our findings in a model in which we
categorize all customer feedback and data collection techniques, as well as present in
what stages of the development process they are typically used. While this topic has been
carefully studied within research domains such as e.g. information systems (IS), human
computer interaction (HCI) and management literature, it has not been widely recognized
in the software engineering (SE) domain [31].

The contribution of the paper is twofold. First, we provide a ‘state-of-the-art’
overview of software engineering research within the area of customer feedback and data
collection techniques. While the attention for this topic is gaining increasing interest also
in the software engineering research community, there is no literature review that
provides an overview of the research reported in this community. Second, we present a
structured model that provides an overall understanding for existing feedback and data
collection techniques, and that works as a support for selecting the appropriate feedback
technique in a specific stage of the software development process.

The remaining of this paper is structured as follows. In section 2 we present the
background and the motivation for this study. In section 3, we describe the systematic
literature review (SLR) method from which we use the basic principles when collecting
the papers. In section 4, we present the results from the literature review. In section 5, we
discuss the results and we present a model in which we categorize the techniques
according to their main characteristics and map them to the development stages in which
they are typically used. Finally, in section 6, we present the conclusions.

2 Background

Software development in general, and how to involve and learn from customers in
particular, has been a topic of intensive research for a long time [25], [38]. Recently,
and as a means to solve the many challenges with how to involve customers, many
companies have adopted agile development methods. For more than a decade, agile
development methods have demonstrated their success in establishing flexible
development processes with short feedback loops and consideration taken to evolving

 Customer Feedback and Data Collection Techniques in Software R&D 141

customer needs [1], [11]. However, and as recognized in this paper, despite recent
methods and sophisticated techniques, there still exist major problems in how to learn
from customers, i.e. how to efficiently collect customer feedback and customer data.
In our previous research, we described this situation as the ‘open loop’ problem
referring to a situation in which product management has difficulty in getting access
to customer feedback that can help them in e.g. feature prioritization processes [2]. In
related research, similar problems have been identified [34], [36] and many are those
that look for the ‘silver bullet’ that will help solving the issue with how to best
involve customers, and learn from their feedback.

The issue of how to involve customers and how to collect customer feedback has
gained much attention and is a well-established topic within research traditions such
as e.g. information systems (IS), human computer interaction (HCI) and participatory
design (PD). In information systems research, it has been a prominent research topic
for decades, with a special focus on the organizational and social contexts that
influence customers and customer behaviors [31], [32]. In human computer
interaction research, as well as in participatory design research, the focus is primarily
on methods, activities and distinct techniques for improving usefulness, ease of use
and user satisfaction [34], [35]. Also, the innovation management literature provides
interesting insights in the area of customer involvement and feedback techniques. In a
recent paper, Bosch-Sijtsema and Bosch [4] present a model in which they identify a
number of customer involvement techniques in high-tech firms, and they categorize
these according to what type of data that is collected, to what extent customers are
actively or passively involved in data collection, and in what stage of the development
process the technique is typically used.

However, although of critical relevance for any software development process, the
topic has not gained much attention in the software engineering (SE) research domain.
While there is significant research on e.g. requirements engineering and elicitation [3]
techniques, there are few studies that recognize the many additional opportunities that
exist to involve and learn from customers during the development process. Therefore,
and as a way to assess the current ‘state-of-the-art’ in software engineering research,
we conduct a literature review focusing on customer feedback and data collection
techniques. In the best of our knowledge, such a literature review has not been
conducted in the SE domain before and hence, our review addresses a gap at the same
time as it creates a better understanding of recent software engineering research with
relevance for this particular topic of interest.

3 Method

This literature review is our first step towards conducting a ‘Systematic Literature
Review’ (SLR), method presented by Kitchenham [5]. As a systematic approach to
searching, selecting and reviewing papers, this method provided us with a basic
structure for identifying recent research with relevance for exploring our research
questions. As their main characteristic, systematic literature reviews are formally
planned and methodically executed. Initially developed in medicine, the method has

142 A. Fabijan et al.

been widely adopted in other disciplines such as criminology, social policy and
economics, and recently it has gained momentum also in research domains such as
e.g. information systems and software engineering [27], [28]. The purpose of our
literature review is to provide an overview of recent software engineering research in
the area of customer feedback and data collection techniques. In our overview, we
address the following research questions:

• RQ1. What are the existing customer feedback techniques as reported in
software engineering literature?

• RQ2. What are the existing customer data collection techniques as reported
in the software engineering literature?

• RQ3. In what stages of the development process are the identified techniques
used?

• RQ4. What are the main challenges and limitations of the identified
techniques?

3.1 Search Process

In our search process, and in order to provide a ‘state-of-the-art’ review of customer
feedback techniques in the software engineering research domain, we selected the
highest ranked software engineering journals. Our search process started with
selecting relevant terms such as ‘customer feedback’, ‘customer involvement’,
‘customer participation’, and continuing with ‘data collection’ and ‘customer data’ in
order to also target non-physical collection of feedback. The journals that were
included in our search process are the top ten software engineering journals, namely
IEEE Transactions on Software Engineering (TSE), Communications of the ACM
(CACM), Springer Empirical Software Engineering, IEEE Computer, IEEE Software,
ACM Transactions on Software Engineering and Methodology, MIS Quarterly,
Empirical Software Engineering, Information and Software Technology, SW
Maintenance & Evolution - Research & Practice and databases [30]. In addition, we
used the same queries to search for conference papers in the library of the Institute of
Electrical and Electronics Engineers (IEEE), ACM, Science Direct, Scopus and on
Google Scholar.

3.2 Inclusion and Exclusion Criteria

Each paper that matched the search criteria was reviewed by at least one of the
researchers, and as suggested by the SLR [5], we reviewed the keywords, we read the
abstract and we identified customer feedback and data collection techniques in the
body of the paper. We selected the papers that recognize at least one technique for
customer feedback and data collection with the purpose to use this data to improve
and innovate software products, e.g. develop a new feature or a new product. In our
review, we included papers where customer feedback techniques were the main
purpose of the paper, as well as papers where such techniques were only one element
of the paper.

 Customer Feedback and Data Collection Techniques in Software R&D 143

3.3 Data Collection

The data extracted from each study were:

• The source (conference or a journal name)
• Classification of the study Type (customer involvement, customer data

collection, new product innovation)
• Summary with main focus of the paper
• Main findings of the paper
• Main challenges

Table 1. Software engineering papers that were selected as relevant for our literature review on
customer feedback and data collection techniques

ID Authors Title of the publication Date Topic Area

P1 Kabbedijk et al Customer Involvement in Requirements
Management: Lessons from Mass Market
Software Development

2009 Customer
involvement

P2 Chen et al. A novel virtual design platform for product
innovation through customer involvement

2011 Customer
involvement

P3 Chen et al. How customer involvement enhances
innovation performance: The moderating
effect of appropriability

2014 Customer
involvement

P4 Wang Facilitating customer involvement into the
decision making process of concept
generation and concept evaluation for new
product development

2012 Customer
involvement

P5 Burns and
Halliburton

Tackling productivity and quality through
customer involvement and software
technology

1989 Customer
Involvement

P6 Cohan Successful Customer Collaboration
Resulting in the Right Product for the End
User

2008 Customer
participation

P7 Martin et al. XP Customer Practices: A Grounded
Theory

2009 Customer
Involvement

P8 Jin et al. New Service Development Success Factors:
a Managerial Perspective

2010 Customer
Involvement

P9 IEE Colloquium IEE Colloquium on `Customer Driven
Quality in Product Design' (Digest
No.1994/086)

1994 Customer
data

P10 Yang and Chen Customer Participation: Co-Creating
Knowledge with Customers

2008 Customer
Participation

P11 Bhatia et al. Monitoring and analyzing customer
feedback through social media platforms for
identifying and remedying customer
problems

2013 Data
Collection

P12 Pang et al. Opinion mining and sentiment analysis 2008 Customer
data

P13 Bosch Building products as innovation experiment
systems

2012 Customer
data

144 A. Fabijan et al.

3.4 Results

This section summarizes the results of our literature search process. Although there
were about 147 different papers that initially matched the search criteria entered in the
search engines of the individual journals and conferences, we found only 13 papers
with direct relevance to the research questions we specified. These were the papers
that mentioned at least one method of customer feedback in the abstract or in the body
of the paper. We present the papers that we collectively selected in Table 1.

4 Results

In accordance to the research questions (RQ 1-4), we present the existing customer
feedback and data collection techniques, in what stages of the development process
they are used, what characteristics they have, and what challenges and limitations that
are associated with the techniques.

4.1 Customer Feedback Techniques

Most often, and as recognized in several of the papers we found, the initial source of
customer feedback originates from direct interaction with the customer by using
techniques based on active customer involvement [6], [7]. Typically, feedback is
collected using techniques such as customer interviews, customer questionnaires and
customer surveys. As recognized by Yiyi et al. [7], customer questionnaires and surveys
are given to customers to have them express an idea or an opinion, in order to provide the
company with a basic understanding of their needs and desires, as well as their
expectations of the product. Also, and as suggested by Olsson & Bosch [25], observation
of customers is a common technique to learn about their behaviors. This technique allows
for follow-up questions on certain behaviors that were identified during the observation.
As a more interactive approach, Kabbedijk et al. [6] suggest having ‘theater sessions’
together with several customers to have them express e.g. a feature request and provide
input on how a certain feature would be used in their context.

Also, and as one of the most common techniques, the evaluation of prototypes is
conducted in close collaboration with customers [26]. Sampson et al. [9] suggest
rounds of prototype testing in which feedback is collected to support developers on a
continuous basis. Such testing and evaluation activities can be internal and include
developers that built the product, as well as external including beta users that agree to
try the product for a limited period of time. Martin et al. [14] support the idea of
having internal evaluation with developers being the first “customers”, and suggest a
second step in which developers coach the customers for a couple of iterations. This
way, the product use is observed by its’ creators while in use by the customer. As a
result of this, the developers collect information about customers’ experience of the
product and spot issues that might not have been revealed differently. Additionally,
and when having a prototype or an early version of a product, in-product surveys and
web polls are important techniques for collecting feedback that helps in understanding
the customer appreciation of a current and future products. Martin et al. [14] also

 Customer Feedback and Data Collection Techniques in Software R&D 145

recommend customer pairing and customer ‘boot camps’ as one technique to not only
collect feedback from one customer, but to have customers share this feedback with
other customers with similar experiences.

Burns and Halliburton [12] suggest continuous customer review of products, and
customer involvements that concludes with an approval or a rejection of an idea or
product concept. In their experience, operational ‘walk-throughs’, i.e. end-to-end tests
by various customer groups should be presented to the customer, and that developers
should be the first “customers” of the product. In similar, Cohan et al. [13] note that
for a successful project, the customers should provide feedback on a continuous basis,
and that several iterations in which the minimal product functionalities are evaluated
is a beneficial way of ensuring the collection of accurate customer feedback and in a
timely manner. Jin et al. [15] confirm this when recognizing that the higher the
customer’s involvement is, the higher the success rate will be for the product that is
being developed. Finally, and as identified by Bosch [17], customer interest can also
be measured by a method known as ‘BASES’ testing. The method was originally
introduced by Nielsen [8] and measures customer interest in new product concepts in
order to identify the potential of a new product or improvement of an existing one.

4.2 Data Collection Techniques

As a result of products being increasingly software-intensive, and with the
opportunity to have these products connected to the Internet, companies are
experiencing novel opportunities to learn about customer and product behaviours. As
products go on-line, companies can monitor them, collect data on how they perform,
predict when they break, know where they are located, and learn about when and how
they are used or not used by customers. Typically, this form of customer and product
data collection takes place when the products have been deployed and being used in
real-time by its customers. In this context, Chen et al. [16] recommend to collect both
customer data, e.g. demographic, psychographic, and behavioral data, as well as
product data, e.g. operation, performance, responsiveness. This data can be used to
generate models of product use and customer behaviors as a basis in direct
interactions with customers. For example, product data reveals what features are used,
how often they are used, and what point in time they are used etc., and can be used as
a means for having customers rank individual features and this way directly steer
product development [6].

Bosch [17] describes several techniques for customer data collection. He suggests
advertising new products via online ads and having in-product surveys to identify
potential interest in new products. Also, he notes that some companies display
different versions of the same product or feature to customers, and have mechanisms
in place to collect data on how customers respond to these different versions. In this
way, companies learn about what is the preferred version of the product. This is
known as A/B testing [11], and is a common data collection technique in the web 2.0
and in the software-as-a-service (SaaS) domain. Additionally, and as recognized by
Kohavi et al [26], an early version of the product can be given to a sample of
customers to test the functionality, where operational data, event logs and usage data

146 A. Fabijan et al.

are retrieved in order to identify performance issues, errors and other usability
problems. Furthermore, this data can be complemented with geological data and time
zone information in order to segment the customers.

In addition to the data collection techniques above, external data sources such as
social media e.g. Twitter, Instagram and Facebook consist of millions of connected
customers that are located around the world and that share their experiences of
products. Bathia et al. [24] recognize these data sources as increasingly important
sources of information where companies can learn about customer behaviors and
customer opinions [29]. Similarly to social networks, crowd-funding platforms such
as Kickstarter provide a source of data that reveals products that succeeded or failed
in collecting the community support.

4.3 Development Process Stages

In reviewing the selected papers, we see that different customer feedback and data
collection techniques are deployed depending on what development stage the product
is in. In the pre-development phase, software development companies collect
customer feedback in requirements specifications, through questionnaires and surveys
and by engaging customers in solution jams or theater sessions where different ideas
are proposed, ranked and discussed [6], [7]. Also, customer interest in this early stage
can be investigated with techniques such as BASES testing [17].

During development, customer feedback is collected in prototyping sessions in which
customers test the prototype, discuss it with the developers, and suggest modifications of
e.g. a user interface [9], [26]. As a result, developers get feedback on customer behaviors
and ways-of-working, as well as on product usefulness, ease of use etc. This feedback
serves as important input in further improvement of the product. Additionally, in-product
marketing and in-product surveys can be performed at this stage to get the feedback data
about a product’s version and potential interest in other features [17].

In the post-deployment stage when the product has been released to its customers,
a number of techniques are used to collect customer and product data. First, and since
the products are increasingly being connected to the Internet and equipped with data
collection mechanisms, operational data, performance data and data revealing feature
usage is collected. If customer experience problems with the product, they generate
incident reports, support data, trouble tickets etc. that are important sources of
information for the developers when troubleshooting and improving the product [10].
Often, and as recognized in previous research (see e.g. Bosch [17]), A/B testing is a
commonly deployed technique in order to optimize an existing feature, introduce a
new one or when building a new product.

4.4 Challenges and Limitations

There are several challenges and limitations associated with the techniques as
identified in the literature review. For example, theatre sessions, or similar
requirements gathering methods, require sophisticated technology implemented at the
location where the customers meet [6]. This reduces the amount of available venues

 Customer Feedback and Data Collection Techniques in Software R&D 147

for such an event. Second, the customers need to be present at the same time at the
same location, which might be difficult to achieve due to tight schedules in the
companies and inconvenient to handle if frictions between customers are present [6].

Questionnaires, interviews, surveys, site visits and face-to-face interaction with
customers are time-consuming techniques [6], [7], and therefore challenging to make
happen in a fast-moving business environment in which process efficiency is key [7],
[17]. Also, our review identifies challenges and limitations associated with testing of
prototypes. When presenting a prototype, only parts of the product is developed.
Therefore, customers are not able to test the full product, and they might misinterpret
the intention with the early version of the product. This might lead the customer to
believe that the product is not developed as agreed [9], [14].

A/B testing, i.e. showing different versions of the same product to different
customer groups, pose numerous challenges. For example, there might be the risk that
customers that get used to one version of the product get hesitant when exposed to a
different version of the same product [29], [39]. Second, customer segments need to
be carefully chosen in order to prevent revenue loss in case of operational problems or
product expectations that do not match with the experimental version [39].

Finally, on-line ads and in-product surveys can be experienced as disturbing by
customers if not presented correctly [17]. Often, customers prefer to express their
opinions on social networks such as e.g. Twitter and Facebook etc., which produces
similar outcomes as product surveys. However, social networks typically generate
large amounts of data that is difficult to analyze [29].

4.5 Summary of Results

Table 2. Summary of literature review results

Customer feedback
technique

Development
stage

Challenges/limitations Noted in
paper

BASES testing Pre-development Potential bias of panel members P13

Interviews Pre-development Time consuming P1, P10,
P2, P3

Questionnaires Pre-development Time consuming P1, P10

Surveys Pre-development Time consuming P1, P2,
P3, P4

Observations Pre-development Time consuming P1, P10

Theater sessions Pre-development Availability of technical
infrastructure, physical presence of
participants in the same location

P1

Prototype testing Development Only partially developed interfaces
and functionality

P6, P7,
P8, P13

Incident Reports Post-development Available only after an incident

Developers as customers Development Time consuming for developers P7
Customer pairing and boot
camps

Post-development Physical presence of participants in
the same location

P7

Walk-throughs Post-development Time consuming for developers
and customers

P5

148 A. Fabijan et al.

Table 2. (Continued)

Customer data collection
technique

Development
stage

Challenges/limitations

Online ads and in-product
surveys

Pre-development Potentially disturbing for customers P13

Beta testing Development Only partially developed interfaces
and functionality

Operational and event
data

Development Security issues when such data is
transmitted, potentially high
amounts of data

P13, P11

A/B testing Post-development Potentially confusing for customers
when exposed to different versions

P13

Social networks Post-development Numerous sources, large quantities
of data for analysis

P11, P12

Crowd-funding platforms
data

Pre-development Large quantities of data for analysis P11, P12

5 Discussion

The purpose of this study is to provide a ‘state-of-the-art’ review of software
engineering research in the area of customer feedback and data collection techniques.
In this section, we discuss the results of the review. As a structure for our analysis, we
use the qualitative and quantitative categorization as suggested by Bosch-Sijtsema
and Bosch [4]. In the qualitative category, we place the feedback techniques that
require active participation from customers and where a smaller amount of data is
collected. The quantitative category, on the other hand, represents data collection
techniques where customers are only passively involved and where large amounts of
data is collected. Also, we note the emerging trend of social networks as a data source
for collecting customer feedback with inherent characteristics of both a qualitative
and quantitative nature. Finally, we summarize our findings in a structured model that
provides an overall understanding for existing feedback and data collection
techniques.

5.1 Qualitative and Quantitative Feedback Techniques

When analyzing the papers and the different techniques they identify, we see two
main characteristics that distinguish the different techniques from each other. First,
and as traditionally used as the main approach to involve customers in software
development, we identify a number of qualitative customer feedback techniques.
These are techniques that require active participation from customers, that generate a
small amount of qualitative feedback, and that are typically used in the early stages of
development. The strength of such qualitative research methods is its ability to
provide complex textual descriptions of how people experience a given research
issue. It provides information about the ‘human’ side of an issue [21]. In our case
these are the methods of customer feedback that we identified in section 4.1. Second,
and as a result of products being increasingly software-intensive and having

 Customer Feedback and Data Collection Techniques in Software R&D 149

connectivity capabilities, we identify a number of quantitative data collection
techniques. These are techniques that focus on product data such as performance data,
error logs and other techniques of data collection that we identified in section 4.2.
With quantitative techniques the order of ‘questions’ asked does not matter, design
and results are subject to statistical assumptions and they seek to confirm hypotheses
rather than explore opinions [22], [23].

5.2 Emerging Customer Feedback Techniques

In addition to the qualitative and quantitative techniques identified above, we see a
tremendous growth and popularity of social network platforms such as Twitter,
Instagram and Facebook as additional data sources for learning about customers.
Interestingly, these data sources provide companies with additional opportunities to
collect both qualitative feedback from individual customers expressing their
experiences of the products, and quantitative data in terms of the large amounts of
data that is generated and that represents a large customer base. Data retrieved from
these networks is used to improve the products, detect errors, take decisions and
trigger corrective measures [37]. For example, Bhatia et al. describe a system that
automatically monitors social networks such as Facebook and Twitter [24]. It
analyzes the data from the platforms and triggers events that lead to corrective
actions. For this purpose, platforms known as ‘sentiment monitoring systems’ help
companies in collecting comments from the customers, in analyzing the data
generated, and in identifying major problems and to automatically trigger corrective
response actions [29], [33]. In addition to social networks, crowd-funding platforms
such as Kickstarter offer an insight into which products receive support and which
ones failed to succeed. Such information can be used to further improve the
understanding of the market desires and needs.

5.3 Summary

In this paper, and based on a literature review of recent software engineering research,
we identify existing customer feedback and data collection techniques. From the pre-
development stage, through the development process and also after the product is
deployed to customers, each of these techniques provides companies with the
opportunity to collect customer and product data. In Figure 1 below, we present our
findings in a structured model that works as a support for selecting the appropriate
feedback technique in a specific stage of the software development process.

150 A. Fabijan et al.

Fig. 1. Qualitative and quantitative feedback techniques

In our model, we distinguish between three development stages, i.e. pre-
development, development and post-deployment. Although we recognize that this is a
simplified view, and that most development processes are of an iterative nature, we
define these stages as they typically involve different techniques for collecting
customer feedback. First, and as shown in the pre-development phase in the model,
companies aim at identifying market interest in a new product. They interview
customers, they observe them while using the products, and they might even meet
with them in theatre sessions to learn more about their preferences. This first iterative
loop to learn about customers is defined with ‘C1’ in the model, with ‘C’ denoting
‘customer’ and ‘1’ the first loop of data collection. This process usually takes several
iterations and generates limited amounts of qualitative customer feedback such as
interview notes, survey results, observation documentation etc. In parallel to this,
companies use e.g. online surveys and in-product ads to collect quantitative data from
a larger customer group. This parallel loop of collecting data is defined as ‘P1’ in the
model, with ‘P’ denoting ‘product’ and ‘1’ the first loop of collecting data from the
product in order to improve the initial understanding for product interest and use. The
C1 and P1 processes feed into each other, allowing companies to learn from both
qualitative and quantitative data in an early stage of the development process.

Second, and as shown in the development phase in the model, companies aim at
testing and evaluating early product concepts by using techniques such as
prototyping, beta testing and by collecting operational product data. In similar with
the pre-development stage, these processes are referred to as ‘C2’ and ‘P2’ with ‘C2’
denoting existing techniques for customer feedback and ‘P2’ existing techniques for
data collection in this second stage of development. Again, these processes run in
parallel and they complement each other with qualitative and quantitative customer
and product data.

Finally, and as shown in the post-deployment stage in the model, companies use
techniques to learn about customer behavior and product use when the product is
commercially deployed to customers. Here, the data that is being collected is

 Customer Feedback and Data Collection Techniques in Software R&D 151

transitioning from being qualitative e.g. interview notes and observation reports, to
being primarily quantitative e.g. operational data, social network data and
experimental data reflecting A/B testing results. As recognized in our research, the
C1- C3 techniques are typically expensive, as they require physical interaction with
customers. The P1-P3 techniques, on the other hand, are typically cheaper to conduct
as they use automatically generated data as input. Together, the processes and the
techniques outlined in the model comprise a compelling approach for companies to
collect customer feedback and data throughout the product development process.

6 Conclusion

To stay competitive, software companies need to continuously collect feedback and
data from customers. However, although there are increasing opportunities for doing
this, many companies struggle with how to learn from customers and what techniques
to apply [2], [20]. In this paper, and in order to assess the current ‘state-of-the-art’ in
software engineering research, we conduct a literature review focusing on customer
feedback and data collection techniques. The purpose of this literature review is to
provide an overview of current software engineering research in this area and to better
understand the different techniques that are used for collecting customer feedback.
Our research reveals a compelling set of customer feedback data collection techniques
that can be used throughout the different development stages of software products.
Also, we note the emerging trend of social networks as an important data source for
both qualitative and quantitative data collection. We summarize our findings in a
structured model that works as a support for companies when selecting the
appropriate technique. In our future work, we plan to expand this review to include
closely related, and highly relevant research domains. Also, we plan to validate our
model in empirical contexts in order to provide also a state-of-practice view on
customer feedback and data collection techniques.

References

1. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven”. In: 2012 38th
EUROMICRO Conference on Software Engineering and Advanced Applications Software
Engineering and Advanced Applications (SEAA), Izmir, Turkey (2012)

2. Olsson, H.H., Bosch, J.: From Opinions to Data-Driven Software R&D. In: Proceedings of
the 40th Euromicro Conference on Software Engineering and Advance Applications,
Verona, Italy (2014)

3. Sommerville, I., Kotonya, G.: Requirements engineering: processes and techniques. John
Wiley & Sons, Inca. (1998)

4. Bosch-Sijtsema, P., Bosch, J.: User involvement throughout the innovation process in
high-tech industries. Journal of Product Innovation Management (October 2014)

5. Kitchenham, B.: Procedures for Performing Systematic Reviews (2004)
6. Kabbedijk, J., Brinkkemper, S., Jansen, S., van der Veldt, B.: Customer Involvement in

Requirements Management: Lessons from Mass Market Software Development. In:
Requirements Engineering Conference (2009)

152 A. Fabijan et al.

7. Yiyi, Y., Rongqiu, C.: Customer Participation: Co-Creating Knowledge with Customers.
In: Wireless Communications, Networking and Mobile Computing (2008)

8. Nielsen Holdings Winning with Innovation. An Introduction to BASES, http://en-
ca.nielsen.com/content/nielsen/en_ca/product_families/nielse
n_bases.html

9. Sampson, S.E.: Ramifications of Monitoring Service Quality Through Passively Solicited
Customer Feedback. Decision Sciences 27(4), 601–622 (1996)

10. Axelos Global Best Practice – ITIL, https://www.axelos.com/itil
11. Christian, B.: The A/B Test: Inside the Technology That’s Changing the Rules of

Business, http://www.wired.com/2012/04/ff_abtesting/
12. Burns, H.S., Halliburton, R.A.: Tackling productivity and quality through customer

involvement and software technology. In: Global Telecommunications Conference and
Exhibition ‘Communications Technology for the 1990s and Beyond’ (1989)

13. Cohan, S.: Successful Customer Collaboration Resulting in the Right Product for the End
User. In: Conference, AGILE 2008, August 4-8, pp. 284–288 (2008)

14. Martin, A., Biddle, R., Noble, J.: XP Customer Practices: A Grounded Theory, Agile
Conference. In: Conference, AGILE 2009, August 24-28, pp. 33–40 (2009)

15. Jin, D., Chai, K.H., Tan, K.C.: New service development success factors: A managerial
perspective. In: 2010 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), pp. 2009–2013 (2010)

16. Chen, X.Y., Chen, C.H., Leong, K.F.: A novel virtual design platform for product
innovation through customer involvement. In: 2011 IEEE International Conference on
Industrial Engineering and Engineering Management Industrial Engineering and
Engineering Management (IEEM), December 6-9, pp. 342–346 (2011)

17. Bosch, J.: Building Products as Innovations Experiment Systems. In: Proceedings of 3rd
International Conference on Software Business, Cambridge, Massachusetts, June 18-20
(2012)

18. Chen, H., Chiang, R., Storey, C.: Business intelligence and analytics: from big data to big
impact. MIS Q. 36(4), 1165–1188 (2012)

19. Westerlund, M., Leminen, S., Rajahonka, M.: Designing Business Models for the
Internetof Things. Technology Innovation and Management Review, 5–14 (July 2014)

20. Markey, R., Reichheld, F.: Dullweber. A.: Closing the Customer Feedback Loop. Harvard
Business Review (2009)

21. Mack, N., Woodsong, C., Macqueen, K.M., Guest, G., Namey, E.: Qualitative Research
Methods: A Data Collector’s Field Guide. Family Health International (2005)

22. Balnaves, M., Caputi, P.: Introduction to Quantitative Research Methods. SAGE
Publications Ltd. (2001)

23. Corbin, J., Strauss, A.: Basics of qualitative research, 3rd edn. Sage, Thousand Oaks
(2008)

24. Bhatia, S., Li, J., Peng, W., Sun, T.: Monitoring and analyzing customer feedback through
social media platforms for identifying and remedying customer problems. In: 2013
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), August 25-28, pp. 1147–1154 (2013)

25. Olsson, H.H., Bosch, J.: Towards Data-Driven Product Development: A Multiple Case
Study on Post-deployment Data Usage in Software-Intensive Embedded Systems.
Springer, Heidelberg (2013)

26. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on
the web: survey and practice guide. Data Mining and Knowledge Discovery 18(1),
140–181 (2009)

 Customer Feedback and Data Collection Techniques in Software R&D 153

27. Manikas, K., Hansen, K.M.: Software ecosystems - A systematic literature review. Journal
of Systems and Software 86(5), 1294–1306 (2012)

28. Zarour, M., Abran, A., Desharnais, J., Alarifi, A.: An investigation into the best practices
for the successful design and implementation of lightweight software process assessment
methods: A systematic literature review. Journal of Systems and Software 101(0), 180–192
(2015)

29. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in
Information Retrieval 2(1-2) (2008)

30. ISI Listed SE Journals, http://www.robertfeldt.net/advice/isi_listed_
 se_journals.html
31. Iivari, J., Venable J.R.: Action research and design science research – Seemingly similar

but decisively dissimilar. In: ECIS 2009 Proceedings, paper 73 (2009)
32. Henfridsson, O., Lindgren, R.: User involvement in developing mobile and temporarily

interconnected systems. Information Systems Journal 20(2), 119–135 (2010)
33. Zhao, J., Dong, L., Wu, J., Xu, K.: MoodLens: an emoticon-based sentiment analysis

system for chinese tweets. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2012), pp. 1528–1531.
ACM, New York (2012)

34. Hess, J., Randall, D., Pipek, V., Wulf, V.: Involving users in the wild—Participatory
product development in and with online communities. International Journal of Human-
Computer Studies 71(5), 570–589 (2013)

35. Molnar, K.K., Kletke, M.G.: The impacts on user performance and satisfaction of a voice-
based front-end interface for a standard software tool. International Journal of Human-
Computer Studies 45(3), 287–303 (1996)

36. Hilbert, D.M., Redmiles, D.F.: Large-scale collection of usage data to inform design. In:
Human-Computer Interaction—INTERACT 2001: Proceedings of the Eighth IFIP
Conference on Human-Computer Interaction, Tokyo, Japan, pp. 569–576 (2001)

37. Antunes, F., Costa, J.P.: Integrating decision support and social networks. Adv. Adv. in
Hum.-Comp. Int. 2012, Article 9 (2012)

38. Lagrosen, S.: Customer involvement in new product development: a relationship
marketing perspective. European Journal of Innovation Management 8(4), 424–436 (2005)

39. The Ultimate Guide To A/B Testing, http://www.smashingmagazine.com/
 2010/06/24/the-ultimate-guide-to-a-b-testing/

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 154–166, 2015.
DOI: 10.1007/978-3-319-19593-3_13

Towards Continuous Customer Validation: A Conceptual
Model for Combining Qualitative Customer Feedback

with Quantitative Customer Observation

Helena Holmström Olsson1() and Jan Bosch2

1 Department of Computer Science, Malmö University, Malmö, Sweden,
helena.holmstrom.olsson@mah.se

2 Department of Computer Science and Engineering, Chalmers University of Technology,
Gothenburg, Sweden

jan.bosch@chalmers.se

Abstract. Software-intensive product companies are becoming increasingly
data-driven as can be witnessed by the big data and Internet of Things trends.
However, optimally prioritizing customer needs in a mass-market context is
notoriously difficult. While most companies use product owners or managers to
represent the customer, research shows that the prioritization made is far from
optimal. In earlier research, we have coined the term ‘the open loop problem’ to
characterize this challenge. For instance, research shows that up to half of all
the features in products are never used. This paper presents a conceptual model
that emphasizes the need for combining qualitative feedback in early stages of
development with quantitative customer observation in later stages of
development. Our model is inductively derived from an 18 months close
collaboration with six large global software-intensive companies.

Keywords: Customer feedback techniques · Qualitative feedback · Quantitative
observation · Continuous customer validation · Data-driven development

1 Introduction

Recently, and due to trends such as big data [1] and the Internet of Things [2],
software-intensive product companies are experiencing a fundamental shift in how
software products are developed. As a result of the increasing amount of software and
the capability to have products connected to the Internet, new ways to engage with
customers emerge and there is the opportunity for companies to collect customer
feedback not only in the early stages of development, but also after the product has
been commercially deployed to customers [3, 4, 5, 6, 7].

However, and as experienced in our previous research, product companies struggle
with how to include customer feedback into their development processes, and how to
find efficient mechanisms for combining different feedback techniques [5, 6]. Typically,
and as advocated by many of the agile development methods [8, 9, 10], the solution is to
have a product owner representing the customer. This has proven useful for capturing
customer requirements, and for early customer validation of product concepts. Still,
difficulties arise in large-scale product development where the product owner can no

 Towards Continuous Customer Validation: A conceptual model 155

longer represent the many different needs of such a large customer base. As the common
method to address this problem, the product owner talks to a selected number of
representative customers [11]. Also, and as another common solution, customer-specific
teams are introduced in order to take care of the particular needs of selected and highly
prioritized customers [12]. This feedback is then used to inform the product development
process with the assumption that what a selected number of customers want is also what
other similar customers want. These approaches, however, suffer from a number of
problems. For example, and as highlighted in research on user involvement and customer
feedback, what customers say they want very seldom represents what they really need [3,
13]. As recognized in this research, customer interviews and direct customer interaction
capture only parts of customer behaviors and needs and therefore, need to be
complemented with indirect customer observations and customer data collection in order
to fully understand behaviors and patterns that customers might not be aware of
themselves. Furthermore, if customer feedback that is collected in the early stages of
development is not validated in the later stages, there is the risk that large amounts of the
development efforts lack customer value [11]. To cater for this, companies need to
continuously combine different feedback techniques, and to find ways in which early
customer feedback can be evaluated and tested in later development stages and even after
commercial deployment of the products.

In this paper, and based on our experiences from working closely with six large
software-intensive companies, we develop a conceptual model in which we identify
qualitative customer feedback techniques as typically used in the early stages of
development, and quantitative customer observation techniques that are used in the
later stages of development. The model emphasizes the wide range of available
feedback techniques, and helps companies understand the importance of these as
complements to each other. Our model suggests an approach in which development
and improvement of products is seen as a continuous activity where hypotheses are
continuously validated. As a result, product development shifts from being driven by
early-stage requirements specification, to becoming an activity in which hypotheses
form the basis for continuous validation of new product functionality.

The paper is organized as follows. In section 2, we discuss literature relevant for
our research. In section 3, we describe our research method and the six case
companies. Section 4 presents the empirical findings. In section 5, and based on the
empirical findings, we present the problem statements that we address. In section 6,
we develop a conceptual model that addresses the problems, and in section 7 we
discuss our model. Finally, in section 8 we present the conclusions.

2 Background

2.1 Product Development

In product development processes, ideas are collected and prioritized during the
requirements engineering process in which customers are involved [14]. Typically,
ideas are generated either internally at the company and validated by having internal
and/or external customers involved in early prototyping or concept validation, or they
are generated in close collaboration with customers with product owners as the main
customer contact. As recognized in Scrum [10], the product owner is a key

156 H.H. Olsson and J. Bosch

stakeholder with the responsibility to have a vision of what products to build. The
vision is reflected in the product backlog, which is a prioritized list of features for the
product. During development, the product owner acts as the proxy to customers to
make sure that their interests and needs are reflected in the development of new
functionality.

Often, and as can be seen in our previous research, the selection of what ideas to
include is based on previous experience and domain-specific skills, but often also on
opinions and “gut feelings” held by product management. Although the decisions that
are taken form the basis for significant development efforts and investments, there is
little data to help product management in confirming whether decisions taken during
feature prioritization were actually the right ones. In our previous research [11], and
based on empirical research in a number of software-intensive companies, we coined
the term the ‘open loop’ problem, referring to the situation in which product
management has difficulties in getting accurate and timely customer feedback to help
them in prioritizing new features, and where there is only a weak link between
customer feedback and product management decisions. For many of the companies
we work with, huge amounts of data is available, but the mechanisms to analyze this
data are insufficient. Typically, challenges arise when trying to combine and make
sense of feedback obtained in the early stages of development and feedback received
in later stages of development. Feedback loops are slow, and very often the
confirmation of the correctness of the decisions takes place only after the finalized
product has been deployed to customers. As a result, there is the risk of lack of
alignment of product and customer needs [5, 6] and that R&D investments are spent
on product functionality that is not appreciated or used by its intended customers.

2.2 Qualitative and Quantitative Customer Feedback

Qualitative customer feedback techniques require active participation from customers,
generate small amounts of data, and are typically used in the early stages of the
development process [13]. The strength of such techniques is their ability to provide
rich textual descriptions of how individuals experience a specific situation. As such,
they provide in-depth information about the ‘human’ side of a situation and they
reveal peoples’ perceptions of a given phenomenon [15]. Qualitative customer
feedback techniques focus on how to involve customers to help define the problem
and evaluate proposed solutions. Typically, customer interviews, customer surveys
and different types of participant observations are used to collect feedback [13, 16,
17, 18]. In face-to-face meetings and during site visits, companies ask how customers
experience the product and what they would like to see in future products.

Quantitative customer observations, on the other hand, focus on data from products
in the field. As a result of products being increasingly software-intensive, and with the
opportunity to have products connected to the Internet, companies are experiencing
novel opportunities to learn about customer and product behaviours. As products go
on-line, companies can monitor them, collect data on how they perform, predict when
they break, know where they are located, and learn about when and how they are used
or not used by customers [5, 6]. Typically, this form of data collection doesn’t involve

 Towards Continuous Customer Validation: A conceptual model 157

the customer. Instead, this form of data collection takes place when the products have
been commercially deployed and used in real-time by its intended customers. This
situation brings with it fundamentally new engagement models with customers [2,
19], where companies can run feature experiments [10], and A/B testing of product
versions [7], to continuously observe customers and validate product functionality and
product concepts. A/B testing is a common data collection technique in the Web 2.0
domain and in the software-as-a-service (SaaS) domain, and it has recently gained
attention also in the embedded systems domain [4]. Also here, companies realize the
many benefits with having different customer groups try out different versions of the
same product and collect data on what version that works the best. Additionally, and
as recognized by Kohavi et al [7], an early version of the product can be given to a
sample of customers to test the functionality, where operational data, event logs and
usage data are retrieved in order to identify performance issues, errors and other
usability problems.

As one attempt to capture the wide range of available customer feedback
techniques, Bosch-Sijtsema and Bosch [13], present a model in which they identify
different techniques, the type of data that is collected and the development phases in
which the techniques are typically used. They picture the early development stages as
characterized by direct customer feedback, and with small amounts of qualitative data
being collected. In later stages, and after commercial deployment of the product,
companies observe customers and use indirect feedback techniques to collect large
sets of quantitative data.

Based on our experiences from an 18 months close collaboration with six software-
intensive product companies, we identify the need to better understand what customer
feedback techniques that are available. In what follows, and based on case study
research in these companies, we develop a conceptual model that provides companies
with (1) a better understanding for available feedback techniques, and (2) emphasize
the importance of combining early stage qualitative customer feedback with later
stage quantitative customer observation.

3 Research Approach

The conceptual model presented in this paper is developed based on an 18 months
(July 2013 – December 2014) longitudinal multi-case study in six global software-
intensive companies. We adopt an interpretive case study approach [20], and we work
inductively in our development of the model. Typically, case study research focuses
on providing a deeper understanding of a particular situation, and is used to explore
contemporary phenomenon [20, 21]. The companies involved in this study use
qualitative as well as quantitative customer feedback techniques to learn about their
customers and how they use their products. Although in different domains, the
companies face similar challenges in relation to how to combine different techniques,
and how to better capitalize on the customer feedback that they collect. In Table 1, we
present the case companies and the feedback techniques they currently use:

158 H.H. Olsson and J. Bosch

Table 1. The six case companies involved in our study

Case company Domain Qualitative CFT’s Quantitative CFT’s
A Software company

specializing in
navigational information,
operations management
and optimization solutions.

Site visits
Customer surveys
Customer interviews
Yearly customer
conferences
Prototyping

Feature experiments
Support logs
Trouble reports
Google Analytics

B A pump manufacturer
producing circulator
pumps for heating and air
conditioning, as well as
centrifugal pumps for
water supply.

Site visits
Customer surveys
Customer interviews
Prototyping

Support logs
Trouble reports

C A network video company
offering products such as
network cameras, video
encoders, video
management software and
camera applications for
video surveillance.

Site visits
Customer surveys
Customer interviews
Prototyping

Feature experiments
Support logs
Trouble reports

D A manufacturer and
supplier of transport
solutions for commercial
use.

Customer test labs
Customer surveys
Customer interviews
Prototyping

A/B testing
Support logs
Diagnostic data
Failure reports

E An equipment
manufacturer developing,
manufacturing and selling
a variety of products
within the embedded
systems domain.

Customer test labs
Customer surveys
Customer interviews
Prototyping

Support logs
Diagnostic data
Failure reports

F A provider of
telecommunication
systems and equipment,
communications networks
and multimedia solutions
for mobile and fixed
network operators.

Customer-specific
teams
Site visits
Customer surveys
Customer interviews

Support logs
Trouble reports
Customer satisfaction
index
Event monitoring
data

The research reported in this paper is part of a larger research collaboration

involving three universities and eight software development companies. The project
was conducted in six months sprints with every sprint involving data collection, data
analysis and results reporting. For each sprint, we conducted group interviews in each
company, joint workshop sessions and validation sessions to which all companies
were invited to discuss and evaluate our research results. In total, our collaboration
with the companies involved twelve group interviews at the different companies with
5-8 people participating in each group, four joint workshops with 4-8 people from the
different companies attending each workshop and a survey which was distributed to
key stakeholders in the six companies. In addition, all sprints included one kick-off

 Towards Continuous Customer Validation: A conceptual model 159

workshop, one validation workshop, and one results reporting workshop with all
companies attending. All group interviews and workshops were conducted in English
and lasted between 2-3 hours. The results reporting workshops were full day events
including project presentations and in-depth group discussions.

Throughout the project, the two researchers carefully documented interviews and
workshops. All notes were shared between the researchers to allow for in-depth
analysis. During analysis, and inspired by open coding principles [22], we categorized
our empirical data and phenomena found in the text. To strengthen the validity of our
research, we used data triangulation, i.e. more than one data source, and observer
triangulation, i.e. more than one observer in the study [23]. In addition,
methodological triangulation was applied in that we use a combination of data
collection methods e.g. group interviews and workshop sessions in order to avoid
having one data source influence us to heavily. Also, we used a ‘venting’ method, i.e.
a process whereby interpretations are discussed with professional colleagues [24, 25].

4 Empirical Findings

All companies involved in this study collect large amounts of customer feedback as
part of their product development processes. In early development stages, product
owners work closely with a selected number of customers to collect feedback, and in
some companies there are customer-specific teams that serve the needs of a particular
customer. Typically, techniques such as alpha- and beta testing, customer interviews,
surveys, participant observations, expert reviews, and prototyping are used to obtain
qualitative customer feedback on product concepts and ideas. The intention is to have
customers try out early versions of a product and provide feedback on interfaces,
design choices and product functionality. In most companies, product owners work
closely with customers and act as a proxy towards the development organization.

In addition to qualitative feedback, all case companies collect large amounts of data
revealing product operation and performance. This data is collected post-deployment and
allows for quantitative analysis of e.g. features used or not used, information on system
re-starts, outage, faults, re-booting, upgrade success etc. Dimensioning data such as CPU
load, licenses sold etc., serve as important input for system configuration and capacity, as
well as for producing sale statistics and market assessments etc. In the automotive
domain, performance data such as speed, fuel efficiency, energy consumption,
acceleration, and road conditions is continuously collected from the vehicle. In addition
to product data collection, two of the companies have on-going feature experiments in
which customers try different versions of software features. In their experiments, and as
suggested in research in this area [10], they develop only small slices of functionality that
can be easily validated with customers before developing the full feature. In this way, the
companies avoid spending R&D efforts on developing software functionality that
customers don’t appreciate and use.

While all companies have well-established techniques for collecting qualitative
customer feedback, they experience problems when asking customers what they want.
Typically, customers are not aware of the many technological opportunities that exist.

160 H.H. Olsson and J. Bosch

Moreover, to provide input on existing ways-of-working might imply identifying your
own weaknesses or mistakes. As a result, qualitative customer feedback techniques
typically capture “ideal” customer situations and behaviors rather than the “actual”
state and “real” use of a product. Finally, all companies report on the lack of
validation of qualitative customer feedback in later stages of development. In relation
to quantitative customer observation, we see a number of challenges. First, although
the companies have access to large data sets, this is only used for troubleshooting and
support, and for answering customer queries when problems occur. What is not
common is to have this data inform the development organization. Also, challenges
arise in relation to data quality. There is no way to ask the “right” questions, and most
interviewees feel that the data collected is not helping them in their roles as
developers and product managers.

5 Problem Statement

Based on the experiences in the six companies, the problems we identify are the
following (Table 2):

Table 2. Key problems identified in the case companies

Problem identified: Description:
The ‘open loop’ problem The situation in which product management

experience difficulties in getting accurate
customer data. This leads to a situation in
which decision-making is made based on
opinions and “gut feeling” rather than customer
data, and there is the risk that the decisions that
are taken are not aligned with actual customer
needs.

Large amount of unused features Research shows that most software systems
have a large amount of unused features [26],
and that investments are put on functionality
that are not proven valuable to customers [11].
Our interviewees are convinced that a large
number of features are never used.

Wrong implementation of features There are different ways in which a certain
feature can be implemented. However, there is
no efficient way in which the companies can
continuously validate these alternatives with
customers to decide which alternative that is
the most appreciated one.

Requirements are seen as “truths” A common view in all companies is that
requirements are regarded as the “truth”.
However, and as shown in a number of studies
[14], requirements specification is one of the
most challenging tasks, and projects often fail
due to their inability to cope with changing
requirements.

 Towards Continuous Customer Validation: A conceptual model 161

Table 2. (Continued)

Problem identified: Description:
Lack of feature optimization In the Web 2.0 domain, the majority of the

development efforts are allocated to
optimization of existing features [7]. In the
companies we study, with the majority in the
embedded systems domain, the situation is the
opposite. As a result, time is spent on adding
functionality instead of re-implementing
features that don’t work well.

Misrepresentation of customers In large-scale development of software for a
mass-market, customer representation is
difficult. Typically, and as reported in the
interviews, the customers that “scream the
loudest” get recognized while other customers
get forgotten.

Lack of validation of feedback Qualitative customer feedback is never
validated in later stages, causing a situation in
which vast amounts of development takes place
although it has never been proven valuable.

Large amounts of (useless) data All companies have significant data available
that could be used to direct their development
efforts, but they are unable to capitalize on this
data. While big data offers great potential, there
is the risk of useless data if the wrong
questions are asked.

6 Qualitative and Quantitative Customer-Driven Development

In response to the problems experienced in the case companies, we developed a
model that emphasizes the importance of combining qualitative and quantitative
feedback techniques. We call the model the ‘Qualitative/quantitative Customer-driven
Development’ (QCD) model (Figure 1), and it was inductively developed based on
the generalization of approaches in the six case study companies. The QCD model is a
conceptual model in which requirements are treated as hypotheses that are validated
with customers before forming the basis for development. In contrast to specifying
requirements early in the development process, the model advocates an approach in
which hypotheses derived from business strategies, innovation initiatives, customer
feedback and from on-going validation cycles form the basis for continuous customer
validation.

As revealed in our case companies, the selection of a hypothesis is typically based
on uncertainty of how to implement a new feature, what alternative way of
implementation is most appreciated by customers or how to satisfy new customer
segments and new markets. If a qualitative CFT is selected, the validation cycle
consists of e.g. customer interviews, surveys and observations in which customer
feedback is collected. If a quantitative CFT is selected, the validation cycle consists of
e.g. feature experiments or A/B testing, in which functionality is deployed to the

162 H.H. Olsson and J. Bosch

product and/or selected customers and in which product data is collected. The CFT
validation data is used to decide whether to run another validation cycle (using
potentially another CFT), whether to have the hypothesis put back into the backlog, or
whether to abandon the hypothesis. It should be noted that qualitative and quantitative
validation cycles feed into each other. While quantitative techniques might be easier
to initiate since they don’t require any instrumentation of code, quantitative
techniques are efficient in that large amounts of data is collected with little effort. To
combine different techniques allow companies to learn from a wide range of data. For
example, qualitative techniques can be used to make sense of quantitative data. In
similar, and as emphasized in this study, quantitative techniques can be used to
validate qualitative data with a larger customer group in the later stages of
development. Below, we present how the model addresses the problems identified in
the case companies (Table 3):

Fig. 1. The Qualitative/quantitative Customer-driven Development (QCD) model

Table 3. Key problems in the case companies, and how the model addresses these

Problem identified: QCD model:
The ‘open loop’ problem Requirements are treated as hypotheses that are

continuously validated with customers. In this
way, the model helps companies close the
‘open loop’ and have customer feedback
inform the development process.

HypothesisHypotheses
backlog
- Concepts
- Ideas

Product
data
database

Custome
Feedback
Technique (CFT)

Product R&D organisa on Products in the fiel d

CFT
Data

Abandon

*Loop in which decisions are taken on whether to do more qualita ve customer feedback collec on.

QCD valida on
cycle

esis da a
da ab

Custome
Feedbac
Techniqu

ta
ta

CFT
Data

QCD valida on
ycle

Deployed
products

Selec on of
hypothesis

Selec on
of CFT

uct

e

Produ
d

e
ck
ue (CFT)

od

)

Selected
customers

eploye
cy

es

CFT
Data

New
hypotheses

Customer Feedback
Techniques (CFT):

Qualita ve data:
• Surveys
• Interviews
• Par cipant

observa ons
• Prototypes
• Mock-ups

Quan ta ve data*:
• Feature usage
• Product data
• Support data
• Call center data

New hypotheses based
on:
• Business

strategies
• Innova on

ini a ves
• Qualita ve

customer
feedback

• Quan ta ve
customer
feedback

• Results from QCD
cycles

pothe

Selec on of
hypothesis

Selec o

a

e

r

 Towards Continuous Customer Validation: A conceptual model 163

Table 3. (Continued)

Problem identified: QCD model:
The ‘open loop’ problem Requirements are treated as hypotheses that are

continuously validated with customers. In this
way, the model helps companies close the
‘open loop’ and have customer feedback
inform the development process.

Large amount of unused features Features are before it is fully developed. The
model helps companies reduce effort put on
unused features. Also, hypotheses can target
existing features to help reveal use/non-use.

Wrong implementation of features The model suggests iterative cycles in which
implementation alternatives are continuously
evaluated to confirm which implementation
alternative that is the most appreciated one.

Requirements are seen as “truths” Requirements are treated as hypotheses that are
continuously validated. Only after iterative
validation cycles, decisions are made whether
to continue development, put it back into the
backlog, or abandon the hypothesis.

Lack of feature optimization By continuous data collection revealing feature
usage, the model helps companies identify
what features and what behaviors that can be
optimized.

Misrepresentation of customers A wide range of CFT’s are used allowing
companies to learn from a larger set of
customer data.

Lack of validation of feedback Qualitative and quantitative CFT’s are
combined, with qualitative feedback used as
input for quantitative validation cycles and vice
versa.

Large amounts of (useless) data Frequent validation cycles and different CFT’s
are used to help companies refine their
hypotheses and ask the right questions.

7 Discussion

As recognized in previous research [13], there exist a number of techniques for
collecting customer feedback. While those used in early development stages typically
include direct interaction with customers, and with small amounts of qualitative data
as feedback, techniques used in later stages include indirect observation of customers,
and with large amounts of quantitative data as feedback. As experienced in our
research, most companies both qualitative and quantitative feedback techniques, and
they have access to large amounts of customer data. However, they hardly ever use
this data to inform on-going development of features [5, 6]. In accordance with
research on big data [1, 2], we see a situation in which large sets of data offers great
potential, but where the challenge is to ask the “right” questions in order to avoid
useless data. Recently, the challenges associated with collecting customer feedback

164 H.H. Olsson and J. Bosch

have been addressed by proposing a number of experiment models influenced by the
lean startup concept of ‘build-measure-learn’ [11, 27, 28, 29]. In this concept, ideas
are quickly turned into testable products, data is collected by measuring how the
product is used, and ideas for product improvement are based on what is learned from
this data [29, 30]. Typically, these models target primarily the later stages of
development in which techniques for quantitative data collection are used. As a result,
they lack the synergies that can be obtained when combining qualitative and
quantitative customer feedback, and an understanding for how these techniques can
influence each other in continuous validation cycles.

In the QCD model, qualitative and quantitative customer feedback techniques are
used to validate hypotheses derived from a backlog representing product concepts and
ideas. In offering support for qualitative and quantitative validation of features, the
model helps companies more carefully decide whether a feature in the backlog is still
interesting. Also, the model suggests an approach in which items in the backlog are
regarded as hypotheses rather than requirements, and represent items that can
potentially become valuable for customers. In this way, the model offers a new
approach to requirements specification and validation. Instead of regarding qualitative
requirements as “truths” that can be specified in the beginning of the development
cycle, the model suggests an approach in which requirements are treated as
hypotheses that are continuously validated with customers, and only those that prove
customer value throughout the development cycle are fully developed and deployed.
In combining qualitative customer feedback with quantitative customer observation,
the model addresses the concern with having customers say what they think they want
– but not being able to express what they really need.

8 Conclusions

In this paper, we present the ‘Qualitative/quantitative Customer-driven Development’
(QCD) model. The model is a conceptual model that presents available customer
feedback techniques and emphasizes the importance of combining qualitative
customer feedback with quantitative customer observation. By recognizing the
synergies between qualitative and quantitative customer feedback, and by
emphasizing continuous data collection and validation, the model helps companies
improve their data-driven development practices.

In future research, we aim to validate the model to provide further details on how
and when different techniques can be combined. Also, we aim at capturing different
customer segments to have the conceptual model support validation cycles with
different customer segments in order to maximize the value in each of these.

 Towards Continuous Customer Validation: A conceptual model 165

References

1. Chen, H., Chiang, R., Storey, C.V.: Business intelligence and analytics: From big data to
big impact. MIS Quarterly 36(4), 1165–1188 (2012)

2. Westerlund, M., Leminen, S., Rajahonka, M.: Designing Business Models For The Internet
of Things. Technology Innovation and Management Review, 5–14 (July 2014)

3. Bosch, J.: Building Products as Innovations Experiment Systems. In: Proceedings of 3rd
International Conference on Software Business, Cambridge, Massachusetts, June 18-20
(2012)

4. Bosch, J., Eklund, U.: Eternal embedded software: Towards innovation experiment
systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 19–
31. Springer, Heidelberg (2012)

5. Olsson, H.H., Bosch, J.: Post-Deployment Data Collection in Software-Intensive
Embedded Products. In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150,
pp. 79–89. Springer, Heidelberg (2013)

6. Olsson, H.H., Bosch, J.: Towards Data-Driven Product Development: A Multiple Case
Study on Post-Deployment Data Usage in Software-Intensive Embedded Systems. In:
Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 152–164. Springer, Heidelberg (2013)

7. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on
the web: survey and practice guide. Data Mining and Knowledge Discovery 18(1), 140–
181 (2009)

8. Highsmith, J., Cockburn, A.: Agile Software Development: The business of innovation.
Software Management, 120–122 (September 2001)

9. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley
(2004)

10. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice Hall (2002)
11. Olsson, H.H., Bosch, J.: From Opinions to Data-Driven Software R&D: A Multi-Case

Study On How To Close The ‘Open Loop’ Problem. In: Proceedings of EUROMICRO,
Software Engineering and Advanced Applications (SEAA), Verona, Italy, August 27-29
(2014)

12. Olsson, H.H., Sandberg, A., Bosch, J., Alahyari, H.: Scale and responsiveness in large-
scale software development. IEEE Software 31(5), 87–93 (2014)

13. Bosch-Sijtsema, P., Bosch, J.: User involvement throughout the innovation process in
high-tech industries. The Journal of Product Innovation Management (2014) (online
version published October 13, 2014)

14. Hofman, H.F., Lehner, F.: Requirements engineering as a success factor in software
projects. IEEE Software 18, 58–66 (2001)

15. Mack, N., Woodsong, C., Macqueen, K.M., Guest, G., Namey, E.: Qualitative Research
Methods: A Data Collector’s Field Guide. Family Health International (2005)

16. Kabbedijk, J., Brinkkemper, S., Jansen, S., van der Veldt, B.: Customer Involvement in
Requirements Management: Lessons from Mass Market Software Development. In:
Requirements Engineering Conference (2009)

17. Yiyi, Y., Rongqiu, C.: Customer Participation: Co-Creating Knowledge with Customers.
In: Wireless Communications Networking and Mobile Computing (2008)

18. Iivari, J., Isomäki, H., Pekkola, S.: The user – the great unknown of systems development:
reasons, forms, challenges, experiences and intellectual contributions of user involvement.
Editorial in Information Systems Journal 20, 109–117 (2010)

166 H.H. Olsson and J. Bosch

19. Ritala, P., Agouridas, V., Assimakopoulos, D., Gies, O.: Value creation and capture
mechanisms in innovation ecosystems: a comparative study. International Journal of
Technology Management 63(3) (2013)

20. Walsham, G.: Interpretive case studies in IS research: Nature and method. European
Journal of Information Systems 4, 74–81 (1995)

21. Runesson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14 (2009)

22. Strauss, A.C., Corbin, J.M.: Basics of Qualitative Research. Sage Publications, Thousands
Oaks (1990)

23. Stake, R.E.: The art of case study research. SAGE Publications (1995)
24. Kaplan, B., Duchon, D.: Combining qualitative and quantitative methods in IS research: A

case study. MIS Quarterly 12(4), 571–587 (1988)
25. Goetz, J., LeCompte, D.: Ethnography and Qualitative Design in Educational Research.

Academic Press, Orlando (1984)
26. Backlund, E., Bolle, M., Tichy, M., Olsson, H.H., Bosch, J.: Automated User Interaction

Analysis for Workflow-Based Web Portals. In: Proceedings of the 5th International
Conference on Software Business, Paphos, Cyprus, June 16-18 (2014)

27. Fagerholm, F., Sanchez, G., Mäenpää, H., Münch, J.: Building blocks for continuous
experimentation. In: The Proceedings of the RCoSE 2014 Workshop, Hyderabad, India,
(June 3, 2014)

28. Bosch, J., Olsson H.H., Björk, J., Ljungblad, J.: Introducing Early Stage Software Startup
Development Model: A Framework for Supporting Lean Principles in Software Startups.
In: Proceedings of the Lean Enterprise Software and Systems Conference (LESS), Galway,
Ireland, December 1-4 (2013)

29. Ries, E.: The Lean Startup: How Constant Innovation Creates Radically Successful
Businesses. Penguin Group, London (2011)

30. Blank, S.: The Four Steps to the Epiphany: Successful Strategies for Products that Win,
3rd edn. (2005) http://Cafepress.com

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 167–173, 2015.
DOI: 10.1007/978-3-319-19593-3_14

Business Model Patterns for the Connected Car
and the Example of Data Orchestrator

Martin Mikusz1,2(), Christopher Jud1, and Tobias Schäfer1

1 Department VIII, Chair of Information Systems II, Prof. Dr. Georg Herzwurm,
Keplerstraße 17, 70174 Stuttgart, Germany

2 FOM University of Applied Sciences, Rotebühlstr. 121, 70178 Stuttgart, Germany
{mikusz,jud,schaefer}@wius.bwi.uni-stuttgart.de

Abstract. Along with the connected car, previously isolated business models of
traditional goods-producing industry melt together with those of software
businesses. It is becoming apparent that software businesses may have to play
an important role, provided that they are capable of building up competencies in
engineering business models for this emerging and converged market. We
identify and cluster business model patterns that we rate as being capable of
transforming product innovations, enabled by abilities and characteristics of
cyber-physical systems and the underlying technical platforms, into business
model innovations. We discuss further the pattern cluster Data Orchestrator.

Keywords: Business model patterns · Connected car · CPS · Platform ecosystems

1 Introduction

There is barely another industry that illustrates the potential of cyber-physical systems
(CPS) clearer than the automotive sector [1]. This potential is especially expressed in
smart services for the connected car, enabled by abilities and characteristics of CPS
and the underlying technical platforms. Smart services offer valuable benefit for
consumers through intelligent connection of the vehicle with its environment
(transportation infrastructure, other vehicles, driver etc.). Along with the connected
car, the automotive value chain transforms into a cross-domain value network of
manufacturers and their previous suppliers and service providers, with ICT providers,
smartphone manufacturers and other actors, not least software businesses. It is
becoming apparent that software businesses will have a key role to play [1], provided
that they are capable of building up competencies in engineering business models for
this emerging, converged market. Our contribution is threefold in this regard.

First, to identify potentials for business model innovation for the connected car, we
systematically select 16 especially applicable business model patterns from the set of
55 patterns that are repeatedly at the core of new, successful business models and thus
constitute the core of the Business Model Navigator [2]. According to our analysis,
these 16 patterns are capable of transforming product innovations, enabled by abilities

168 M. Mikusz et al.

and characteristics of CPS and the underlying technical platforms, into business
model innovations. Second, to reveal patterns that are mutually reinforcing, we cluster
patterns that work in a similar way. I.e., we propose combinations of patterns or
composite patterns on which, if applied to smart services for the connected car,
similar abilities and characteristics of CPS and the underlying technical platforms
have a constitutive effect. Third and based on our results so far, we systematically
analyze the three platform ecosystems Audi Connect, BMW ConnectedDrive, and
Mercedes Connect Me, whether and to what extent they solely or in combination
apply the identified business model patterns. Due to limited space, we will only
discuss further the pattern cluster Data Orchestrator.

2 Cyber-Physical Systems and Industrial Platforms as Basis
for Smart Services for the Connected Car

We exhibit abilities and characteristics of CPS from three perspectives: 1) CPS as
physical goods improved by properties of software; 2) CPS as opened and linked-up
systems in contrast to embedded systems with controlled behavior; 3) CPS as
software-enabled product service systems or solutions.

1) Research in the field of software business has pinpointed the specific economic
properties of software for a long time. There is broad consensus about the
dissimilarity between software and its value chain on the one hand, and services or
physical goods on the other hand [e.g. 3]. Now, CPS or previously pure physical
goods at least partially exhibit those characteristics. A considerable part of CPS’
overall customer value proposition can therefore be directly attributed to software,
e.g. CPS’ configuration and individualization capabilities [1].

2) CPS enable a wide range of novel functions, services, and features that are far
beyond the scope of today’s capabilities of externally non-networked embedded
systems with controlled behavior [1]. All in all, the networked vehicle, which in turn
is interpreted as a CPS and thus provides the basis for smart services, includes
• connected (sub)systems (telematics components, navigation etc.),
• that immediately collect physical data by means of sensors (GPS position data,

vehicle condition-based sensor data, sensor data of driver assistance systems
etc.),

• combine those data with additional available data and services (e.g. real time
traffic information, car repair shop information etc.),

• and interact on this basis actively or reactively with the physical and the digital
world, including interaction with other CPS (e.g. dynamic routing or eCall);

• this interaction takes place by means of actuators acting on physical processes
(e.g. (un)lock doors, controlled cooperative brake application, perspectively etc.),
via system interfaces (e.g. remote maintenance), and via human machine
interfaces (e.g. permanently installed and accident-proof telephone, navigation
device, smart phone etc.).

3) A product service system or solution is a combination of products and services
that offers value to customer beyond the sum of its parts. Solutions are co-produced

Business Model Patterns for the Connected Car and the Example of Data Orchestrator 169

by cross-industry cooperating business networks and tailored to customers’ needs.
As a consequence, new forms of cooperation and competition as well as new shapes
of solutions with declined share of mechanics and hardware on the overall customer
value proposition are emerging [4, 5]. We understand CPS as such software-enabled
solutions, i.e. combinations of software, services and tangible product parts, generated
through hybrid value creation.

Both, from technical and business perspective, smart services for the connected car
require platform constructs or conceptualizations. Here, we refer to Gawer’s [6]
classification of technological platforms and adopt the industry platform
conceptualization. Gawer defines industry platforms as products, services, or
technologies developed by one or more firms, that serve as a foundation upon which a
larger number of firms organized as a business ecosystem can build further
complementary products, technologies, or services. With slight modifications to
Gawer [6], we exhibit abilities and characteristics of industrial platforms from four
perspectives: 1) network affected ecosystem governance, 2) platform leader and
complementors as constitutive agents, 3) open interfaces and potentially unlimited
pool of accessible innovative capabilities, 4) modular design with core and periphery.

1) Industry platforms operate within the broad organizational setting of the
ecosystem, whereby coordination is ensured by ecosystem governance. In this regard,
platforms are distinct in that they are associated with network effects. I.e., there are
increasing incentives for more developer of complementary products and users to
adopt a platform and join the ecosystem as more users and complementors join [6].

2) Besides complementors, the second constitutive agent of an industry platform is
the platform leader or owner of a platform who drives industrywide innovation for an
evolving system of separately developed complementary components [6].

3) Industry platforms have opened technological interfaces, whereby there are
variations within the spectrum of how open these interfaces are. Potential innovators
of complementary products can utilize information on the platform’s technological
interfaces that are disclosed by the platform leader to build compatible complements.
Industry platforms therefore extend the pool of accessible innovating agents and their
innovative capabilities to a potentially unlimited extent [6, 7].

4) All kinds of platforms have a modular architecture organized around a core and
a periphery from which a stream of derivative or complementary products,
technologies, or services can efficiently be developed and produced [6]. I.e.,
(industry) platforms provide a foundation of modular and systematic reusable
common components. The objective is to improve efficiency and reduce cost [7].

3 Methodology

In order to rate and select our subset of patterns, we have consequently drawn on the
abilities and characteristics of CPS respectively of technological platforms exhibited in
section 2. We have directly transferred the three CPS and four platform perspectives into
selection criteria and chose only those patterns that can be assigned to both, abilities and
characteristics of CPS and of technological platforms from at least one perspective,

170 M. Mikusz et al.

respectively—since smart services for the connected car are solely enabled in interaction
between both. Overall, we rate the selected patterns as being capable of transforming
product innovations, enabled by abilities and characteristics of CPS and the underlying
technical platforms, into business model innovations. To reveal patterns that are mutually
reinforcing, we clustered patterns that work in a similar way. A smart combination of
business model patterns is crucial for their successful use. Other business model
approaches or conceptualizations besides the Business Model Navigator consider the
principle of combination crucial as well [8-10]. Here, we have drawn on the overall
assignment of the 16 selected patterns to the seven selection criteria in sum and applied
Agglomerative Hierarchical Clustering [11] to make up homogeneous groups.1 Based on
our results so far, we analyzed the introductory mentioned platform ecosystems whether
and to what extent they solely or in combination apply the identified business model
patterns. We gained data by structured analysis of publicly available documents (online
available product information, press releases etc.). We focused on smart services enabled
by abilities and characteristics of CPS and the underlying technical platforms, and largely
neglected pure infotainment, as well as non-networked driver assistance systems.

4 Results and Implications

Table 1 shows our identified set of patterns that promise potentials for business model
innovation for the connected car. We offer five combinations of patterns or composite
patterns. These patterns work in a similar way and thus are mutually reinforcing.
Due to limited space, we only discuss further the pattern cluster Data Orchestrator.
The Leverage Customer Data pattern benefits from present-day technological
progress and the consequential ability to systematically collect and process big
amounts of data. It focuses on the collection of customer data and its profitable usage
in real time [2]—the latest often in strong interaction with network effects (2.1).
Leverage Customer Data can be interpreted as collecting, processing and selling of
sensor data, and thereby, as in Fleisch et al. [12], tightly bound to the internet of
things business model pattern Sensor as a Service [12] (1.2).

1 A table similar to table 1 (obviously without clustering) served as the variable table. Filled/

empty cells were coded as 1/0. Due to both, the binary character of the data and the fact, that
0 gives no information about (dis)similarity between the objects (patterns), but only 1 does,
we chose the Jaccard and the Dice similarity coefficients. We applied both to check the
stability of our results—with the same result. In order to balance the focus on the unequal
number of CPS and platform criteria, we inversely weighted both criteria subsets. We
agglomerated using the weighted and the unweighted pair-group average linkage method—
again with stable results. Both methods tend neither to very long and less homogeneous
clusters, nor to dilated data space and compact clusters. The scree plot clearly determined an
optimum of five clusters. In line with this result, we have considered five clusters, each with
three or four elements, very useful for our purposes. This truncation level decomposes the
entire variance into 36,36% within-class variance and 63,64% between-class variance.

Business Model Patterns for the Connected Car and the Example of Data Orchestrator 171

Table 1. Business Model Patterns for the Connected Car

Composite
Pattern /
Cluster

Business Model
Pattern

1.1 CPS as
physical

good
improved by

software

1.2 CPS
as opened
& linked-

up system

1.3 CPS as
software-
enabled

solution or
PSS

2.1 network
affected

ecosystem
governance

2.2 platf. leader
& comple-
mentors as
constitutive

agents

2.3 open
interf. &

unlimited
innovative
capabilities

2.4 modular
design to
improve

efficiency &
reduce cost

Complemen-
tary Solution

Add-On   —

Cross-Selling  

Solution Provider   —

Digital
Customiza-

tion

Digitalization  — 

Layer Player —  

Long Tail — — — —

Mass Customization — — —

Open
Commerce

E-Commerce  

Open Business Model — — —

Revenue Sharing — — — —

Digital
Lock-In

Freemium — —

Lock-In — —

Razor and Blade  — —

Data
Orchestrator

Leverage Customer Data  —

Orchestrator  

Two-Sided Market  

Filled cell: The pattern is able to transform a product innovation, coming from the respective ability or characteristic of CPS /

industry platform, into a business model innovation; Ticked / “—" cell: Transformation of product innovation into a business model

innovation is already in practical use / no example of application could be found so far.

We have identified the pattern Leverage Customer Data in practice, especially in

the sense of Sensor as a Service: To be able to use most of the smart services
weanalyzed, car owners have to agree on permanent sensor data transmission to
others, not mentioned by name (1.2). Further telematics services or pay-as-you-go
insurance models or scenarios on the basis of these data are imaginable or already in
service. Telematics services register automatically when a service is required and
transfer all state related sensor data relevant for the service to the (external) service
provider. In certain cases, even a remote repair of malfunctions via software interface
is possible. Telematics services can just as well end up in a classic on-site roadside
assistance. However, we could not find any evidence that platform leaders try to
interrelate profitable usage of customer data in real time with network effects (2.1).

In the Orchestrator pattern, a focal company—here the platform leader—only
focuses on its core competencies, while any other activity along the value network is
being outsourced to specialized service providers and actively coordinated by the
focal company. Focusing on core competencies enables to benefit from partners’
specific skills and by that leads to increased performance and reduced costs [2] (2.4).
In so doing, openness plays an important role in order to render or orchestrate ad-hoc
cooperation between electronic service providers, on-site local service providers and
other cyber-physical systems (1.2)—similar to the Open Business Model.

Within all three analyzed platform ecosystems, the respective platform leader acts as
orchestrator—related to almost all examined smart services. E.g., eCall (based on sensor
data that also allow a remote analysis of accident type and severity, eCall can
automatically execute an emergency call) as well as telematics services can end up in a
classic on-site roadside assistance (1.2). By concierge services, the driver can receive a
remote and location independent assistance around the clock, among others enabled by
interlinked and intelligent vehicular sensors and actuators, and eventually brought out by
specialized service providers (e.g. hotel booking etc.). Mercedes integrates TomTom
navigation services; Audi those of Google. DoubleSlash develops apps for BMW’s

172 M. Mikusz et al.

ConnectedDrive platform ecosystem, while BOSCH is a specialist supplier for
emergency call management (2.4).

The Two-Sided Market pattern enables interaction between two independently
acting user groups via an intermediary or a platform. Network effects are central to
this business model pattern—i.e., the more users from one group use the platform, the
more attractive it becomes to users from the other group, and vice versa [2] (2.1). As
already mentioned, leveraging customer data in the sense of collecting, processing
and selling of sensor data closely interacts with network effects (1.2, 2.1).

At the present, we rate the three platform ecosystems as closed to some extent—that is
probably why we could not find the Two-Sided Market pattern visibly addressing
 two-sided network effects. However, we identified one-sided network effects connected
with traffic information services: BMW’s traffic information system takes GPS data
among others also from movement profiles of other networked vehicles
(ConnectedDrive-enabled BMW vehicles) in real time. In this way, a system of systems
of many vehicular CPS is created and all of them function as resource integrators by
supplying the necessary sensor data (1.2). I.e., the more users use this smart service, the
better it functions and the more attractive it becomes to further users (2.1).

Overall, the three business model patterns discussed in this section can potentially
transform product innovations into business model innovations, mainly coming from
the understanding of CPS as opened and linked-up systems (1.2) in combination with
platform-based network effects (2.1). As this cluster focuses on customer data,
collected and processed by opened and linked-up systems, we name it Data
Orchestrator. We consider this cluster important, since it is the only one that applies
the full potential coming from criterion 1.2 in practice, and the only one that applies
platform-based network effects in practice in case of the Two-Sided Market pattern.

5 Limitations and Future Research Directions

Our results are limited by its exploratory nature and need further elaboration, scrutiny,
and competing views. Further empirical studies, now beginning, are needed and are to
go far beyond our first exploratory study. In addition, further empirical work should
provide a deeper evaluation.

References

1. Broy, M., Cengarle, M.V., Geisberger, E.: Cyber-Physical Systems: Imminent Challenges.
In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539, pp. 1–28.
Springer, Heidelberg (2012)

2. Gassmann, O., Frankenberger, K., Csik, M.: The Business Model Navigator: 55 Models
that will Revolutionise your Business. Pearson, Harlow (2014)

3. Schief, M., Buxmann, P.: Business Models in the Software Industry. In: 45th Hawaii
International Conference on System Sciences, pp. 3328–3337 (2012)

4. Galbraith, J.: Organizing to deliver solutions. Organizational Dynamics 31, 194–207
(2002)

Business Model Patterns for the Connected Car and the Example of Data Orchestrator 173

5. Velamuri, V.K., Neyer, A.-K., Möslein, K.M.: Hybrid value creation: a systematic review
of an evolving research area. J. Betriebswirtschaft 61, 3–35 (2011)

6. Gawer, A.: Bridging differing perspectives on technological platforms: Toward an
integrative framework. Research Policy 43, 1239–1249 (2014)

7. Gawer, A., Cusumano, M.A.: Industry Platforms and Ecosystem Innovation. Journal of
Product Innovation Management 31, 417–433 (2014)

8. Amit, R., Zott, C.: Value creation in e-business. Strateg. Manag. J. 22, 493–520 (2001)
9. Timmers, P.: Business Models for Electronic Markets. Electronic Markets 8, 3–8 (1998)

10. Osterwalder, A., Pigneur, Y.: Business model generation. Wiley, New Jersey (2010)
11. Everitt, B.S., Landau, S., Leese, M.: Cluster analysis, 4th edn., Arnold, London (2001)
12. Fleisch, E., Weinberger, M., Wortmann, F.: Business Models and the Internet of Things

(2014), http://www.iot-lab.ch/wpcontent/uploads/2014/11/EN_Bosch-Lab-White-Paper-
GM-im-IOT-1_3.pdf

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 174–178, 2015.
DOI: 10.1007/978-3-319-19593-3_15

Business Models for Platform-Based Digital Services:
Stakeholder Expectations

Christopher Jud()

University of Stuttgart, Keplerstr. 17, 70174 Stuttgart, Germany
jud@wius.bwi.uni-stuttgart.de

1 Problem and Research Question

The transformation of physical products into product service systems offers possibilities
for delivering benefits to customers and increases the value for them to use the products.
Therefore these products are charged with services [1]. This transformation is not only a
chance but also a challenge for several industries – not only but especially in Germany
where automotive manufacturers and machine manufacturers as long as the ecosystems
of these industries account for a huge part of the gross national product (GNP) [2].

The originally business model (BM) of for example automotive Original Equipment
Manufacturers (OEMs) is changing. The portfolio contains different BM starting with
selling cars to car sharing, where the product is not the car itself but instead offering the
service to use a car for driving from one point to another by paying only for the time the
car is used [3]. Next to this example there is a bunch of services which further increase
the value of the product for the customer by adding features like music streaming or the
delivery of different kinds of information. Also the usage of the product can be improved
by offering services like telematics services or additional features like concierge services.
Via the concierge service a user i.e. in a car can contact a call center to book hotels or
flights etc. All these BM strongly depend on information technology and corresponding
digital services. The benefit of some of these services is questionable. Some of them
strongly bounded to the product (services of automotive OEMs) or the added value is
questionable (In-car e-mail function). For others, the benefit for the customer is uncertain
(monitoring the temperature of a refrigerator via an app as example for an application in
the domain of Internet of Things (IoT)). These points are very rarely concerned within
the literature. The question is what kinds of services are meeting the users’ expectations.
Further need to be examined, how developers and suppliers can be attracted by service
platforms.

But not only the range of BM is changing, also does the structure of suppliers and
partners. The portfolio of digital services created and offered i.e. by automotive OEMs
for example for their in-car platforms are challenged. The commitment of IT-companies
like Apple or Google to offer software solutions for cars challenge the platforms of the
OEMs. Apps and services, which have been offered for their ecosystems for devices like
Tablet-PC and smartphones, open new possibilities for extending the offerings to further
devices like cars or other IoT-devices. Former suppliers (of interfaces) now influence
innovations and decisions concerning digital services for the platforms and product
development. The threat for OEMs is that they are demoted to “hardware suppliers”

 Business Models for Platform-Based Digital Services: Stakeholder Expectations 175

because the digital services are created for and delivered by the ecosystem of the IT
companies. The automotive industry is one example where a physical product is charged
with digital services to enhance the users benefit while using the product. Other examples
are machine or tool manufacturers as well as manufacturers of consumer products like
refrigerator or watches.

This dissertation investigates the upcoming changes from the OEMs stakeholders’
point of view. Furthermore the gaps found in creating services that meet the stakeholders’
expectations are addressed. The different ecosystems and BM regarding digital services
will be reviewed. The following research questions will be examined within this
dissertation: How do platform-based digital services affect the expectations of
stakeholders regarding physical products enhanced by digital services? Which factors
influence these stakeholders’ expectations?

2 Related Work

This dissertation builds upon previous literature regarding service platforms and
ecosystems, business models and digital services like in [5,6,7]. In [6] different
characteristics of software ecosystems and views on such platforms are discussed.
The authors also mention embedded ecosystems. This concept is one idea for
companies to circumvent the lock-in to one platform-vendor. [7] discusses the
distinction between internal and external platforms as well as the network effects on
platforms and multi-sided markets. Especially multi-sided markets represent a
concept which will be important for this dissertation because of the stakeholder view
of this dissertation. Also the governance of ecosystems and platforms are discussed in
these papers. The governance of ecosystems and platforms is one point which need to
be discussed also in the topic of this dissertation because governance structures also
influence the perception of platforms or ecosystems by the stakeholders.

New BM in IoT, mobility (with focus on the car as the product) and others are
discussed in literature. For example in [4,5,6,7,8]. This literature builds the theoretical
foundation for the dissertation. Next to these sources, literature from the domain of
requirements engineering and stakeholder theory will be used to examine requirements of
stakeholders regarding digital services bundled with physical products. These findings
will be extended by empirical studies during this dissertation.

3 Methods

The dissertation is based on a reference framework, in which the roles, relationships and
artifacts are put into relation. This reference frame will be created by findings and results
of existing literature. The theoretical background of the dissertation will therefore be
done via a qualitative literature review supported by an analysis of the current market
situation. In qualitative surveys with experts from domains of digital services and related
research fields, the fundamental assumptions of this dissertation will be examined and
validated. The results of the surveys will be aggregated and summarized and refined in
several iterations (Delphi method).

176 C. Jud

The requirements of the stakeholder will be raised by quantitative surveys of
(potential) users of digital services, developers etc. Therefore an online questionnaire
will be sent among others to a selection of potential users differenced by age, income
level, education and geographical region etc. To get in touch with potential users and
other stakeholders, different sources like social media, online forums etc. will be
used. Also conferences and manufacturers could be another possible source to collect
empirical data.

The key findings of the different parts of research should be brought together and
design advices will be developed. The results of this dissertation should help to
understand the requirements of the stakeholders better, especially of the user, and
offer possibilities to transfer these insights to the research fields that explore the
development of digital services and technical creation of them. The criteria that will
be worked out during this dissertation address professionals that work in the field of
digital service design or business development. Another target group for the results
are researchers that work in the field of digital services.

4 Preliminary Results

The author worked in a research group which published preliminary work in this field
where BM with regard of digital services of German premium car manufacturers have
been examined [10]. Here, the increasing importance of in-car service platforms have
been analyzed and the types of BM have been described. Key findings have been that
all the examined companies offer digital services for their products. But the strategy
and invests vary. BMW and Daimler build up ecosystems for their products which
can be seen as offerings of services available for a broad range of models in the
portfolio of the companies. BMW and the ConnectedDrive platform has a high
maturity level from the authors’ point of view and offers for example an in-car store,
where the user can buy additional services to extend the feature set of the car by a
Real-Time Traffic Information (RTTI) service or a navigation function. Audi hesitates
out of the authors’ point of view and has a comparable range of services only for a
very limited number of models. Another finding is that the kinds of BM of the
companies related to the digital services are very comparable over the portfolio of the
three companies. But not all patterns which have been suggested by the authors for
digital services are used in the current services.

A second paper [11] builds upon that and refines the findings of [10]. The BM
patterns have been clustered using criteria basing on properties of cyber-physical
systems and technological platforms. The clustering gives an overview, which of the
patterns show a coherence in the CPS- and platform-criteria. Clustering the patterns
regarding to that criteria gives evidence which pattern is appropriate to be combined
and can be used to generate BM out of them. Based on public available information
and data, the findings show that some of the patterns are already in use. For others, no
evidence for an application could be found.

 Business Models for Platform-Based Digital Services: Stakeholder Expectations 177

But this previous work has only been the first step into a more in-depth analysis of
BM in digital services and is based on documents, publications, web pages and data
the authors found during the analysis phase. A validation of the findings and the
extension to other domains is necessary and already in progress.

During the work on these papers the upcoming changes by the offerings and
announcements of IT-companies and publications of other sources regarding this
subject also have been monitored. During the research phase many announcements
with regard to the future of the car had been made. Some of them cover the upcoming
possibilities of digital services and the issues the current automotive OEMs have with
this development.

5 Next Steps

This paper is a first summary of the research targets of the underlying work. In the
next step, the relevance of the research target will be proofed via qualitative
interviews of experts which work in departments of firms developing new services as
well as researchers who are doing research in this field as explained above. For the
interviews respective experts are necessary. The creation of a list with experts is
already in preparation.

Next to that a literature analysis will be done to get an overview of the publications
done in this area of research. After that a quantitative analysis will be done to validate
the finding of the previous steps.

References

1. Isaksson, O., Larsson, T.C., Rönnbäck Öhrwall, A.: Development of Product-Service
Systems: Challenges and Opportunities for the Manufacturing Firm. Journal of
Engineering Design 20(4), 329–348 (2009)

2. Statistisches Bundesamt: Anteile starker Branchen am Bruttoinlandsprodukt (BIP) in
Deutschland im Jahr 2010. In: Sueddeutsche Zeitung, vol. (158), p. 18 (2013)

3. Shaheen, S.A., Cohen, A.P.: Carsharing and Personal Vehicle Services: Worldwide Market
Developments and Emerging Trends. International Journal of Sustainable
Transportation 7-1, 5–34 (2013)

4. Zolnowski, A., Böhmann, T.: Formative Evaluation of Business Model Representations -
the Service Business Model Canvas. In: Twenty Second European Conference on
Information Systems, Tel Aviv (2014)

5. Gawer, A.: Bridging differing perspectives on technological platforms: Toward an
integrative framework. Research Policy (43), 1239–1249 (2014)

6. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business Network Management as a Survival
Strategy: A Tale of Two Software Ecosystems. In: Proceedings of the First International
Workshop on Software Ecosystems, pp. 34–38 (2009)

7. Gawer, A., Cusumano, M.A.: Industry Platforms and Ecosystem Innovation. Journal of
Product Innovation Management (31), 417–433 (2014)

8. Gassmann, O., Frankenberger, K., Csik, M.: The Business Model Navigator: 55 Models
that will Revolutionise your Business. Pearson, Harlow (2014)

178 C. Jud

9. Fleisch, E., Weinberger, M., Wortmann, F.: Business Models and the Internet of Things
Bosch Internet of Things & Services Lab (February 24, 2014), http://www.iot-
lab.ch/wp-content/uploads/2014/11/EN_Bosch-Lab-White-Paper-
GM-im-IOT-1_3.pdf

10. Schäfer, T., Jud, C., Mikusz, M.: Plattform-Ökosysteme im Bereich der intelligent vernetzten
Mobilität: Eine Geschäftsmodellanalyse. In: HMD Praxis der Wirtschaftsinformatik(2015),
doi: s40702-015-0126-4

11. Mikusz, M., Jud, C., Schäfer, T.: Business Model Patterns for the Connected Car and the
Example of Data Orchestrator. In: ICSOB 2015 (2015)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 179–185, 2015.
DOI: 10.1007/978-3-319-19593-3_16

Development of a Method for the Economic Evaluation
of Predictive Maintenance

Tobias Tauterat()

Graduate School of advanced Manufacturing Engineering (GSaME),
Universität Stuttgart, Chair of Information Systems II,

Keplerstraße 17, 70174 Stuttgart, Germany
Tobias.Tauterat@gsame.uni-stuttgart.de

1 Motivation

The High-Tech Strategy which was developed by the German Federal Government in
2011 including the future project Industry 4.0 was initiated to promote
informatization of manufacturing technology and to pave the way for intelligent
production and thus intelligent factories. The goal of Industry 4.0 is to ensure the
future viability of the German manufacturing economy through digitization, so that
this economy plays a leading role in the international environment in the future [1].

Various new technologies are the foundation of an interconnected and intelligent
manufacturing that consists of interconnected and intelligent products, plant and
machinery. Based on these new technologies, new concepts in manufacturing can be
realized and new business models can be developed [2]. That includes for example
the Internet of the Things, which allows an interconnection of physical objects, cyber-
physical systems to enable intelligent objects, and machines as well as the
“Appization”, and the digital shadow of manufacturing [2-7].

These different technologies and concepts have an impact on plant and machinery
in manufacturing companies. Particularly machines are able to capture their current
states precisely and to forward them to other machines and/or software systems in
order to be analyzed, if necessary. However, for this purpose machines need to
become more intelligent by the integration of sensors and actuators as well as the
connection to the corporate network or directly to the Internet. Based on their states,
those intelligent machines are able to control or to react to several states within a
defined framework [4, 8].

Regarding the life cycle of a machine the biggest added value of an intelligent
machine emerges at the operating stage as data about the machine and the
environment can be collected, evaluated and - based on these evaluations - actions can
be performed. Such a use case at the operating stage is maintenance. Maintenance is
defined as the “combination of all technical, administrative and managerial actions
during the life cycle of an item intended to retain it in, or restore it to, a state in which
it can perform the required function” [9]. Over time several maintenance types were
established. For example corrective maintenance is carried out if an object e.g. a
machine is not working anymore or an error occurs. Another example is preventive
maintenance, which is time-controlled or interval-controlled and performed based on

180 T. Tauterat

the manufacturer's data over the life of a machine component by an employee [9, 10].
The concept of Industry 4.0 includes intelligent machinery respectively production
plants. It is imaginable that by real time collection of data about the machines and the
environment and their evaluation by a software system the process of maintenance
can be improved [8] as well as new business models can be developed [2]. So as part
of Industry 4.0 including the transition to intelligent factories with intelligent
machinery maintenance also becomes intelligent. Thus, the manufacturer’s stated
durability is not crucial for the execution of the maintenance in the case of Predictive
Maintenance (PdM) [9]. Maintenance is rather adequately initiated by the so-called
Condition Monitoring, by which the condition of the machine components is captured
by appropriate sensors [11]. Based on the condition of a machine component the point
of time for maintenance is predicted. As a requirement for the application of PdM it is
necessary that the machines have the ability to capture the conditions of their
components via Condition Monitoring and to forward these data to the corporate
network respectively directly to the Internet with integration. The processing of these
data is executed by software systems, which are located either in the in-house data
center or in a cloud solution [12, 13]. Nowadays different technical possibilities are
used to capture the condition of machine components. For instance, infrared cameras
can reveal the heat development or vibrations analyzer can determine the deterioration
of ball bearings [14].

Regarding the current situation of technology a technological realization of new
concepts of maintenance is unproblematic, as technologies for this purpose already
exist [8]. However, for companies, which perform maintenance, the question arises,
whether it is reasonable from an economic point of view to introduce maintenance in
terms of Industry 4.0. So far there are no specific methods to evaluate this kind of
predictive maintenance.

This contribution presents the state of the art concerning methods to evaluate
predictive maintenance from an economic point of view in chapter 2. Based on these
findings the research objective and research questions are derived in chapter 3. Finally
chapter 4 presents the research approach to achieve the research objective.

2 State of the Art

For capturing the state of research two literature reviews were carried out; firstly a
rather unstructured literature review in order to identify methods of general economic
evaluation and secondly a systematic literature review to identify and analyze
methods for economic evaluation of software systems.

In contrast to an unsystematic literature review a systematic literature review should
ensure that the transparency and the intersubjective traceability is increased by the
systematic documentation of the individual processing steps [15, 16]. For this research
project an approach consisting of five stages was chosen, based on different scientific
publications regarding the conception and execution of systematic literature reviews (see
e.g. [17-19]); 1) Preparation of the analysis, 2) Execution of the analysis, 3) Data
extraction and analysis, 4) Conclusion, and 5) Documentation.

 Development of a Method for the Economic Evaluation of Predictive Maintenance 181

For this literature review following inclusion criteria were used: Literature
databases: ACM Digital Library, EBSCOhost Business Source Premier, IEEE Xplore,
ScienceDirect and SpringerLink; Publication types: Article, book; Quality of
publication: Peer-Review; Languages: English, German; Search space: Title,
abstract; Search term: See 1

Within the literature review 225 publications were identified. Based on these
publications 37 publications were rated as relevant. The relevance evaluation
considered the publications´ content, e.g. if qualitative or quantitative factors are
addressed or if the method is supporting the decision concerning investments.
From a qualitative point of view the review shows that there are different generic
methods for economic evaluation in the field of investment appraisal (see e.g. [20,
21]) as well as methods for technology assessment (see e.g. [22]). However, because
of their generic structure and the strong concentration on specific individual factors
for the economic evaluation these methods are only partly suitable for the evaluation
of PdM in machinery and plant engineering. Looking at the software specific methods
for economic evaluation nine publications could be found, which consider the
development or adjustment of an economic evaluation method. Two of these
publications address qualitative and quantitative factors and seven publications only
consider quantitative / monetary factors (see e.g. [23-25]). The application of an
economic method was described and performed in 13 publications (see e.g. [26-28]).
In total nine publications served as decision support of investments (see e.g. [29, 30])
and two publications addressed the introduction and/or development of software (see
e.g. [31-33]). Several publications addressed the different contents only partially. At
the end no method for economic evaluation of PdM can be identified.

In addition to the state of research the state of practice was recorded through
expert interviews. These interviews served to expose if evaluation methods for
investments in new technologies already exist in companies, if they already have
methods to evaluate software-intensive technologies, and if there are methods to
evaluate PdM, in order to prove practical relevance of this research project.

The expert interviewees have to work in a company within the machinery and plant
engineering on the one hand and on the other hand to possess knowledge about the
evaluation of technologies, specifically regarding the maintenance process. Five expert
interviews were conducted. Each interview took 15 to 25 minutes and was recorded.

Based on these interviews it can be concluded that the subject Industry 4.0 is
highly relevant to companies within the machinery and plant engineering. Especially
the evaluation of technology for specific solutions regarding Industry 4.0 is highly
relevant, as the companies explicitly want to know which added value they can expect

1 ("efficiency analysis" OR "economic feasibility study" OR "profitability analysis" OR

"calculation of profitability" OR "capital budgeting" OR "cost effectiveness study" OR
"economic calculation" OR "economic efficiency calculation" OR "economy calculation" OR
"efficiency calculation" OR "evaluation of economic efficiency" OR "investment appraisal"
OR "viability study" OR "economic evaluation" OR "cost effectiveness assessment" OR
"cost-benefit analysis" OR "cost-effectiveness analysis" OR "value analysis" OR "efficiency
measurement") AND (software OR "condition monitoring" OR "predictive maintenance")
AND (method OR procedure OR approach)

182 T. Tauterat

before investing. Looking at the maintenance of plan and machinery, currently it is
realized time-controlled and based on the failure probability, which is communicated
by the manufacturer of the individual machine components. The concept of PdM is
highly relevant, as the needed technologies already exist. However, there are no
methods to evaluate these technologies and their application from an economic point
of view in the specific use case of PdM to support an investment decision based on
this evaluation.

According to the findings of the state of the art there is no scientifically justified
and broadly accepted method which combines the following aspects: support for
investment decisions, process analysis, quantitative and qualitative economic
efficiency analysis, domain of machinery and plant engineering. Based on these
findings the research deficit is:

There is no scientifically justified and broadly accepted method for the economic
evaluation of PdM for plant and machinery that supports the investment decision of
companies that perform maintenance.

3 Research Objective and Research Questions

Building on the findings of chapter 2 the objective of this research project is to
develop a method, which allows plant and machinery engineering companies to
estimate the economic efficiency whether PdM should be deployed. The focus is on
the perception of the provider of the PdM service, who wants to modify its
maintenance process through an increase of software usage and who needs a better
base for decision-making concerning an investment decision, based on the outcomes
of such a method. Thus for the method it is insignificant, if machine manufacturer,
machine operator or a third party company, which is exclusively responsible for
maintenance, uses it. The object of observation is the service of maintenance and the
increased usage of software for its processes. For this research project the research
objective is:

Development of a method for the economic evaluation of PdM for plant and
machinery to support the investment decision for companies that perform the
maintenance.

Based on this research objective the research questions are:

• Which requirements should be considered for an economic evaluation method of
PdM of plants and machinery in order to support investment decisions of
companies that perform maintenance?

• Which existing economic evaluation methods can be used for PdM?
• How far do existing economic evaluation methods for PdM meet the

requirements of a found decision support for companies that perform maintenance
(see research question 1)?

 Development of a Method for the Economic Evaluation of Predictive Maintenance 183

• How should economic evaluation methods for PdM of plants and machinery be
designed in order to support an investment decision of companies that perform
maintenance?

By answering the different research questions the expected result of this research
project can be seen in the fact that companies which discuss an investment in PdM
and thus an implementation of PdM will have a method which supports the decision
making, based on the outcomes of the economic evaluation method. Due to the
service-oriented nature of PdM it is conceivable that trough the method on the one
hand the current state is captured and on the other hand the target situation is
theoretically worked out and evaluated. Based on these situations the management
can be supported in the decision making afterwards, e.g. by revealing the advantages
and disadvantages of the different situations or by a detailed cost-benefit comparison.
To reach that expected result partial result are defined additionally, which in total
represent the expected result. These partial results are: 1) Catalogue of requirements;
2) Overview of economic evaluation methods, which can be used for the evaluation of
the economic efficiency of PdM; 3) Methods-Requirements Matrix; 4) Method for the
evaluation of the economic efficiency for specific cases of PdM in machinery and
plant engineering.

4 Research Approach

For this research project an approach consisting of five phases has been chosen,
which is based on different approaches from the subject areas “Method Engineering”
and “Situational Method Engineering” (see e.g. [34-37]):
1) Requirements elicitation, 2) Search for existing methods, 3) Review of existing
methods based on the collected requirements, 4) Method development, 5) Validation
of the developed method.

In the first phase “requirements elicitation” requirements, which are important for a
method for an economic evaluation of PdM, are collected through interviews with
experts. After the requirements have been collected and structured within a requirements
catalog, a systematic search for existing methods for an economic evaluation for PdM
starts. Following this, the existing methods, found in phase two, will be reviewed
concerning the collected requirements based on the methods properties and purposes. At
the end of the third phase, a methods-requirements matrix should be created in order to
show the different components of each method in summary. Based on the review of the
different methods in phase three, a method will be developed which considers all the
requirements collected in phase one to be able to support the investment decision
optimally. The artifact of this phase is a specific method to support the investment
decision for PdM. Finally this developed method should be validated through the
exemplary application by an industrial partner in phase five. By doing so it should be
ensured that all of the important requirements for an economic evaluation of PdM are
considered by the developed method and the investment decision for companies, which
want to implement PdM, is facilitated. To reach the goal of validation the different
requirements within the requirements catalogue must be prioritized by the industrial

184 T. Tauterat

partner before the application of the method starts to obtain the importance of each
requirement in the specific application case. Afterwards the economic evaluation is
performed and the industrial partner evaluates whether the different steps of the method
process and their results consider the requirements as required and whether the steps are
suitable for the evaluation of the economic efficiency of PdM.

References

1. Federal Ministry of Education and Research: Project of the Future: Industry 4.0 (2015),
http://www.bmbf.de/en/19955.php

2. Arbeitskreis Smart Service Welt: Smart Service Welt, Berlin (2014)
3. Acatech: Cyber-Physical Systems, München, Berlin (2011)
4. Geisberger, E., Broy, M.: Integrierte Forschungsagenda Cyber-Physical Systems, Berlin

(2012)
5. Heuser, L., Wahlster, W.: Internet der Dienste, Berlin (2011)
6. Communication Promoters Group of the Industry-Science Research Alliance:

Recommendations for implementing the strategic initiative INDUSTRIE 4.0, Berlin (2013)
7. Taisch, M., Majumdar, A.: ICT for Manufacturing, Milan, Dresden (2013)
8. Güntner, G., Eckhoff, R., Markus, M.: Instandhaltung 4.0, o.O (2014)
9. European Committee for Standardization: EN 13306:2010 - Maintenance - Maintenance

terminology, Berlin (2010)
10. Mustakerov, I., Borissova, D.: An intelligent approach to optimal predictive maintenance

strategy defining. In: Proceedings 2013 IEEE International Symposium (2013)
11. Isermann, R.: Fault-Diagnosis Systems, Berlin, Heidelberg (2006)
12. Weiss, H.: Predictive Maintenance (2012), http://www.ingenieur.de/Themen/

Forschung/Predictive-Maintenance-Vorhersagemodelle-krempeln-
Wartung-um

13. N.N.: Condition Based Maintenance (2015), http://www.maintenanceassistant.
com/condition-based-maintenance/

14. Bengtsson, M., Olsson, E., Funk, P., Jackson, M.: Technical Design of Condition Based
Maintenance System. In: Proceedings 8th Conference of Maintenance and Reliability,
Marcon, pp. 95–106 (2004)

15. Petticrew, M., Roberts, H.: Systematic Reviews in the Social Science, Malden, Oxford,
Victoria (2006)

16. Peine, K.: Situative Gestaltung des IT-Produktmanagements, Lohmar, Köln (2014)
17. Rowley, J., Slack, F.: Conducting a literature review. Management Research News 27(6),

31–39 (2004)
18. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in

Software Engineering (2007)
19. Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.:

Reconstructing the giant: on the importance of rigour in documenting the literature search
process, Verona (2009)

20. Andree, U.: Wirtschaftlichkeitsanalyse öffentlicher Investitionsprojekte, Freiburg (2011)
21. Kruschwitz, L.: Investitionsrechnung, Berlin (2014)
22. Verein Deutscher Ingenieure: VDI 3780 - Technology Assessment Concepts and

Foundations, Berlin (2000)
23. Badri, M.A., Davis, D., Davis, D.: A comprehensive 0–1 goal programming model for

project selection. Journal of Project Management 19(4), 243–252 (2001)

 Development of a Method for the Economic Evaluation of Predictive Maintenance 185

24. Karat, C.-M.: A Business Case Approach to Usability Cost Justification for the Web
(2005)

25. Taudes, A., Feurstein, M., Mild, A.: Options Analysis of Software Platform Decisions: A
Case Study. MIS Quarterly 24(2), 227–243 (2000)

26. Ioannou, G., Sullivan, W.G.: Use of activity-based costing and economic value analysis
for the justification of capital investments in automated material handling systems (2010)

27. Röthing, P.: Empfehlung zur Durchführung von Wirtschaftlichkeitsbetrachtungen in der
Bundesverwaltung, insbesondere beim Einsatz der IT, Berlin (2007)

28. Wolf, P., Krcmar, H.: Prozessorientierte Wirtschaftlichkeitsuntersuchung für E-Government
Wirtschaftsinformatik 47(5), 337–346 (2005)

29. Bernroider, E., Koch, S.: Entscheidungsfindung bei der Auswahl betriebswirtschaftlicher
Standardsoftware. Wirtschaftsinformatik 42(4), 329–339 (2000)

30. Kohonen, T.: CAD-Handbuch. Auswahl und Einführung von CAD-Systemen, Berlin,
Heidelberg, New York, Tokyo (1984)

31. Kazman, R., Asundi, J., Klein, M.: Quantifying the costs and benefits of architectural
decisions. In: Proceedings 23rd International Conference on Software, May 12-19,
 pp. 297–306 (2001)

32. Soares, J.O., Fernandes, A.V.: Economic evaluation of software projects - A systematic
approach. Computers & Industrial Engineering 37(1-2), 169–172 (1999)

33. Lee, T., Baik, D., In, H.P.: Cost Benefit Analysis of Personal Software Process Training
Program (2008)

34. Harmsen, F., Brinkkemper, S., Oei, H.: Situational Method Engineering for Information
System Project Approaches, In: Verrijn, Olle (hg.) 1994 – Methods and Associated Tools,
pp. 169–194 (1994)

35. Brinkkemper, S., Lyytinen, K., Welke, R.J.: Method Engineering, London, New York
(1996)

36. Mayer, R.J., Crump, J.W., Fernandes, R., Keen, A., Painter, M.K.: Information Integration
for Concurrent Engineering (IICE) Compendum of Methods Report, Ohio (1995)

37. Ralyté, J., Mirbel, I., Deneckère, R.: Engineering Methods in the Service-Oriented
Context, Heidelberg (2011)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 186–191, 2015.
DOI: 10.1007/978-3-319-19593-3_17

Towards Standardization of Custom Projects via Project
Profile Matching

Axel Hessenkämper1() and Barbara Steffen2

1 GEA Westfalia Separator Group GmbH, Werner-Habig Str. 1, D-59302, Oelde, Germany
Oeldeaxel.hessenkaemper@gmx.de

2 University of Twente, Enschede (NL), Drienerlolaan 5, NL-7522,
NB Enschede,The Netherlands

b.r.r.steffen@student.utwente.nl r

1 Problem and Research Question

Most enterprises producing and offering high-end customized products face major
internal communication and alignment issues. Typically, these occur in the context of
individual projects within the organization consisting of various sites, plants or other
points of operation (e.g., engineering companies, customer sites,…) where valuable
experience and knowledge is gained. The source of the issues is that projects are
conducted within a project team’s horizon and are not supported by a systematic and
easy-to-use way of reusing knowledge gained in the past. This is confirmed by the
statement of Mr. Banus, Country Business Unit Head Compression at Siemens
Nederland NV, saying that “[Every project] has to start from an empty paper towards
a package, but following a formalized procedure”. Especially in customisation
projects, where every project team is continuously developing new product features,
new processes, or handling the use of diverse materials, the knowledge alignment
issue leads to the frequently occurring problem of re-inventions and re-developments
[2]. Referring to Nonaka-Takeuchi’s SECI model [8], there are established theories of
how to improve and persist organizational knowledge. However, in the large
organizations we visited there is currently no satisfactory systematic way to store
existing knowledge gained in previous projects. For example, files are often stored in
a variety of ways, and most of the company’s intellectual capital is under-used or
even lost. There are existing content management systems (CMS) like Livelink [4],
Microsoft SharePoint [5] and ShareNet [10] that have already existed for years, but
none meets and exploits the needs of global enterprises. This mismatch leads to the
conclusion that organizations face the central problem of poor knowledge sharing,
leading to repetitive and costly re-inventions of the wheel [2].

This problem cannot be easily overcome as the apparent loss of a subsidiary’s
power when providing its unique knowledge is a key managerial hurdle to introducing
global knowledge sharing in multi-national corporations [6]. At this moment with the
current lack of satisfactory, systematic, and tangible ways for storing knowledge, a
suitable aggregation of the distributed intellectual capital enterprise-wide in a way
that can be used for concrete decision making in future projects seems almost
impossible. This is confirmed by observations made in three different business

 Towards Standardization of Custom Projects via Project Profile Matching 187

scenarios as they show that the current practice of information technology is still not
mature enough for a wider adoption, and that only extremely aggregated (thinned)
knowledge is used [3]. Current practices are by no means a truly efficient or helpful
way of storing and building upon existing knowledge and capabilities in future
projects. The consequence is a significant detrimental impact on the time and quality
to market of customized projects leading to huge amounts of redundant work.

The lack of a shared knowledge base additionally undermines any attempt to
standardize the development process e.g., by standardizing the used (customized)
components, approaches to specific sub-solutions, and the involved external partners
and suppliers. We interviewed a representative of a leading supplier for railway
control systems who stated that “not only reinventing the wheel costs unnecessary
resources, but also overlooking already found and better solutions leads to
inconsistent products. (...) Whenever this happens it leaves an inconsistent and
unprofessional impression at the customer”, a problem that needs to be overcome.

In summary, the main problem is that organizations often do not have a single
access point for project related information that is searchable throughout the whole
enterprise, which results in essential information being distributed, hidden and too
context specific, with limited reuse and sharing. This problem has the following
consequences:

1. Misalignment: There is little inter- and intradepartmental coordination
resulting in faulty budget and timespan planning.

2. Difficult team composition: There is no systematic support to match project
profiles with employees’ competence profiles.

3. Non-conformity: Previously developed (project) solutions are overseen.
4. Education of staff: New employees need long training before they achieve

sufficient knowledge.
5. Knowledge gets lost: On-site work remains undocumented and/ or

information is distributed over various types of files or sources making it
unclear where to retrieve information.

The problems of the internal communication could be prevented if the experience
gained and the knowledge arisen through each customisation project is systematically
characterized and pervasively shared throughout the whole enterprise, enabling cross-
site synergies. Leveraging knowledge appropriately would decrease the amount of
inefficient technological development and testing whilst enabling successful and
adequate solutions and designs to be fine-tuned over time, becoming part of the
corporate culture. As several interviewed representatives posed it, if the corporation
would systematically exploit internal expertise to the fullest that quality would be
improved incrementally, especially with regard to customization, which seems to be
right now a widespread weak point. As a consequence, time to market would also
decreases, because similar problems would be treated efficiently, avoiding
unnecessary ‘reinvention of the wheel’.

The resulting research question is therefore: How can a pervasive cross-site
knowledge synergy within global enterprises be enabled by information technology?

188 A. Hessenkämper and B. Steffen

2 Related Work

Today, advanced organizations use different variations of CMS and interact with
these for information sharing. One interviewee stated that in their organization “the
CMS allow employees to retrieve about 80% of the required information for custom
projects”. However, they lack a decent relevance-based prioritization. While these
CMS allow querying for knowledge gained in previous projects, they lack a semantic
characterization and any matching technology based on it. Being capable to
‘transform’ project profiles directly into information correspondingly ordered by
relevance is in fact a must if one e.g. wants to adequately support sales people,
informing and guiding their negotiations. Modern solutions based on corporate wikis
and blogs [1], [9] and [11] are still insufficient: even modern tagging based on content
analysis for unstructured content does not deliver a knowledge profiling good enough
for systematic retrieval and reuse.

The Global Communication Infrastructure - GCI
In contrast, the results presented by the Global Communication Infrastructure (GCI) we
propose strongly base on relevance-based prioritization: the GCI is envisioned to be seen
as CMS enhanced with the essential functionality of a recommender system. An arising
question is why solutions such as ShareNet do not live up to the customers’ expectations.
The answer is stated in a paper by Young [12] that hints at the impossibility of
globalising knowledge making it available to all stakeholders along a products’ lifecycle:
the heterogeneity of the data and systems as well as the lack of coordination of the
involved parties are, at least today, prohibitive. This is not only a problem of size, but
also a conceptual problem, as a true integration of all this heterogeneous knowledge
would require a common semantic framework and therefore a mathematical rigor absent
in most of the currently proposed (ontological) knowledge representation solutions. This
observation supports the decision to 1) consider classes of production processes as the
“thing” to be properly described and widely shared within an organization for this custom
project business; 2) (dynamically) establish domain-specific solutions tailored to the
individually considered classes of production processes, and 3) do this in a fashion that
can be organized as a product line of tailored, multi-context knowledge representation
systems.

The GCI approach allows an organization to tailor the complexity of the
knowledge modelling problem to the considered class of production problems, and to
slowly increase its complexity at need, in a controlled fashion.

3 Methods

We developed a proposal for a GCI prototype, based on requirements arising from
interviews, and we validate it again with relevant stakeholders. The basis of the GCI
is the knowledge-driven requirement specification. Users are any professional
involved in a custom project’s lifecycle, from the acquisition to the implementation
and maintenance. The GCI supports in a requirement driven fashion, meaning that

 Towards Standardization of Custom Projects via Project Profile Matching 189

searches rely on the question What (requirements) rather than How (potential
solutions). This declarative querying is typical of semantic (or property-based and
profile-driven) approaches, and it is the key to directly involve technologically less
advanced stakeholders like outside and inside sales people.

Enabled through the requirement specification, the GCI’ solution eases the
exchange of knowledge and experience, standardisation and process optimisation by
enforcing structured reporting, combined with rule-based retrieval mechanisms
that provide links to fitting reports on prior projects ordered by relevance according to
the profiles of the project and the situation..

By systematically leveraging product and process knowledge gained during
customisation projects throughout the product lifecycle (e.g. commissioning, service,
optimization,…), it additionally leads to an automatic increase of standardisation
within the organizations, despite the focus on individual projects and customisation.
The GCI grows with every continued project this way enhancing the organization’s
retrievable intellectual capital.

Dually, it is also possible to discontinue or take out types/categories and data
whenever they become obsolete due e.g. to technological discontinuities or strategic
changes, ensuring that the knowledge base is kept up-to-date in real-time. This
systematic approach to knowledge gathering, management, and reuse decreases the
amount of technological development spent on re-inventing and testing, and, at the
same time, it reduces time-to-market and increases the quality-to-market: as GCI’s
rule-based retrieval function helps professionals to systematically exploit the internal
expertise previously gathered at other sites and plants.

4 Preliminary Results

The GCI is intended to be itself a customized product, created as a flexible platform
with all the functionalities that then need to be customized and implemented for each
specific company in collaboration with their domain experts. This customisation
process ensures an excellent fit of the categories/requirements in the GCI with those
actually present in the product portfolio of the customer. Fig. 1 shows how the GCI
supports a continuous improvement cycle of the organisation’s intellectual capital:
Whenever the organisation receives a customisation request the user may start an
internal search for knowledge across the previously conducted projects available in
the GCI. The (customisation) project is then developed and implemented leveraging
this internal knowledge as its foundation, and entering into the GCI the knowledge
gained throughout its lifecycle. The following is the prototype description of the GCI.

The requirement specification (step 1) starts by defining the product category and
determining some important primary parameters. For example, based on the choices
for ‘pipeline’ and ‘water’ the system automatically asks the user to refine the water
type (drink, or wastewater) as this is crucial information for other requirements later
on in the search (e.g. which category of material has to be taken into account). This
assisted refinement functionality is possible because of GCI’s knowledge-driven
requirement specification: the GCI asks the user step by step to further refine the
project specifications based upon the knowledge already stored in the GCI. One can

190 A. Hessenkämper and B. Steffen

also further refine the profile (e.g. when picking ‘oil’, it can be specified as ‘raw’ or
‘semi-refined’), thus adding categories the GCI does not yet comprise.

Based on the project profile the GCI retrieves a list of projects relevant to the
search, ordered by relevance via the rule-based retrieval mechanism with best fitting
projects marked green (step 2). The relevance is based on ontological information in
terms of classifications and rules that depends on the current requirement profile.

Fig. 1. GCI - Continuous Improvement Cycle

After the subsequent step 3 in the GCI cycle in which the project is implemented,
all the gained knowledge is entered into the GCI.

Depending on whether the project handled already existing requirements or
introduced new requirements the concrete way to save the knowledge differs.
However, it is also very simple to introduce new requirements/specifications, because
within the GCI the structure of the data can be easily adapted by the user. Thus the
GCI allows for user-level standardized enterprise-wide knowledge updates
comprising structural changes and consistent archiving.

5 Next Steps

The GCI’s simplicity-driven approach is based on ontological domain modelling and
weighted rules that allow one to retrieve best fitting project knowledge even without
specific technological expertise. This intuitive approach provides a solid basis for an
increased mutual and company-wide understanding. Thus the simplicity-oriented
approach not only requires but also supports the corresponding cultural change towards a
more global and shared thinking, which is very beneficial for the overall organizations.
To explore the full potential for customer value we aim at introducing the product in a
real use context, in close cooperation with early adopters.

 Towards Standardization of Custom Projects via Project Profile Matching 191

A key step at the technical side is the adoption of the DyWA technology [7] to
instantiate, customize and grow the GCI knowledge base for each organization.
DyWA provides web based user-friendly definition of domain entities as well as their
corresponding API’s for a seamless integration into available business processes (e.g.
Enterprise Resource Planning Systems). In particular its potential to easily create
executable prototypes seems ideally suited to support the above mentioned cultural
change. We are planning to evaluate this potential via concrete user-stories’ of a first
mover that are created for different stakeholders to allow a high degree of usability
for each target professional group.

Acknowledgement. We would like to thank Jarno Bredenoord, Carolina-Marjolijn Klaus and
Tobias Vermeer for early discussions of the economic aspects, and Johannes Neubauer and
Stefan Windmüller for their help concerning technological questions.

References

1. Andrus, D.C.: The Wiki and the Blog: Toward a Complex Adaptive Intelligence
Community. The Social Science Research Network (SSRN) (2005)

2. Ekambaram, A., Langlo, J.A., Johansen, A.: Knowledge Transfer - A Study on
Construction Projects in a Norwegian Public Sector Organization. In: Proceedings of the
11th European Conference on Knowledge Management (2010)

3. Kasper, H., Lehrer, M., Mühlbacher, J., Müller, B.: Thinning knowledge: An interpretive
Field Study of Knowledge-Sharing Practices of Firms in Three Multinational Contexts.
Journal of Management Inquiry (2010)

4. Livelink, http://www.opentext.com/what-we-do/products/opentext-product-offerings-
catalog/rebranded-products/livelink-is-now-part-of-the-opentext-ecm-suite

5. Microsoft SharePoin, https://products.office.com/en-us/sharepoint/ sharepoint-2013-
overview-collaboration-software-features

6. Mudambi, R., Navarra, P.: Is knowledge power? Knowledge flows, subsidiary power and
rent-seeking within MNCs. Journal of International Business Studies (2004)

7. Neubauer, J., Frohme, M., Steffen, B., Margaria, T.: Prototype-Driven Development of
Web Applications with DyWA. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I.
LNCS, vol. 8802, pp. 56–72. Springer, Heidelberg (2014)

8. Nonaka, I., Takeuchi, H.: The Knowledge-creating Company: How Japanese Companies
Create the Dynamics of Innovation. Oxford University Press (1995)

9. Remidez, H., Jones, J.B.: Developing a Model for Social Media in Project Managemnt
Communications. Int. Journal of Business and Social Science (2012)

10. ShareNet, http://www.share-netinternational.org/
11. Stenmark, D.: Knowledge sharing through increased user participation on a corporate

intranet. In: Proceedings of OKLC 2005. Bentley College, Waltham (2005)
12. Young, R.I.M., et al.: Manufacturing knowledge sharing in PLM: A progression towards

the use of heavyweight ontologies. International Journal of Production Research 45(7),
1505–1519 (2007)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 192–206, 2015.
DOI: 10.1007/978-3-319-19593-3_18

To Develop or to Reuse? Two Perspectives on External
Reuse in Software Projects

Anisa Stefi() and Thomas Hess

Institute for Information Systems and New Media, Ludwig-Maximilians-Universität München,
Ludwigstrasse 28, 80539, Munich, Germany

{stefi,thess}@bwl.lmu.de

Abstract. Using existing software components is a key factor when it comes to
increasing productivity and improving the quality of software. It can be regard-
ed as a mean to manage the increasing complexity of software, as software has
become prevalent in most areas of our life. Thus, this study seeks to better un-
derstand the reuse of external software components. Based on two different
theoretical lenses, non-rational effects on decision-making and the transaction
cost theory, we analyze the degree of external reuse in software development
projects. We tested our theoretical model empirically, with data collected in
Germany. The empirical evidence is generally supportive of the theory with
some exceptions. We find out that the not-invented-here bias plays the most
important role in this strategic decision. Whereas, transaction cost constructs
show mixed results. For example, technical uncertainty does not play a role,
whereas business uncertainty positively influences the degree of external reuse.

Keywords: Transaction cost · Theory · Not-invented-here bias · External software
reuse

1 Introduction

In the recent years, we have been witnessing software platforms on the consumer side
opening up and taking advantage of external software extensions, such as plug-ins or
apps, like for example in the Apple iOS ecosystem. From the provider perspective, the
concept of integrating external software components which are purchased on the market,
or adopted from the open source community is not a new phenomenon. This idea has
been presented with the introduction of the software reuse concept in 1969 by McIlroy,
who envisioned software systems composed of already existing software components,
similar to other mature engineering disciplines [1]. Research on software reuse has fo-
cused on both creating reusable software assets and addressing the challenges that organ-
izations face, when they are systematically reusing software internally. However, little
research considers the reuse of software assets that are not developed inside the firm.
Research on software reuse within organizational context, has not explicitly addressed
this, leading to ambiguous results that show a high software reuse within the open source
community [2, 3], whereas organizations struggle to implement a successful reuse

 To Develop or to Reuse? Two Perspectives on External Reuse in Software Projects 193

program [4, 5]. In this study, we refer to the reuse of artifacts developed outside the or-
ganization as external software reuse.

Reusing software components can decrease the time-to-market as well as lessen un-
certainty associated with internal development [6]. Despite these benefits and advances
in software development, external software reuse has not been very prominent in re-
search [6]. From a management perspective, reusing external software is a make-or-buy
decision. One of the theoretical approaches to explain make-or-buy decisions, is the
transaction cost theory (TCT), which is based on the assumptions of bounded rationality
[7]. This theory argues that rational decision makers will choose internal development, if
the costs of the transaction are high. The costs associated with external reuse are related
to searching, integrating, or maintaining the components. Nevertheless, research has
often shown that decision makers deviate from the rational behavior [e.g. 8]. Research on
software reuse has suggested that the not-invented-here (NIH) bias could be one of the
inhibitors [see 9, 10]. This bias reflects the tendency to favor in-house development,
independent of other factors. Whereas existing research has found contradictory evidence
about the effect of the NIH bias [see 9, 10], research has not explicitly distinguished
whether the reused software artifact were developed within the firm, or acquired from
outside. Especially when considering software developed by external providers, this bias
can play a more important role. It can be perceived by the organization as a degradation
of its own in-house expertise, and competence [11].

Therefore, we address this research gap by analyzing the degree of external reuse
in organizations based on the non-rational factor of the NIH bias, as well as bounded-
rational factors of the transaction cost theory. The key goal of our study is to
contribute to a heightened understanding of the decision to reuse external software
components from a management perspective. More specifically we look at the follow-
ing research questions: (1) Does the not-invented-here bias influence the degree of
external software components reused within a project? (2) How do transaction cost
factors such as asset specificity and environmental uncertainty explain the degree of
external software components reused within a software project?

Our goal is not to evaluate the effectiveness of the decision but rather to explain its
drivers. Therefore, to address these questions we analyze the degree of external com-
ponents reused within software projects. We focus on companies that have the capa-
bility to develop software internally, and also choose to acquire software components
developed by external providers in order to develop their software product. External
providers could be software companies developing commercial components, or the
open source community. Thus, as software development becomes more complex,
firms might choose to avoid the “reinvent the wheel” concept, by acquiring software
components, although they have the capability to develop software on their own.
A software component is defined as a software product, or part of a software product
that provides an interface, which allows its functionalities to be integrated in other
software products [12]. Different from the service integration, which uses remote
synchronous or asynchronous calls to the API, components are used locally.
Ravichandran and Rothenberger [13] identify two types of software reuse, black-box
reuse where the source code of the component is not available and white-box reuse
where the source code is modifiable. Black-box reuse can be achieved by creating

194 A. Stefi and T. Hess

within-code references to the functional interfaces provided by the component [14].
White-box reuse can be realized by adopting, modifying, linking, and integrating the
code of an external component to the project code [14]. An analogous concept is that
of commercial off-the-shelf (COTS) software components, that are black-box compo-
nents where the software developer does not have control over its evolution [15].
Moreover, software developers are able to integrate software components inde-
pendently of the platform they were implemented in, by using software wrappers [16].
As external software artifacts, are widely available, they provide an interesting oppor-
tunity for improving productivity. Thus, this study contributes to the existing research
by providing a theoretically grounded empirical analysis of the degree of external
software reuse, in software development projects.

The rest of the paper is structured as follows. After having presented the motiva-
tion for this study in the first section, we will describe the theoretical background in
the second section. In section three we will develop and ground the hypotheses, as
well as integrate them in a research model. The design of the empirical study will be
presented in the fourth section. The data analysis will be presented in the subsequent
section. We will conclude the paper by presenting our key findings, addressing poten-
tial limitations and suggesting areas for future research.

2 Related Work

There has been limited research considering make-or-buy decisions in software de-
velopment. The concept of make-or-buy was first introduced by Culliton [17] in the
area of production, and manufacturing. In IS research, the most discussed make-or-
buy decision is that of the information technology outsourcing (ITO). A plethora of
studies have analyzed this concept through different theoretical lenses, and based on
the specific artifact outsourced. Theoretical underpinnings cover the classical transac-
tion cost theory, resource view, agency theory, etc., and even considered the effects of
non-rational decision making [e.g. 8]. One of the outsourced activities discussed with-
in this research stream, is that of software development [e.g. 14, 18]. Therefore, in
analyzing the decision to reuse external components within software projects we re-
late to existing research in outsourcing software development activities. With tech-
nical knowledge being comprised of software packages, libraries, and frameworks
[18], there is little literature analyzing the degree of external software artifacts in
software development from the management perspective. Most of the studies on the
reuse of software components focus on the general issues related to using existing
software components [19, 20] or the individual perceptions of software developers
[10] or are specific to the open source research [2, 3]. There is no study known to the
authors that quantitatively analyses the degree of external software reuse from the
behavioral, and transaction cost perspective, which will be introduced below.

2.1 The Role of Non-Rationality in Decision Making

Research in decision making has shown that individuals systematically deviate from the
laws of statistics and Bayesian updating when it comes to judgment of probabilities [21].

 To Develop or to Reuse? Two Perspectives on External Reuse in Software Projects 195

One of the most known works in this area, is that of Kahneman and Tversky [22], leading
to the development of the prospect theory, which models decision making under risk. As
Camerer [21] acknowledges, “some research has pointed towards a systematic depar-
tures, or biases, which spring from a small number of heuristics” [21 p.171]. In the last
decade, research in decision making has further focused on analyzing the occurrence and
the effect of the cognitive biases in different contexts.

In the IS discipline there is a number of articles that have focused on the cognitive
biases in decision making [see 20]. Moreover, cognitive biases have also been dis-
cussed and analyzed in the context of software development processes [e.g. 23, 24]. In
order to fully understand and capture the managerial decision making process, it is
important to address such deviations from the rational behavior. The bias analyzed in
this paper is the NIH bias or syndrome. Katz and Allen (1982) define the NIH bias “as
the tendency of a project group of stable composition to believe it possesses a mo-
nopoly of knowledge of its field, which leads it to reject new ideas from outsiders to
the likely detriment of its performance” [25 p. 8]. Thus, the NIH bias leads to the
rejection, or the underutilization of external ideas and technologies, which has nega-
tive effects on the performance of projects [26, 27]. According to the knowledge
management research, the NIH bias exists because of cultural aspects, inappropriate
incentive systems, difficulties in intra-organizational communication, and status is-
sues [26]. Moreover, Wastyn and Hussinger [11] found that the NIH bias is more
likely to be influenced by external knowledge sources, rather than from other sources
within the firm. Even from a practical perspective the NIH bias has caught some at-
tention. For example, to lessen the effect of the NIH bias, Texas Instruments offered a
“not invented here, but I did it anyway” award [28]. With regard to software reuse,
previous studies have found out contradictory results when analyzing software devel-
opers perceptions on reuse [see 9, 10]. On the contrary, within the open source com-
munity, developers reuse software, without the need of extra incentives [2]. Different
from the previous studies, we focus on external software reuse and we empirically
analyze this bias at the project level.

2.2 Transaction Cost Theory

Transaction cost theory addresses make-or-buy decisions and has been used in various
disciplines in both theoretical and empirical research [29-31]. It was initially intro-
duced by Coase [32], who discussed the concept of firms and the limitations of price
mechanisms, and was further developed by Williamson [7, 33-35]. The basis of the
TCT are assumptions of bounded rationality and opportunism [36]. Bounded ration-
ality refers to the fact that the human mind is limited, and cannot process all the in-
formation involved in an economic transaction. Opportunism is described by
Williamson as “self-interest seeking with guile” [7 p. 554]. The basic idea of TCT is
that, when buying a product or a service, the purchasing organization has to perform a
series of activities related to this transaction, such as monitoring whether the supplier
acts accordingly to the contractual specifications. These activities come at a price, and
if the costs in addition to the purchase price become larger than internal production
costs, self-production is the best option.

196 A. Stefi and T. Hess

The three characteristics of a transaction which affect its costs are asset specificity,
uncertainty, and frequency. Asset specificity, as pointed out by Williamson [7], is one
of the most important dimensions of a transaction, and refers to the “degree to which
the assets used to conduct an activity can be redeployed to alternative uses and by
alternative users without sacrifice of productive value“ [37 p. 105]. Uncertainty refers
to the fact that the information regarding the transaction is not always known. Wil-
liamson acknowledges two types of uncertainty: behavioral and environmental [38].
Behavioral uncertainty is attributed to opportunism, and is related to the fact that ac-
tors may strategically non-disclose, alter, or disguise information. Environmental
uncertainty, on the other hand, is attributed to bounded rationality and can be a result
of factors such as technology, demand, local factor supply conditions, inflation, etc.
[38]. The last dimension, asset frequency, refers to “the level of recurrence of the
activities needed by the firm for the transaction” [39 p. 127].

In IS research, TCT has been widely used for analyzing make-or-buy decisions and
especially ITO decisions [29, 36, 39, 40]. For example, Lacity et al. [29] identify 73 em-
pirical findings using TCT. Despite a wide body of research drawing on TCT, there is no
empirical research known to the authors that analyses the degree of external software
component reuse on a project level. However, with increasing speed of environmental
changes and the increasing number of available components, the decision to use existing
components can be crucial to create a competitive advantage. Explaining the degree of
external software component reuse based on TCT, could lead to a better overall under-
standing. Moreover, TCT has been shown to possess explanatory power regarding ITO
decisions, which we would also expect in this study.

3 Research Model and Hypotheses

The level of analysis in this research is a software project. This is an adequate level of
analysis as projects within an organization can have different requirements. In the
following, we consider the non-rational effect of the NIH bias and TCT constructs.

3.1 Not-Invented-Here Bias

The most important inhibitor discussed in the software reuse literature is the NIH bias or
syndrome [5, 41-44]. The NIH bias “refers to a negative attitude to knowledge that origi-
nates from a source outside the own institution” [26 p. 368]. This negative attitude has
been suggested to influence the adoption or the usage of external technologies, ideas, or
knowledge. In the context of software reuse, research has argued about a general prefer-
ence towards internal development but the NIH has not been the focus of extensive re-
search. Additionally, existing studies focus on the developers’ perception and provide
conflicting results [see 9, 10, 28]. By reusing existing software, “people may feel hin-
dered in their creativity and independence by reusing someone else's software”
[45 p. 16]. Thus, both managers and developers might tend to overvalue their work as
well as to underestimate the benefits of external software components, and would there-
fore prefer internal development over the usage of external software components.

 To Develop or to Reuse? Two Perspectives on External Reuse in Software Projects 197

Based on this reasoning, the NIH bias in the organization is negatively associated with
the degree of external software reuse in the software development process. In the case of
external software reuse we conceptualize the NIH bias through two aspects. The first one
is a general preference for internal development, which influence the reuse of software
artifacts in general. Therefore, managers who favor internal development will reuse ex-
ternal software components to a lesser degree. The second aspect, which is conceptual-
ized based on the knowledge reuse research, is the reluctance to collaborate with other
software providers. Thus, managers of software projects choose not to use external soft-
ware components as they do not want to be dependent, or cooperate with other software
providers. Thus, we can state the following two hypotheses with respect to the influence
of the NIH bias on the degree of external software used within a project.

H1a: The preference for internal software development in the organization will have a
negative effect on the degree of external software reuse, within the software develop-
ment process.

H1b: The reluctance to collaboration with external providers will have a negative effect
on the degree of external software reuse, within the software development process.

3.2 Transaction Cost Constructs

In the context of ITO decision, TCT constructs have shown ambiguous results. In a
lot of cases transaction frequency did not turn out to be a significant predictor [29,
39]. As software projects are specific and vary in complexity, they are considered a
one-time event [18]. Therefore, since we focus on software projects, we can exclude
transaction frequency construct without contradicting the TCT logic.

Project Specificity

TCT claims that the higher the specificity of an asset, the higher the transactions costs
will be due to the risk of opportunistic behavior from the supplier. Therefore, in such
cases firms could develop the software in-house more effectively. Research in the context
of ITO decisions has found mixed empirical results [29, 39]. In this study, as most soft-
ware companies work at a project level, asset specificity refers to the degree that the
project fits the individual requirements of the company, or its customers, making the
project a highly specific investment. A very specific software project also has specific
software requirements. According to TCT, identifying relevant, external software com-
ponents for a specific project is more difficult. This is because other companies or devel-
opers are not motivated to develop software components, which are difficult to use in
alternative ways. Therefore, in the case of external software components reuse, we argue
that a specific software project requires higher transaction costs in order to meet the de-
sired requirements [46]. Thus, based on the TCT, it can be argued that the higher the
level of software project specificity, the higher the willingness of software companies to
produce the assets completely in-house rather than adapt existing external solutions.
Therefore, we propose the following hypothesis:

H2: The degree of software project specificity will have a negative effect on the de-
gree of external software reuse, within the software development process.

198 A. Stefi and T. Hess

Environmental Uncertainty
Similarly to specificity, when acquiring external software components, environmental
uncertainty will play a role in the decision. There are two types of environmental
uncertainty in software development projects. First, there is the uncertainty related to
the technology, and second the uncertainty related to business development. In ITO
research, the construct of environmental uncertainty is conceptualized considering the
two aspects, business and technical uncertainty. In the case of software projects, we
explicitly differentiate between the two as technology influence the core competences
of the company. Thus, technical uncertainty is specific to the technology used, and is
affected by the software systems, programming languages, etc., whereas business
uncertainty is related to the changes in business priorities [47].

We argue that in uncertain business environments, managers might fear that the
desired project might induce extra costs, and buying software components will be thus
more expensive, also because requirements might change. Therefore, they will engage
in acquiring less external software components, also due to the extra cost related to
finding and acquiring external software components. Thus, in line with TCT, business
uncertainty is likely to have a negative impact on the level of external software reuse.
We can state the following hypothesis:

H3a: Business uncertainty will have a negative effect on the degree of external soft-
ware reuse, within the software development process.

Similarly, as technology is changing with a very fast pace, there is a high risk that the
technology might not be adequate in the future. Thus, the more technical uncertain a
project is, the more difficult it is to assess the software components that could be used
in the project. Thus, the higher the perceived uncertainty associated with the technol-
ogy of a software project, the more likely mangers will choose internal software de-
velopment instead of looking for external components. Hence, we posit the following:

H3b: Technological uncertainty will have a negative effect on the degree of external
software reuse, within the software development process.

3.3 Research Model

Figure 1 depicts the hypotheses which are integrated into one research model.

Fig. 1. Research Model

Project
Specificity

Degree of External
Software Reuse

Business
Uncertainty

T
C

T
 C

on
st

ru
ct

s

H3a (-)

Reluctance to
External

Collaboration

Preference for
Internal

Development

Technological
Uncertainty

N
IH

 B
ias

 To Develop or to Reuse? Two Perspectives on External Reuse in Software Projects 199

4 Research Methodology

4.1 Data Collection and Sample

In order to test our hypotheses, we collected data using the key-informant ap-
proach, which is widely adopted in organizational research [48]. The key-
informant method is a technique for collecting information on organizations and
collectives based on chosen informants that have particular qualifications such as
specialized knowledge, or a certain position in an organization [48]. For this pur-
pose, we developed an online questionnaire targeting people in management posi-
tions at software companies. At the beginning of the survey, the goal and the rele-
vant definitions of the study were introduced. The participants were then asked
about the usage of external software components in their company. Further, they
were asked to evaluate a project in which external software components were used
and to answer a number of questions based on this specific project. The survey was
conducted at the project level, to allow the company to better estimate the usage of
external software components.

After several pretests with researchers and managers, the questionnaire was
distributed to German companies in October 2013. An invitation email was sent to
2000 decision makers in German companies. After removing incomplete answers, a
total of 79 answers were analyzed giving a response rate of approx. 4%. Our sample
was comprised of 76.6% top-management (CEO), 16.9% middle management (Prod-
uct Managers) and only 5.2% in lower management (Engineering team-leader), 1.3%
preferred not to provide details. We tested for a nonresponse bias by analyzing early
and late respondents. A t-test provided no indication for the presence of a nonre-
sponse bias at the level of 99.9%. We additionally tested for the common method bias
by using the Harman’s single-factor test. The first factor explained only 13.8% of the
total variance, which suggests that there is no support for the common method bias
[49].

4.2 Operationalization of Constructs

Most of the measurements were operationalized based on a multi-item and a 7-point
Likert scale. Only the uncertainty constructs are based on single-item scale. Research
has shown that single-items exhibit the same predictive validity as multiple-items
(e.g. [50]). Measurement items for the constructs were adapted from previous related
studies (see Table 1). Due to the novelty of our research model, we had to develop a
new construct to measure our dependent variable, the degree of external software
component reuse available in the market place. Therefore, we measured this degree
through the two sourcing options available which are: commercial software compo-
nents [51] and open source software components [52].

200 A. Stefi and T. Hess

Table 1. Operationalization of constructs

Constructs Items Adapted from
NIH - Preference for Internal Development (PID) 3 [27]
NIH - Reluctance to External Collaboration (REC) 3 [27]
Asset Specificity (AssetSpec) 3 [40]
Environmental Uncertainty (EnvUnc) 1 [40]
Technological Uncertainty (TechUnc) 1 [40]
External Software Reuse (ExtSW) 2 Own development

4.3 Instrument Validation

Before testing our hypotheses, we assessed the reliability and validity of the meas-
urement model. Content validity was established through the pre-test and the adoption
of constructs that were used in the former studies as shown in Table 1. The reflective
measurements were validated as suggested by the literature [53]. First we tested for
the internal consistency by looking at Cronbach’s alpha which should be greater than
the critical value of .70. Further, we checked for composite reliability, and found that
all construct are above the desired value of greater than .70. Moreover, the item load-
ings on their constructs should be greater than .70. The values of the average variance
extracted (AVE) greater than .05 assess the convergent validity of the measurements.
The results are presented in Table 2.

Table 2. Instrument validation

AVE Composite Reliability Cronbachs Alpha

PID 0.671 0.858 0.774
REC 0.649 0.847 0.728

AssetSpec 0.707 0.878 0.792

Discriminant validity is also assumed as for all constructs the indicator loadings are
higher than all its cross loadings. Moreover, the Fornell-Larcker criterion which says
that the AVE of each latent construct should be higher than the construct’s highest
squared correlation with any other latent constructs [54], is fulfilled (see Table 3).

Table 3. Fornell-Larcker criterion

PID REC AssetSpec TechUnc EnvUnc

PID 0.819*
REC 0.473 0.805*

AssetSpec -0.125 -0.112 0.840*
TechUnc -0.098 -0.030 0.219 1
EnvUnc -0.012 0.130 0.041 0.278 1

*:Values of the square root of the average variance extracted (AVE)

 To Develop or to Reuse? Two Perspectives on External Reuse in Software Projects 201

For the formative construct, the degree of external software component reuse, va-
lidity is established by looking at the significance of the indicators’ weights and the
presence of multicollinearity [54]. The results are summarized in Table 4.

Table 4. Validation of formative measures

ExSW:
Degree of open source software

component reuse
Degree of commercial software

component reuse

Indicators Weights 0.92*** 0.72***

Variance Inflation
Factor (VIF)

1 1

Notes: *p < 0.10; **p < 0.05; ***p < 0.01

5 Empirical Analysis

Although the sample size fitted the “10 times” rule, which state that a minimal sample
size of 10 times the largest number of predictors for any latent variable in the model,
we conducted a post-hoc power analysis as suggested by Cohen [55]. For the power
analysis, we used the G*Power 3.1 Software [56]. The post-hoc power analysis exhib-
ited a power above the cut-off threshold of 0.8 [55] at the 95% confidence interval.
Therefore, our sample size is adequate to test the developed model. Moreover similar
datasets are also found in other studies such for example in [57].

To test the proposed hypotheses, the collected data was analyzed using structural
equation modeling. The software SmartPLS 2.0.M3 [58], based on the partial-least-
squares (PLS) algorithm, was used for this analysis. This method is known to perform
well with small sample sizes which makes it highly appropriate for our study [53, 54].
With SmartPLS no further sample distribution assumption are necessary. In this case,
the software was used to calculate path coefficients and to determine the paths’ signif-
icance in the model using the bootstrapping function. The results of the analysis are
presented in Figure 2.

 Notes: *p < 0.10; **p < 0.05; ***p < 0.01

Fig. 2. Results of the regression model

Technical
Uncertainty

Project
Specificity

Degree of External
Software Reuse

R2=0.327

Business
Uncertainty

TCT Constructs

0.201**

Preference for
Internal

Development

Reluctance to
External

Collaboration

N
IH

 B
ia

s

202 A. Stefi and T. Hess

Overall, our five main constructs can explain more than one-third of the variance
of the dependent variable (R2 = 0.327). The NIH bias constructs, both the preference
for internal development and reluctance to collaborate have a negative significant
effect, thus supporting H1a and H1b. Moreover, reluctance to external collaboration
construct has the strongest effect (β = 0.339, t = 3.223). We find that project specifici-
ty does have a slightly positive effect on external software reuse, different from ex-
pected. Thus, we have to reject hypothesis H2. Technical uncertainty does not have an
effect although the sign is as hypothesized. Business uncertainty has a significant
effect on our dependent variable but with a different sign from our hypothesis H3a (β
= 0.201). The results of the analysis are summarized in Table 4.

Table 5. Overview of the results

Hypothesis Sign t-Statistics β Results

H1a - 2.131 -0.221 Supported
H1b - 3.223 -0.339 Supported
H2a + 1.883 0.201 Not Supported
H3a + 2.002 0.201 Not Supported
H3b - 0.071 -0.009 Not Supported

6 Conclusions, Implications and Limitations

In this study, we looked at the relationship between the NIH bias and the transaction cost
constructs on the degree of external software reuse, within software projects. As ex-
pected, we found a strong negative relationship between the NIH bias and the external
software reuse. The strongest relation was found between the degree of external reuse
and the reluctance to collaborate with external providers. The preference for internal
development construct has a negative significant effect, which stresses that influence of
NIH bias at the project level choices, and it is not only the perceptions of individual de-
velopers. Different from what TCT suggests, we find that specificity of a project has a
positive, slightly significant effect on the extent of external software reuse. Asset speci-
ficity has shown contradictory results also when it comes to the outsourcing decision.
Wang [18] also found a positive relationship between software projects’ specificity and
outsourcing success. Thus, it might be the case, that in the context of software develop-
ment, specificity has a positive influence on external software reuse due to a lower risk of
opportunisms from other vendors. More interestingly, we found the results within envi-
ronmental uncertainty construct. We find that technical uncertainty does not influence the
degree of external reuse within the project. On the contrary, business uncertainty seems
to positively influence the degree of external software reuse. Thus, in uncertain business
environment, reusing existing software allows mangers to mitigate possible losses. Alt-
hough, we do not have the typical integrator companies as in other mature engineering
disciplines, we do see potential for a software component market which could be spe-
cialized for different industry types. This trend could be observed within game or web
development, where already a large number of software components facilitate the soft-
ware development process.

 To Develop or to Reuse? Two Perspectives on External Reuse in Software Projects 203

From the theoretical perspective, this study is the first to analyze the factors affect-
ing the degree of external reuse within software development projects. Similar to
outsourcing decisions, we could show that the factors influencing this decision can be
non-rational. Thus, we found out that the NIH bias was the strongest factor influenc-
ing the degree of external software reuse. TCT provided little explanation for this
make-or-buy decision. Additionally, within software development projects this study
could show contradictions with the TCT logic, which need to be further investigated.
Moreover, we could also observe that business and technical uncertainty behave
differently and research needs to separately account for these two aspects.

With regard to practical implications, managers should be conscious of possible bi-
ases in their decision-making. First, software companies could mitigate such biases by
providing a better culture, in order to take advantage of the sourcing opportunities
available. Second, companies should establish clear processes and performance met-
rics when considering developing software artifacts in-house or reusing external ones.
Specific processes based on specific metrics can mitigate the effect of the NIH bias.
Third, companies could provide incentive programs that encourage managers to reuse
external artifacts, when valuable for the company. The external software reused, both
open source and commercial, can provide a competitive advantage for a firm, espe-
cially in the short-term. Thus, companies should adopt architectures that facilitate the
integration of external components. Additionally, software component providers
should increase the trust of their customers, as reluctance to collaborate is the strong-
est inhibitor of external reuse.

The results of the study should consider the following limitations. First, the sample
size does not allow using inferential statistics for the different types of software pro-
jects. Second, since we use cross sectional data, we can only show associations, not
causality. Third, the data is self-reported and consists of companies based in Germa-
ny. Nevertheless, the investigation of the degree of external software reuse turned out
to be a relevant and appropriate approach to gain concrete insights into the sourcing
strategies, in software development. Accordingly, future research directions are to
increase the sample size and to explore other factors or use other theoretical explana-
tions that could contribute to the usage of software components developed externally.
Therefore, we would suggest extending this framework with other theories that could
contribute to gaining further insights. Future research could further investigate the
concept of external reuse by focusing on different levels of granularity, in order to
provide a better explanation power.

References

1. McIlroy, D.: Mass-produced Software Components. In: Proceedings of Software Engineering
Concepts and Techniques, Garmisch, Germany, pp. 138–155 (1969)

2. Haefliger, S., Von Krogh, G., Spaeth, S.: Code reuse in open source software.
Management Science 54, 180–193 (2008)

3. Sojer, M., Henkel, J.: Code reuse in open source software development: Quantitative
evidence, drivers, and impediments. Journal of the Association for Information
Systems 11, 868–901 (2010)

204 A. Stefi and T. Hess

4. Sherif, K., Appan, R., Lin, Z.: Resources and incentives for the adoption of systematic
software reuse. International Journal of Information Management 26, 70–80 (2006)

5. Sherif, K., Vinze, A.: Barriers to Adoption of Software Reuse: A Qualitative Study. Infor-
mation & Management 41, 159–175 (2003)

6. Keil, M., Tiwana, A.: Beyond Cost: The Drivers of COTS Application Value. IEEE Soft-
ware 22, 64–69 (2005)

7. Williamson, O.E.: The Economics of Organization: The Transaction Cost Approach.
American Journal of Sociology 87, 548–577 (1981)

8. Vetter, J., Benlian, A., Hess, T.: Setting Targets Right! How Non-rational Biases Affect
the Risk Preference of IT-Outsourcing Decision Makers-An Empirical Investigation. In:
Proceedings of the 19th European Conference on Information Systems, Helsinki, Finland
(2011)

9. Frakes, W.B., Fox, C.J.: Sixteen Questions about Software Reuse. Communications of the
ACM 38, 75–87 (1995)

10. Mellarkod, V., Appan, R., Jones, D.R., Sherif, K.: A Multi-level Analysis of Factors
Affecting Software Developers’ Intention to Reuse Software Assets: An Empirical Inves-
tigation. Information & Management 44, 613–625 (2007)

11. Wastyn, A., Hussinger, K.: Search for the Not-invented-here Syndrome: The Role of
Knowledge Sources and Firm Success. In: DRUID Conference, Denmark (2011)

12. Brereton, P., Budgen, D.: Component-based Systems: A Classification of Issues. Comput-
er 33, 54–62 (2000)

13. Ravichandran, T., Rothenberger, M.A.: Software reuse strategies and component markets.
Communications of the ACM 46, 109–114 (2003)

14. Zargar, M.S.: Reusing or Reinventing the Wheel: The Search-transfer Issue in Open
Source Communities. In: Thirty Fourth International Conference on Information Systems,
Milan, Italy (2013)

15. Megas, K., Frakes, W.B., Belli, G., Urbano, J., Anguswamy, R.: A Study of COTS Inte-
gration Projects: Product Characteristics, Organization, and Life Cycle Models. In:
Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 1025–1030.
ACM, Coimbra (2013)

16. Voas, J.M.: Certifying Off-the-shelf Software Components. Computer 31, 53–59 (1998)
17. Culliton, J.W.: Make or Buy: A Consideration of the Problems Fundamental to a Decision

whether to Manufacture or Buy Materials, Accessory Equipment, Fabricating parts, and
Supplies. Harvard University, Graduate School of Business Administration, Bureau of
Business Research (1942)

18. Wang, E.T.G.: Transaction Attributes and Software Outsourcing Success: An Empirical
Investigation of Transaction Cost Theory. Information Systems Journal 12, 153–181
(2002)

19. Li, J., Conradi, R., Bunse, C., Torchiano, M., Slyngstad, O., Morisio, M.: Development
with Off-the-shelf Components: 10 Facts. IEEE Software 26, 80–87 (2009)

20. Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J.: Selection of third party software in
Off-The-Shelf-based software development—An interview study with industrial
practitioners. Journal of Systems and Software 84, 620–637 (2011)

21. Camerer, C.: Bounded Rationality in Individual Decision Making. Experimental Econom-
ics 1, 163–183 (1998)

22. Kahneman, D., Tversky, A.: Prospect Theory: An Analysis of Decision Under Risk.
Econometrica: Journal of the Econometric Society 47, 263–292 (1979)

23. Mohan, K., Jain, R.: Using Traceability to Mitigate Cognitive Biases in Software
Development. Communications of the ACM 51, 110–114 (2008)

 To Develop or to Reuse? Two Perspectives on External Reuse in Software Projects 205

24. Stacy, W., MacMillan, J.: Cognitive Bias in Software Engineering. Communications of the
ACM 38, 57–63 (1995)

25. Katz, R., Allen, T.J.: Investigating the Not Invented Here (NIH) syndrome: A Look at the
Performance, Tenure, and Communication Patterns of 50 R & D Project Groups. R&D
Management 12, 7–20 (1982)

26. Lichtenthaler, U., Ernst, H.: Attitudes to externally organising knowledge management
tasks: a review, reconsideration and extension of the NIH syndrome. R&D Manage-
ment 36, 367–386 (2006)

27. Kathoefer, D.G., Leker, J.: Knowledge Transfer in Academia: An Exploratory Study on
the Not-invented-here Syndrome. Journal of Technology Transfer 37, 658–675 (2012)

28. Agresti, W.W.: Software Reuse: Developers’ Experiences and Perceptions. Journal of
Software Engineering and Applications 4, 48 (2011)

29. Lacity, M.C., Willcocks, L.P., Khan, S.: Beyond Transaction Cost Economics: Towards an
Endogenous Theory of Information Technology Outsourcing. The Journal of Strategic In-
formation Systems 20, 139–157 (2011)

30. Klein, P.G.: The Make-or-Buy Decision: Lessons from Empirical Studies. In: Menard, C.,
Shirley, M. (eds.) Handbook of New Institutional Economics, pp. 435–464. Springer US
(2005)

31. Lyons, B.R.: Specific Investment, Economies of Scale, and the Make-or-buy Decision: A Test
of Transaction Cost Theory. Journal of Economic Behavior & Organization 26, 431–443
(1995)

32. Coase, R.H.: The Nature of the Firm. Economica 4, 386–405 (1937)
33. Williamson, O.E.: Markets and Hierarchies: Antitrust Analysis and Implications. Free

Press, New York (1975)
34. Williamson, O.E.: Transaction-cost Economics: The Governance of Contractual Relations.

Journal of Law and Economics 22, 233–261 (1979)
35. Williamson, O.E.: Transaction Cost Economics: How it Works; Where it is Headed. De

Economist 146, 23–58 (1998)
36. Aubert, B.A., Rivard, S., Patry, M.: A Transaction Cost Model of IT Outsourcing.

Information & Management 41, 921–932 (2004)
37. Williamson, O.E.: The Mechanisms of Governance. Oxford University Press on Demand,

Oxford (1996)
38. Williamson, O.E.: The Economic Institutions of Capitalism Firms Markets Relational

Contracting. Free Press, New York (1985)
39. Karimi-Alaghehband, F., Rivard, S., Wu, S., Goyette, S.: An Assessment of the Use of

Transaction Cost Theory in Information Technology Outsourcing. The Journal of Strategic
Information Systems 20, 125–138 (2011)

40. Benlian, A.: A transaction Cost Theoretical Analysis of Software-as-a-Service (SaaS)-
based Sourcing in SMBs and enterprises. In: Proceedings of the 17th European Conference
on Information Systems (2009)

41. Fichman, R.G., Kemerer, C.F.: Incentive Compatibility and Systematic Software Reuse.
Journal of Systems and Software 57, 45–60 (2001)

42. Griss, M.L.: Software Reuse: From Library to Factory. IBM Systems Journal 32, 548–566
(1993)

43. Chapman, M., van der Merwe, A.: Contemplating Systematic Software Reuse in a
Projectcentric Company. In: Proceedings of the 2008 Annual Research Conference of the
South African Institute of Computer Scientists and Information Technologists on IT Re-
search in Developing Countries: Riding the Wave of Technology, pp. 16–26. ACM,
Wilderness (2008)

206 A. Stefi and T. Hess

44. Biggerstaff, T., Richter, C.: Reusability Framework, Assessment, and Directions. IEEE
Software 4, 41–49 (1987)

45. Sametinger, J.: Software Engineering with Reusable Components. Springer-Verlag
New York Incorporated (1997)

46. Nelson, P., Richmond, W., Seidmann, A.: Two Dimensions of Software Acquisition.
Communications of the ACM 39, 29–35 (1996)

47. Nidumolu, S.R.: Standardization, Requirements Uncertainty and Software Project Perfor-
mance. Information & Management 31, 135–150 (1996)

48. Bagozzi, R.P., Yi, Y., Phillips, L.W.: Assessing Construct Validity in Organizational
Research. Administrative Science Quarterly 36, 421–458 (1991)

49. Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y., Podsakoff, N.P.: Common Method Biases
in Behavioral Research: A Critical Review of the Literature and Recommended Remedies.
Journal of Applied Psychology 88, 879–903 (2003)

50. Bergkvist, L., Rossiter, J.R.: The Predictive Validity of Multiple-item versus Single-item
Measures of the Same Constructs. Journal of Marketing Research 44, 175–184 (2007)

51. Hissam, S.A., Seacord, R.C., Lewis, G.A.: Building Systems from Commercial Compo-
nents. In: Proceedings of the 24th International Conference on Software Engineering
(ICSE), pp. 679–680 (2002)

52. Ajila, S.A., Wu, D.: Empirical Study of the Effects of Open Source Adoption On Software
Development Economics. Journal of Systems and Software 80, 1517–1529 (2007)

53. Chin, W.W.: The Partial Least Squares Approach for Structural Equation Modeling. Law-
rence Erlbaum Associates, Mahwah, NJ (1998)

54. Hair, J.F., Ringle, C.M., Sarstedt, M.: PLS-SEM: Indeed a Silver Bullet. The Journal of
Marketing Theory and Practice 19, 139–152 (2011)

55. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. L. Erlbaum Associates
(1988)

56. Faul, F., Erdfelder, E., Buchner, A., Lang, A.-G.: Statistical Power Analyses using G*
Power 3.1: Tests for Correlation and Regression Analyses. Behavior Research Meth-
ods 41, 1149–1160 (2009)

57. Tiwana, A., Bush, A.A.: A Comparison of Transaction Cost, Agency, and Knowledge-
Based Predictors of IT Outsourcing Decisions: A US-Japan Cross-cultural Field Study.
Journal of Management Information Systems 24, 259–300 (2007)

58. SmartPLS, http://www.smartpls.de

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 207–222, 2015.
DOI: 10.1007/978-3-319-19593-3_19

Internationalization and Export of Software Products

Maarten Huijs(), Slinger Jansen, and Sjaak Brinkkemper

Utrecht University, The Netherlands
email@maartenhuijs.nl,{slinger.jansen,s.brinkkempe}@uu.nl

Abstract. Independent software vendors need to grow beyond their domestic
markets. Software producing organizations are faced with a great number of
options and opportunities on how they choose to conduct internationalization.
Interestingly, efforts conducted have a high failure rate and software companies
rarely succeed at first. In this paper we present a systematic mapping study and
the results of 20 interviews with CEOs in the Dutch software sector. This study
highlights the most important decisions made during the process of
internationalization: the drivers, the process planning, market selection, and the
followed market entry strategy. The choices available to the key decision
makers in the right market selection and entry strategy are most strongly
influenced and limited by the product architecture, characteristics of the product
and company, and the level of internationalization experience located within the
independent software company. The findings from this research support
decision making in internationalization projects by software firms and policy
makers in finding support strategies for export missions.

1 Introduction

No industry has profited more from globalization than the IT industry. IDC [1], a
global provider of market intelligence, estimates that for 2015 IT spending in
emerging markets will grow in excess of 8.8%, and represents 34% of worldwide IT
spending. This growth accounts for 51% of all new growth in the IT marketplace,
resulting in a rising number of IT companies seeking opportunities outside of their
domestic markets.

The phenomenon of companies expanding to markets outside the domestic market
is formulated under a wide array of classifications. Moen et al. [2] described
internationalization as: “Internationalization is the process, strategy and decisions of
exporting to foreign countries”. The profits envisioned from an internationalization
initiative are often uncertain [3]. Sheng-yue and Ru [4] find a dramatic failure rate;
50% of all internationalization attempts made by companies fail, resulting in a loss of
valuable time and resources. There is no reason to believe that the failure rate for
Independent Software Vendors (ISVs) is any lower.

Managers in charge of implementing internationalization are challenged with the
daunting task of successfully guiding the internationalization process. These
managers are faced with a myriad of options and opportunities on deciding how they
choose to implement a successful internationalization. Research by Bell [5] suggests

208 M. Huijs

that software companies generally experience great difficulties with the export of their
products and points out that problems experienced by companies selling domestically
amplify with a international exposure. Currently there is no clear study linking
internationalization theories to evidence found in the field.

In the Netherlands, international IT sales are largely dominated by product
software sales, not custom software, services, or consultancy. Research aiding in the
process of improving the exports of Dutch software companies could end up lowering
the failure rate of internationalization attempts, saving these companies' valuable
resources and time. This could, in turn, translate into better-performing companies
and a higher GDP. The main research goal is to provide key decision-makers within
the Dutch software industry with a better insight concerning factors, company
characteristics, market entry strategies, and internationalization theories. This leads to
the following research question: Which market entry strategies and methods exist in
the current state-of-the-art literature and how do these theories apply to the
experiences of Dutch ISVs?

When selling physical products, an international company is more or less bound to
traditional terms extensively described in the current literature such as agents, logistic
operators, distributors, licensee, and foreign subsidiaries. Software is characterized by
shorter life cycles and lower distribution costs, meaning it cannot be defined by the
traditional terms. Software companies are faced with a great number of options and
opportunities on how they choose to implement internationalization. The available
market entry form and the market selection is fueled by the emergence of the internet,
which allows easy distribution and connection to customers and allows supplier,
producer and consumer to interact on an unprecedented level through the evolvement
of e-commerce platforms [8].

In this paper we highlight the challenges and export methods available to ISVs. In
Section 2, the ISV Internationalization and Export Framework for ISVs is presented,
which aims at providing insight for ISVs in different phases of the internationalization
process. We continue in Section 3 by highlighting the research method: 20 interviews
with representatives of ISVs in different stages of the internationalization process,
with a combined experience comprising horror stories, success stories, and supporting
evidence. Section 4 embeds the research efforts in the literature and presents a
framework outlining the different internationalization methods available to ISVs. In
Section 5 the evidence is presented and analyzed. Finally, in section 6 we summarize
our conclusions.

2 ISV Internationalization and Export Framework

Current research does not provide a complete overview for ISVs wanting to
internationalize and export their software products. After a mapping study of the
literature, a research framework has been created, as modeled in figure 1. The research
framework contains different process steps, in which a strategy must be chosen. The
influencing factors are listed in the boxes next to the process steps. The model should be
read starting from the left top after which the process can be repeated multiple times for
each specific software product, or more accurate used by the organization for each

individual internationalizatio
in figure 1 should ultimately

Fig. 1. ISV Pr

The process steps start in
time to start internationali
assess whether it is time fo
doing so. (2) Secondly, the
company planning on doing
is internationalization initia
born global? A new ventu
effort due to a previous loc
not it will actively peruse a
will use a more passive app
the organization can determ
can be done for instance
dedicated managers in cha
focuses on how the organiz
actual strategy used by the
type and characteristics o
product type is divided in to
high touch of sale. Touch
needed to sell a software pr
organization to enter a co
enablers, which can aid th
campaigns or marketing me
amount of income generate

Companies with a prod
strategy to enter a foreign m
When support is intensive

Internationalization and Export of Software Products

on attempt. Organizations that follow the process illustra
y gain in internationalization experience.

roduct Internationalization and Export Framework

n the top right corner, where the ISV can establish that i
izing and exporting software. (1) The organization m
or an internationalization effort and what its drivers are

organization can start planning its efforts and basis. Is
g international business since the first day of founding?
ated after building a network of domestic customers: is
ure? Or does the company need to internationalize all
cal focus? (3) The organization must determine whether
a higher level of internationalization or if the organizat
proach. The active or passive approach influences the w
mine their markets. Actively perusing internationalizat

by actively targeting international customers or hir
arge of internationalization efforts. (4) Market select
zation will determine which markets it will target. (5) T
organization to enter a market is largely dependent on

of the software product the organization is selling. T
o two categories; products with a low- and products wit
h of sale describes the amount of personal intervent
roduct. (6) Market entry describes the strategy used by
mpany. (7) The market entry is followed by the mar
he process of market entry. Followed by the market
ethods that can be used by the organization to increase
d from customers abroad.

duct considered to be high touch of sale use a differ
market compared to products with a low sales touch of s

and can only by performed in person by highly trai

209

ated

it is
must
 for
the

? Or
it a

l its
r or
tion
way
tion
ring
tion
The
the

The
th a
tion
the

rket
ting
the

rent
sale.
ined

210 M. Huijs

professionals, it is less likely that the organization will use strategies with a cost-
effective way to deal with support. Products with a high sales touch opt for a reseller,
agent or partnership-oriented strategy or choose to open a fully owned domestic
branch in the chosen country. Companies that sell low touch of sale products more
often tend to select a low labor business model, selling large volumes of low priced
products compare to a smaller volume of high products. This limits companies with a
low sales touch product in choosing direct export as a market entry strategy, using a
centralized sales force operating from within the domestic borders to service and
manage international customer and sales operations.

Companies selling products with a low sales touch tend to use a shotgun tactic,
creating an initial selection of countries based on the number of potential customers,
the level of internet adoption and a basic amount of competitor analysis. Companies
with a high sales touch product tend to use their personal networks to gain new
business, combined with the use of content marketing, trade shows and conferences,
in order to come in contact with potential customers. Identifying the level of personal
experience of the management team gained in former positions, life experience and
education as an important foundation for both high touch and low touch sales
products. With high touch sales products, the international personal network of the
company management is the primary way of building a reseller or partnership
network as well as a main means of contact and creation of international business
opportunities.

For companies with low touch sales products, the personal experience is mainly
helpful in the creation of the “whole product”, since the management with greater
international experience has a better overview of all the necessary steps for building a
product that is suitable for international sale. They avoid making mistakes that
decrease the chances of the product appealing to an international market. The
literature also sees management with a lack of international business experience as a
warning sign. The research indicated the management must have traveled or studied
extensively outside of the country. International experience can, however, also be
gained or hired since not all decision-makers possess extensive management
experience [18].

3 Research Method

The approach of this research has been, due to its exploratory nature, to first frame the
research by conducting a mapping study into the literature on internationalization.
The framework was used to create a structured interview protocol and a context to
frame the findings of the research.

A systematic mapping study [6] has been used to identify and provide an overview of
a research area. To obtain only the most influential empirical evidence to be used in this
research, a filter based on the article impact was created, based on the number of citations
combined with the source of the article. A manual check on the title and the abstract
ensured the article focuses on the keyword combination was used. A total of 97 articles
were studied. The list of articles can be found in the work of Huijs [7].

 Internationalization and Export of Software Products 211

After completing the systematic mapping study a grounded theory-based
method [8] was executed. The grounded theory for this research relies on 20 semi-
structured interviews of 1,5 to 2 hours with CEOs of Dutch ISVs. The research
identifies the various internationalization attempts undertaken by the ISVs. By
performing in-depth interviews, the research aimed to identify (1) the motivation for
the company to start with internationalization, (2) the selection criteria leading up to
the country’s entry, (3) The market entry form, and (4) the activities conducted to
improve the expansion. The companies were selected based on the following criteria:
(a) the headquarters are located in the Netherlands, (b) the company is active in the
field of software, (c) the company sells software produced by the company or
developed by a subcontractor, and (d) the company has a maximum of 100 employees
worldwide. The small company size limit made sure that the companies could be
considered small to medium enterprises. The primary sampling was based on
convenience sampling using the Deloitte Technology Fast 500 Awards. Using the
Fast 500 winners from the years 2008-2013 as a sampling frame, the list provides
access into successful Dutch software companies.

The idea of grounded theory was introduced by Glasser & Strauss (2009). This
method is a systematic methodology focused on discovering theory through data
analysis. The grounded theory for this research relies on semi-structured interviews of
the Dutch ISVs. The selected companies where selected due to the following criteria:
headquarters is located in the Netherlands, active in the field of software products, the
company sells software produced by the company or developed by a subcontractor,
the company has a maximum of 100 employees.

Grounded theory consists of analyzing and re-analyzing the transcripts of the
interviews. These interviews are recorded throughout the session and are translated into
transcripts. From these transcripts, key points are extracted; these key points are called
codes. The codes are grouped with similar codes in order to form categories, which form
the basis for the creation of the theory and provide a validation of the theories formed
during the systematic mapping study review. During the systematic mapping study, the
conclusion forms a set of conceptual ideas. Ideas which provide a better insight in the
internationalization theories implemented in practice by Dutch ISVs.

The research is oriented towards commercial product software. While some
findings could prove useful, they may not directly address the market specifics of
custom, military or embedded software. This research only focuses on ISVs, meaning
the findings might not apply for large multinational companies.

Due to the difficulty in reaching companies, the choice was made to switch to a
more convenient sampling strategy. However, due to switching to a non-randomized
selection, this introduces a bias in the research since not all product software
companies in the Netherlands are given an equal chance of being included in this
study. During the grounded theory process, the researcher scanned the transcripts of
the interviews and coded specific text fragments to identify important trends in the
process of internationalization. By increasing the project team and performing the
encoding process twice, the validity of the research would increase since the chances
of incorrect coding and categorization would decrease.

212 M. Huijs

4 Literature

Before getting a better u
software products the rese
study to understand the rese
map, the definitions are sh
definitions and their encap
part of an internationalizati
into the number of topics in
focuses on the process and

The main act of intern
activities; the actual export
is an other. After perform
literature position it self as
nature with a focus on the
the process of internationali

Since the mid 1900s, the
businesses through internat
of the phenomena of intern
their business is constantly
strategies, thus changing the

Internationalization Theo
internationalization theorie
systematic mapping study.
phases building up to a hig
the next phase implementi
theories start out with a lo
serve international custome
commitment method of con

understanding of internationalization and the export
earch started out with preforming a systematic mapp
earch area of internationalization. Using a hierarchical t

hown in Figure 2. The hierarchical tree map illustrates
psulations. For instance, the internationalization proces
ion strategy. The categorization of topics provides insi

n the research area of internationalization. Current literat
success factors of internationalization.

nationalization strategy is a term coordinating many
of virtual goods is one, the way companies enter a mar

ming the empirical research we found most promin
s internationalization theory, research often explanatory
 process of internationalization and/or factors influenc
ization.

Fig. 2. Research topics breakdown

ere have been many approaches to explain the expansion
tional activities. Different theories focus on various aspe
nationalization. The manner in which companies cond
evolving: they are implementing new business models
e way they implement internationalization.

ories Compared. Figure 3 illustrates a collection
es discovered by this research after performing
 Each internationalization theory presents a collection
gh degree of internationalization. The theories build up
ing the first form of steady international activities. Th
ow level of risk and commitment method using Agents
ers. Three of the seven theories continue with a high-le
nducting international business.

t of
ping
tree
the

ss is
ight
ture

sub
rket
nent
y in
cing

n of
ects
duct
and

of
the

n of
p to
hese
s to
evel

 Internationalization and Export of Software Products 213

Fig. 3. Internationalization theories framed and compared

The Uppsala model, also known as the U-model or the the Stage model serves as a
component of the Uppsala model, proposing an incremental approach defined in
multiple stages starting in markets with the lowest uncertainty after careful
calculations for the lowest cost and smallest economical and physical distance. The
authors of the Uppsala model recognized the critique, since Johanson & Vahlne [9]
found clear evidence supporting the importance of networks in the
internationalization companies, and the Uppsala model was revised in 2009, naming
the module Uppsala 2.0. An alternative coined by Oviatt & McDougall [11] is the
INV theory or international new venture theory.

INV mainly ignores the fixed stages suggested by the Uppsala model, indicating
the valuable contributions of SMEs to international business. The network model
takes a holistic approach, researching companies combined with the influence of the
relationships network surrounding the company.

Table 1. The characteristics of internationalization theories evaluated

The Internationalization theory characteristics Uppsala
1.0

Uppsala
2.0

Network
theory

INV
theory

Born
globals

Resource
view

 Psychological distance is a part of the theory + + + + ++ -
 The process consist of a set of fixed steps ++ ++ + - - -
 Includes market selection strategies - - - + + -
 Emphasis the importance of relationships/network - + ++ + ++ +
 Emphasis the importance resource availability ++ ++ - + - ++

214 M. Huijs

When focusing on the internationalization theories this research identified two
types of end goals. The end phase of the internationalization theory either focuses on
the allocating of the manufacturing to foreign countries, on the further exploitation of
the internationalization and, third the increasing of the amount of countries the
company can export to.

Market Orientation, Selection and Orientation. Market orientation consists of all
activities aimed towards acquisition, dissemination and application of market
information. Cadogan et al. [12] point out domestically focused companies are more
likely less developed in a international context compared to companies with a high
degree of internationalization. A market selection is the planned process of selecting a
market in which a company wants to deliver a product.

Client followership consists of software companies following domestic customers
who are commencing international business. Giving the company the advantage of
starting out with a launching customer with strong ties. Similar the piggyback
method first mentioned by Hollensen [14], explores the same tactic, however it
chooses larger domestic partners instead of customers. Etemad et al. [15] describe
‘piggy-backing’ as a strategy where smaller companies rely on larger companies for
the introduction to foreign markets. Although unsolicited orders do not qualify on
their own as a market entry, the start of an internationalization process can by initiated
by a unsolicited order or inquiry from a country outside the domestic market.

Sectorial focus is a strategy in which a company targets new markets based on a
specific niche. Companies that are highly focused on a small niche have to take less
notice of the country borders. The industry surveys of Bell [16] indicate that specific
vertical sector knowledge is valuable to the degree that there is an independent of the
country of origin. Joint ventures present a collection of strategies in which two or
more parties choose to partner up. This results in a business agreement in which two
or more parties agree to come together for a period of time, consisting of a set of new
combined assets or resources. The level of control often corresponds to the level of
shared revenue, expenses and financial assets.

Table 2. Market entry sorted low to high level of commitment

Focus Level of
commitment

 Focus Level of
commitment

Direct export Low Client followership Medium/High
Indirect exports Low Piggyback method Medium
Licensees Low Agent/distributor Medium
Unsolicited orders Low Industry trends High
Export sales staff Low/Medium Subsidiary abroad High
Joint ventures &
strategic alliances

Medium/High

Sectorial focus High

Indirect export is selling through an intermediate party that continues to sell the
software products their customers. The intermediary can even be in the same domestic
country as the ISV trying to sell the software products abroad. The Agent/distributor
mean that in order for ISVs to sell their product, they can contract with agents and

 Internationalization and Export of Software Products 215

distributors to sell their products and services. Export sales staff can enable direct
sales by directing employees to target a specific region in order to sell services and
target potential new customers. Direct export provides a method of selling software
face-to-face or buying directly via telesales or via online commerce solutions. For
instance, the selling of software via the telephone is not accepted in all countries and
could be seen offensive in some cultures. Foreign establishment researched by Lu et
al. [18] tested the effectiveness of internationalization strategies, exports and foreign
direct investments on the growth of an SME company. Hybrid market entry
strategies; In the case study done by Moen [3], a researched case company chose to
implement a hybrid solution, indicating that a combination of entry forms is perfectly
possible.

5 Interview Results and Analysis

In the following table the companies used in this research as cases are introduced. Due to
the sensitive nature of the research, most cases are presented anonymously; the research
company names have been replaced by a nickname. Future plans and ideas are not
included in the results, focusing on the actual activities only. Table 3 presents an
overview of all case companies sorted in descending order based on degree of
internationalization. The degree of internationalization of companies is measured using
the measurement suggested by Ahn et al. [20], the foreign sales-to-total sales (FSTS)
ratio is used resulting in a percentage indicating the dependency on foreign markets,
further described as the degree of internationalization (DOI) in table 3.

During the interviews, the decision-makers were questioned on the reasons behind
their choices leading up to the country or countries in which they decided to sell their
products. After conducting all the interviews, the following top 5 market selection
criteria were identified: (1) Sheer size (or the number of potential customers), (2)
Speed of market technology adoption, (3) Based on market needs, (4) Cultural
distance, and (5) Initial country selection.

One interviewee indicated hiring a market research firm to aid in the market
research. The limited research could be explained by the comments of HealthComp,
ImageComp and IntraComp. Indicating the fact that you can do al the desk research
you want, but the actual situation at hand is too complex to fully comprehend based
on desk research. The CEO of HealthComp indicated: “When selecting the first
country in the process of internationalization you can do all the desktop research you
want, it will always be limited to statistics. Eventually the actual situation of selling in
a foreign country is more complex and can only be discovered in practice.“ The CEO
indicated the level of adoption of the prospecting customers is an example of hard to
measure statistics before selecting a country.

Horror story. When HealthComp originally began operating in Italy, after finding
the first potential customer the company encountered a problem with the
implementation of their software.“We were unprepared for the country specific
characteristics in Italy, our online software was unavailable due to the fact that many

216 M. Huijs

Italian hospitals lacked a internet connection.” HealthComp CEO. This was a
situation that was unimaginable when the company began exporting to Italy. The
company continued by developing an offline version that could facilitate the offline
use of the products in hospitals without Internet connections.

Table 3. Company cases and the degree of internationalization

Company DOI #
FTE

FTE
int.

Year
founded

Foreign
customers
since

Atti-
tude

Application
type

Presence
#countries

ResearchComp 95% 12 12 2007 Day one Active Install based 50+
HealthComp 81% 12 0 2009 Day one Active SAAS 11
BiComp 81% 15 0 2005 Day one Active SAAS 12
MediComp 80% 35 2 2006 Day one Active On Premise 11
BackupComp 77% 30 0 2005 Day one Active SAAS 50+
ImageComp 50% 7 0 2009 Day one Active SAAS 16+
AppComp 40% 7 1 2009 Day one Passive Install based 7+
IdenComp 30% 32 2 2005 >1-2 years Active SAAS 5
MochaDocs 20% 3 0 2012 Day one Active SAAS 52
BpmComp 20% >150 6 2006 >3 years Active On Premise 8
PurchaseComp 10% 25 15 2000 >10 years Passive SAAS 4
PersoComp 8% 40 0 2007 +/- 1 year Passive SAAS 5
IntraComp 4% 150+ 5 1996 >10 years Passive On Premise 10+
FinanComp 2% 10 1 2008 >4 years Passive SAAS 3

To solve the problem ImageComp used a shotgun tactic, where the first step was
aimed at making a selection of countries based on the number of potential customers.
The product was then translated into ten languages. Combined with a multilingual
marketing website with a series of landing pages optimized to entice visitors to the
website, the company continues to analyze and measure the outcome, such as the
number of new customers. BackupComp applied the same technique combined with a
presence at foreign exhibitions: "Especially SEO and online marketing is shooting
with hail; it delivers on quantity, not quality. Therefore, the countries where we
wanted to expand our operations, we started to connect with major local customers
through exhibitions and conferences." CEO, BackupComp

IdenComp, BiComp and MediComp all displayed a selection criteria largely based
on their product and the networks of partners, since the products of these three
companies are implemented as add-ons – components or modules in a larger system –
and simply do not function on their own. For these three companies, the customer
installation base and the location of partner networks are more important. The product
manager of MediComp indicated the importance of the implementation partners “The
implementation partners have a strong local network, providing in-depth knowledge
on legislation, implementation, sales processes and culture.”

None of the companies followed a determined incremental approach. The expected
research for not choosing a incremental approach could be explained by the following
company case decision. For one, the selection and implementation of a market entry
strategy can present a sizable investment. The years it takes combined with the
required resources prevent a company from quickly exchanging one market entry

 Internationalization and Export of Software Products 217

strategy for another. Apart from the difficulty in switching from one strategy to
another, the fact remains that not all market entry strategies are suitable for every
business model. The CEO of IdentComp stated some strategies can actualy only
function in the country of export and not in the domestic market: “The company
experienced a situation in the Netherlands where physical meetings were always
necessary from a customer perspective. The company found physical meetings less
required in America due to the large size of the country.“ Current theory makes no
real exception for the infrastructure of the products or the nature of the company’s
business model.

Drivers of Internationalization. The drivers for initiating internationalization
activities and the attitudes towards internationalization are based on 20 interviews
with the decision-makers of the 14 case companies. The company drivers behind
internationalization are largely opportunity-based. Supporting the state-of-art
literature on the fact that most international undertakings start-out with an opportunity
at hand and do not necessarily start out of careful planning. The initial opportunity
can however provide the key decision makers of a company with the necessary
persuasion that internationalization could indeed prove a successful endeavor. The
drivers behind the internationalization most mentioned by the case companies are
most often based on:

• Opportunity based; internationalization is initiated out of an opportunity at hand
encountered by the company.

• Opportunity creation; a company starts with internationalization activities in
order to create new opportunities.

• Follow the customer; The current customer companies are undertaking
international activities, requiring the company to initiate international activities.

• Personal motives; presenting them self in various personal motives by key
decision makers that connect to their own heritage or personal connections
resulting in a willingness to relocate to a different country.

• Personal network; trough personal connections a company is more quickly
inclined to experiment with internationalization attempts. Trough a personal
network the key decision makers within a company can employ relatives to start
a foreign agent or find opportunities trough personal ties with other companies
abroad.

During the interview with the CEO of FinanComp the reasons and drivers for
undertaking activities in context of the internationalization of their product where
discussed. The first planned internationalization steps where largely devoted to
personal connections proposing the implementation of a first international initiative,
acting on behalf of the company as an agent. “Very few problems occur only in the
Dutch market, so why develop a product that focuses only on the Netherlands?” CEO,
MochaDocs

Barriers Encountered During Internationalization. After conducting the
interviews and analyzing the case companies, this research found that surprisingly
little challenges came from country-specific changes in the products. The companies

218 M. Huijs

that developed the product software experienced the same functionality demand from
customers. The companies did not experience differences in, for instance, the wishes
of a US-based marketing firm using the product software and a Dutch-based
marketing firm.

After the interviews discussing the initial Internationalization drivers and the
timeline of the first internationalization initiatives made by the company combined
with the general attitude of the company towards internationalization. After which the
interview focused on the way the company chose the initial markets to enter. The
interviews indicated the actual market entry was focused on the product and the
characteristics of the product that is being sold by the company. Describing the first 4
steps of the introduced ISV export framework (figure 1) explaining the relation
between the market entry step and the product type step.

The product characteristics them self can turn out to be a limiting factor for the
companies. The product characteristics gain little attention in the current
internationalization theories, however trough the interviews they present a recurring
cause of limiting or boosting the internationalization process of a company. An
example of the limiting characteristics can be presented by the unpredictable
circumstances of the international markets targeted by the company related to the
characteristics of the company. For instance during the intervieuws the CEO of
HealthComp indicated “We were unprepared for the country specific characteristics
in Italy, our online software was unavailable due to the fact that many Italian
hospitals lacked a internet connection.” HealthComp CEO

Product Characteristics. The research identified three global product architectures:
SAAS, installation-based & on-site. The SAAS architecture is a popular and well-
published architecture implemented by organizations to build large scale multitenant
software products. A single code base implementation is used to service many
individual customers. Installation-based software uses a more traditional architecture
where users need to install the software product on their devise, for instance a mobile
devise, tablet or personal computer. In between both architectures is the on-premise
architecture; a client-server architecture implemented at each specific customers
company allowing all employees to use the implemented product.

During the interviews, the research identified a scale that rated the degree to which
the products require human intervention for the customer to use a vendor’s product
software. Low sales touch products are characterized by a low level of human
intervention required to sell and implement a software product. By correctly
recognizing the degree of human intervention required to sell and implement the
product types, this research was better able to categorize them. Products with a high
sales touch require a different strategy for entering a foreign market compared to
products with a low sales touch. When support is intensive, the support can only be
performed in-person by highly trained professionals, providing less cost-effective
ways to deal with support. The companies included in the research that chose to focus
on internationalization from day on as a born global tend develop their products
accordingly. Developing products with a low touch of sale with scalability in mind.

 Internationalization and Export of Software Products 219

In addition to the research performed by Hasai & Almor [21] the born global is not
necessarily characterized by its process alone of internationalization but rather the
attitude towards the internationalization. As indicate by Madsen & sevais [22] older
companies often have years of legacy in the way they do business making
internationalization an endeavor that requires them to change their old ways of
thinking. Born globals are companies that start with the idea of internationalization
from day one. While born-again globals have the advantage of an existing customer
base and a extensive personal network. Born globals have the advantage of
preparation, all strategies and product characteristics are geared towards international
business, often driven by the personal experience of the top managers within the these
companies, the people know what decisions to increase the degree of
internationalization. The CEO of ResearchComp indicated “We are a company with
no headquarters, we are a company fully distributed company not only our customers
but all our employees work from all over the globe. Internationalization is in our
DNA.“ Companies with such a mind set and strategy present an advantage compared
to companies that explore internationalization in a later stage.

Table 4. Identified product delivery mechanisms

SaaS Installation-based On-premise
+ Easy to update the software
solution for all customers.
+ Easy release management
+ The infrastructure scales

+ Does not require an
active internet connection
+ No data location issues
+ No geographic distance
between vendor and
customer

+ No data trust issues since all
data of the product software
resides within the company
+ Easier to implement
customizations

- Difficult to implement custom
customer-specific modifications
- Zero or low implementation cost
- Costly architecture is funded and
maintained by the vendor or trusted
third party
- Requires reliable internet.

- Harder to test the software
on all the different
installation platforms with
different language and
region settings

- Harder to keep up-to-date by
the vendor
- Less control of the actual
product performance by the
vendor
- More effort required to
implement the software
product.

When comparing the current state-of-art literature and our findings based on the
interviews performed in the field we find a great number of decisions trough the path
of internationalization are based on the characteristics of the products of the
companies. For this reason we have included the product type characteristics in our
main deliverable, the internationalization framework. Current state-of-art literature
neglects the characteristics in for instance all of the stage models such as the Upsalla
model. “A B2B company is fundamentally different compared to the easy
straightforward customer-oriented apps such as Skype or Whatsapp, since the latter
do not require extensive support and training for the end users.” CEO,
PurchaseComp

Based on the interviews we found that companies selling products with a high sales
touch opt for reseller, agent or partnership-oriented strategies, or choose to open a
fully-owned domestic branch in the selected country. Companies with products with a
low sales touch more often tend to choose a low-labor business model, selling large

220 M. Huijs

volumes of low priced fees compare to a smaller volume of high priced fees. “By
centralizing the sales force in the same place, we are able to more easily support the
personal providing necessary steering and stimulate knowledge sharing.” Product
manager, ImageComp

Experience was one of the most import factors influencing the degree of
internationalization. The CEO of PurchaseComp indicated public international tenders
as a technique for companies without international experience to start gaining
international experience: “Entrepreneurs interested in going abroad should enroll in
international tenders. Allowing the entrepreneurs to get a feel for the customer
demands in a specific market. Allowing the entrepreneurs to sharpen their
proposition and improving their sales messages. After enrolling and doing a few of
these tenders, the odds become much higher for companies to actually win a tender.“
Apart from the market entry, which presents the sizeable investment, most of the
companies interviewed experienced difficulties in switching from a project-based
company to a product-based company. The difficulty of switching from project to
product based business models is not limited to the case-companies included in this
research, the difficulties are also presented in literature [23] [24]. The ImageComp
product manager stated: “The paradigm switch from project-based software
development to standard based product software was a massive overhaul, requiring
an entire new set of skills.”

6 Conclusions and Future Work

While internationalization poses many challenges and pitfalls, internationalization
offers great opportunities that should at least be considered by the management of all
ISVs. It provides an business development opportunity for all software vendors to
increase their revenue and decrease their dependence on the domestic market, whether
they are in the start-up phase or have been in business for a considerable period of
time. When asking which market entry strategy lead towards a successful
internationalization initiative it is important to understand that there is no silver bullet.
The market entry is highly dependent on a wide array of factors. Contrasting to the
current literature this research advises decision makers to select the market entry
strategy based on the product types, the touch of sale, the personal network and the
experience located within the company.

This research concludes, based on both the results of grounded theory and the
current literature, that there is no single predominant market entry strategy for Dutch
ISVs. The market entry strategy depends on product and company characteristics.
This research presents the fact that a market entering strategy is a sizable investment,
requiring up to four years of operating without a profitable return on investment.

The years it takes combined with the required resources prevent a company from
quickly exchanging one market entry strategy for another. Apart from the difficulty of
switching from one strategy to another, the fact remains that not all market entry
strategies are suitable for each company strategy. The research provides fertile
grounds for an international study into internationalization and software export.

 Internationalization and Export of Software Products 221

References

1. Insights (2013) IDC Predictions 2013: Competing on the 3rd Platform (accessed December
4, 2014)

2. Moen, Ø., Bakas, O., Anette, B., Pedersen, V.: International Market Expansion Strategies
for High-Tech Firms: Partnership Selection Criteria for Forming Strategic Alliances. Int J.
of Business and Management 5(1), 1–11 (2010)

3. Moen, Ø., Endresen, I., Gavlen, M.: Use of the Internet in Int’l marketing: a case study of
small computer software firms. J. of International Marketing 4, 129–149 (2003)

4. Sheng-yue, H., Xu, R.: Analyses of Strategic Alliance Failure: A Dynamic Model. Paper
presented at the 12th International Conference on Management Science and Engineering-
ISTP. University of Incheon of Korea (July 20, 2005)

5. Bell, J., McNaughton, R., Young, S., Crick, D.: Towards an integrative model of small
firm internationalisation. J. International Entrepreneurship 4, 339–362 (2003)

6. Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S.:
Systematic literature reviews in software engineering–a systematic literature review.
Information and Software Technology 51, 7–15 (2009)

7. Huijs, M.: Exploring internationalization of Dutch independent software vendors. Msc.
thesis, Utrecht University (2014)

8. Benjamin, R., Wigand, R.: Electronic markets and virtual value chains on the information
superhighway. Sloan Management Review 36, 62–72 (1995)

9. Glaser, G., Strauss, C., Anselm, L.: The discovery of grounded theory: strategies for
qualitative research, Chicago, Aldine (1967)

10. Johanson, J., Vahlne, J.: The mechanism of nternationalisation. International Marketing
Review 7, 4 (1990)

11. Oviatt, B., McDougall, P.: Defining international entrepreneurship and modelling the
speed of internationalization. Entrepreneurship Theory and Practice 29(5), 537–554 (2005)

12. Cadogan, J.W., Diamantopoulos, A., Siguaw, J.A.: Export market-oriented activities: their
antecedents and performance consequences. J. of International Business Studies 12,
615–626 (2002)

13. Johanson, J., Vahlne, J.: The Uppsala internationalization process model revisited: From
liability of foreignness to liability of outsidership. J. of International Business
Studies 40(9), 1411–1431 (2009)

14. Hollensen, S.: Global marketing: A decision-oriented approach. Pearson, Denmark (2007)
15. Etemad, H., Wright, R.W., Dana, L.P.: Symbiotic international business networks:

collaboration between small and large firms. Thunderbird International Business
Review 43(4), 481–499 (2001)

16. Bell, J.: The internationalization of small computer software firms: A further challenge to
“stage” theories. European J. of Marketing 29(8), 60–75 (1995)

17. Philips, R.: Guide to software export: A handbook for international software sales.
International Business Press (1998)

18. Lu, J.W., Beamish, P.W.: Partnering strategies and performance of SMEs’ international
joint ventures. J. of Business Venturing 21(4), 461–486 (2006)

19. Reuwer, T., Jansen, S., Brinkkemper, S.: Key factors in the internationalisation process of
SMEs exporting business software as a service. International J. of Business Information
Systems 12(2), 140–162 (2013)

20. Ahn, S., Fukao, K., Kwon, H.U.: The Internationalization and Performance of Korean and
Japanese Firms: An Empirical Analysis Based on Micro Data. Seoul Journal of
Economics 17(4), 439–482 (2004)

222 M. Huijs

21. Hashai, N., Almor, T.: Gradually internationalizing born global firms: an oxymoron?
International Business Review 13(4), 465–483 (2004)

22. Madsen, T.K., Servais, P.: The internationalization of born globals: an evolutionary
process? International Business Review 6(6), 561–583 (1997)

23. Xu, L., Brinkkemper, S.: Concepts of Product Software: Paving the Road for Urgently
Needed Research. In: CAiSE Workshops, vol. 2, pp. 523–528 (2005)

24. Xu, L., Brinkkemper, S.: Concepts of product software. Eu. J. of Information
Systems 16(5), 531–541 (2007)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 223–229, 2015.
DOI: 10.1007/978-3-319-19593-3_20

Acquisition of Software Firms: A Survival Analysis

Marcus Wagner()

Augsburg University, Universitätsstr. 16, 86159 Augsburg, Germany
marcus.wagner@wiwi.uni-augsburg.de

Abstract. This paper addresses the factors that determine the survival of young
software firms and startups. It specifically focusses on the role of venture
capital and organizationally radical innovation in this. The interaction of
venture capital investment with the type of innovation pursued by the software
firm is shown to jointly increase survival in terms of time to acquisition.

1 Introduction

Venture capital (VC) has been suggested as key for small firms and startups to
financial resource access especially in technology-intensive industries [1]. Therefore,
this paper addresses what affects the time until a firm is acquired, i.e. the temporal
survival of a firm, what the role of VC is in this and how the latter’s interaction with
firm characteristics impacts on survival? The electronic design automation (EDA)
segment of the semiconductor industry offers an empirical context particularly suited
to analyzing these questions. Based on this, the paper contributes new empirical
insights that extend the body of knowledge on this issue and especially interaction
effects. The remainder of the paper is structured as follows: In the next section
different theoretical perspectives on innovation and venture capital in startups are
derived from the existing literature and hypotheses are introduced. Following this in
the third section, data and method of the empirical analysis are detailed. The fourth
section reports the findings of the analysis and the fifth section concludes. Overall,
this paper in proceeding like this clarifies the role of VC based on a novel and
detailed dataset of software startups.

2 Literature Review and Hypotheses

This section reviews the literature and derives hypotheses. For Anglo-American
startups, survival times of at most three years for one third of the entrants in one
cohort have been reported [2]. Exit (i.e. bankruptcy, not acquisition) rates are in
comparison higher in recessions. For example, in the 1991-1995 recession, [3] found
survival times of at most one year for 40% of the UK startups entering the market in
this period. On the other end of the spectrum, [4] find that 40% of US startups survive
for six years or more. High technology startups were found to have higher survival
times and thus lower exit rates [5, 6]. Also the exit rate decreases with startup age and

224 M. Wagner

access to capital [2, 3], [7]. Innovation does not have a clear effect on survival times
and exit rates [8, 9] except for a clearer positive effect for high technology startups
and an indication that product innovation significantly increases acquisition chances
for startups [10].

The motivation of venture capitalists for retaining stakes in a startup is not the
same at all points of time and over time their incentives for exiting through a trade
sale increase. Therefore an interaction term of venture capital provision and
organisationally radical innovation included in the survival model accounts for the
fact that organisational radicality makes it difficult for incumbents to imitate (which
increases their acquisition need). Venture capitalists needing to “sell out” at some
point to leave the investment amplifies this effect of organisational radicality. Based
on these insights and those derived from the extant literature, the following
hypotheses are proposed:

H1: VC investment makes survival more likely due to additional resources
 available.
H2: Organisationally radical innovation makes survival less likely due to stronger
 incumbent needs for acquisition.
H3: Joint VC investment and organisationally radical innovation make acquisition
 significantly more likely (i.e. a positive interaction effect of these two occurs).

3 Methodology

Given the high industry concentration in EDA, surveying the top acquiring firms in
the EDA industry to test above hypotheses seemed to make a response bias likely,
since these firms may strategically misreport acquisition reasons especially if they
failed in an innovation. Therefore, structured interviews were carried out, based on a
short questionnaire with smaller firms in the industry. The questions were derived
from the categories condensed from prior semi-structured interviews as well as from
the literature. From the exhibitor list of the DATE 2006 conference which took place
6-10 March in Munich, 70 smaller and younger EDA firms were identified. These
firms form the population that was approached for a structured interview during the
conference.

Of the firms, 32 provided information based on a 2-page questionnaire, resulting
into a 46% response rate which is deemed very high, and in turn allows drawing
conclusions that are representative for the population. The survey was answered
largely by general managers (n=21) and marketing and sales personnel (n=6) with the
questionnaire being partly completed jointly with the respondents (n=19) and partly
by the respondents on their own (n=13). There was wide variety in the primary
technical design focus of the startups, ranging from e.g. analog and mixed signal
design via system-on-chip design to verification. About half of the firms had more
than one technical design focus.

As concerns firm size and firm age, there is a wide distribution with a median of 20
employees. Of course, surveying only 32 firms in the industry may itself introduce a
response bias since in relation to the total number of firms in the industry in 2006, the
response rate is only about 7%. However, given the response rate in relation to all small

 Acquisition of Software Firms: A Survival Analysis 225

firms at the DATE conference (as the effectively accessible population of small firms
given it was necessary to use face-to-face interviewing to survey the firms) was good,
this limitation of the research was deemed acceptable since even by the standards of large
scale surveys, 7% is not such a low figure. To further ascertain how representative the
response sample is, variables were compared as far as possible with data from a sample
of firms acquired in the EDA industry until the end of 2005 (n = 68). Based on t-tests for
patenting (p = 0.67), firm age (p = 0.81) and VC investment (p = 0.30) no significant
differences were found between the two samples. Given that the two sets of firms are
mutually exclusive, the analysis sample is felt to be sufficiently representative for the
population of all startups and small firms in the EDA industry that could potentially be
acquired to continue addressing the above research questions and to derive answers that
have potential to be generalised to the industry [11].

In the comparison sample of acquired EDA firms used to evaluate how representative
the analysis sample is, the number of investors (r = 0.58, p < 0.01) and the diversity of
different investor types (r = 0.63, p < 0.01) are both significantly associated with a binary
variable of VC investment, which suggests that the latter also proxies well for more
qualitative network effects. As concerns the dependent variable of the analysis,
acquisition was measured as a binary variable taking the value of 1 if a firm in the sample
was acquired until the end of the first quarter of 2013 (i.e. within the full seven years
after the original survey) and 0 if not. Because measurement of actual acquisition was
independent from the initial survey common method bias and endogeneity issues are
minimised. For the multivariate survival analysis of the above hypotheses, the binary
variable was transformed to a survival measure as described below. Furthermore, a
number of explanatory variables were derived from the literature [12]. These include the
logarithm of the number of citation-weighted patents held by the respondents, whether a
startup originated out of a university research context and a binary variable of whether or
not the firms perceived their innovation to be organisationally radical. Since significant
positive correlation of the number of patents and a product innovation index exists, the
patenting information is seen as a reliable measure with high content and discriminant
validity for technological radicality [13].

Given recent methodological research has shown that an adequate sample size
required for a factor analysis crucially depends on the quality of the data (in turn
rendering general rules of thumb for minimum sample sizes largely invalid), we make
use of an exploratory factor analysis on different items (derived from extant literature)
for the reasons why larger firms did not carry out an innovation carried out by our
respondents [14]. From this, factors on ‘low risk-taking/day-to-day business’, ‘low
fit/existing customers’ and ‘new/lacking skills’ were derived and included as a control
variables for differences across firms and respondents (as concerns perceptions) in
different versions of the model (see [15] for details on the factors). 63% of the total
variation in the data is explained by these three factors with Eigenvalues greater than
unity. Other variables used in the multivariate regression are the age of the firm and
its squared term, and whether or not a responding firm received VC investment. To
test the above hypotheses the time until acquisition is recorded as the number of years
(i.e. a discrete time interval) and the survival analysis is done using the xi:logit
command of STATA, after expanding the survey. Of interest in the analysis is the

226 M. Wagner

probability of a firm being acquired at a time T, with the discrete time hazard rate
function being:

)exp(1

1
)|(

εβδα −−−+
=

X
XTh

With h(T|X) being defined the hazard rate for periods T with T = 0 .. 8.δ is a vector
of period dummy variables which assume unity in the indicated year and zero in all
other years,α denotes the hazard rate of the corresponding period. β refers to a set of

coefficients of the of time-constant and time-varying covariates X of the model (i.e.
the explanatory control variables described earlier). Finallyε denotes the error term.

4 Results

Table 1 provides the results for the survival from applying survival models described
in [16]. The models, reported in Table 1 (with robust standard errors in brackets)
shows that VC investment has a significant positive and that organizational radicality
has a significant negative effect on survival. This confirms H1 and H2 and also the
relevance of capital access found in [2, 3], as well as the role of more radical
innovation [10], as concerns the special case of organizationally radical innovation.
The effect of the latter is also, as hypothesized, moderated by VC investment, i.e.
venture capitalists remain invested longer in startups with organizationally radical
innovation. This shows that VC investment only in combination with the latter (i.e.
innovation that destroys competencies or architectural knowledge) increases time to
acquisition. It also indicates a more modest role to VC and differentiates compared to
earlier literature like [1], [12].

Table 1. Survival Analysis of Determinants for Time to Acquisition

Explanatory variable Model 1 Model 2 Model 3
Year 2008 1.32 (1.26) 1.30 (1.27) 1.32 (1.25)
Year 2009 0.29 (1.35) 0.25 (1.40) 0.30 (1.40)
Year 2010 -13.34*** (1.14) -9.17*** (1.19) -7.67*** (1.18)
Year 2011 -13.59*** (1.15) -9.23*** (1.19) -7.66*** (1.18)
Year 2012 1.30 (1.33) 1.18 (1.37) 1.25 (1.36)
Year 2013 1.51 (1.42) 1.39 (1.43) 1.48 (1.40)
Age 0.01** (0.06) 0.17 (0.34) 0.11 (0.34)
Age squared - -0.003 (0.01) -0.002 (0.01)
Cit.-weight. patents -0.10 (0.23) -0.11 (0.22) -0.10 (0.22)
Org. radicality (yes→no) -0.64 (1.14) -0.60 (1.18) -8.71*** (1.11)
New/lacking skills 0.29 (0.48) 0.32 (0.48) 0.31 (0.49)
VC (no→yes) 2.61** (1.15) 2.65** (1.15) 1.77 (1.11)
Univers. startup (no→yes) 0.42 (1.52) 0.46 (1.568) 0.69 (1.59)
VC x Org. radicality - - 8.56*** (1.39)
Constant -5.47** (2.31) -7.12 (4.41) -5.94 (4.34)
Pseudo-R² 0.27 0.27 0.30
Wald χ² 982.49*** 528.65*** 591.12***
Number of observations 190

Notes: * p<0.10; ** p<0.05; *** p<0.01; n=190; years relative to 2007 as base year

 Acquisition of Software Firms: A Survival Analysis 227

Consistent with these findings, Table 2 indicates that entrants themselves only rarely
are able to develop a larger market share on their own if they are not acquired at all.

Table 2. Perceived Fate of Startups not acquired in the longer Run

Variable Frequency % Firms % Responses % Choices

go out of business 17 54.8% 53.1% 50.0%
in market niche 6 51.6% 50.0% 97.1%
merger of equals 1 3.2% 3.1% 100.0%

To further corroborate these results, in a sensitivity analysis also a survival model was
analysed, in which more and lesser numbers of explanatory variables were included due
to conceptual considerations (specifically, these are as defined in detail in [15] the
remaining factors introduced above, whether a general manager responded, firm size
(measured in different categories of employee numbers), whether the innovation was
economically radical/saving significant cost and the technological breadth of the startup,
measured as the number of EDA sub-segments, in which it is active).

Table 3. Sensitivity Analysis of Survival Models in Table 1

Explanatory variable Model 1 Model 2 Model 3
Year 2008 1.30 (1.28) 1.32 (1.26) 2.40* (1.34)
Year 2009 0.28 (1.44) 0.32 (1.43) 0.90 (1.62)
Year 2010 -18.59*** (1.18) -7.75*** (1.16) -7.94*** (2.01)
Year 2011 -8.55*** (1.19) -7.75*** (1.17) -9.18*** (2.20)
Year 2012 1.22 (1.39) 1.27 (1.38) -0.51 (2.27)
Year 2013 1.40 (1.39) 1.45 (1.36) -1.40 (2.74)
Age -0.04 (0.33) -0.09 (0.32) -2.38* (1.38)
Age squared 0.001 (0.01) -0.002 (0.01) 0.09*** (0.03)
Citation-weighted patents -0.12 (0.15) -0.12 (0.15) -0.16 (0.74)
Org. radicality (yes→no) -0.90 (0.92) -7.95*** (1.04) -26.41*** (8.43)
New/lacking skills - - 2.827** (1.20)
VC (no→yes) 2.48** (1.11) 1.84* (1.11) 15.95** (7.51)
Univers. startup (no→yes) - - -6.20 (5.02)
VC * Org. radicality - 7.30*** (1.24) 35.72*** (9.20)
Cost-saving innovation - - -0.04 (3.37)
Firm size (employees) - - -7.34 (1.78)
Technology breadth - - -10.20*** (3.04)
General manager - - 17.78*** (5.84)
Low risk/day-to-day bus. - - -4.22** (2.02)
Low fit/existing customers - - -2.23 (1.76)
Constant -4.44** (3.39) -3.27 (3.31) 5.48 (23.66)
Pseudo-R² 0.25 0.27 0.59
Wald χ² 507.87*** 552.08*** 359.65***
Number of observations 190

Notes: * p<0.10; ** p<0.05; *** p<0.01; n=190; years relative to 2007 as base year; A
model corresponding to the specification of Model 1 in Table 1 is available and provided on
request.

228 M. Wagner

As can be seen from Table 3 reporting the results for this survival analysis, the
years 2010 and 2011 have again a significant negative association with firm survival
and also the other significant effects remain unchanged in all different survival model
variants applied for this sensitivity test, especially the interaction effect of VC and
radicality.

5 Conclusions and Discussion

The overarching question of this paper is what affects the time it takes until a firm is
acquired, i.e. what affects the temporal survival of a firm? Three hypotheses on the
effects of VC, organisationally radical innovation and their interaction were derived
and confirmed. This suggests that venture capitalists mainly hold longer on to
investments in firms that have organisationally radical innovation, whilst the latter
leads to even quicker acquisition once the interaction with VC is accounted for.
Additionally the years 2009 and 2010 have a significant negative association with the
survival rate. The lower survival rates (i.e. increased acquisitions) in these years are
due venture capitalists opting for trade sales and since large firms as acquirers are not
credit rationed. As concerns threats to validity the interaction of venture capital and
organizationally radical innovation could cause multicollinearity in the data.
However, since its correlation with all other 13 variables used across all specifications
is on all occasions below 0.52, this is not the case. Given the limits to statistical tests
for representativeness, replication of the results reported here in larger EDA industry
samples should be demonstrated to corroborate these. Also, whilst EDA is illustrative
for pre-packaged software, analyses of other software-based sectors are desirable to
confirm the generalizability of the findings reported here beyond the EDA industry.

References

1. Gans, J.S., Hsu, D.H., Stern, S.: When does startup innovation spur the gale of creative
destruction? RAND J. of Econom. 33(4), 571–586 (2000)

2. Evans, D.S., Leighton, L.S.: The determinants of changes in US self-employment,
1968-1987. Small Business Economics 1, 111–119 (1989)

3. Taylor, M.P.: Survival of the fittest? An analysis of self-employment duration in Britain.
Economic Journal 109, C140–C155 (1999)

4. Phillips, B.D., Kirchhoff, B.A.: Formation, growth and survival: small firm dynamics in
the US economy. Small Business Economics 1, 65–74 (1989)

5. Cooper, A.C.: Entrepreneurship and high tech. In: Sexton, D., Smilor, R. (eds.) The Art
and Science of Entrepreneurship, Ballinger, Cambridge, pp. 153–168 (1986)

6. Westhead, P., Cowling, M.: Employment change in independent owner-managed high-
technology firms in Great Britain. Small Business Economics 7, 111–140 (1995)

7. Lin, Z., Picot, G., Compton, J.: The entry and exit dynamics of self-employment in
Canada. Small Business Economics 15, 105–125 (2000)

8. Agarwal, R.: Small firm survival and technological activity. Small Business
Economics 11, 215–224 (1998)

 Acquisition of Software Firms: A Survival Analysis 229

9. Audretsch, D., Mahmood, T.: New firm survival: new results using a hazard function.
Review of Economics and Statistics 6, 97–103 (1995)

10. Cosh, A.D., Hughes, A., Wood, E.: Innovation in UK SMEs: causes and consequences for
firm failure and acquisitions. In: Acs, Z., Carlsson, B. (eds.) Enterpreneurship, SMEs and
the Macro Economy, Cambridge University Press, Cambridge (1999)

11. Lee, A.S., Baskerville, R.L.: Generalizing Generalizability in Information Systems
Research. Information Systems Research 14(3), 221–243 (2003)

12. Wagner, M.: Growth of university-based start-ups and acquisition as an exit strategy in
academic entrepreneurship evidence from software-based ventures. Int. J. of
Entrepreneurship and Small Business 12(4), 39–412 (2011)

13. Romijn, H., Albaladejo, M.: Determinants of innovation capability in small electronics and
software firms in southeast England. Research Policy 31, 1053–1067 (2002)

14. MacCallum, R.C., Widaman, K.F., Zhang, S., Hong, S.: Sample size in factor analysis.
Psychological Methods 4, 84–99 (1999)

15. Wagner, M.: Acquisitions as a means of innovation sourcing by incumbents and growth of
technology-oriented ventures. International J. of Tech. Management 52, 118–134 (2010)

16. Rabe-Hesketh, R., Skrondal, A.: Multilevel and longitudinal modeling using Stata. Stata
Press, College Station (2008)

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 230–244, 2015.
DOI: 10.1007/978-3-319-19593-3_21

Lean Software Startup – An Experience Report
from an Entrepreneurial Software Business Course

Antero Järvi(), Ville Taajamaa, and Sami Hyrynsalmi

Department of Information Technology, University of Turku, Turku, Finland
{antero.jarvi,ville.taajamaa,sthyry}@utu.fi

Abstract. This paper offers blueprints for and reports upon three years experi-
ence from teaching the university course “Lean Software Startup” for infor-
mation technology and economics students. The course aims to give a learning
experience on ideation/innovation and subsequent product and business devel-
opment using the lean startup method. The course educates the students in
software business, entrepreneurship, teamwork and the lean startup method.
The paper describes the pedagogical design and practical implementation of the
course in sufficient detail to serve as an example of how entrepreneurship and
business issues can be integrated into a software engineering curriculum. The
course is evaluated through learning diaries and a questionnaire, as well as the
primary teacher’s learnings in the three course instances. We also examine the
course in the context of CDIO and show its connection points to this broader
engineering education framework. Finally we discuss the challenges and oppor-
tunities of engaging students with different backgrounds in a hands-on entre-
preneurial software business course.

Keywords: Software entrepreneurship · Education· Software business ·
Lean startup · CDIO

1 Introduction

Due to the global changes in business landscape, software entrepreneurship is current-
ly a popular and an important topic to teach to students. Recent development in the
industry has created the lean startup method that aims to speed up startup evolution
and eliminate waste during the process. While the lean startup movement started in
the software entrepreneurship domain, its principles are currently spreading to other,
more tangible domains. Established companies, such as F-Secure and Tieto in Fin-
land, have founded small startup-like teams inside the corporation to develop products
and services for volatile market segments.

There is, however little evidence on how lean startup method works as a teaching
tool. Thus, the research objective of this study is to evaluate the usefulness of the lean
startup method in incorporating entrepreneurial, business and transferable working
life skills into a software engineering project course.

In this paper, we describe the course “Lean Software Startup” that has been taught
yearly in Department of Information Technology at the University of Turku, Finland

 Lean Software Startup – An Experience Report from an Entrepreneurial Software 231

since 2011. In addition to technical students, the course has participants from the
business faculty which serves the interdisciplinary goal of the course. The paper pre-
sents the used pedagogical strategy and discusses and shares the experiences gained
teaching the course during the previous three years. The course design and implemen-
tation are discussed in detail so the same principles and structure can be adapted by
others.

The rest of the paper is structured as follows. The following section provides a
brief introduction to the related concepts as well as motivation for the course and
briefly describes related work. Sections 3 and 4 present the design of the course and
its evaluation, respectively. The final section concludes the study with discussing
challenges and proposing further ideas for development.

2 Background and Motivation

2.1 Customer Development and Principles of Lean Start-Up

Blank [1] presented a model that helps startups to build and improve their success by
acquiring a better understanding of their customers. The model consists of the four
steps as presented in Fig. 1. The first step aims to identify the customer segments and
how they value the problem that the product or service proposal tries to solve (so-
called Problem/Solution fit). The second step attempts to prove that there is a market
for the product or service proposal that positively response to the problem (so-called
Product/Market fit). The third step focuses on scaling the market by creating and
driving customer demand. The fourth step aims to transform the startup firm from a
learning and discovery organization to a business execution machine. During this
course, only the first two steps are addressed.

Fig. 1. Customer Development model (adopted, [1])

In industry, the lean start-up method by Eric Ries [2, 3] is an extremely popular
tool for technology start-ups to manage the creation of the new company. The initial
model [2] was built on the top of three principles. These are: 1) the use of free and
open-source software or cheap software development platforms; 2) the use of Agile
software development methodologies; and 3) the use of Blank’s [1] Customer Devel-
opment method. The fourth basic principle to the model, the use of cheap and effec-
tive analysis tools, was added in [4]. To summarize, these principles aim to cheaply
develop a ‘minimum viable product’ (MVP) [5] that can be used to empirically test
customers’ real needs.

232 A. Järvi et al.

Fig. 2. The Lean Build-Measure-Learn –loop [3]

The lean start-up model has since been redefined by Ries in [3]. The basic philoso-
phy, however, remained the same. In [3], the Build-Measure-Learn -loop (Fig. 2) is
raised to a central position in the lean start-up model. The loop guides start-ups to turn
ideas into products, measure the customers’ response and learn from this data. This
process is a fundamental part of the lean start-up method and the process is repeated
over and over again. Furthermore, the same learning process is applied not only on
the product but also to test the assumptions underlying the business model.

2.2 Related Work

Course, curriculum and teaching methods for research and development have long
traditions [6, 7, 8]. Especially in engineering education [9], the achieved learning
outcomes, implications of those to curriculum design and to teaching methods are
subjects to continuous scientific discourse [10, 11]. Concerning curriculum design
and development, the current study concerns a course level approach [9, 12]. With
respect to teaching methods, this study focuses on transferable working life skills,
action and integrated teaching methods [7, 13]. Research in the field, in this study, is
often conducted using action research and case study analysis methods [14].

Related work shows that using these teaching methods that are based on social
constructionism and hands on learning, do catalyze the students cognitive learning
process at a deeper level [7, 8, 9, 13]. Students not only learn disciplinary knowledge
but also relevant and transferable working life skills such as communication skills,
teamwork skills, project management and creative product development skills. Typi-
cally the challenges in this kind of courses lie in the assessment of the learning out-
comes, which are subjective and context-driven. Often the cases cannot be directly
compared to other similar studies. Even if the courses share similar structure and
intended learning outcomes, the teaching methods or teachers can be different and the
identification of differences is difficult whether they are qualitative or quantitative
[15, 16]. The value of research based on course development and assessed learning
outcomes is especially relevant to practitioners who can reflect their own experiences
from course planning, teaching methods development, assessment of learning out-
comes and the feedback of all stakeholders to their own praxis [9, 13].

Code

Ideas

Data

 Lean Software Startup – An Experience Report from an Entrepreneurial Software 233

There are similar proposals for using lean start-up methodology, or respective con-
structions, as a base for an education design. For example, [17] proposes a design for
a game development accelerator based on the method. In [18], the authors describe an
incubator that, to some limit, meets the principles of lean start-up methodology. Fur-
thermore, some experience reports exist. For example, Bosch et al. [19] tested an
extended method with students in a start-up incubator.

Lean Software Startup shares similarities with Capstone courses [7,9-13,15-16]. It
follows a product development process with emphasis on early phase iterations and
active customer feedback through prototyping. Also the intended learning outcomes
include transferable working life skills in addition to disciplinary knowledge.

There are a few proposals for innovative software engineering course with a spe-
cial focus on entrepreneurship. Björkqvist et al. [20] report experiences on integrating
entrepreneurship activities in a large project work course that involves both infor-
mation systems and computer science students. Daimi and Rayess [21] describe a
software entrepreneurship course for computer science students; however, their peda-
gogical approach is close to traditional lecturing while our pedagogical strategy is
based on hands-on learning. Aaen and Rose [22] note that software entrepreneurship
courses often utilize a plan-based approach. Thus, they developed a course that allows
students to select from plan- based or agile alternatives an option to complete a soft-
ware entrepreneurship course.

3 Course Design

3.1 Design Goals

The starting point for the course1 design was to let students experience a product or
service development project based on the lean startup method, as realistically as pos-
sible in the university environment. The use of a startup context where teams come up
with their own business ideas is not an end in itself, but rather a means for achieving a
setting where there is uncertainty and thus opportunity for innovation both in terms of
product and business. If the customer and the problem were given, which is often the
case in software engineering project courses, the learning would be limited to soft-
ware engineering, project and teamwork skills. In this course we wanted to offer a
wider scope. It must be noted that this is not an entrepreneurial course per se, but uses
the lean startup method as a tool for creating innovative products and related business
designs in a customer or user driven manner. It is clearly explained to students that
the approach applies to any new product development under considerable uncertain-
ties and risks.

A central principle in this course is that there are no explicit disciplinary
knowledge learning goals for the course, thus no predetermined, planned knowledge
to assimilate, and also no exam to ensure the learned substance. However, during the
course the students will learn and apply theoretical knowledge, techniques and meth-
ods, and study various materials. The course has six focus areas:

1 https://nettiopsu.utu.fi/opas/opintojakso.htm?id=34761&lang=en

234 A. Järvi et al.

Working with Customers/Users and Other Stakeholders. The students experience
how difficult it can be to learn about customers’ problems and how to help the cus-
tomer understand his/her needs. . The students are responsible for finding and organ-
izing the interaction with customers. They experience the value of talking to real
customers. and learn to seek for feedback and take value also from criticism.

Lean Startup Method in Product Development. The students learn the basic ideas
of the lean startup process and apply its core learning loop. The students understand
that the MVP is a means for validating assumptions about the business being devel-
oped. The students experience throwing away code and changing central decisions
about the customers, customer value, product and business. The students see how
business and product development go forward in parallel.

Practical Software Engineering Skills. The teams choose the development tools and
environments according to what is needed and put them to use. Learning new tools
and languages is a normal activity during the course.

Working Life Skills. The students experience practical teamwork, will put up com-
munication and collaboration tools as needed, learn to present and pitch their project
on several occasions and to different stakeholders. Overall professionalism and taking
responsibility is required.

Idea Generation and Business Development. The students learn to see opportunities
and generate business ideas. They understand the importance of focusing on custom-
ers and problem first and not starting with the solution. They experience how the
business idea is refined based on feedback.

Overall Business Knowledge. The students will learn overall business skills and
knowledge. These are not however actively taught in the course; instead, these are
discussed when the issues arise during the course.

The projects need not, and generally will not, achieve a state where they could be said
to be ready and finished. It is more important that the lean startup method is used, the
team experiences several rounds of its core learning cycle and the business idea as
well as the product is adapted based on this feedback. In essence, the journey is im-
portant, not the endpoint.

Team formation is one of the key success factors in the course. Team size has varied
during the three course instances but 4-5 members seems to work best, providing for
enough skills and workforce to get things done, yet still small enough that all members
are engaged, feel responsible and find a role within the team. One of the students acts as
a ‘team liaison’ with a responsibility to keep up with the team’s status and to be the con-
nection point with the instructor. However, the team liaison is not a team leader in tradi-
tional sense as the teams will organize and manage themselves like agile teams. When
the teams are formed, the instructor ensures that all teams have sufficient software engi-
neering and business skills.

 Lean Software Startup – An Experience Report from an Entrepreneurial Software 235

3.2 Pedagogical Setting and Learning Environment

A guiding pedagogical principle in this course is that learning happens in the context
of doing and experiencing things in practice. Two central pedagogical methods to
achieve this are the actual work that the students carry on in teams and weekly team
mentoring sessions. Other used methods include introductory lectures, idea generation
workshops, progress gates, use of supporting materials, learning logs for self-
reflection and a course debriefing in the end.

Teamwork. Similar to a real software-based startup, the students have to work on a
wide range of different issues. Examples of tasks that the teams typically face include
configuring development environments and tools, designing and implementing the
product, designing the user experience, launching the product, contacting potential
customers and other stakeholders, getting customer feedback with interviews and
product use analysis, learning about the business, making business and product deci-
sions, organizing the teamwork internally, planning and allocating work, etc. The
teams have practically full freedom to choose what they will work on and how they
will work. Many of these things are new to the students and they simply need to learn
for what is needed. Often, one of the students has experience in a particular area and
the students learn from each other.

Mentoring. Individual one-hour mentoring sessions are held roughly once a week
with each team. The sessions serve several purposes. First, in the sessions the instruc-
tor can directly give advice, teach relevant theory and point out materials to help the
team go forward in a particular situation. Second, the instructor ensures that the lean
startup- and customer development methods are being used. Third, the instructor
helps the team resolve whatever issues there are that hinder the teamwork, especially
in the beginning. It is very important that the instructor does not take the role of an
authority that requires weekly progress reports, but rather the role of a more experi-
enced team member. Unless the atmosphere is open and encouraging, the students
will not present the true status of the project and ask for help with difficulties they are
facing. The instructor does not interfere with the business idea and business develop-
ment itself, unless it needs to be pushed to a pedagogically more fruitful direction; for
instance, out of a customer segment where it would be impossible to reach customers.

Gates. There are four progress gates in the course. At each gate, each team gives a short
presentation on their project, followed by comments and discussion by the other teams.
The purpose of the gates is first to create structure for the four month long course, second
to enable learning between teams and third to provide presentation opportunities for
students. The four gates have different focuses: In the first gate the focus is on the initial
business idea, team organization and technical development issues. In the second gate the
teams focus on customers and stakeholders, value proposition and the first working
product (MVP). In the third gate, the teams will explain what feedback they have gath-
ered, what kind of business and product decisions they have taken based on the feedback,
and present the evolved MVP. The fourth gate is similar to the third, incorporating one
more lean startup learning loop. Whereas the presentations in the previous gates are more

236 A. Järvi et al.

traditional, the presentation in the fourth gate is a typical startup business pitch for a
wider audience than just course participants.

Lectures and Idea Generation. In the two first weeks there are three to four two
hours lectures covering the overall course concept and introducing the main points of
central tools used during the course – Ries’ lean startup method [3], Blank’s customer
development [1] and Osterwalders’ business model canvas [23]. Opportunity recogni-
tion and idea generation techniques are introduced and immediately used in an idea
generation workshop, wherein the initial business ideas for the teams are generated.

Deliverables. There are three deliverables in the course, the learning log, the daily
diary and the team log, all of them created gradually during the course. There is a
checkpoint during the course to make sure all students are actively creating these
deliverables. The purpose of all deliverables is explained to students.

The most important deliverable is the learning log, a semi-structured template
where the students, once a week, write their perceptions on what they learned during
the week (see the template in Appendix A). The primary purpose of the learning log is
to make the students think back and reflect upon what they have learnt in the unstruc-
tured and sometimes messy work during the week. The secondary purpose is to pro-
vide feedback for the course instructor about what the students really learn.

The daily diary is a log where the students make a one line entry every time they
work on anything in this course. The entry contains the date, number of hours worked,
what did the student work on, and with whom. The primary purpose of this diary is to
ensure an even workload between team members.

The team log makes the team’s journey visible. Once a week, or more frequently if
the team chooses to, the team writes briefly what did they do since the last log entry,
what did they learn about their business case, how it affects their assumptions, and
what are currently the important concerns that the team will act on next. It has turned
out that reading through this log at the end of the course is an invaluable learning
experience for the students. It clearly shows the ‘searching by experimentation’ nature
of the lean startup method.

Reflection Discussion. At the end of the course, there is a moderated discussion aim-
ing at providing final emphasis the most important learning goals of the course and
providing course feedback for the instructor. This has not worked well due to lack of
motivation. The students put a lot of effort into the fourth gate, and once it is passed,
they feel that the course is over. This is one of the last activities before the end of
semester and that might explain the lack of motivation at this point.

3.3 Course Structure

An example course structure is given in Table 1. The course consists of four parts as
described in the table. At our university, a semester is divided into two periods,
roughly 7-8 weeks each. The “Lean software startup” course lasts two periods, ending
before the summer break. Currently, the course corresponds to 10 ECTS (European
Credit Transfer and Accumulation System) credits.

 Lean Software Startup – An Experience Report from an Entrepreneurial Software 237

Table 1. The normal structure of the course

Week Content

Part I: Introduction (all sessions are 90 min).

Week 1: 1st Course introduction. Practical issues.
Lecture: “Concurrent business and product innovation”.

Week 1: 2nd Team formation. Deadline for dropping the course!
Lecture: “Lean startup basics”, “Customer development basics”.

Week 2: 1st Lecture: “Opportunity recognition and business idea generation”.
Idea generation warm-up.

Week 2: 2nd Idea generation workshop, presenting the ideas.

Part II: The foundations
Week 3 Team mentoring, individually 60 min / team. Focus on business idea, team organi-

zation, project tooling, team organization and management, team roles.
Week 4 Team mentoring. Same as above.

Week 5 Emergency mentoring available by appointment if needed.
1st Gate: Presentation of the business idea and how the team is organized.
10 minutes presentation + group discussion.

Part III: Execute
Week 6 Team mentoring

Week 7 Team mentoring

Week 8 Team mentoring

Week 9 Emergency mentoring available, by appointment – in case a team is in trouble.
2nd Gate: First product (MVP) demonstration and customer acquisition, evolution
of the business idea.

Week 10 Team mentoring

Week 11 Team mentoring

Week 12 Team mentoring

Week 13 Emergency mentoring, again only by appointment
3rd Gate: Product demonstration (MVP) and customer feedback, evolution of
business idea and the product.

Part IV: End game
Week 14 Team mentoring

Week 15 Team mentoring

Week 16 4rd Gate: Demo Day. Business pitch, 5 min., followed by group discussion to
share experiences from the last weeks.

Week 17 Retrospective: Moderated discussion: What did we learn. Course closing.

Week 18 Deadline for all course deliverables.

4 Evaluation

In the following, we evaluate how well the goals of the course were achieved, using
the learning diaries and the self-reported data from the students. The course has been
organized three times, first in the autumn semester of 2011–2012 (started in Septem-
ber and ended in December, 2011); second time in the autumn of the academic year
2012–2013 and third time in the spring semester of 2013–2014 (started in January and
ended in June, 2014). While the structure of the course has remained the same, there
were no business students in the first instance. Therefore, in the evaluation we focus
only on the last two instances.

238 A. Järvi et al.

Table 2 shows the number of students that participated in the course in each in-
stance. In addition, there were a few students who enrolled in the course but dropped
out the first week of the course.

Table 2. The number of participants in the course by their major disciple

Discipline Autumn 2012 Spring 2014

Technology 19 16
Business 10 8

To evaluate the implementation of the course, we used the semi-structured learning

diaries, the ‘learning logs’, written by the students during the course as the primary
data source. As a secondary data source, we used a questionnaire sent to the partici-
pants of the course in December 2014.

As a part of the course, the students were required to write and update a structured,
weekly learning log. An example of the structure is given in Appendix A. The short-
est learning diaries were 2 pages and the longest 15 pages, the average being 5 pages.
The learning diaries were analyzed by the authors by reading them carefully and
counting how many times the student had written about learning something in each of
the six learning areas. The learning area was given the score 0 if the student had no
learning experience on a learning area, score 1 for at least one reported learning expe-
riences, score 2 for repeated reported learning experiences and score 3 for repeated
and deep learning experiences. The distinction between scores 2 and 3 is subjective
and reflect the difference between how strongly the students described the learning.
The averages for each learning area were then calculated, for all students together and
separately for technology and business students (Table 3).

Learning Logs. The findings from the learning log data indicate that a moderate to
good amount of learning takes place in all learning areas. Furthermore, there was not
a single student that reported not learning something in most of the learning areas.
Interestingly, both technology and business students experienced the most learning in
the ”idea generation and business development” area. The possible reason for this is
that the students had not previously participated in a hands-on business development
course, even though many business students had studied the topic in previous courses.
The hands-on nature of the course is seen also in high “work life skills” learning
experience. As anticipated, technology students learned more about software engi-
neering, but interestingly this was the only area where there was a notable difference
between the two student groups. The “general business knowledge” learning area had
the poorest learning outcome.

In the learning log, the students also reported the source of the learning experience
(Table 4). These learning sources were analyzed in a similar manner to the learning
areas. Unsurprisingly, the team was the most common source, reflecting the constant
peer learning during the teamwork. The mentor was also a frequent source for learn-
ing which indicates that the mentoring concept is a useful and working pedagogic
method. Self was the third frequent source for learning, interestingly more for
business students. Two other sources that were probed in the learning logs, customers

 Lean Software Startup – An Experience Report from an Entrepreneurial Software 239

and other teams, got only sporadic mentions in the reports. It is somewhat surprising
that the group discussions in the four gates and frequent contacts with customers and
stakeholders did not seem to provoke learning.

Table 3. Learning experiences in learning areas

Learning area All students Technology Business

Working with customers/users/ stakeholders 2.2 2.1 2.3
Lean startup method 1.8 1.9 1.8
Software engineering skills 1.9 2.2 1.5
Working life skills 2.3 2.3 2.3
Idea generation and business development 2.6 2.5 2.6
General business knowledge 1.3 1.3 1.2

Table 4. Sources of learning

Source of learning All Students Technology Business
Self 2.0 1.7 2.4
Team 2.4 2.5 2.4
Mentor 2.3 2.0 2.6
Other teams 0.4 0.6 0.3
Customers 0.6 0.4 0.8

Survey. The results of the survey of the participants of the course are used as the
secondary data source. The questionnaire was submitted via e-mail to students who
have participated into the course during its previous instances. We targeted only stu-
dents who were still active at the university and whose university email accounts were
working. In total, the questionnaire was sent to 41 students (50% of the total course
participants). The students had four weeks to answer the questionnaire. A reminder
email was sent after two weeks. Finally, a total of seven usable answers were re-
ceived, thus yielding the response rate of 17.1%.

While the learning diaries were written during the course, we were keen to see how
the attitudes of the students changed awhile after the course. None of the respondents
continued the project after the course. Four respondents reported that they have had
discussion with their teams on the continuance of the course work towards a commer-
cial product. However, they deemed that the idea or the team were not mature enough.
Nevertheless, all answerers had a positive attitude towards founding their own soft-
ware firm and working as an entrepreneur.

In almost every feedback, the teacher was mentioned as one of the most important
source for learning. As noted by one business student majoring in Marketing:

“The thing that I liked the most in this course was how involved the teacher was in
our work. This is really the only course where I think I could learn through one on
one interaction if thesis courses don’t count.”

Furthermore, both technology and business students praised the collaboration over the
faculty borders. This was often mentioned as a learning outcome in the course.

240 A. Järvi et al.

“Teamwork with Software Engineers (it is really different than Teamwork with
only other Business students)…” – Marketing major.

5 Discussion

5.1 Experiences

The overall experience of the teacher in the three course instances is positive; the
course is inspiring and even fun to teach. Most students are committed, enthusiastic
and hardworking, and the student feedback is good. Clearly the course succeeds in
engaging the students and thus provides a good foundation for learning. However,
despite the word ‘startup’ in the course title, and words ‘entrepreneurial’ and ‘soft-
ware business’ in the title of this paper, we would not consider this as a full entrepre-
neurship course, nor as a software business course. Rather, the course combines some
elements from both themes into an intensive, multifaceted learning experience.

On the entrepreneurial theme, the students experience working and making
decisions under uncertainty, taking responsibility on issues outside of their current
skills, experience failing and learning from it, and gain insight into the entrepreneurial
attitude.

On the software business theme, the students get to design business models. How-
ever, the discussions, designs and experiments concerned only the value proposition,
distribution and marketing channels, customer segments and revenue models, thus
providing a somewhat narrow view on software business development.

As a third theme, the students get to experience on experimental, user and custom-
er driven innovation process that we believe is becoming widely used in cases where
both the product and the distribution channel are digital.

5.2 Challenges

One of the challenges, noted during the execution of the course, is the requirements that a
multidisciplinary course imposes upon the primary teacher. The teacher needs to under-
stand and be able to help both in business related and in technological issues. In our im-
plementation, the teacher had a decade of experience of teaching software engineering as
well as experience with running his own startups. This greatly helped to transfer the
knowledge to the students; however, as a downside, the course is highly dependent on a
single teacher and increases his workload. A second teacher with business background
and specialization at software startups was also present in the four gates and gave invalu-
able insights – mainly on the business ideas and their potential and flaws. Getting a fresh,
second opinion was clearly beneficial for the students.

This kind of course is also challenging for students, who in previous courses, have
mainly been required to solve clearly defined problems. This course requires a different
mindset: As a team, they need to (by themselves) identify what must be done, learn the
required knowledge and skills and solve the problems. Frequent mentoring sessions with
the teacher in the first weeks of the course were extremely important to the students.

 Lean Software Startup – An Experience Report from an Entrepreneurial Software 241

Unsurprisingly, one of the major challenges in the course is the team formation.
The objective is to have sufficient business and technical skills in every team. This
has not always succeeded. In two cases the technical skills in a team turned out to be
insufficient which was handled by swapping student volunteers between two teams.
Lack of business skills has not been a problem. Either the commitment of business
students has been higher or technical students have been able to learn business issues
easily and contribute to business side as well.

5.3 Engineering Professional: CDIO

We also examine the Lean Software Startup course in the context of the CDIO (Con-
ceive–Design–Implement–Operate) engineering education structure and find four
shared objectives and similarities that can be explicitly identified across the two.

The CDIO engineering education framework and structure was originally designed to
better equip graduating engineers with transdisciplinary and scalable working life skills
such as communication, project management, teamwork, and problem solving capabili-
ties in addition to the actual disciplinary knowledge and skills [9, 13, 24]. This structure
and framework level intended learning outcome is also the first joint surface boundary
with CDIO framework and Lean Software Startup course [25, 26, 27].

The CDIO framework is based on 12 standards that emphasize a focus on learning
outcomes instead of taught content, versatile assessment of learning, integrated cur-
riculum, active learning and the learning of the engineering problem solving cycle:
Conceive, Design, Implement and Operate which is also where the acronym CDIO
derives from [27]. Entrepreneurial practices based on iterative engineering problem
solving cycles such as that used the in the course “Lean Software Startup” are very
much aligned with the CDIO framework and learning philosophy with a) emphasis on
integrated curriculum, b) active learning methods, which emphasizes learning by
doing, c) teamwork setting, d) and design-implement experiences, which are an essen-
tial part of both the CDIO as well as the Lean Software Startup course. This is the
second joint boundary surface.

The third similarity and shared objective in this course and in CDIO is the emphasis
Problem Based Learning (PBL) as the learning approach. The students actively construct
knowledge coached and facilitated by the teaching team in a hands-on learning environ-
ment [6, 15, 29] instead of traditional lecturing where the teacher transmits information
or his own interpretations of knowledge to the passively listening students.

The fourth explicit joint surface boundary [9, 11] between CDIO and Lean Soft-
ware Startup course is the societal impact at which it is targeted. Lean Software
Startup course catalyzes students’ innovation skills and the construction and adaption
of knowledge needed in the challenges of future industries as well as the building of
global societies.

242 A. Järvi et al.

6 Conclusion

This paper presented the blueprint for the “Lean software startup” course that is built
upon the customer development and lean startup methods. We reported the used
course design and pedagogical strategy and evaluated the course with students’ learn-
ing logs and with a short survey. The results show that this kind of a course can teach
software engineering, software business and entrepreneurship skills to software engi-
neering and business students. The course design relies on hands-on learning in mul-
tidisciplinary teams, which has been praised by the participants. No course is perfect
and we will continue to develop the course in future. Furthermore, we call for experi-
ence reports, course designs and education evaluation by software business and entre-
preneurship teachers to share knowledge and to further develop the field of software
business education.

References

[1] Blank, S.: The Four Steps to the Epiphany: Successful Strategies for Products that Win,
2nd edn. Cafepress.com, San Mateo (2005)

[2] Ries, E.: The lean startup, http://www.startuplessonslearned.com/2008/09/lean-
startup.html (accessed on April 7, 2013)

[3] Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses, 1st edn. Crown Business, New York (2011)

[4] Cooper, B., Vlaskovits, P.: The Entrepreneur’s Guide to Customer Development.
CooperVlaskovits, USA (2010)

[5] Ries, E.: Minimum Viable Product: a guide, http://www.startuplessonslearned.com/
2009/08/ minimum-viable-product-guide.html (accessed on April 7, 2013)

[6] Daniels, M.: Developing and Assessing Professional Competencies: a Pipe Dream?
Digital Comprehensive Summaries of Uppsala Dissertations from Faculty of Science and
Technology 738, AUU (2011)

[7] Leifer, L.J., Steinert, M.: Dancing with ambiguity: Causality behavior, design thinking,
and triple-loop-learning. Information Knowledge Systems Management 10, 151–173
(2011)

[8] Froyd, J.E., Wankat, P.C., Smith, K.A.: Five Major Shifts in 100 Years of Engineering
Education. Proceedings of IEEE 100, 1344–1360 (2012)

[9] Crawley, E.F., Malmqvist, J., Östlund, S., Brodeur, D.R.: Rethinking Engineering Educa-
tion, The CDIO Approach. Springer, USA (2007)

[10] Dym, C.L., Rossmann, J.S., Sheppard, S.D.: On Designing Engineering Education: Les-
sons Learned at Mudd Design Workshop IV. Int. J. Engng. Ed. 20, 470–474 (2004)

[11] Wesner, J.W.: What We Have Learned in Mudd Design Workshop V: Learning and Engi-
neering Design. Int. J. Engng. Ed. 22, 685–688 (2006)

[12] Edström, K., Kolmos, A.: PBL and CDIO: complementary models for engineering educa-
tion development. European Journal of Engineering Education 39, 539–555 (2014)

[13] Atman, C.J., Sheppard, S.D., Turns, J., Adams, R.S., Fleming, L.N., Stevens, R.,
Streveler, R.A., Smith, K.A., Miller, R.L., Leifer, L.J., Yasuhara, K., Lund, D.: Enabling
Engineering Student Success: The Final Report for the Center for the Advancement of
Engineering Education. Morgan & Claypool Publishers, San Rafael (2010)

 Lean Software Startup – An Experience Report from an Entrepreneurial Software 243

[14] Eisenhardt, K.M.: Building Theories from Case Study Research. Academy of Manage-
ment Review 14, 532–550 (1989)

[15] Taajamaa, V., Sjöman, H., Kirjavainen, S., Utriainen, T., Repokari, L., Salakoski, T.:
Dancing with Ambiguity – Design thinking in interdisciplinary engineering education. In:
Design Thinking Conference, Shenzhen, China (2013)

[16] Taajamaa, V., Westerlund, T., Liljeberg, P., Salakoski, T.: Interdisciplinary Capstone
Project. In: 41th SEFI Conference, Leuven, Belgium (2013)

[17] Järvi, A., Mäkilä, T., Hyrynsalmi, S.: Game Development Accelerator – Initial Design
and Research Approach. In: Proceedings of From Start-ups to SaaS Conglomerate: Life
Cycles of Software Products Workshop, Potsdam, Germany, pp. 47–58 (2013)

[18] Callele, D., Boyer, A., Brown, K., Wnuk, K., Penzestadler, B.: Requirements Engineering
as a Surrogate for Business Case Analysis in a Mobile Applications Startup Context. In:
Proceedings of From Startups to SaaS Conglomerate: Life Cycles of Software Products
Workshop, Potsdam, Germany, pp. 33–46 (2013)

[19] Bosch, J., Olsson, H.H., Björk, J., Ljungblad, J.: The Early Stage Software Startup Devel-
opment Model: A Framework for Operationalizing Lean Principles in Software Startups.
In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg (2013)

[20] Björkqvist, J., Petre, L., Rönnholm, K., Truscan, D.: Integrating Innovation Activities in a
Master Level Capstone Project Course. In: International Conference on Engineering Edu-
cation. Research reports 38. Turku University of Applied Science, pp. 1065–1072 (2012)

[21] Daimi, K., Rayess, N.: The Role of Software Entrepreneurship in Computer Science
Curriculum. In: Proc. International Conference on Frontiers in Education: Computer Sci-
ence and Computer Engineering (FECS 2008), Las Vegas, Nevada, pp. 53–62 (2008)

[22] Aaen, I., Rose, J.: A Software Entrepreurship Course – Between two paradigms. In: 15th
Annual Interdisciplinary Entrepreneurship Conference. St. Gallen and Zurich (2011)

[23] Osterwalder, Y., Pigneur, Y.: Business Model Generation: A Handbook for Visionaries,
Game Changers, and Challengers, 1st edn. Wiley (2010)

[24] Taajamaa, V., Westerlund, T., Liljeberg, P., Salakoski, T.: Interdisciplinary Capstone
Project. In: 41th SEFI Conference, Leuven, Belgium (2013)

[25] Levina, N., Vaast, E.: The Emergence of Boundary Spanning Competence in Practice:
Implications for Implementation Technology 738, AUU (2011)

[26] Couto, V., Mani, M., Lewin, A.Y., Peeters, C.: The Globalization of White-Collar Work:
The Facts and Fallout of Next-Generation Offshoring. Booz Allen Hamilton Inc. (2006)

[27] Levina, N., Vaast, E.: Innovating or Doing as Told? Status Differences and Overlapping
Boundaries in Offshore Collaboration. MIS Quarterly 32, 307–332 (2008)

[28] http://www.cdio.org/implementing-cdio/standards/12-cdio-standards
[29] Savin-Baden, M.: Problem-Based Learning in Higher Education: Untold Stories. The

Society for Research into Higher Education and Open University Press, Buckingham
(2000)

244 A. Järvi et al.

Appendix A A Template for a Structure Learning Log

Learning Log

You do not have to answer to all questions every week, only when you have some-
thing to say. However it is important that you use this learning log as a weekly “check
list”, think and reflect back every question.

Please start any of your comments by entry Wxx where xx is the week number.
There is an example in the third question how your log should eventually look like…
so you are supposed to just use a single learning log document, not one for each week.

The learning log serves two purposes:

─ Thinking through what you have learned in an unstructured work amplifies your
learning (there is clear scientific evidence on this :-)

─ Feedback for the course instructor on how this type of course could be improved

The Questions

1. What inspired you this week?
2. What was surprising?
3. What did you learn about entrepreneurship/business development?

W38 Business ideas need only to be good enough to get started; the idea will
evolve as learning about the customers, product, markets etc. takes place.
W39 Long and detailed business plans do not work as tools for developing a busi-
ness.
W39 Osterwalder’s business plan canvas as a tool for business development, just
the idea.

4. What did you learn about product development?
5. What did you learn about software technology?
6. What did you learn about software engineering development practices / tools?
7. Comments on teamwork, good or bad. Anything that worked well or did not?
8. Where did most of the learning come from, from the mentor, your team fellows or

you? Anything specifically worth mentioning?
9. Free comments

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 245–257, 2015.
DOI: 10.1007/978-3-319-19593-3_22

Software Engineering Knowledge Areas in Startup
Companies: A Mapping Study

Eriks Klotins(), Michael Unterkalmsteiner, and Tony Gorschek

Blekinge Institute of Technology, SE-37179, Karlskrona, Sweden

{eriks.klotins,michael.unterkalmsteiner,tony.gorschek}@bth.se

Abstract. Background – Startup companies are becoming important suppliers
of innovative and software intensive products. The failure rate among startups
is high due to lack of resources, immaturity, multiple influences and dynamic
technologies. However, software product engineering is the core activity in
startups, therefore inadequacies in applied engineering practices might be a
significant contributing factor for high failure rates. Aim – This study identifies
and categorizes software engineering knowledge areas utilized in startups to
map out the state-of-art, identifying gaps for further research. Method – We
perform a systematic literature mapping study, applying snowball sampling to
identify relevant primary studies. Results – We have identified 54 practices
from 14 studies. Although 11 of 15 main knowledge areas from SWEBOK are
covered, a large part of categories is not. Conclusions – Existing research does
not provide reliable support for software engineering in any phase of a startup
life cycle. Transfer of results to other startups is difficult due to low rigor in
current studies.

Keywords: Startup · Software engineering · Mapping · Engineering practice ·
Agile · Lean · Small companies · Development of software intensive
products

1 Introduction

Recent developments in technologies have created an increasing demand for
innovative software products. Startup companies are addressing this need and gain
importance as suppliers of software-intensive products and innovation. The inherent
nature of software enables small companies to produce and launch software products
fast with few resources. However, most of startup companies fail before realizing any
significant achievements [11]. Partially this is due to market factors or financial
issues, however the impact of software product engineering and inadequacies in
applied engineering practices is not fully explored, and might be a significant
contributing factor for the high failure rates.

Chorev et al. [8] identify 16 key factors for a successful startup, such as political
and economical environment, marketing, idea, funding and product development
among others. Many authors [2, 3, 8, 12, 26, 41] address general issues of startups.

246 E. Klotins et al.

Only a few focus on how software engineering is done in startups. Yau et al. argue
that scaled down engineering practices solve problems present in larger, established
companies while ignoring specific challenges that emerge only in startup companies,
stating that different approaches altogether are needed for software engineering in the
context of startups [20].

In this paper we aim at identifying software-intensive product engineering
practices utilized in startup companies and mapping them to Software Engineering
Body of Knowledge (SWEBOK) [31] knowledge areas and categories, describing
both state-of-the art, and gaps in research on startup software engineering.
Furthermore, to analyze how identified software engineering knowledge areas support
the startup life cycle we use the four phase model proposed by Crowne [11] and map
identified knowledge areas to different phases in the startup life-cycle. By use of these
well-established taxonomies [2], [10] we show state-of-the-art and expose gaps for
further research, but with a clear and distinct focus on the software engineering
perspective.

This paper is structured as follows. Section 2 gives an overview of the field and
motivates the study. Section 3 details the research methodology we applied to identify
and map relevant papers. Section 4 reports results from the mapping. Section 5
answers the research questions and discusses the results. Section 6 concludes the
paper.

2 Background and Related Work

A startup company shares many features with small or medium enterprises such as
youth, market pressure and dynamic technologies [33]. However startups are different
due to their aim and the challenges they face [33]. In contrast to established
companies, who regardless of their size focus on optimizing an existing business
model, startups focus of finding one [26]. Sutton [33] defines a startup as an
organization that is challenged by youth and immaturity, extremely limited resources,
multiple influences and dynamic technologies and markets.

Crowne [11] had proposed a four phase start-up life-cycle model. Successfully
transferring from first phase to the last indicates that a startup has become an
established company. The model identifies distinct challenges at each phase that a
start-up must address to advance to the next stage. We seek to identify knowledge
areas supporting transfer trough start-up life cycle by addressing challenges identified
by Crowne [11].

Paternoster et al. [23] conducted a mapping study to characterize state-of the-art
research in startups. They conclude that only a minority of studies in the area are
dedicated to (software) engineering, and since 2000 when this gap was first identified
[33] it has been only partially filled.

Coleman et al. [9] conducted a grounded theory study to explore how software
processes are formed in a startup. This study concludes that there is not enough resources
to explore the best way to develop the software and startups use whatever software
process that supports their immediate business objective. Consequently, the development

 Software Engineering Knowledge Areas in Startup Companies: A Mapping Study 247

process is heavily influenced by previous experiences of a person acting as development
manager [9].

Pino et al. [25] conducted a systematic review on software process improvement
(SPI) in small and medium organizations. The study is aimed at discovering what
approaches to SPI in small-medium companies exist. Although their study was not
aimed at startup organizations, they conclude that prescriptive approaches, such as
CMM and SPICE, are not suitable for small organizations. Therefore, they emphasize
the need for more lightweight and tailored approaches.

Several startup specific process models have addressed this need. For example,
LIPE [40] addresses immaturity, ad-hoc approaches and scalability of engineering
processes. ESSDM [4] proposes an iterative approach to build and validate multiple
product ideas simultaneously. The Helical model [13] supports innovation by
experimentation of multiple product ideas, frequent releases and synchronization with
other organizational processes.

Software Engineering Body of Knowledge (SWEBOK) characterizes content of
software engineering discipline and promotes consistent view to software
engineering. SWEBOK is organized in 15 main knowledge areas; each knowledge
area is organized in sub-categories. Although, SWEBOK is not specifically aimed at
startups it is widely recognized within software engineering community [31].

To understand the degree to which research supports software engineering in
startups, it is useful to map existing studies. One recent contribution is the mapping
study by Paternoster et al. [23], describing research on startups and providing a
characterization of software development in the startup context. However, their work
does not classify the identified work practices such that it can be understood what
software engineering problem is actually addressed. In contrast, our study aims at
identifying and classifying software engineering knowledge areas in startup
companies, enabling a) analysis and improvement of existing practices and b)
revealing opportunities for further investigation.

3 Research Methodology

The mapping process consists of three activities: identification of relevant
publications, data extraction, and data mapping. We identify relevant publications by
an emerging systematic literature review method – snowball sampling [38]. For data
mapping we follow the recommendations by Petersen et al. [24].

3.1 Research Questions

Our study is driven by the goal to understand to what extent engineering in startup
companies is supported by research. To pursue this goal we seek answers to the
following research questions:

RQ1: What is state-of-practice in terms of utilization of software engineering
knowledge areas in startups?

248 E. Klotins et al.

RQ2: What is the relevance and rigor of the studies reporting experiences from
software engineering in startups?

In order to structure the identified practices into knowledge areas, as well as
identify gaps in knowledge (RQ1) we use SWEBOK [31] as a software engineering
dictionary. Although SWEBOK was not created for startups, we lack alternatives, and
SWEBOK is considered the accepted SE subject area overview [6, 28]. To provide an
account whether the practices can be transferred to industry (RQ2) we assess rigor
and relevance [17] of the identified studies.

3.2 Mapping Study Design Overview

Identification of Primary Studies: We used snowball sampling [38], defining the
starting set from an earlier and broader mapping study on startups [23]. We performed
only forward snowball sampling from the starting set, as earlier papers are likely to be
covered by the previous study by Paternoster et al. [23].

We screened the sampled papers to select studies that report on primary research
focused on software engineering practices in startups. At first, for each paper we
applied a sanity check filtering out duplicates, non-English and non-peer-reviewed
papers. We used titles and abstracts for screening; in ambiguous cases, we read the
full text. The screening criteria are summarized in table 1.

Table 1. Screening criteria

Inclusion criteria Notes Examples of
excluded
papers

A paper reports
primary research

With primary research we understand
studies that provide direct evidence about
the research question [16].

[15, 34]

A paper reports a
study in a startup
company

We have used definition by Sutton [33]
to differentiate between startups and
established companies.

[22, 32]

A paper addresses
software engineering

We use SWEBOK [31] to identify
software engineering topics

[34, 37]

A paper addresses a
challenge or a
practice

With practice we identify use of a
methodology, routine, tool or framework
pertaining software engineering. With
challenge we understand difficulty to
achieve intended product quality, scope,
budget or time constraints

[10]

We used Google Scholar to identify referencing papers, i.e. to perform forward

snowball sampling. The first author performed the screening of papers. Results of the
process were organized in a spreadsheet that was reviewed by the second and third
author.

 Software Engineering Knowledge Areas in Startup Companies: A Mapping Study 249

Data Extraction: Post identification of relevant studies data extraction was
performed with the primary goal to extract information indicating which knowledge
areas are explored in the study. We also extracted information pertaining to rigor –
context description, description of study design, validity discussion, and relevance –
information on subjects, study context, scale and research method according to the
assessment method by Ivarsson et al. [17].

3.3 Analysis

To answer our first research question (RQ1: What is state-of-practice in terms of
utilization of software engineering knowledge areas in startups?) we map the
extracted practices to SWEBOK [31] knowledge areas and categories. In the
mapping, we keep track on coverage – how many of knowledge areas and categories
are covered by evidence. Coverage, or lack of it, reveals gaps in current research. We
also use startup life cycle model by Crowne [11] to identify to what extent state-of-
practice covers all four phases of startup life cycle.

To answer our second research question (RQ2: What is the relevance and rigor of
the studies reporting experiences from software engineering in startups?) we
synthesize rigor, relevance and research type, and analyze number of cases per study.

3.4 Threats to Validity

Systematic reviews have a generic bias towards positive results as they get published
more often [5]. However, we do not consider this as a major threat as we especially
aim to identify gaps and do not address the performance of individual practices.
Another generic threat to mapping studies using snowball sampling is related to the
quality of the starting set [38]. As a starting set we have selected the 43 studies
identified by Paternoster et al. [23]. The set covers a rather broad period from 1994 to
2013, includes both journal and conference papers from multiple publishing venues.
Thus, the starting set follows all guidelines set forth by Wohlin [38].

We focused on forward snowball sampling, as earlier studies are likely to be
covered by the previous mapping study by Paternoster et al. [23]. Nevertheless, we
performed a backward iteration on the final set of papers to reduce the risk of missing
important studies. As a result, 241 papers were discovered. Subsequent screening
identified one [20] relevant study. Furthermore, we have conducted a review of gray
literature to screen further information pertaining to our research questions. This
resulted in one more paper [12], which we did however not include in the further
analysis because the described practices are already reported in other, peer-reviewed,
studies.

Threats to study selection are addressed by explicit inclusion and exclusion criteria,
and a detailed screening protocol. Explicit extraction templates guided the data
extraction process, thus ensuring uniformity of the extracted data. To avoid bias set by
personal opinions of the researchers executing the study, ambiguous cases were
discussed among the authors.

250 E. Klotins et al.

4 Results

As a result of the snowball sampling, we identified 558 papers, 14 of them passed the
screening process and were included for further analysis. The reasons for exclusion break
down to the following: 80 duplicates, 17 not written in the English, 126 not peer
reviewed (books, keynotes, blogs etc.), 354 not focused on startups, 50 not addressing
software engineering, 7 not describing a practice or challenge, 32 not available in full
text.

From the relevant papers we extracted 54 practices distributed among 11 of the 15
software engineering knowledge areas. Table 2 summarizes the identified primary
studies and respective SWEBOK knowledge areas. The coverage column shows how
many second level categories are covered by the papers (e.g. 6/8 means that two
categories out of total of eight in SWEBOK were not covered at all).

Table 2. Knowledge areas and relevant papers

Knowledge Area (KA) Coverage Covered categories
Software Requirements 6/8 Requirements Process [14]

Requirements Elicitation [1, 29]
Requirements Analysis [35]
Requirements Validation [1, 29]
Practical Considerations [19, 20]

Software Design 4/8 Software Design Fundamentals [1, 14, 29]
Key Issues in Software Design [18]
User Interface Design [1, 21, 30, 35]
Software Design Tools [1, 35]

Software Construction 3/5 Software Construction Fundamentals [7, 21,
29, 30, 36]
Managing Construction [7]
Practical Considerations [21]

Software Testing 2/6 Software Testing Fundamentals [18]
Test Process [19, 35]

Software Maintenance 1/5 Techniques for Maintenance [29]
Software Configuration
Management

3/7 Software Configuration Identification [1]
Software Release Management and Delivery
[1, 19, 29]
Software Configuration Management Tools
[29]

Software Engineering
Management

3/7 Software Project Planning [18, 29]
Software Project Enactment [39]
Software Engineering Management Tools
[27]

Software Engineering
Process

2/5 Software Process Measurement Techniques
[20]
Software Engineering Process Tools [1]

 Software Engineering Knowledge Areas in Startup Companies: A Mapping Study 251

Table 2. (Continued)
Software Engineering
Models and Methods

2/4 Modeling [1]
Software Engineering Methods [1, 13, 14,
21, 29]

Software Quality 1/4 Software Quality [18]
Software Engineering
Professional Practice

2/3 Professionalism [1]
Communication Skills [1, 19, 21]

Software Engineering
Economics

0/5

Computing
Foundations

0/17

Mathematical
Foundations

0/11

Engineering
Foundations

0/7

One of the main goals of research on startups is the transfer and widespread use of
the results [17]. Potential for transfer can be judged by measuring rigor and relevance.
The results reveal that most papers have high relevance, as they report studies
performed in actual startups. However, the rigor of these papers is low as they lack
contextual descriptions as well as in what manner the study was designed and
executed. Figure 1 summarizes contribution type, rigor and relevance.

Fig. 1. Overview of research type, rigor and relevance distribution

As shown in figure 1, left side, the majority of the discovered papers are
experience reports with low rigor, indicating a rather weak presentation of study
design, industrial context and validity threats. The right side of figure 1 shows that the
majority of the identified papers present results relevant for industry. The reported
studies are conducted in a real industry environment, on a representative scale and are
utilizing empirical research methods.

A study that investigates more than one case and compares findings among multiple
cases provides more generalizability. We extracted the number of cases studied per paper
and mapped them to publishing year in figure 2.

252 E. Klotins et al.

Fig. 2. Publishing years and number of cases per report

Table 3 summarizes the extracted publishing venues. A majority of the studies
(60%) are published as conference papers.

Table 3. Publishing venues

Publishing venue Papers
IEEE Software [1, 7, 30]
XP Conference [29]
HCI International Conference [35]
Lean Enterprise Software and Systems [4]
International Journal of Project Management [13]
International Conference on eXtreme Programming and Agile

Processes in Software Engineering
[14]

Canadian Society for the Study of Education conference [19]
Pacific Northwest Software Quality Conference [18]
Agile conference [21]
IEEE Computer [36]
Americas Conference on Information Systems [27]
SOFTWARE PROCESS—Improvement and Practice [20]

5 Analysis and Discussion

5.1 RQ1: What is State-of-Practice in Terms of Utilization of Software
Engineering Knowledge Areas in Startups?

The mapping of practices to SWEBOK (table 2) shows that the majority of the main
knowledge areas (11 out of 15) are addressed. However, a more detailed analysis
reveals that only 28 of 62 categories from the knowledge areas are covered. One
could argue that some of the knowledge areas, for example Mathematical Foundations
knowledge area (KA), may be of less interest for startups or some categories could be

 Software Engineering Knowledge Areas in Startup Companies: A Mapping Study 253

more relevant than others. To better understand which knowledge areas and
categories are more relevant for startups, we use Crowne’s model of the startup life
cycle [11].

We use Crowne’s startup life-cycle model, in combination with the knowledge
areas proposed by SWEBOK [31], to analyze whether the state-of-practice addresses
software engineering challenges relevant for startups and to what extent such support
is still lacking.

During the startup phase in Crowne’s model, a company aims to build the first
version of a product [11]. Understanding and communicating the needs of the target
audience, and defining a development scope establish the foundation for further
software engineering. The Requirements Engineering KA aims to support activities
related to understanding needs and constraints placed on a software product, and is
addressed by [1, 14, 19, 20, 29, 35]. Identified knowledge areas cover all categories,
except Software Requirements Fundamentals and Software Requirements Tools. The
Software Requirements Fundamentals category provides underlying concepts for the
whole KA. For example, in this category the differentiation between functional and
quality requirements is introduced. May [21] argues that a key differentiator between
competitor products is an interaction experience, however the presence of specific
quality requirements was not reported in his study. We argue that a lack of research in
this area indicates an insufficient understanding of quality requirements’ role in
software engineering in the startup context.

Operating with very limited resources, a startup must carefully select the scope of
the first release. Both scope definition and assessment belong to the SWEBOK
Software Engineering Management KA, which is not addressed by any of identified
studies. We argue that the absence of practices addressing scope definition could be a
contributing factor to premature failure.

Following the startup phase, the stabilization phase [11] aims at improving the
product to a level where it can be decommissioned to any number of new customers
without causing any overhead on product development. The Software Design KA
provides support for improving internal qualities of the product and is addressed by
[1, 14, 18, 21, 29, 30, 35]. The Requirements Management category becomes relevant
to maintain product integrity while adding new features [11], however this category is
not addressed by any of identified studies.

After the startup and stabilization phases, the growth phase poses challenges like
expanding the team, ensuring transfer of know-how, and managing the product. The
Communication Skills category, addressing knowledge transfer within the team, is
covered by [1, 19, 21]. The Product Life Cycle and Portfolio Management categories
belong to the Software Engineering Economics KA, however none of the identified
practices address these categories. The Software Engineering Economics KA directly
addresses the relation between software technical decisions and business goals of the
organization. We argue that absence of practices belonging to this area reveals a key
gap in building viable software products in startups.

The maturity phase is the final phase on Crowne’s model and it takes place when
product development is robust and processes are predictable for day-to-day operations
and invention of new products [11]. The Software Engineering Process KA addresses

254 E. Klotins et al.

process introduction and improvement. Practices belonging to Software Process
Measurement Techniques and Software Engineering Process Tools categories are
reported in [1, 20]. Other categories of this KA are not covered by any of the identified
practices. We argue that at this phase, startups gradually mature towards small-medium
enterprises (SME), rendering research on software process introduction and improvement
in SME’s also relevant.

5.2 RQ2: What is the Relevance and Rigor of the Studies Reporting Experiences
from Software Engineering in Startups?

Studies conducted in a realistic environment, e.g. a startup company, have a larger
potential to provide useful results, compared to laboratory experiments [17]. A
research method that facilitates investigation in realistic contexts, with industry
professionals and on a realistic scale, contributes to industry relevance [17].
Moreover, the extent to which a study method is described contributes to the
understanding of results and the evaluation of potential benefits and risks prior to
application [17]. The rigor of the evaluation and presentation is also an indication to a
level of trust that can be put on the results [17].

We have found that most identified studies are conducted in collaboration with actual
startup companies, thus scoring high on relevance scale (figure 1). However, research
type analysis suggests that most papers are experience reports (figure 1) and study only
one case (figure 2). Further analysis shows that most of the papers fall into the low rigor
category (figure 1). This implies that a) a majority of the studies do not compare and
analyze data from multiple cases and b) results among different studies are difficult to
compare due to their low rigor. Therefore, the extent to which reported results can be
generalized is low, and transfer to different startup companies is difficult.

6 Conclusions

We have mapped software engineering practices from peer-reviewed scientific papers
about startups to SWEBOK categories and to startup life cycle phases. This was done
in order to understand to what extent software engineering in startups is supported by
research. Results show that a surprisingly small number of papers address the core
software engineering knowledge areas in startups. Even though this gap was first
identified by Sutton et al. [33] more than a decade ago, very little has been done to
address it.

By means of a literature review we have identified 54 practices that, to some extent,
cover all critical knowledge areas. However, a majority of categories are not addressed
by research. We analyzed whether the reported practices are actually useful for startups.
Even though many knowledge areas are covered, we identified gaps in practices
supporting successful transition trough the startup life cycle, particularly in market-driven
requirements engineering, engineering scope definition, alignment between technical
decisions and business goals, software architecture, and implementation of software
engineering process.

 Software Engineering Knowledge Areas in Startup Companies: A Mapping Study 255

The analysis of transferability of practices shows that the majority of studies are
conducted in a realistic environment, thus providing relevant results. However the
rigor of identified studies is low due to insufficient descriptions of applied research
methods and poorly reported study contexts. In such an applied field as software
engineering, the ability to transfer results from one environment to another is critical
[17]. As a result, a lack of rigor makes this transfer difficult or even dangerous for
two reasons. First, contextual information enables a company to see if a good practice
or lesson reported is relevant in their context. Second, as study design details are
missing the level of trust in how the study was performed is hard to judge. This result
confirms similar conclusions by Paternoster et al. [23].

We conclude that existing studies, addressing software engineering in startups, are
insufficient to support all engineering aspects and do not create a solid body of
knowledge. Moreover, results from existing studies are hard to transfer to startup
companies due to an inadequate level of reporting rigor.

While the mapping of engineering practices presented in this paper can serve as a
basis, more empirical research with focus on product engineering in the start-up context
is required to address the identified gap. Even though performing research in startups is
difficult due to rapidly changing environment, more primary studies are needed to
understand how software-intensive product engineering is performed in startups.
Completing the picture on what practices are actually used in startups and what impact
said practices had on product engineering process would be a first step. Identifying
inadequacies in used practices and proposing remedies are our mid-term goals.

References

1. Ambler, S.: Lessons in agility from Internet-based development. IEEE Software 19(2),
66–73 (2002)

2. Blank, S.: Embrace failure to start up success. Nature 477(7363), 133 (2011)
3. Blank, S.: The four steps to the epiphany, 2nd edn. K&S Ranch (2013)
4. Bosch, J., Olsson, H.H., Björk, J., Ljungblad, J.: The early stage software startup

development model: A framework for operationalizing lean principles in software startups.
In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg (2013)

5. Brereton, P., et al.: Lessons from applying the systematic literature review process within
the software engineering domain. J. Syst. Softw. 80(4), 571–583 (2007)

6. Budgen, D., Turner, M., Brereton, P., Kitchenham, B.: Using Mapping Studies in Software
Engineering. In: Proceedings of PPIG 2008, pp. 195–204 (2008)

7. Carmel, E.: Rapid development in software package startups. In: Proc. 27th Hawaii Int’l.
Conf. System Sciences, pp. 498–507 (1994)

8. Chorev, S., Anderson, A.R.: Success in Israeli high-tech start-ups; Critical factors and
process. Technovation 26(2), 162–174 (2006)

9. Coleman, G., O’Connor, R.V.: An investigation into software development process
formation in software start-ups. J. Enterp. Inf. Manag. 21(6), 633–648 (2008)

10. Consumano, M., Yoffie, D.: Competing on Internet Time: Lessons from Netscape and Its
Battle with Microsoft In This Issue. Free Press (2000).

256 E. Klotins et al.

11. Crowne, M.: Why software product startups fail and what to do about it. In: Engineering
Management Conference, pp. 338–343. IEEE, Cambridge (2002)

12. Dande, A., Eloranta, V.: Software Startup Patterns-An Empirical Study (2014)
13. Deakins, E., Dillon, S.: A helical model for managing innovative product and service

initiatives in volatile commercial environments. Int. J. Proj. Manag. 23(1), 65–74 (2005)
14. Deias, R., et al.: Introducing XP in a start-up. In: International Conference on eXtreme

Programming and Agile Processes in Software Engineering, pp. 62–65 (2002)
15. Fayad, M.E., Laitinen, M.: Process Assessment Considered Wasteful. Commun.

ACM 40(11), 125–128 (1997)
16. Group, S.E.: Guidelines for performing Systematic Literature Reviews in Software

Engineering. Engineering (2007)
17. Ivarsson, M., Gorschek, T.: A method for evaluating rigor and industrial relevance of

technology evaluations. Empir. Softw. Eng. 16(3), 365–395 (2010)
18. James, L., Mater, B.S.: Solving the Software Quality Management Problem in Internet

Startups. In: Pacific Northwest Software Quality Conference, pp. 503–512 (2000)
19. Kajko-Mattsson, M., Nikitina, N.: From Knowing Nothing to Knowing a Little:

Experiences Gained from Process Improvement in a Start-Up Company. In: 2008 Int.
Conf. Comput. Sci. Softw. Eng., pp. 617–621 (October 2008)

20. Kautz, K.: Improvement In Very Small Enterprisese: Does It Pay Off? Softw. Process
Improv. Pr. 226, 1988, 209–226 (2000)

21. May, B.: Applying Lean Startup: An Experience Report. In: Agile Conference (2012)
22. Mendes, E., Counsell, S.: Investigating Early Web Size Measures for Web Cost

Estimation. J. Syst. Softw. 77(2), 157–172 (2005)
23. Paternoster, N., et al.: Software development in startup companies: A systematic mapping

study. Inf. Softw. Technol. 56(10), 1200–1218 (2014)
24. Petersen, K., et al.: Systematic Mapping Studies in Software Engineering. In: Evaluation

and Assessment in Software Engineering, pp. 68–77 (2008)
25. Pino, F.J., et al.: Software process improvement in small and medium software enterprises:

a systematic review. Softw. Qual. J. 16(2), 237–261 (2007)
26. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to

Create Radically Successful Businesses, 1st edn. Crown Business (2011)
27. Shakir, S., Nørbjerg, J.: IT Project Management in Very Small Software Companies: A

Case of Pakistan. In: Americas Conference on Information Systems, pp. 1–8 (2013)
28. Sicilia, M., et al.: The Evaluation of ontological representations of the SWEBOK as a

revision tool, 1–4 (1990)
29. da Silva, A.F., Kon, F., Torteli, C.: Xp south of the equator: An experience implementing

xp in brazil. In: Baumeister, H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS,
vol. 3556, pp. 10–18. Springer, Heidelberg (2005)

30. Jansen, S., Brinkkemper, S.: Ivo Hunink, C.D.: Pragmatic and Opportunistic Reuse in
Innovative Start-up Companies. IEEE Softw. 42–49 (2008)

31. Society, I.C.: Guide to the Software Engineering Body of Knowledge Version 3.0
(SWEBOK Guide V3.0)

32. Sulayman, M., et al.: Towards a theoretical framework of SPI success factors for small and
medium web companies. Inf. Softw. Technol. 56(7), 807–820 (2014)

33. Sutton, S.M., et al.: The Role of Process in a Software Start-up. IEEE Softw. 17(4), 33–39
(2000)

34. Tanabian, M.M., et al.: Building High-Performance team through effective job design for
an early stage software startup. In: Engineering Management Conference, pp. 789–792
(2005)

 Software Engineering Knowledge Areas in Startup Companies: A Mapping Study 257

35. Tingling, P., Saeed, A.: Extreme programming in action: a longitudinal case study.
In: Jacko, J.A. (ed.) Human-Computer Interaction 2007. Part I. LNCS, vol. 4550, pp.
242–251. Springer, Heidelberg (2007)

36. Wall, D.: Using open source for a profitable startup. Computer (Long. Beach. Calif),
158–160 (2001)

37. Watson, K., et al.: Small business start-ups: implications. Int. J. Entrep. Behav. Res. 4(3),
217–238 (2006)

38. Wohlin, C.: Guidelines for Snowballing in Systematic Literature Studies and a Replication
in Software Engineering. In: Evaluation and Assessment in Software Engineering (2014)

39. Yau, A., Murphy, C.: Is a Rigorous Agile Methodology the Best Development Strategy for
Small Scale Tech Startups? (2013)

40. Zettel, J., et al.: LIPE: A Lightweight Process for E-business Startup Companies Based on
Extreme Programming, pp. 255–270 (2001)

41. Getting Real The smarter, faster, easier way to build a successful web application,
http://37signals.com/

© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 258–271, 2015.
DOI: 10.1007/978-3-319-19593-3_23

Value Creation in SaaS Development

Ivan Aaen1() and Nikolai Gjerløff2

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
ivan@cs.aau.dk

2 PathShaper Aps, Aalborg, Denmark
nikolai@pathshaper.dk

Abstract. Software as a Service (SaaS) development projects run for an
unbounded amount of time, and it is important to continuously offer customers
increased value from using the solution. Otherwise, a one-time payment for using a
similar product would appear more attractive. Uncritically implementing value-
adding ideas might however not always be in accordance with the business
interests of the SaaS development company. We take a look at a small software
development company with a SaaS business model and propose an approach to
facilitate coordinated innovation on two levels: Business model and software
development. We use the approach on an ongoing case from this company. Our
results indicate that the case has benefitted from using the toolset presented here.
The approach is designed for small SaaS companies with 5-10 developers using
agile development methods.

Keywords: Value creation · Software innovation · SaaS · Business models

1 Introduction

Tom DeMarco [11] argues that software development today focus too much on cost
and too little on value. He points out that we should first ask ourselves is the project
worth doing and require the gain to outweigh the costs by far.

Requiring the gain to be much higher than the cost means that we can afford to aim
for a great solution instead of just an adequate one. This could involve hiring a good
team and letting it grow even better by leaving time for both skill and software
development. Alistair Cockburn [9] argues that preparing the developers for the next
challenge is the second most important activity in a project.

Increasing the gain could also involve making the software team innovative. In
order to do this we need a way to catalyze and reward thinking along new paths. A
methodology – Essence – has been proposed for this [1, 3]. This methodology focuses
specifically on maximizing value creation within a software development team.

Innovation at the project or team level might interact with innovation at the
business level: New features in a project might suggest changes at the business level,
and changes at the business level might suggest changes in scope and focus for a
software project. Osterwalder and Pigneur [13] present the Business Model Canvas, a
tool for creating and communicating innovative business models. Where the notion of

 Value Creation in SaaS Development 259

value is open in Essence, it tends to be more specific in the Business Model Canvas
making the canvas a possible framework for aligning software innovation based on
Essence with business development.

Integration of innovation on the two levels is important for SaaS projects since
they run for an unbounded amount of time while constantly affecting the business
model. This integration also allows the software team to view value creation from the
perspective of the company’s business model.

For software companies with a SaaS business model, the ability to continuously
improve the value of the service for the customers is essential for customer retention
and revenues:

1 SaaS customers pay periodic fees as opposed to upfront payments at
acquisition time. The amount they pay is typically proportional to how long
they use the product.

2 A SaaS product that does not evolve may in the long run become more
expensive for the customer than investing in similar software. If the SaaS
software evolves, it is no longer comparable to a one-time investment but to a
series of investments in consecutive versions of a similar software product. For
long-term usage, this may push the total costs of ownership more in favor of
SaaS products.

3 Usually, SaaS customers need not invest much in using a service. This is
particularly true for simple services where data is easily moved. Low
switching-costs make it easier for customers to try competing services in
search of more desirable ones.

This brief discussion leads us to our research question: Can the Business Model
Canvas and Essence be integrated to improve value creation in small agile software
development companies using a SaaS business model?

We will try to illuminate this question by first examining the two frameworks and
apply a combination of the two on a practical case.

We briefly present the Business Model Canvas in Section 2. Section 3 outlines key
concepts in Essence. Developing business models and models for software innovation
introduces a need to visualize the present, the options considered, and the current
strategies at the same time. Section 4 therefore presents color-coding as a way to keep
these perspectives in one model. Section 5 discusses strategy management based on
SWOT analysis of business models. Section 6 illustrates the approach by applying it
to an ongoing project, and Section 7 discusses the integration of the approach into the
software process. Section 8 concludes by evaluating the results and discussing if this
approach is useful for small SaaS companies.

2 The Business Model Canvas

A business model describes the rationale of how an organization creates, delivers and
captures value [13]. Business model should be simple enough to be easily grasped and
held in our minds, and sufficiently detailed to hold the most important elements of the

260 I. Aaen and N. Gjerløff

business. If we cannot fully comprehend it, we cannot evaluate the impact of our
decisions on the business, and if we omit crucial elements, we may neglect to take
important factors into account. In Business Model Generation Osterwalder and Pigneur
propose nine building blocks for creating a business model: Customer Segments (CS),
Value Proposition (VP), Channels (CH), Customer Relationships (CR), Revenue
Streams (R$), Key Resources (KR), Key Activities (KA), Key Partnerships (KP), and
Cost Structure (C$).

Together, these nine blocks form The Business Model Canvas. The canvas is used
both as a business model brainstorming-tool and as a communication aid. When
brainstorming with this tool, you describe each important element of the nine blocks
at a high level of abstraction.

3 Essence

Whereas the Business Model Canvas is an innovation tool for the business model,
Essence is specifically aimed at software development. Although it in no way precludes
innovation done by other parties, the main focus is on the creative power of good
software teams. We will sum up Essence as described in a number of sources [1-5].

Essence is based on four Views to help examine a problem from four basic
perspectives, four Roles assigned to team members, and four Values to serve as
guiding principles. The four Views are:

1 Paradigm: The use domain view. Used to explore the problem to be solved,
understand the use context of the software, and in some cases completely
reinterpret a problem and/or setting.

2 Product: The design view. Used to explore key design options, e.g.
architecture, key components, platforms, and algorithms. This is where we
come up with ways to build the envisioned product using available
technologies.

3 Project: The management view. Used to build and maintain the project vision
shared among team members and communicated to external stakeholders. The
vision serves to give focus and direction in a project without excessive detail to
be able to embrace change even late in development.

4 Process: The procedural view. Used to support the working process and not
least for evaluating options and results. As Essence is about innovation, the
main focus is on idea generation and on evaluation and maturation of ideas.

Each Role in Essence is associated with a View, and with the exception of the Child
role, these roles stick to a team member throughout the project. The four Roles of
Essence are:

1 Child (Paradigm View): The Child role is the only non-permanent Role and is
automatically assigned to anyone while working at the Paradigm View.
Visitors from outsider are also invited to take on a Child Role. This role is for
exploring options in the use domain while building a shared paradigmatic
understanding in the team – or indeed while challenging the ruling paradigm.

 Value Creation in SaaS Development 261

2 Responder (Product View): Responders are the software developers of the
team. They are responsible for coming up with ways to answer the challenges
facing the project. They are the ones who build the product and identify new
options in the design at any time.

3 Challenger (Project View): Similar to the Product Owner in Scrum, the
Challenger is responsible for developing and maintaining project challenges
for the responders in order to create the highest value in the end product.

4 Anchor (Process View): Similar to a Scrum master, the Anchor is responsible
for representing the project to its stakeholders, for solving team-related
problems, for facilitating a good work environment, and for ensuring a sound
and impartial basis for decisions. An Anchor is typically also a Responder.

As Essence is designed to fit with agile development methods like XP [7, 8] or Scrum
[14], these roles are just additional hats for the team members.

The Values are dialectical transformations of the values from the Agile Manifesto
[6]. Each value is tied to a specific View:

1 Reflection (Paradigm View). In Essence, the agile manifesto value Customer
collaboration over contract negotiation is replaced with Reflection over
requirements. The use context, scenarios, and requirements must always be
negotiated and reflected upon: Do we get it right?

2 Affordance (Product View). The agile manifesto value Working software over
comprehensive documentation is replaced with Affordance over solution. At
every stage of development, the present design offers new possibilities. The
affordance of these possibilities should be explored.

3 Vision (Project View). The agile manifesto value Responding to change over
following a plan is replaced with Vision over assignments. Assignments define
tasks to do, which basically means that the time for innovation is over. The
vision serves to narrow the scope enough to ensure convergence in the project
while keeping the door open to change. A good team needs latitude to use the
insights gained from working on a problem while still being steered by a
vision.

4 Facilitation (Process View). The agile manifesto value Individuals and
interactions over processes and tools is replaced with Facilitation over
structuration. To facilitate the creative process and make the team aim for
mature solutions is more important than adhering to predefined processes.

The overview of a project shared among team members and with external
stakeholders is called a Configuration. A configuration reflects not only the software
itself but the entire product; it reflects what we think that product should do, how well
it  should do it, and why this matters to us and other stakeholders   [3].

Configurations – representing a status and a basis for evaluation – are represented
in Essence as Configuration Tables. A configuration table consists of 4 columns and 4
rows. Each column represents an Essence View, and each row represents the Views at
different levels of abstraction.

262 I. Aaen and N. Gjerløff

4 Color-Coding Models

SaaS projects are long-term and new ideas must take the current state of a project into
account. Essence Configuration Tables are designed for incremental software
development and take the current state of a project into account, as the outcome of
one sprint is the starting point of the following. Likewise, Business Model Canvases
can be developed in multiple iterations.

One could therefore create configuration tables and canvases for the present and an
envisioned future respectively to assess which developments would move in a
desirable direction. The most important information in these two models will be how
they differ, and therefore it might be more optimal to combine the two tables or
canvasses into one to visualize where we are in relation to where we are heading.

Such combined models would help improve or sustain the mutual fit between
software development and business model. Similarly, it would also simplify updating
the current and the envisioned future state.

A way to keep track of the current state in relation to the future state is shown in
Figure 1 and Tables 2 and 3 where colors indicate different states. The relation
between colors and states is found in Table 1.

Table 1. Color codes for states

It should be noted that the states are seen from a development perspective. New

items usually enter the models as blue or red. When updating a table or canvas, blue
items can be promoted to green if the team has capacity for new challenges.
Furthermore, green items can be promoted to black if they are either completely done
or good enough for the team to move on to other challenges. Sometimes, development
is suspended before the item is in a good enough state, and in this case the item
reverts to blue.

Red items may indicate problems with the model itself. Solving them might entail
a revision of the model in question or indeed of both models to get them realigned.

5 Strategy Management

Integrating Essence and Business Model Canvasses allows the company to align
strategies for software development with overall business strategies: Do developments
at the project level suggest favorable changes to the business model, or will
developments at the business level indicate a revision of the software project?

Black Status, what is already in place in the model
Green Work-in-progress, items currently under development such as Sprint

backlog items, or ongoing developments in a canvas building block
Blue Opportunities and unused strengths under consideration, product backlog

items, optional developments in a canvas building block
Red Identified problems, weaknesses, threats

 Value Creation in SaaS Development 263

SWOT analysis is a common and simple tool to identify strengths, weaknesses,
opportunities and threats to an enterprise – a business or a project. Based on this tool,
Weihrich [16] introduces the TOWS matrix and formulates four generic strategies:

1 The WT Strategy (min-min): When weaknesses match threats, the enterprise is
in trouble. This type of strategy therefore aims to minimize both to help the
enterprise survive.

2 The WO Strategy (min-max): When weaknesses match opportunities, the
enterprise has opportunities but also weaknesses that impede taking advantage
of them. This type of strategy therefore aims to minimize a weakness to allow
for maximizing an opportunity.

3 The ST Strategy (max-min): When strengths match threats, the enterprise is
facing threats that might be dealt with by using strengths in the company. This
strategy therefore focuses on utilizing strengths to eliminate threats by
maximizing the former while minimizing the latter.

4 The SO Strategy (max-max): Strengths combined with opportunities is the most
desirable situation an enterprise can be in. This strategy is about maximizing
both and utilizes the strengths to take advantage of a situation.

These four generic strategies combined with the Challenger and Responder Roles in
Essence serve as the inspiration for the “Response/Challenge notation” or simply the
RC notation. This notation is shorthand for answering a challenge with selected
responses.

We will introduce this notation in Business Models Canvasses and Essence
Configuration Tables. Starting with a SWOT analysis of a model, the findings are
listed in relevant cells and prefixed with the letters S, W, O, or T. The findings are
numbered to distinguish findings of the same type from each other. These SWOT
findings form the basis for formulating strategies. The items are color-coded as
described in Section 4. Red items represent threats or weaknesses, whereas blue items
represent opportunities or unused strengths.

The RC notation combines the SWOT findings into strategies. A strategy here is
understood as a challenge (opportunity or threat) answered by one or more responses.
In our notation a strategy is written with the items responding to the challenge first
followed by an arrow and then the items constituting the challenge (e.g. S1>T1
stating that a strength is used to counter a threat or even in concatenated form
S1+S2>O1>T1 stating that two strengths can build a capability which in turn is used
to mitigate a threat).

This notation serves to visualize possible strategies for moving a business model in
a desirable direction. In other words, the notation should help clarify how to eliminate
red items, and how to turn blue items into black. Green items relate to the strategy
currently employed to create a new status. When a current strategy has fulfilled its
purpose, the color turns from green to black to indicate what created and maintains
the current status. Black strategies are deleted when the status is stable and no longer
requires the strategy to be actively pursued.

264 I. Aaen and N. Gjerløff

6 Illustration: The AntiPage Project Case

We will illustrate the methodology by applying it to an ongoing project. The
methodology was used in recurring strategy management as the project progressed.

The project concerned the development of AntiPage, a content management system
developed by PathShaper. PathShaper is a small SaaS company named after its
service. The company specializes in tools and consulting to help its customers become
successful online. The company offers SaaS products based on three systems:

The PathShaper system is a data mining system for web server log-files. It is used
for measuring the actual response times experienced by users, studying how Search
Engines behave on customer websites, and more.

SEODar is a data mining system indexing pages for analytical purposes. SEODar
is used for Search Engine Optimization, Website quality assurance, and studying the
structure of the web in general and the nature of Search Engines in particular.

AntiPage: A Content Management System for web sites that ensures faster
response times and higher revenue. The development of this system forms the basis
for our case.

6.1 Early Development of AntiPage

Development of AntiPage began in 2010. PathShaper noticed that one of its
customers – here called Customer1 – had problems modifying their websites to
capitalize on findings from SEODar or PathShaper. Similar problems were seen at
other customer sites. The company therefore found that the value of these two data
mining systems would increase, if it were easier to implement the changes identified
by such findings.

Development started out with a proof-of-concept version having just enough
functionality to run the company website. Customer1 was not receptive to the idea of
basing their large setup on a brand new content management system, but development
continued anyway as the company saw a lot of potential in the new product.

At that time, testing only on relatively trivial websites and having no real customer
impeded the project. Developing software together with domain experts expecting to
use the product afterwards helps a team prioritize and build the right features.
Creating a profitable SaaS product is as much about knowing the problem area
exceptionally well as it is about technology. Kim and Mauborgne [12] offer several
examples of companies becoming successful because they understood the desires of
their customers better than their competitors did.

Another problem turned out to be that several ideas were implemented but
subsequently failed to see much use. A fair evaluation of the market value of each
idea before implementation is important.

6.2 The Initial Project Configuration

To get an idea of the project status at this stage we developed an Essence
Configuration Table (Table 2). Configuration tables serve to give an overview of key

 Value Creation in SaaS Development 265

points on the four Views. This overview is used to evaluate the current status of the
project, and to see if the Views are in congruence and in line with the project vision.

Table 2. Initial AntiPage Configuration Table

The first row in the table describes the overall vision, the challenges to meet, the
use context, key product ideas, and general qualities to pursue.

Paradigm Product Project Process
Reflection
Challenge. Help
companies get more
value out of their
web sites.
Use context. CMS
for large companies.

Affordance
Providing content
management with
fast load times.
Allowing a lot of
flexibility

Vision
Metaphor: The Road
Runner of CMS.
A fast and flexible
CMS with good
SEO support.

Facilitation
Quality focus on
making AntiPage
attractive to large
customers.

Stakeholders
PathShaper. Wants
a marketable product
(main stakeholder).
Resource it. Wants
to provide quality
websites to its
customers.

Design
Engine and UI
separate from
webserver.
Engine and UI
hosting: PathShaper.
Webserver hosting:
Any web hotel.

Elements
Grounds: Faster load
times help increase
conversion rates.
More flexibility ease
improvement work.
Warrant: AdWords
competitions make
high conversion
rates essential and
SEO attractive.
Qualifier: More
expensive than free
solutions. Many free
solutions have more
features.
Rebuttal:
Costs are small
compared to faster
response times.
Small sites may not
get the revenues
required and are not
likely customers.

Evaluation
Procedure: Try to
sell AntiPage to
Customer1.
Criteria: Will
Customer1 buy
AntiPage?

Scenarios
Managing a large
website with
custom-made
functionality.
Managing numerous
smaller websites in
different data centers
and needing to share
resources between
them.

Components
Page generation
engine.
Content mgt. UI.
Synchronization
component.

Features
Content mgt.
Maintenance of
multiple sites.
High scalability for
of simultaneous
visitors per server.
High flexibility in
generating HTML
for SEO.

Findings
Customer1 wanted a
mature system.
Small companies
show an unexpected
interest in AntiPage
despite the poorer
cost/benefit ratio.
They decide based
on how large they
want to become.

266 I. Aaen and N. Gjerløff

The second row describes key principles for each View, stakeholders involved,
architectural foundation, why the vision is convincing (based on Stephen Toulmin’s
model of argumentation [15], and how to work towards the vision.

The last and most specific row describes key scenarios for using the product, main
components of the product, principal features to include in it, and findings from
evaluating the current configuration.

The configuration table made sense except for the serious problem identified under
findings: AntiPage is targeting the high-end market without any success (the red-
colored element in the Table 2). On the other hand, small companies unexpectedly
showed interest in the product (the blue-colored element).

 These findings conflicted with our initial understanding of how this project was
related to the overall business model of the company. We therefore decided to review
the business model canvas for PathShaper using the approach described in Section 5.

6.3 Revising the Business Model Canvas

PathShaper’s initial Business Model Canvas is outlined in Figure 1 (the black text).
The Value Propositions clearly target customers that are highly dependent on the
performance of their websites. In principle, the AntiPage project is in line with the
business model, but the findings in Table 2 indicates that a revised business model
and/or a revised development project might align product and business model better.

The revision started with a SWOT analysis of the canvas resulting in a number of
findings – among those were two findings that matched those from Table 2. In Figure
1 these findings are marked as described in Chapter 5. The market problem found in
Table 2 was generalized and marked as T1 in Figure 1 to indicate that it is classified
as an external threat. The interest from small companies was generalized and marked
as O2 to indicate that this was classified as an external opportunity.

We then created four Vision Scenarios. In Essence, vision scenario development
involves defining two opposite ways to handle two different aspects of the project,
and then strategies are formulated for each combination. In our case we chose Many
Small Sites vs. Few Large Sites and Sale Through Partners vs. Direct Sales, and
drafted strategies for each of these four combinations.

Looking for ways to respond to T1, the opportunity O2 Smaller companies than
anticipated express interest in AntiPage solutions looked interesting. If we wanted to
boost sales to small companies, we should focus on the combination of sales through
partners and small sites. In that quadrant we saw the opportunity O2 and two strengths
that could enable O2: S2 (More easy to use UI) and S4 (AntiPage contexts preloaded
with simple templates that can be modified into a less ambitious website). This
suggests a simple SO strategy as described in Section 5.

Combining these two strengths to exploit O2 would be a viable and affordable way
to answer T1. The strategy would essentially consist of two legs: S2+S4>O2 and
O2>T1, or in concatenated form: S2+S4>O2>T1. The first leg serves to make
AntiPage attractive for small sites, and the second serves to compensate for the
missing sales due to T1. We consequently marked these items green in Figure 1 to
indicate this as the current strategy.

 Value Creation in SaaS Development 267

Fig. 1. Business Model during review

A
dd

ed
 re

ve
nu

e
th

ro
ug

h
fa

st
er

re

sp
on

se
 ti

m
es

 o
n

th
e

cu
st

om
er

s w
eb

sit
e.

Ef
fic

ie
nt

 m
ain

te
na

nc
e

of
 m

ul
tip

le

sit
es

.
M

as
siv

e
re

du
ct

io
n

in
 h

ar
dw

ar
e

ne
ed

ed
 to

 r
un

 la
rg

e
sit

es
.

Le
ss

 d
ow

nt
im

e
as

 A
nt

iP
ag

e
sit

es

ca
n

ru
n

on
 m

ul
tip

le
 se

rv
er

s i
n

m
ul

tip
le

 d
at

a
ce

nt
er

s.
C

he
ap

 p
ro

te
ct

io
n

fro
m

 fa
llo

ut
s

an
d

slo
w

do
w

ns
 d

ue
 to

 p
ea

ks
 in

us

ag
e.

H
igh

 fl
ex

ib
ilit

y
giv

es
 in

cr
ea

se
d

bu
sin

es
s o

pp
or

tu
ni

tie
s f

or

im
pl

em
en

tin
g

SE
O

.
S1

: W
eb

-s
ho

p
m

od
ul

e.
S2

: E
as

ie
r

to
 u

se
 U

I.
S5

: P
re

cis
e

pe
rm

iss
io

n
co

nt
ro

l
fo

r
in

di
vid

ua
l p

ag
es

 a
nd

 tr
ee

s.
S6

: M
ov

in
g

sit
es

 b
et

w
ee

n
A

nt
iP

ag
e

co
nt

ex
ts

.

C
on

vin
cin

g
w

eb
 b

ur
ea

us
 to

us

e
it.

C
on

vin
cin

g
m

ar
ke

tin
g

bu
re

au
s

to
 u

se
 it

.
G

et
tin

g
hi

gh
-p

ro
fil

e
cu

st
om

er
s

(in
iti

all
y)

.
So

ftw
ar

e
de

ve
lo

pm
en

t.
H

os
tin

g
th

e A
nt

iP
ag

e
ap

pl
ica

tio
n.

W
eb

 b
ur

ea
us

.
M

ar
ke

tin
g

Fi
rm

s.
SE

O
/A

dW
or

ds
 F

irm
s?

Bu
sin

es
se

s w
he

re
 w

eb
sit

e
is

im
po

rt
an

t f
or

 se
llin

g
th

e
pr

od
uc

t
or

 a
cq

ui
rin

g
cu

st
om

er
s.

T1
: H

igh
-e

nd
 m

ar
ke

t n
ot

 b
uy

in
g.

O
1:

An
tiP

ag
e

us
ef

ul
 fo

r
w

eb

sh
op

s.
O

2:
Sm

all
er

 c
om

pa
ni

es
 th

an

an
tic

ip
at

ed
 e

xp
re

ss
 in

te
re

st
 in

A

nt
iP

ag
e

so
lu

tio
ns

.
O

1+
S1

>T
1:

Bu
ild

 w
eb

sh
op

m

od
ul

e
to

 im
pr

ov
e A

nt
iP

ag
e

co
st

/
be

ne
fit

 r
at

io
.

S2
+S

4>
O

2>
T1

: P
ro

vid
e A

nt
iP

ag
e

to
 sm

all
er

 c
om

pa
ni

es
.

S2
+S

4>
S3

+O
2>

T1
: C

re
at

e
te

m
pl

at
e-

ba
se

d
sim

pl
e

so
lu

tio
ns

an

d
lo

w
er

 p
ric

es
.

S2
+S

4>
S5

+S
6+

O
2>

T1
: M

ak
e

a
cr

ea
te

-y
ou

r-o
w

n-
w

eb
sit

e
lay

er
 o

n
to

p
of

 A
nt

iP
ag

e,
le

t s
m

all

co
m

pa
ni

es
 s

ta
rt

 a
t a

 v
er

y
lo

w

co
st

 a
nd

 g
ra

du
all

y
sc

ale
 u

p
as

ne

ed
s a

nd
 m

ea
ns

 in
cr

ea
se

.

D
ed

ica
te

d
pe

rs
on

al
as

sis
ta

nc
e

of
fe

re
d

by
 th

e
pa

rt
ne

r
to

 th
e

en
d

us
er

 (w
eb

 si
te

 o
w

ne
r.

C
lo

se
 c

on
ne

ct
io

n
be

tw
ee

n
A

nt
iP

ag
e

an
d

its
 p

ar
tn

er
s t

o
en

su
re

 th
at

 th
e

ex
pe

rie
nc

es

ar
e

us
ed

 to
 im

pr
ov

e
th

e
pr

od
uc

t a
nd

 it
s u

se
.

Th
e

pr
og

ra
m

m
er

.
Sa

le
sm

an
 to

 c
on

vin
ce

m

ar
ke

tin
g
fir

m
s

to
 p

ro
vid

e
A

nt
iP

ag
e

so
lu

tio
ns

?
SE

O
D

ar
/P

at
hS

ha
pe

r
fo

r
bu

nd
el

in
g

or
 fo

r
cr

ea
tin

g
jo

in
ed

 c
on

ce
pt

? (
pe

rh
ap

s
SL

A
H

M
 to

o)
.

W
eb

 b
ur

ea
us

.
M

ar
ke

tin
g
fir

m
s.

O
w

n
w

eb
 b

ur
ea

u.
D

ire
ct

ly
to

 c
us

to
m

er
s?

Pa
yr

ol
l: P

ro
gr

am
m

er
, S

ale
s t

ea
m

.
H

os
tin

g:
Ex

ist
in

g
se

rv
er

 p
ar

k
- s

ca
le

d
as

 th
e

vo
lu

m
e

of
 so

lu
tio

ns

in
cr

ea
se

.
Pa

rt
ne

rs
: A

 c
ut

 o
f t

he
 re

ve
nu

e
fo

r
th

e
so

lu
tio

ns
 th

ey
 h

el
p

se
ll.

M
ar

ke
tin

g:
Ad

W
or

ds
 c

am
pa

ign
 o

n
w

eb
sp

ee
d?

 P
ar

tn
er

 m
ar

ke
tin

g
co

st
s?

S3
: M

or
e

ef
fic

ie
nt

 c
re

at
io

n
of

 n
ew

 A
nt

iP
ag

e
co

nt
ex

ts
.

S4
: A

nt
iP

ag
e

co
nt

ex
ts

 p
re

lo
ad

ed
 w

ith
 si

m
pl

e
te

m
pl

at
es

 th
at

 c
an

 b
e

m
od

ifi
ed

 in
to

 a
 le

ss
 a

m
bi

tio
us

 w
eb

sit
e.

A
pp

lic
at

io
n

se
rv

ice
 p

ro
vid

er
:

•
M

on
th

ly
fe

es
 d

ire
ct

ly
fro

m
 c

us
to

m
er

s.
•

M
on

th
ly

fe
es

 th
ro

ug
h

pa
rt

ne
rs

.
S7

: W
e

co
ul

d
m

ar
ke

t a
 v

ar
ian

t o
f o

ur
 o

w
n

ho
st

in
g.

B
la

ck
: S

ta
tu

s,
w

ha
t i

s
alr

ea
dy

 in
 p

lac
e

in
 th

e
m

od
el

.
G

re
en

: W
or

k-
in

-p
ro

gr
es

s,
ite

m
s

cu
rr

en
tly

 u
nd

er
 d

ev
el

op
m

en
t.

R
ed

: Id
en

tifi
ed

 p
ro

bl
em

s,
w

ea
kn

es
se

s,
th

re
at

s.
B

lu
e:

 O
pp

or
tu

ni
tie

s
an

d
un

us
ed

 s
tr

en
gt

hs
 u

nd
er

 c
on

sid
er

at
io

n.

268 I. Aaen and N. Gjerløff

6.4 Revising the Project Configuration

The implementation of the S2+S4>O2>T1 strategy requires a revision of the project
configuration resulting in Table 3. The green elements are changes caused by
adopting the new strategy.

Part of the strategy relies on sales through partners and we therefore asked a
marketing bureau to which PathShaper has a strong connection if they would be
interested in providing AntiPage to smaller companies. They were enthusiastic about
the idea but price was a problem that needed to be solved by adding the development
of simple templates to the strategy.

As can be seen from Table 3, the changes to the project configuration are
incremental. Previous investments in AntiPage are preserved as basically only the
scope of the project is modified. The biggest changes are at the Process View. These
changes serve to ensure that the new strategy is actively pursued and the results
evaluated regularly.

PathShaper originally considered template-based websites as the absolute opposite
of what AntiPage was made for, but using Essence in conjunction with the Business
Model Canvas helped see that PathShaper was ignoring an interesting market.

In the early years customer interest was limited but today there is a growing market
for product like AntiPage. The initial costs of development were heavy for a small
company, as sales did not develop as anticipated. Today, earnings on the product are
still unsatisfactory but rapidly improving.

7 Integrating the Canvas and Essence into the Software Process

Using the canvas and Essence in a company raise questions about who should do it
and when? A first thing to consider is who should have the combined role of
Challenger and Product owner. In the Scrum primer, Deemer et al. [10] suggest that
the product owner for a product with many customers could be the product manager.
This is a good choice in regard to Business Model Canvas integration as this means
the person responsible for creating and prioritizing the backlog is also responsible for
the overall strategy of the product.

In the context of a very small company, this choice can mean that the product
owner will also be a programmer on the team. This is likely to create some benefits in
regard to a shared understanding between the team and the product owner, but also
some drawbacks in the form of the product owner's perspective becoming narrow and
focused on the details of implementation.

A broader perspective can be achieved by making Essence and the Business Model
Canvas a part of the sprint cycle. Deemer et al. [10] suggest that a workshop should
be held near the end of a sprint for product backlog refinement. Normally only the
product owner and the team would be present, but in the context of a small SaaS
software development company few if any additional people will need to be invited in
order to be fully able to make sound decisions on adjusting company strategy.

 Value Creation in SaaS Development 269

Table 3. Revised AntiPage Configuration Table

If we schedule this workshop at the end of a sprint, we would start by updating the

color-coding of the Business Model Canvas to reflect the new status. After having just
talked through but not yet refined the strategy, we could list ideas and insights

Paradigm Product Project Process
Reflection
Challenge. Help
companies get more
value out of their
web sites.
Use context. CMS
for large companies
or smaller and
ambitious ones (O2).

Affordance
Providing content
management with
fast load times.
Allowing a lot of
flexibility

Vision
Metaphor: The Road
Runner of CMS.
A fast and flexible
CMS with good SEO
support.

Facilitation
Quality focus on
streamlining
AntiPage so it
becomes attractive to
customers of various
sizes.

Stakeholders
PathShaper. Wants a
marketable product
(main stakeholder).
Resource it. Wants
to provide quality
websites to its
customers.
MarketingBureau1
wants to sell mid-
priced solutions
based on AntiPage.

Design
Engine and UI
separate from
webserver.
Engine and UI
hosting: PathShaper.
Webserver hosting:
Any web hotel.

Elements
Grounds: Faster load
times help increase
conversion rates.
More flexibility ease
improvement work.
Warrant: AdWords
competitions make
high conversion rates
essential and SEO
attractive.
Qualifier: More
expensive than free
solutions. Many free
solutions have more
features.
Rebuttal:
Costs are small
compared to faster
response times.
Ambitious sites may
not require added
revenues at once.

Evaluation
Procedure: Try to
sell AntiPage to sites
of all sizes.
Criteria: Selling
AntiPage in higher
volumes.

Scenarios
Managing a large
website with custom-
made functionality.
Managing numerous
smaller websites in
different data centers
and needing to share
resources between
them.
Running a single
simple website
(S2+S4).

Components
Page generation
engine.
Content mgt. UI
(S2).
Synchronization
component.

Features
Content mgt.
Maintenance of
multiple sites.
High scalability for #
of simultaneous
visitors per server.
High flexibility in
generating HTML
for SEO.
Simpler UI (S2).
Standard templates
(S4).

Findings
Sales increasing at a
satisfactory rate.

270 I. Aaen and N. Gjerløff

accumulated during the sprint and discuss what to do with them. A way of doing this
would be to use the product backlog refinement as the transition between one Essence
configuration and the next. Using a configuration table is useful here since the
changes between the two tables should be checked against the current Business Model
Canvas. Each change will fall into one of three categories:

1 In accordance with the canvas
2 Warrants changes in the canvas
3 Not bringing the business in the right direction

Essence is used for this idea evaluation with the Anchor as facilitator. Some canvas
changes may not be a result of software innovation, so a periodical revision of the
Business Model Canvas should be part of the process even when there are no items of
the second category.

8 Conclusion

This paper has examined ways of combining the Business Model Canvas and
Essence, and we have suggested an approach for small SaaS development companies.

The Business Model Canvas helped PathShaper decide where to focus efforts, and
Essence helped come up with ways to improve AntiPage in this area.

By using the SWOT and RC notations in the Business Model Canvas, we have a
way to facilitate the exploration of the relationship between items. In addition, the
notation used makes it possible to follow the reasoning behind the proposed strategies
which makes revision of the envisioned future easier: if a SWOT item is changed, all
strategies depending on it must be revised.

We find it both possible and beneficial to integrate the Business Model Canvas
with Essence. The proposed color-coding allows us to easily identify where different
items in the Business Model Canvas are in regard to development, and this makes it
easier to identify which changes should be picked for the next Essence configuration.
Furthermore, our RC notation allows us to track multiple future scenarios suggested
by Essence in the canvas and determine how they affect the business model. The
AntiPage case points to greater clarity and growing revenues from using this
approach.

The main drawback in relation to using the approach is an increased complexity of
the resulting Business Model Canvasses. For larger projects, the SWOT items and RC
notation items may not easily fit into the canvas.

References

1. Aaen, I.: Essence: Facilitating Software Innovation. European Journal of Information
Systems 17, 543–553 (2008)

2. Aaen, I.: Software Innovation –Values for a Methodology. In: Aanestad, M., Bratteteig, T.
(eds.) SCIS 2013. LNBIP, vol. 156, pp. 72–86. Springer, Heidelberg (2013)

 Value Creation in SaaS Development 271

3. Aaen, I.: Essence - Pragmatic Software Innovation. Unpublished book draft. Department
of Computer Science, Aalborg University, Aalborg (2015)

4. Aaen, I.: Roles in innovative software teams: A design experiment. In: Pries-Heje, J.,
Venable, J., Bunker, D., Russo, N.L., DeGross, J.I. (eds.) IFIP WG. IFIP AICT, vol. 318,
pp. 73–88. Springer, Heidelberg (2010)

5. Aaen, I., Jensen, R.H.: Pragmatic Software Innovation. In: Bergvall-Kåreborn, B., Nielsen,
P.A. (eds.) TDIT 2014. IFIP AICT, vol. 429, pp. 133–149. Springer, Heidelberg (2014)

6. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R., Mellor,
S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Development
(2001)

7. Beck, K., Andres, C.: Extreme programming explained: embrace change. Addison-
Wesley, Boston (2005)

8. Beck, K., Fowler, M.: Planning extreme programming. The XP series. Addison-Wesley,
Boston (2001)

9. Cockburn, A.: Agile software development. Addison-Wesley, Boston (2002)
10. Deemer, P., Benefield, G., Larman, C., Vodde, B.: The Scrum Primer. Scrum Training

Institute (2010)
11. DeMarco, T.: Software Engineering: An idea whose time has come and gone? IEEE

Software 26, 95–96 (2009)
12. Kim, W.C., Mauborgne, R.: Blue Ocean Strategy: How to create uncontested market space

and make the competition irrelevant. Harvard Business School Press, Boston (2005)
13. Osterwalder, A., Pigneur, Y., Clark, T.: Business model generation: A handbook for

visionaries, game changers, and challengers. Wiley, Hoboken (2010)
14. Schwaber, K., Beedle, M.: Agile software development with scrum. Series in agile

software development. Prentice Hall, Upper Saddle River (2002)
15. Toulmin, S.E.: The uses of argument. Cambridge University Press, Cambridge (2003)
16. Weihrich, H.: The TOWS Matrix — A tool for situational analysis. Long Range

Planning 15, 54–66 (1982)

Wealthy, Healthy and/or Happy —

What does ‘Ecosystem Health’ Stand for?

Sami Hyrynsalmi1(�), Marko Seppänen2, Tiina Nokkala3, Arho Suominen4,
and Antero Järvi1

1 Department of Information Technology, University of Turku, Turku, Finland
{sthyry,antero.jarvi}@utu.fi

2 Department of Pori, Tampere University of Technology, Tampere, Finland
marko.seppanen@tut.fi

3 Turku School of Economics, Department of Management and Entrepreneurship,
University of Turku, Turku, Finland

takuus@utu.fi
4 Innovation and Knowledge Economy, VTT Technical Research Centre of Finland,

Turku, Finland
arho.suominen@vtt.fi

Abstract. The health of a software ecosystem is argued to be a key
indicator of well-being, longevity and performance of a network of com-
panies. In this paper, we address what scientific literature actually means
with the concept of ‘ecosystem health’ by selecting relevant articles with
systematic literature review. Based on the final set of 38 papers, we
found that despite a common base, the term has been used to depict a
wide range of hoped characteristics of a software ecosystem. However, the
number of studies addressing the topic is shown to grow while empirical
studies are still rare. Thus, further studies should aim to standardize the
terminology and concepts in order to create a common base for future
work. Further work is needed also to develop early indicators that warn
and guides companies on problems with their ecosystems.

Keywords: Software ecosystem · Ecosystem health · Business
ecosystem · Systematic literature study

1 Introduction

‘Business ecosystem’ analogy, by Moore [1,2], and its derivatives—such as ‘soft-
ware ecosystem’—are crucial conceptualizations for modern-day business net-
works. Business ecosystems, formed by firms, are seen everywhere. For example,
there are several different kind software ecosystems (SECO) focusing on the soft-
ware producing companies and their networks [3,4], mobile ecosystems formed
by the companies producing hardware and software for new era smartphones [5],
and even mobile application ecosystems that focus on the relationship of mo-
bile application marketplaces and their content producers and users [6]. In this
paper, we see ‘software ecosystem’ as a special case of more general ‘business

c© Springer International Publishing Switzerland 2015
J.M. Fernandes et al. (Eds.): ICSOB 2015, LNBIP 210, pp. 272–287, 2015.
DOI: 10.1007/978-3-319-19593-3_24

What Does ‘Ecosystem Health’ Stand for? 273

ecosystem’ concept. That is, a software ecosystem is a-kind-of business ecosys-
tem. While our focus in this paper is on the former, we acknowledge and use the
extant knowledge of the latter.

A common approach to both the business and software ecosystem research
agendas is to define a measure of healthiness for an ecosystem. Iansiti & Levien
[7,8] state that, similarly as in a biological ecosystem, that the survival of indi-
vidual actors within an ecosystem are dependant on the whole network rather
than the strength of the actor itself. This creates the assumption that the health
of the ecosystem is crucial for all actors joined to the ecosystem.

The concept of ‘ecosystem health’ is important also for software ecosystems. In
this paper, we address the existing research on the concept of ‘ecosystem health’
in the field of software ecosystem research. We use a systematic literature review
(SLR) to select papers focusing on the topic and follow Kitchenham & Charter’s
[9] guidelines of conducting a SLR. From the selected papers, we analyse how
the term is used and defined. The research questions of the paper are:

RQ1. Is there increasing scholarly interest towards ‘ecosystem health’?

RQ2. Has the scholarly debate resulted in a common understanding on the
definition?

RQ3. What are the characteristics, actors and agents mentioned in literature
that have an influence to ecosystem health?

RQ4. Is there empirical evidence to support definitions or characteristics found
in literature?

The research questions use the systematic literature review approach to quan-
tify the need for an discussion on ecosystem health—i.e., is this a topic of in-
terest in the scholarly debate. The research questions also formulate the status
of scholarly debate—i.e., is there a consensus on the framework and relevance
of ecosystem health. Finally, this study strives to uncover sufficient empirical
evidence for whatever theoretical findings has been gathered.

Previously, Manikas & Hansen [10] studied ecosystem health with a literature
survey. In the article, they construct a software ecosystem framework. However,
their paper relies on a few years old dataset that contains only 13 articles re-
lated to software ecosystem health. Our set contains three times more articles,
and, instead of constructing an ecosystem health model, we are interested on
the discussion of and the recent development in the area of software ecosystem
health. This paper contributes to the field by showing a multitude of meanings
associated with the term and proposing new research avenues. This paper re-
quest further work to normalize the ongoing discussion and research of software
ecosystem health.

The rest of the paper is structured as follows. The following section will give
a brief introduction to the ecosystem health. It is followed by the depiction
of research methods in Section 3, results and analysis in Section 4. Section 5
presents discussion of the meaning of results and Section 6 concludes the study.

274 S. Hyrynsalmi et al.

2 Background

In this section, we will present the software ecosystem health model by Manikas
& Hansen [10], and the classical view of business ecosystem health by Iansiti &
Levien [7,8]. Due to the space limitations, we do not discuss on the definition
of software ecosystem or its actors but refer the interested readers to recent
literature reviews [6,11].

In their work, Manikas & Hansen [10] make a categorization about ecosys-
tem health related literature, in order to find definitions for software ecosys-
tem health. They create four categories: software ecosystems (main category)
and business ecosystems, natural ecosystems and open source software. Litera-
ture from all categories draws from the main category’s definition. Nevertheless,
there is one main difference between the main category and the rest: nature
of the ecosystem’s production. While other ecosystems see actors as products
themselves, software ecosystem, according to Manikas & Hansen [10], makes a
difference between the actor in ecosystem and the production of ecosystem [10].

In software ecosystem, according to Manikas & Hansen [10] health of an actor
and of a product are separated, not affecting each other, whereas in natural
and business ecosystems, health of an actor affects the product’s health. That
independence of actor’s and product’s health in software ecosystems can appear
in form of an excellent software product or platform having positive effect on
health of the ecosystem, while the actor who created that product has a negative
effect on health through defects in its business model [10].

Ecosystems are also defined by the roles and awareness of roles by different
actors. A differentiator between software ecosystems and other mentioned types
of ecosystems is an orchestrator that creates the rules and runs the platform that
is used in that specific ecosystem [10]. Also the consciousness of the existence
of an ecosystem and belonging to it makes a difference between natural and
artificial ecosystems [2]. Awareness of ecosystem’s actors about the ecosystem
affects their acts in it, and should therefore be taken into account when defining
the health of an ecosystem.

Base-creating definition of measures to be used when addressing health of
ecosystems, both business and biological was presented by Iansiti & Levien [7,8].
They propose that ecosystem health should be measured by productivity, robust-
ness and niche creation [7]:

Productivity can be measured in business or software ecosystems, e.g., in re-
turn on invested capital; how much value is created turning tangible and
intangible assets into production. In natural ecosystems measure, can be,
e.g., biomass created using inputs like sunlight.

Robustness in its simplest form, according to Iansiti & Levien [7], is measured
in survival rate of ecosystem’s members, either in relation to other ecosys-
tems or over time. Robustness means that the ecosystem can face and survive
from the changes of the environment.

Niche Creation in business context refers to ability to create value by putting
new functions into operation and increasing meaningful diversity in

What Does ‘Ecosystem Health’ Stand for? 275

ecosystem through that. Diversity gives ecosystem potential for productive
innovation and indicates its ability to absorb shocks from outside. [7]

In addition to these health measures, there are several different characteristics
argued to be included into the ‘ecosystem health’ concept. For example, Hyryn-
salmi et al. [12] argues that satisfaction of actors involved in an ecosystem should
be considered.

SECO Health

Actors Orchestration Software

Individual
actor
health

Actor
network
health

Software
component

health

Platform
health

Software
network
health

Fig. 1. A breakdown of the SECO health framework [10, adapted]

Software ecosystem health –model proposed by Manikas & Hansen [10] di-
vides health of an ecosystem to three main components: actors, software and
orchestration (Figure 1). This model, as it name specifies, is prepared taking
into account earlier mentioned features that differentiate software ecosystems
from other ecosystems; the separation of actor health and product health, and
the existence of and orchestrator. In the model, actor component is further di-
vided to individual actor health and actor network health. Software component in
turn consists of software component health, platform health and software network
health. Descriptions of these subcomponents according to Manikas & Hansen [10]
are shortly presented below:

Individual Actor Health. Productivity and robustness mentioned by Iansiti
& Levien [7] are the main building blocks of an individual actor’s health in
an ecosystem. Actively participating an actor probably is a robust member
of an ecosystem and most likely has its place in it in the future also.

Actor Network Health. Interaction within an actor’s network affects the
ecosystem’s health. The role of an actor in a network increases or decreases
its effect on the health of an ecosystem. Key player, even with lower produc-
tivity, means more to ecosystem health than high productivity from a niche
player.

Software Component Health. In case of software ecosystem, the software
component is most likely a product of the ecosystem. Its health can be
measured, e.g., in terms of reliability, availability, modifiability and interop-
erability. Software component health is affected by its relative demand and
quality.

Platform Health. Platform health can be similarly analyzed as software com-
ponent health, platform being a software component also. It might still have

276 S. Hyrynsalmi et al.

effect also on orchestration of the software ecosystem. If so, measuring plat-
form health should include a measure for the effectiveness of orchestration
actions.

Software Network Health. Interaction between software components can be
measured and categorized. Connected software components form a network,
which health can be measured by e.g. looking at the key players’ role in it;
whether they are enabling interaction or trying to dominate whole network’s
actions.

Orchestration Influence on Health. Orchestrator can have a role of ‘care-
taker’ of an ecosystem; using measures like health of an ecosystem to monitor
it and take actions if needed. Orchestrator can influence the ecosystem e.g.
by setting rules, communicating plans, managing the platform, controlling
number of actors and affecting internal products revenue model.

In relation to orchestrator’s role, Iansiti & Levien [7] are of the opinion that
the orchestrator’s aim should be improving the health of the whole ecosystem.
Effective orchestrator or key player should create and share value in ecosystem
in order to tempt actors to join and keep existing actors satisfied. [7]

Orchestrator can damage the ecosystem health by being a physical dominator
or value dominator, warn Iansiti & Levien [7]. An ecosystem can be suppressed
by an orchestrator who aims to directly managing big part of the network or
made unsustainable by an orchestrator that draws majority of value created
within ecosystem to itself. [7]

In conclusion, ‘ecosystem health’ is defined through the network dynamics
of the participating actors. Previous research emphasizes the relevance of roles,
specifically that of the orchestrator, and that individual actors health is always
derived from the benefit of the ecosystem. In the following, we will study how
widely these definitions are used in the software ecosystem health literature and
what is the strength of empirical evidence.

3 Method

We used SLR as a data collection method in this study and followed Kitchenham
& Charters’ [9] guidelines of conducting data collection. Due to the wide-spread
popularity of the topic, we decided to use an electronic search–in contrast to a
manual search where researchers read through selected journals and publication
series–to large article databases. In each search engine, we used the search term
"software ecosystem" AND health. Searches were targeted to full texts, and
only research papers (i.e., peer-reviewed articles) were included when it was
possible to select.

We used the following databases in this study (the number of hits is given in
the brackets):

1. ACM Digital Library (43)
2. IEEE Xplore Digital Library (45)
3. ScienceDirect (33)
4. ISI Web of Science (4)

What Does ‘Ecosystem Health’ Stand for? 277

5. Proquest (9)
6. Wile Online Library (8)
7. SpringerLink (58)

The searches were done in January 15th, 2014. In total, we collected 194 unique
articles in the first phase with the above-mentioned search term.

In the second phase of the review process, we went through all unique pa-
pers and kept those which dealt with a) ‘software ecosystem’ and b) ‘ecosystem
health’. Only articles written in English were included. Articles which were not
published in a scientific peer-reviewed venue were excluded. Furthermore, we ex-
cluded posters, editorials, presentation notes and panel summaries. These were
the only inclusion or exclusion criteria used. After the second phase, 38 articles
were included into the dataset.

In the final phase, all selected articles were gone through. From each paper, we
extracted how the concept ‘ecosystem health’ was used, were there any synonyms
for it and did the paper name any sources for the ecosystem health discussion.
The study is based on the quantitative analysis of the results and the qualitative
discussion of the implications. The results are discussed in the following section.

4 Results and Analysis

Table 1 shortly summarizes the selected papers’ view on the concept of ‘ecosys-
tem health’. The column ‘Uses empirical data?’ classifies if the article used em-
pirical data. In this, we require that the empirical study of a paper is directly
related to ecosystem health, and that the authors explicitly state the relationship
between results and health as a whole. For example, the article by Hyrynsalmi
et al. [53] is not, in this study, classified as empirical: the study is justified with
the ecosystem health, but it forgot ecosystem health concept when analysing
and discussing its results.

Table 1. The papers selected to this literature review with a short summary

ID Description how a paper considers the ‘ecosystem health’ concept Uses
empirical
data?

[13] Uses three different views to analyze a SECO. In addition to transaction and
structure analyses, the model of [14] is used to analyze the health of a SECO.
Proposes simple measures for Robustness, Productivity and Niche creation; e.g.,
a number of downloads as a an indicator of Robustness and a number of commits
as a measure of Productivity.

No

[15] The diversity of actors (developers) supports ecosystem health. Dominators are
harmful for an ecosystem as they reduce the diversity. Follows [8] in view of ecosys-
tem health.

No

[16] Software ecosystem modeling might help to evaluate health of an ecosystem. Fol-
lows [17,7] in a view of ecosystem health.

No

[18] Argues that a community (of developers, experts and users) is vital for the health
of a SECO and that a keystone player’s mission is to promote the overall health
of an ecosystem.

No

[19]� Proposes a set metrics for ecosystem health by instantiating the software ecosystem
health framework of [10]. The empirical part is based on a qualitative analysis of
a case ecosystem.

No

[20] Based on the interviews, shows that software vendors select an ecosystem based
on its health, which is seen as a performance indicator of an ecosystem. Follows
[7,8] in a view of ecosystem health.

No

�An article’s main focus is in the concept of ‘ecosystem health’

278 S. Hyrynsalmi et al.

Table 1. (Continued from previous page)

ID Description how a paper considers the ‘ecosystem health’ concept Uses
empirical
data?

[21] Notes that low socio-technical congruence might be harmful for health of a software
ecosystem.

No

[22] Argues that software ecosystem modeling might help to visualize ecosystem health
and stability.

No

[23] Discusses on health of e-learning software ecosystem. Follows [8] view of ecosystem
health.

No

[24] Uses the ‘biological ecosystem’ concept as a starting point and argues that healthy
ecosystem requires proper feedback (from technical issues, business considerations
and community participation) and management. A healthy ecosystem survives
even when losing a part of its population. A healthy community (of an ecosystem)
is “sustainable, livable, equitable and prosperous.”

No

[25] Health of an ecosystem describes the performance of the ecosystem. ‘SECO bi-
ology’ (i.e., composition), ‘Lifestyle’ (e.g., vision, entry barrier, openness), ‘En-
vironment’ (i.e., stakeholders) and ‘Health Care Organization’ (banks, investors,
governments etc.) can affect to ecosystem health. Follows [8] in a view of health.

Yes

[26]� Studies how meritocracy affects to health of an ecosystem. Follows [7,27] in a view
of health; measures productivity with number of commits.

Yes

[28] Determinants of ecosystem health are productivity of and value creation by its
actors. Productivity is measured with commits, LOCs, number of active partners.
In a view of ecosystem health, follows [7,29].

No

[30] Sees ‘ecosystem health’ as a knowledge flow (similar to a nutrient recycling pro-
cess in a biological ecosystem); ‘ecosystem sustainability’ is defined as keystone
activities to maintain the community.

No

[31] Characteristics of ecosystem health include, at least, growth and evolution over
time. The paper argues that a growth rate is a good indicator of ecosystem health.

No

[32] Follows [7] in the view of ecosystem health. No
[33] Health of a project is related to health of an ecosystem; i.e., the quality of a project

affects health of ecosystem and vice versa.
[34] Sustainability and diversity are health indicators of an ecosystem. No
[35] Sustainability and diversity are health indicators of an ecosystem. Furthermore,

actors in an ecosystem have impacts on SECO health.
No

[36] From technical dimension, a SECO’s central platform could be analysed with pro-
ductivity, robustness and niche creation. From business dimension, sustainability
and diversity are health indicators of a SECO.

No

[37] A healthy ecosystem is generating revenue (for developers). No
[27]� The paper focuses on the open-source software ecosystem and it notes that project

health is not same than the ecosystem health. A healthy unit should be, e.g., lively,
active, long-living; in the study longevity and a propensity for growth were the
main characteristics. The study presents an open-source software health framework
with proposed measures for different characteristics. The model has two dimen-
sions; the scope dimension has three levels (theory, network level and project level)
and the other dimension consists of productivity, robustness and niche creation.

Yes

[11] In a large systematic literature study, the authors identified an emerging research
line (13 articles) on ecosystem health. According to the article, a healthy SECO
is functioning well. They also point out that while diversity is often argued to
contribute ecosystem health through richer niche creation, there are no concrete
studies to validate this hypothesis. Similarly, the authors note that there are few
studies concretely measuring, analyzing or elaborating health of a software ecosys-
tem.

No

[38] Development of metrics for measuring ecosystem health is mentioned as an existing
challenge.

No

[39] ‘Ecosystem health’ and ‘ecosystem sustainability’ concepts are seen capturing the
same phenomenon. Commitment of actors to the ecosystem improves sustainability
(i.e., health of an ecosystem). Further, authors suggest evaluating ecosystem health
when analysing and designing an ecosystem.

No

[40] Ensuring health of their ecosystems is seen as a responsibility of keystones. No
[41] Health of an individual actor depends heavily on health of a complete network

(i.e., ecosystem). Follows [7] in a view of ecosystem health. A keystone player’s
actions stimulate health of the entire ecosystem. The paper proposes development
of a software ecosystem health model.

No

�An article’s main focus is in the concept of ‘ecosystem health’

What Does ‘Ecosystem Health’ Stand for? 279

Table 1. (Continued from previous page)

ID Description how a paper considers the ‘ecosystem health’ concept Uses
empirical
data?

[42] An ecosystem have to be healthy to be a long-living one. Follows [7] in a view of
ecosystem health.

No

[43] An ecosystem architecture can pose risks that endangers health of the entire
ecosystem; an architectural analysis of the ecosystem can reveal health threats.

[44] Ecosystem governance leads to better ecosystem performance and health. No
[45]� To survive, an ecosystem should be healthy. In a healthy ecosystem, a partici-

pating firm can achieve its financial goals easier than in any other ecosystem.
The study extends [7] view of ecosystem health; health of a software ecosystem is
measured with robustness, productivity, interoperability, stakeholder’s satisfaction
and creativity. The model is empirically tested with a survey on Tunisian software
ecosystem.

Yes

[46] Motivating joined developers to work together (i.e., increase the interconnectivity)
would improve ecosystem health.

No

[47]� Ecosystem governance is argued to have an impact on ecosystem health. The paper
studies Ecosystem Governance Model by [48,49] and follows [8] in the view of
ecosystem health. The authors’ note that the results from a case study might
indicate early sign of low ecosystem health; however, the studied ecosystem is
considered to be a growing one.

Yes

[50] To be able to create value, a keystone’s responsibility is to ensure a healthy and
sustainable ecosystem. Follows [7] in an view of ecosystem health. Notes that
‘sustainability’ and ‘ecosystem health’ are closely linked performance objectives.

No

[51] Health is a characteristic of an ecosystem. In a healthy SECO, there are two main
roles that an actor can take: keystone or niche player.

No

[52] Not provoking unnecessary competition between developers in a SECO improves
ecosystem health. Follows [7] in a view of ecosystem health.

No

[53] Argues that health of a marketplace is related to health of a SECO. A marketplace
is seen healthy if ISVs are satisfied.

No

[54]� Follows [29] in a view of ecosystem health; health is long-term financial well-being
and long-term strength of a network. Proposes a set of metrics to evaluate ecosys-
tem health of Platform-as-a-Service Providers. Metrics include, e.g., a number of
active developers in a given time and a number of unique programming languages
used.

Yes

�An article’s main focus is in the concept of ‘ecosystem health’

From the set of 38 papers, nine are journal and 29 are conference articles.
Despite several search engines used in this study, a rather small set of publication
forums are present in the final dataset. The most often used conference series are
International Conference on Software Business (ICSOB, 8 articles), Management
of Emergent Digital EcoSystems (MEDES, 6), European Conference on Software
Architecture and its workshops (ECSA and ECSAW, 5). Journal of Systems and
Software (4) and Information and Software Technology (4) have published the
majority of the journal articles in the dataset.

The papers included into the dataset are written by 75 authors; however,
Slinger Jansen (Utrecht University) has an authorship in 14 articles out of 38.
Other active authors in the field of software ecosystem health are Konstantinos
Manikas (5 articles, University of Copenhagen), Sjaak Brinkkemper (4, Utrecht
University), Klaus Marius Hansen (4, University of Copenhagen) as well as
Cláudia Werner and Rodrigo dos Santos (4, University of Rio de Janeiro). This
shows that the field is heavily addressed by a small set of academicians.

Figure 2 illustrates the publication years of the selected articles. Oldest articles
included in this study are published in 2009. The figure, furthermore, reveals

280 S. Hyrynsalmi et al.

2009 2010 2011 2012 2013 2014

2

4

6

8

10

12

2

4

6

9

6

11

Year

N
u
m
b
er

o
f
a
rt
ic
le
s

conference articles journals

Fig. 2. Number of papers published yearly

that activity in the field of ecosystem health is constantly growing, although
the overall volume is still rather small.

The descriptives in Figure 2 yield an answer to RQ1 as it is clear that there
is an increasing scholarly interest and dialogue related to software ecosystem
health. This dialogue is, as seen from the conference and journal forums, related
to the computer science discipline with some interdisciplinarity with business
and management sciences. The discussion is based on a relatively narrow pool
of authors within a narrow disciplinary setting.

Beyond thedescriptive, thedefinitions of ecosystemsare sparse.Even though the
works often cite similar origins, namely Iansiti & Levien [7,8], the different works
use the term ‘ecosystem health’ very differently. This is apparent in Table 1 where
the views on ‘ecosystem health’ vary significantly.Where some focus on explaining
ecosystem health through the diversity of actors, some look at multiple factors,
such as the “biology” of the ecosystem, as a source of explanation. These differences
come fromthe researchquestionand thenarrative of the studieswhich seldomfocus
significantly on the actual theoretical framework of ecosystem health and rather
use this elusive definition to move quickly to the research question at hand. This
to an extent, makes the author to pick appropriate portions of a few seminal works
when making their case. Answering to RQ2, there is little support to a consensus
definition of ‘ecosystem health’.

Finding no support for RQ2, we look for characteristics of ecosystem health.
Drawing from Table 1 factors, actors or agents that relate to ‘ecosystem health’
are the internal structure of the actors (e.g. diversity, composition and evolu-
tion), external influences (e.g. stakeholders, entry barrier, openness), internal
forces (e.g. community development, feedback, joined vision) and outputs (e.g.
productivity, value created by actors and growth). This synthesis is illustrated in
Figure 3. Much of the literature emphasize the role of orchestrator and keystone

What Does ‘Ecosystem Health’ Stand for? 281

Ecosystem’s health

Internal
structure

External
influences

Internal
forces

Outputs

Fig. 3. Factors affecting to health of an ecosystem

actors to moderate the above mentioned factors. Answering to RQ3, there are
common characteristics but these are differently referred in literature. Arguable,
this is due to the absence of share theoretical frame.

Finally, finding a number of characteristics for ecosystem health, our focus
turns towards empirical evidence. From the 38 studies, only a selected few focus
on producing empirical evidence. From these, only one makes a strong effort to
validate a theoretical frame. Furthermore, often studies propose to use of simple
metrics such as a number of commits or a number of lines of code (LOC) as a
measure of health (productivity). While these certainly measure some activity
in an ecosystem, it is not clear how useful these are as indicators of productiv-
ity [55]. We find no or limited support for RQ4.

To summarize, our study contributes to the field of software ecosystem health
by showing that there, indeed, is increasing scholarly interested towards the con-
cept (RQ1). However, as shown in Table 1 and above analysis, there is no shared
understanding on what does the concept mean (RQ2). This misunderstanding
has, as discussed more in the following section, and will cause problems in the
studies of ecosystem health. However, we were able to identify the common ele-
ments used and synthesize them (RQ3). It should be, however, noted that these
elements differs a lot from presented two frameworks of business [7,8] and soft-
ware ecosystem health [10]. Finally, we showed that despite increased interest,
there is a lack of empirical studies addressing existing or extincted software
ecosystem health (RQ4).

5 Discussion

Currently, there seems not to be a coherent view of what is ‘software ecosystem’
and several concepts are oftenused interchangeably to depict either the same or dif-
ferent objects. For example, concepts such as ‘ecosystem’, ‘network’, ‘community’

282 S. Hyrynsalmi et al.

and ‘platform’ are used to depict the same phenomenon1. Our view of a business
ecosystem—and thus, its special case, ‘software ecosystem’—follows the original
work by Moore [1] and sees an ecosystem as an economic community. Thus, we
question does loose communities of individual developers or software firms form
an ecosystem. Therefore, the scientific community would benefits from established
use of the terms.

This SLR demonstrates that there is much work to do. It seems that the defi-
nition of health in the ecosystem is rather tautological; the definitions of healthy
ecosystem are derived from healthy firms. A healthy firm is rarely defined, except
Jansen [27] who define healthiness by willingness to grow and longevity.

We would like to raise the question on philosophical (as well as strategic) ques-
tion what does a business ecosystem actually stand for. Its analogies to biological
counterparts are often loosely referred to, however the actually and exact concep-
tual work seems to be missing here. The seminal work by Richard Dawkins, Selfish
Gene [56], proposed how an organism is expected to maximise its inclusive fitness,
the number of copies of its genes pass on globally. A firm does not have such ulti-
mate goal but its goals are defined locally by the owner and even the survival of a
particular firm is not necessary, since a firm is a tool that serves certain purpose
that its owners have defined. Therefore, we should thoroughly consider the con-
ceptual foundations of business ecosystem and deriving on this conceptual work,
consider carefully again what does healthiness mean in this SECO context.

For instance, firstly, it is not much considered why business ecosystems do ex-
ist and under what circumstances a company should participate in the particular
ecosystem [57]. Business ecosystems are considered to lead to competitive advan-
tages for each of the partners in the business ecosystem [58]. Thus, the question
remains, what are these competitive advantages and their characteristics to con-
sider when joining to an ecosystem. Secondly, business ecosystems may provide
firms resources and information “to navigate in a constantly changing competitive
environment” [59]. Thus, what are suchmechanisms that a firm should use to eval-
uate the access and availability of above “resources and information”. Thirdly, it
has been considered that an ecosystem should be responsible for its participants:
“SECO platform ownership also brings responsibilities” [50]. This question is not
clear even network literature and practice—when a network’s focal company faces
financial problems, its loyalty towards its suppliers has been deteriorating inmany
cases. In similar manner, large amount of business ecosystem literature includes
rather positive expectations how firms may (or they should) behave towards their
ecosystem partners.

The above ideas lead us to suggest the following questions for further research:

1. What are the philosophical foundations for business ecosystems, especially
when considering the decisions to join or detach a firm to/from a business
ecosystem?

1 J. West (2014) “Networks, Communities, Ecosystems and Platforms”. http://blog.
openinnovation.net/2014/08/networks-communities-ecosystems-and.html Accessed
March 24, 2015.

What Does ‘Ecosystem Health’ Stand for? 283

2. What characteristics to use for evaluating the ‘healthiness’ a business ecosys-
tem?Canwedefine such ‘earlywarnings’ thatmay give a signal about “sickness
of a business ecosystem”?

3. Whatkinds of strategic patternsdodifferent types ofbusiness ecosystems form?
For instance, further development of work by Zahra & Nambisan [59] linked
with above questions may be helpful.

To summarize, we question what does, and what should, the concept ‘ecosystem
health’ stand for. Furthermore, the different viewpoints on the ecosystem blur the
overall picture even more. For example, Apple’s App Store (iOS) software ecosys-
temcanbe argued to be a healthy one (for its orchestrator) due to the largenumbers
of application developers, customers and revenue generated. Furthermore, it has
been able to absorb external shocks causedby competitors.However, the ecosystem
is not ‘healthy’ for the majority of existing or newcomer application developers. In
contrast, the ecosystemmight be ‘healthy’ for customers (a plethora of cheap offer-
ing) and superstars (e.g., Supercell Oy and King Limited have been able to create
a stable revenue flow through the ecosystem). Thus, we call for theoretical devel-
opment, supported with strong empirical evidence, on the concept of ‘ecosystem
health’ to normalize the discussion. This would help future endeavours on devel-
oping metrics and measures, early warning signal systems and government levers
for software ecosystem health.

6 Limitations and Conclusions

Naturally, this study has limitations. First, we limited the data gathering only on
electronic searches on article databases. This might cause a lack of articles not in-
dexed on these databases. In a further study, a manual search of selected publi-
cation forums should be performed. Second, we focused only on SECOs’ health,
due to the nature of the audience. Thus, an inclusion of health of digital, mobile
and business ecosystemwould broaden the picture of the whole ‘ecosystem health’
concept.

However, this study showed that the number of articles discussing on the con-
cept ‘software ecosystem health’ is constantly growing. Although the studies are
often based on the seminal work by Iansiti & Levien, we could not find a consen-
sus for what software ecosystem health stands for. The term has been used to de-
scribe, e.g., financial well-being of individual actors, performance and longevity of
the whole ecosystem. Furthermore, the number of empirical studies remains low.
Thus, we call for further work for defining the philosophical standpoint for business
and software ecosystem as well as their healthiness.

References

1. Moore, J.F.: Predators and prey: A new ecology of competition. Harvard Business
Review 71(3), 75–86 (1993)

2. Moore, J.F.: The Death of Competition: Leadership and Strategy in the Age of
Business Ecosystems. Harper Business, New York (1996)

284 S. Hyrynsalmi et al.

3. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 31st International Conference on Software Engi-
neering — Companion Volume, ICSE-Companion 2009, pp. 187–190. IEEE (2009)

4. Jansen, S., Brinkkemper, S., Cusumano, M.A. (eds.): Software Ecosystems: Ana-
lyzing and Managing Business Networks in the Software Industry. Edward Elgar
Publisher Inc., Northampton (2013)

5. Basole, R.C.: Visualization of interfirm relations in a converging mobile ecosystem.
Journal of Information Technology 24(2), 144–159 (2009)

6. Hyrynsalmi, S.: Letters from the War of Ecosystems — An Analysis of Indepen-
dent Software Vendors in Mobile Application Marketplaces. Doctoral dissertation,
University of Turku, Turku, Finland, TUCS Dissertations No 188 (2014)

7. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Business Review 82(3), 68–78
(2004)

8. Iansiti, M., Levien, R.: The Keystone Advantage:What the NewDynamics of Busi-
ness Ecosystems Mean for Strategy, Innovation, and Sustainability. Harvard Busi-
ness School Press, Boston (2004)

9. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. version 2.3. EBSE Technical Report EBSE-2007-
01, Keele University, Keele, Staffs, United Kingdom (2007)

10. Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems — a con-
ceptual framework proposal. In: Alves, C.F., Hanssen, G.K., Bosch, J., Jansen,
S. (eds.) Proceedings of the 5th International Workshop on Software Ecosystems,
Potsdam, Germany. CEURWorkshop Proceedings, vol. 987, pp. 33–44. CEUR-WS
(2013)

11. Manikas, K., Hansen, K.M.: Software ecosystems—A systematic literature review.
Journal of Systems and Software 86(5), 1294–1306 (2013)

12. Hyrynsalmi, S., Suominen, A., Mäkilä, T., Knuutila, T.: The emerging application
ecosystems: An introductory analysis of Android ecosystem. International Journal
of E-Business Research 10(2), 61–81 (2014)

13. McGregor, J.D.: A method for analyzing software product line ecosystems. In: Pro-
ceedings of the Fourth European Conference on Software Architecture: Companion
Volume, ECSA 2010, pp. 73–80. ACM, New York (2010)

14. Iansiti, M., Richards, G.L.: The information technology ecosystem: Structure,
health, and performance. The Antitrust Bulletin 51(1), 77–110 (2006)

15. Manikas, K., Hansen, K.M.: Characterizing the danish telemedicine ecosystem:
Making sense of actor relationships. In: Proceedings of the Fifth International
Conference on Management of Emergent Digital EcoSystems, MEDES 2013, pp.
211–218. ACM, New York (2013)

16. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystemmodel-
ing. In: Proceedings of the 1st InternationalWorkshop onOpenComponent Ecosys-
tems, IWOCE 2009, pp. 41–50. ACM, New York (2009)

17. Iyer, B., Lee, C.H., Venkatraman, N.: Managing in a “small world ecosystem”:
Some lessons from the software sector. California Management Review 48(3), 28–47
(2006)

18. van Ingen, K., van Ommen, J., Jansen, S.: Improving activity in communities of
practice through software release management. In: Proceedings of the International
Conference on Management of Emergent Digital EcoSystems, MEDES 2011, pp.
94–98. ACM, New York (2011)

19. Monteith, J.Y., McGregor, J.D., Ingram, J.E.: Proposed metrics on ecosystem
health. In: Proceedings of the 2014 ACM International Workshop on Software-
defined Ecosystems, BigSystem 2014, pp. 33–36. ACM, New York (2014)

What Does ‘Ecosystem Health’ Stand for? 285

20. van Angeren, J., Blijleven, V., Jansen, S.: Relationship intimacy in software ecosys-
tems:A survey of theDutch software industry. In:Grosky,W.I., Badr,Y., Chbeir, R.
(eds.) Proceedings of the International Conference on Management of Emergent
Digital EcoSystems, MEDES 2011, pp. 68–75. ACM, New York (2011)

21. Syeed, M.M.M., Hansen, K.M., Hammouda, I., Manikas, K.: Socio-technical con-
gruence in the ruby ecosystem. In: Proceedings of The International Symposium on
Open Collaboration, OpenSym, pp. 2:1–2:9. ACM, New York (2014)

22. Handoyo, E., Jansen, S., Brinkkemper, S.: Software ecosystem modeling: The value
chains. In: Proceedings of the Fifth International Conference on Management of
Emergent Digital EcoSystems, MEDES 2013, pp. 17–24. ACM, New York (2013)

23. Pettersson, O.: Software ecosystems and e-learning: Recent developments and fu-
ture prospects. In: Proceedings of the International Conference on Management of
Emergent Digital EcoSystems, MEDES 2009, pp. 64:427–64:464. ACM, New York
(2009)

24. Dhungana, D., Groher, I., Schludermann, E., Biffl, S.: Software ecosystems vs. nat-
ural ecosystems: Learning from the ingenious mind of nature. In: Proceedings of
the Fourth European Conference on Software Architecture: Companion Volume,
ECSA 2010, pp. 96–102. ACM, New York (2010)

25. van den Berk, I., Jansen, S., Luinenburg, L.: Software ecosystems: A software
ecosystem strategy assessment model. In: Proceedings of the FourthEuropean Con-
ference on Software Architecture: Companion Volume, ECSA 2010, pp. 127–134.
ACM, New York (2010)

26. Eckhardt, E., Kaats, E., Jansen, S., Alves, C.: The merits of a meritocracy in open
source software ecosystems. In: Proceedings of the 2014 European Conference on
Software Architecture Workshops, ECSAW 2014, pp. 7:1–7:7. ACM, New York
(2014)

27. Jansen, S.: Measuring the health of open source software ecosystems: Moving be-
yond the project scope. Information and Software Technology 56(11), 1508–1519
(2014)

28. Aarnoutse, F., Renes, C., Snijders, R., Jansen, S.: The reality of an associate model:
Comparing partner activity in the eclipse ecosystem. In: Proceedings of the 2014
European Conference on Software Architecture Workshops. ECSAW 2014, pp.
8:1–8:6. ACM, New York (2014)

29. den Hartigh, E., Tol, M., Visscher, W.: The health measurement of a business
ecosystem. In: van Eijnatten, F.M. (ed.) Proceedings of the ECCON 2006 Annual
Meeting: “Organisations as Chaordic Panarchies” — Towards Self-Transcending
Work Holarchies, Bergen aan Zee, The Netherlands, European Network on Chaos
and Complexity Research and Management Practice, pp. 1–39 (2006)

30. dos Santos, R.P., Werner, C.: Treating business dimension in software ecosystems.
In: Proceedings of the International Conference on Management of Emergent Dig-
ital EcoSystems, MEDES 2011, pp. 197–201. ACM, New York (2011)

31. Hoving, R., Slot, G., Jansen, S.: Python: Characteristics identification of a free
open source software ecosystem. In: 7th IEEE International Conference on Digital
Ecosystems and Technologies (DEST), pp. 13–18. IEEE Computer Society (2013)

32. Mizushima, K., Ikawa, Y.: A structure of co-creation in an open source software
ecosystem:A case study of the eclipse community. In:Proceedings of PICMET2011:
Technology Management in the Energy Smart World, pp. 1–8. IEEE (2011)

33. Pérez, J., Deshayes, R., Goeminne, M., Mens, T.: Seconda: Software ecosystem
analysis dashboard. In: 16th European Conference on Software Maintenance and
Reengineering (CSMR), pp. 527–530. IEEE (2012)

286 S. Hyrynsalmi et al.

34. dos Santos, R.P.,Werner, C.M.L.: ReuseECOS:An approach to support global soft-
ware development through software ecosystems. In: IEEE Seventh International
Conference on Global Software Engineering Workshops (ICGSEW), pp. 60–65.
IEEE (2012)

35. dos Santos, R.P.,Werner, C.M.L.: Treating social dimension in software ecosystems
through ReuseECOS approach. In: 6th IEEE International Conference on Digital
Ecosystems Technologies (DEST), pp. 1–6. IEEE (2012)

36. Santos, R., Werner, C., Barbosa, O., Alves, C.: Software ecosystems: Trends and
impacts on software engineering. In: 26th Brazilian Symposium on Software Engi-
neering (SBES), pp. 206–2010. IEEE (2012)

37. Yamakami, T.: Stage models of middleware platforms and applications: Transitions
in the mobile application landscape. In: 4th IEEE International Conference on Dig-
ital Ecosystems and Technologies (DEST), pp. 165–170. IEEE (2010)

38. Axelsson, J., Papatheocharous, E., Andersson, J.: Characteristics of software
ecosystems for federated embedded systems: A case study. Information and Soft-
ware Technology 56(11), 1457–1475 (2014)

39. Christensen, H.B., Hansen, K.M., Kyng, M., Manikas, K.: Analysis and design of
software ecosystem architectures — towards the 4s telemedicine ecosystem. Infor-
mation and Software Technology 56(11), 1476–1492 (2014)

40. Wnuk, K., Runeson, P., Lantz, M., Weijden, O.: Bridges and barriers to hardware-
dependent software ecosystem participation — a case study. Information and Soft-
ware Technology 56(11), 1493–1507 (2014)

41. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: Opening up
a software producing organization with the open software enterprise model. Journal
of Systems and Software 85(7), 1495–1510 (2012)

42. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From proprietary to open
source—growing an open source ecosystem. Journal of Systems and Software 85(7),
1467–1478 (2012)

43. Kazman, R., Gagliardi, M., Wood, W.: Scaling up software architecture analysis.
Journal of Systems and Software 85(7), 1511–1519 (2012)

44. Baars, A., Jansen, S.: A framework for software ecosystem governance. In:
Cusumano, M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114,
pp. 168–180. Springer, Heidelberg (2012)

45. Ben Hadj Salem Mhamdia, A.: Performance measurement practices in software
ecosystem. International Journal of Productivity and Performance Management
62(5), 514–533 (2013)

46. Kabbedijk, J., Jansen, S.: Steering insight: An exploration of the ruby software
ecosystem. In: Regnell, B., van de Weerd, I., De Troyer, O. (eds.) ICSOB 2011.
LNBIP, vol. 80, pp. 44–55. Springer, Heidelberg (2011)

47. Wnuk,K., Manikas, K., Runeson, P., Lantz,M.,Weijden, O., Munir, H.: Evaluating
the governance model of hardware-dependent software ecosystems – A case study
of the axis ecosystem. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 212–226. Springer, Heidelberg (2014)

48. Jansen, S., Cusumano, M.A.: Defining software ecosystems: A survey of software
platforms and business network governance. In: Jansen, S., Bosch, J., Alves, C.F.
(eds.) Proceedings of the Fourth International Workshop on Software Ecosys-
tems, Cambridge, MA, USA. CEUR Workshop Proceedings, vol. 879, pp. 41–58.
IWSECO, CEUR-WS (2012)

What Does ‘Ecosystem Health’ Stand for? 287

49. Jansen, S., Cusumano, M.A.: Defining software ecosystems: a survey of soft-
ware platforms and business network governance. In: Jansen, S., Brinkkemper, S.,
Cusumano, M.A. (eds.) Software Ecosystems: Analyzing and Managing Busi-
ness Networks in the Software Industry, pp. 13–28. Edward Elgar Publisher Inc.,
Northampton (2013)

50. Fotrousi, F., Fricker, S.A., Fiedler, M., Le-Gall, F.: KPIs for software ecosystems:
A systematic mapping study. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014.
LNBIP, vol. 182, pp. 194–211. Springer, Heidelberg (2014)

51. Viljainen, M., Kauppinen,M.: Software ecosystems: A set of management practices
for platform integrators in the telecom industry. In: Regnell, B., van de Weerd, I.,
De Troyer, O. (eds.) ICSOB 2011. LNBIP, vol. 80, pp. 32–43. Springer, Heidelberg
(2011)

52. van Angeren, J., Jansen, S., Brinkkemper, S.: Exploring the relationship between
partnershipmodel participation and interfirm network structure: An analysis of the
office365 ecosystem. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 1–15. Springer, Heidelberg (2014)

53. Hyrynsalmi, S., Suominen, A., Mäkilä, T., Järvi, A., Knuutila, T.: Revenue mod-
els of application developers in android market ecosystem. In: Cusumano, M.A.,
Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 209–222.
Springer, Heidelberg (2012)

54. Lucassen, G., van Rooij, K., Jansen, S.: Ecosystem health of cloud paaS providers.
In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150, pp. 183–194.
Springer, Heidelberg (2013)

55. Jones, C.: Software Assessments, Benchmarks, and Best Practices. Addison-Wesley
Information Technology Series. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2000)

56. Dawkins, R.: The Selfish Gene, 1st edn. Oxford University Press, Oxford (1976)
57. Hyrynsalmi, S., Seppänen,M., Suominen, A.: Sources of value in application ecosys-

tems. The Journal of Systems and Software 96, 61–72 (2014)
58. Clarysse, B., Wright, M., Bruneel, J., Mahajan, A.: Creating value in ecosystems:

Crossing the chasm between knowledge and business ecosystems. Research Pol-
icy 43(7), 1164–1176 (2014)

59. Zahra, S.A., Nambisan, S.: Entrepreneurship and strategic thinking in business
ecosystems. Business Horizons 55(3), 219–229 (2012)

Author Index

Aaen, Ivan 258
Almeida, Luciana A. 96
Andersson, Jesper 81
Axelsson, Jakob 81

Bosch, Jan 117, 139, 154
Brinkkemper, Sjaak 207

Crooymans, Wesley 45

de Souza, Cleidson R.B. 96

Fabijan, Aleksander 139

Gjerløff, Nikolai 258
Gorschek, Tony 245

Hess, Thomas 192
Hessenkämper, Axel 186
Huijs, Maarten 207
Hyrynsalmi, Sami 230, 272

Jansen, Slinger 45, 207
Järvi, Antero 230, 272
Jud, Christopher 167, 174

Karvonen, Teemu 117
Klotins, Eriks 245
Knodel, Jens 60
Kuvaja, Pasi 117

Lima, Adailton M. 96
Lin̊aker, Johan 66
Lücking, Thomas 102
Luoma, Eetu 30
Lwakatare, Lucy Ellen 117

Maglyas, Andrey 1, 17
Manikas, Konstantinos 60
Mazhelis, Oleksiy 30

Mikusz, Martin 167
Munir, Husan 66

Nokkala, Tiina 272

Oivo, Markku 117
Olsson, Helena Holmström

117, 139, 154

Papatheocharous, Efi 81
Pradhan, Priyanka 45

Regnell, Björn 66
Reis, Rodrigo Q. 96
Riehle, Dirk 132
Rissanen, Tommi 17
Runeson, Per 66

Sainio, Liisa-Maija 17
Sauvola, Tanja 117
Schäfer, Tobias 167
Schrewelius, Claes 66
Seppänen, Marko 272
Smolander, Kari 1, 17
Steffen, Barbara 186
Stefi, Anisa 192
Suominen, Arho 272

Taajamaa, Ville 230
Tauterat, Tobias 179
Toivanen, Teemu 30

Unterkalmsteiner, Michael 245

Wagner, Marcus 102, 223

Yli-Huumo, Jesse 1, 17

Zaghloul, Bilal 132
Zhou, Minghui 132

	Preface
	Organization
	Keynotes
	Contents
	The Benefits and Consequences of Workaroundsin Software Development Projects
	1 Introduction
	2 Background
	3 Research Methodology
	4 Findings and Results
	5 Discussion
	6 Conclusion
	References

	The Relationship Between Business ModelExperimentation and Technical Debt
	1 Introduction
	2 Background
	3 Research Methodology
	4 Results
	5 Discussion
	6 Conclusion
	References

	Network Analysis of Platform Ecosystems:The Case of Internet of Things Ecosystem
	1 Introduction
	2 Related Work
	3 Modeling the Evolution of IoT Platform Ecosystem
	4 Results
	5 Discussion
	6 Conclusions
	References

	Exploring Network Modelling and Strategy in the DutchSoftware Business Ecosystem
	1 Introduction
	2 Method
	3 Describing the Dataset
	4 Preliminary Findings
	5 Relating the Data to Business Strategy
	6 Discussion
	7 Conclusion
	References

	Towards a Typification of Software Ecosystems
	1 Introduction
	2 Setting the Scene
	3 Ecosystem Building Blocks
	4 Analysis of Ecosystem Types
	5 Discussion

	A Survey on the Perception of Innovation in a Large
Product-Focused Software Organization
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 About the Company
	3.2 Survey Design
	3.3 Survey Analysis
	3.4 Threats to Validity

	4 Results
	4.1 Perceptions of Innovation
	4.2 Product Innovation vs Process Innovation
	4.3 Product Innovation vs Business Innovation
	4.4 Product Innovation vs Organizational Innovation
	4.5 Product Innovation Challenges
	4.6 Process Innovation Challenges
	4.7 Business Innovation Challenges
	4.8 Organizational Innovation Challenges

	5 Conclusions

	Ecosystems and Open Innovation for Embedded Systems:A Systematic Mapping Study
	1 Introduction
	2 Research Method
	3 Findings
	4 Analysis and Discussion
	5 Conclusions and Future Work
	References

	Assessing the Value Blueprint to Support the Designof a Business Ecosystem
	1 Introduction
	2 Designing Ecosystems Using the Value Blueprint
	3 Method of Research
	4 Results and Discussion
	5 Final Remarks
	References

	Effects of Technological Change on Acquisition Behavior:An Empirical Analysis of Electronic Design Automation
	1 Introduction
	2 Theoretical Background and Hypotheses Development
	3 Methodology
	4 Results
	5 Discussion and Conclusion
	References

	Hitting the Target: Practices for Moving TowardInnovation Experiment Systems
	1 Introduction
	2 Related Work
	3 Extending the Stairway to Heaven Model
	4 Research Design
	5 Case Study
	6 Discussion
	7 Conclusion, Limitations and Future Research
	References

	Communication in Firm-InternalGlobal Software Development with China
	1 Introduction
	2 Related Work
	3 Study Preparation
	4 Research Results
	5 Conclusion
	References

	Customer Feedback and Data Collection Techniquesin Software R&D: A Literature Review
	1 Introduction
	2 Background
	3 Method
	4 Results
	5 Discussion
	6 Conclusion
	References

	Towards Continuous Customer Validation: A ConceptualModel for Combining Qualitative Customer Feedbackwith Quantitative Customer Observation
	1 Introduction
	2 Background
	3 Research Approach
	4 Empirical Findings
	5 Problem Statement
	6 Qualitative and Quantitative Customer-Driven Development
	7 Discussion
	8 Conclusions
	References

	Business Model Patterns for the Connected Carand the Example of Data Orchestrator
	1 Introduction
	2 Cyber-Physical Systems and Industrial Platforms as Basisfor Smart Services for the Connected Car
	3 Methodology
	4 Results and Implications
	5 Limitations and Future Research Directions
	References

	Business Models for Platform-Based Digital Services:Stakeholder Expectations
	1 Problem and Research Question
	2 Related Work
	3 Methods
	4 Preliminary Results
	5 Next Steps
	References

	Development of a Method for the Economic Evaluationof Predictive Maintenance
	1 Motivation
	2 State of the Art
	3 Research Objective and Research Questions
	4 Research Approach
	References

	Towards Standardization of Custom Projects via ProjectProfile Matching
	1 Problem and Research Question
	2 Related Work
	3 Methods
	4 Preliminary Results
	5 Next Steps
	References

	To Develop or to Reuse? Two Perspectives on ExternalReuse in Software Projects
	1 Introduction
	2 Related Work
	3 Research Model and Hypotheses
	4 Research Methodology
	5 Empirical Analysis
	6 Conclusions, Implications and Limitations
	References

	Internationalization and Export of Software Products
	1 Introduction
	2 ISV Internationalization and Export Framework
	3 Research Method
	4 Literature
	5 Interview Results and Analysis
	6 Conclusions and Future Work
	References

	Acquisition of Software Firms: A Survival Analysis
	1 Introduction
	2 Literature Review and Hypotheses
	3 Methodology
	4 Results
	5 Conclusions and Discussion
	References

	Lean Software Startup – An Experience Reportfrom an Entrepreneurial Software Business Course
	1 Introduction
	2 Background and Motivation
	3 Course Design
	4 Evaluation
	5 Discussion
	6 Conclusion
	References

	Software Engineering Knowledge Areas in StartupCompanies: A Mapping Study
	1 Introduction
	2 Background and Related Work
	3 Research Methodology
	4 Results
	5 Analysis and Discussion
	6 Conclusions
	References

	Value Creation in SaaS Development
	1 Introduction
	2 The Business Model Canvas
	3 Essence
	4 Color-Coding Models
	5 Strategy Management
	6 Illustration: The AntiPage Project Case
	7 Integrating the Canvas and Essence into the Software Process
	8 Conclusion
	References

	Wealthy, Healthy and/or Happy --- What does `Ecosystem Health' Stand for?
	1 Introduction
	2 Background
	3 Method
	4 Results and Analysis
	5 Discussion
	6 Limitations and Conclusions

	Author Index

