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Abstract. The transition to multicore systems that has started to take
place over the last few years, has revived the interest in the synchroniza-
tion protocols for sharing logical resources. In fact, consolidated solutions
for single processor systems are not immediately applicable to multipro-
cessor platforms and new paradigms and solutions have to be devised.
The Multiprocessor resource sharing Protocol (MrsP) is a particularly
elegant approach for partitioned systems, which allows sharing global
logical resources among tasks assigned to distinct scheduling partitions.
Notably, MrsP enjoys two desirable theoretical properties: optimality and
compliance to well-known uniprocessor response time analysis. A coarse-
grained experimental evaluation of the MrsP protocol on a general-
purpose operating system has been already presented by its original
authors. No clear evidence, however, has been provided to date as to
its viability and effectiveness for industrial-size real-time operating sys-
tems. In this paper we bridge this gap, focusing on the challenges posed
by the implementation of MrsP on top of two representative real-time
operating systems, RTEMS and LITMUSRT . In doing so, we provide a
useful insight on implementation-specific issues and offer evidence that
the protocol can be effectively implemented on top of standard real-time
operating system support while incurring acceptable overhead.

Keywords: Real-time systems · Multiprocessor systems · Resource
sharing protocols · Empirical evaluation

1 Introduction

Cost, performance and availability considerations increasingly push application
developers towards the adoption of multiprocessor platforms even in the tra-
ditionally conservative domains of embedded real-time systems [14], [1]. The
migration to multicores, however, threatens to disrupt all the analysis approaches
and solutions that are consolidated practices on single processors. Despite the
notable progress achieved in this direction in recent years [13], scheduling algo-
rithms and schedulability analyses of multiprocessor systems have not reached
the same degree of maturity as single processors yet.

In fact, the transition from uniprocessor to multiprocessor continues
unabated in spite of the arguably insufficient expertise to master the latter
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targets in numerous application domains. Under this scenario, partitioned
approaches to multiprocessor scheduling offer a gentler slope by allowing the
user to break down the problem into smaller uniprocessor sub-problems, on
which standard consolidated techniques can still be applied. A known drawback
of partitioned approaches is that they must undergo the so called partitioning
phase: an initial step where the system load is broken down in small units, each
fitting into a single processor. Partitioning is an NP-hard problem in the general
case [18] and has been proved to waste, in the worst case, half of the platform’s
processing power [3]. The partitioning of a system is not only a problem of shar-
ing processor resources: it should not disregard the implicit constraints stemming
from logical resource sharing throughout the system. Prioritizing on system fea-
sibility may enforce a partitioning where two or more logically-dependent tasks
are assigned to different partitions, which complicates inter-task interactions.

The conflicting requirements of feasibility (grouping tasks based on a quan-
titative value – typically their utilization) and program logic (clustering tasks
based on their actual collaborative patterns) can be accommodated by adopt-
ing a resource sharing protocol. Also in this respect, however, state-of-the-art
uniprocessor resource sharing protocols cannot be directly applied as they can-
not handle resources shared by tasks allocated to different partitions. A specific
global resource sharing protocol for multiprocessor systems must be used.

Several global resource sharing protocols have been proposed in the liter-
ature. Although capable of guaranteeing mutually exclusive accesses to global
resources, not all the proposed solutions are fully satisfactory with respect to the
induced costs, both as theoretical and runtime overhead. The induced costs vary
enormously between uniprocessor and multiprocessor protocols. In the unipro-
cessor case, when using an optimal resource sharing protocol, such as the Stack
Resource Protocol (SRP) [4], the theoretical overhead stems from the priority
inversion suffered by tasks, which is bounded by the length of the critical section.
In the multiprocessor case, instead, the simple fact that a resource can be con-
tended for in parallel (and not simply concurrently) intrinsically amplifies the
effects of priority inversion. Moreover, in partitioned systems, it is necessary
to determine a criterion to assign urgency of tasks using or waiting for global
resources on different processors: we may want to reduce as much as possible
the time a remote task waits for an already locked resource while delaying other
tasks not interested in that resource.

These same concepts are recalled by the principle of optimality for resource
sharing protocols for global [9] and partitioned systems [11],[7]. When it comes
to partitioned systems, optimal solutions exploit ordered queues to avoid star-
vation while serializing the access to shared resources. A helping mechanism is
advocated to speed up the release of a resource without hindering unrelated
tasks. This mechanism can consist in permitting migration of tasks across parti-
tions1: when a task holding a resource is not executing, it migrates to a partition

1 Migration here is determined by the protocol and not due to a general scheduling
decision, as in globally scheduled systems.
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where there is a task waiting for the same resource and that has the possibility
to execute but cannot progress until the task relinquishes the resource.

Contributions. Sometimes elegant theoretical solutions show unexpected
drawbacks when evaluated against a realistic implementation as they may unveil
viability issues and exhibit untenable runtime overheads. In this paper we focus
on the Multiprocessor resource sharing Protocol (MrsP) [11], an optimal multi-
processor resource sharing protocol which explicitly targets partitioned systems.
Our goal is to gather evidence that such a protocol can be efficiently imple-
mented in standard RTOS. Specifically, in this work we try to point out difficul-
ties and problems hidden behind the theoretical definition of the protocol and
that must be addressed for a reference implementation of MrsP. As a comple-
mentary objective, we aim at assessing the protocol with respect to the incurred
runtime overhead, so as to understand the induced costs (as compared to not
having MrsP) and to obtain sound figures to feed into schedulability tests.

The remainder of this paper is organized as follows: in Section 2 we briefly
introduce MrsP and the real-time operating systems (RTOS) on which we imple-
mented and evaluated the effectiveness of the protocol. In Section 3 we point out
the main challenges and issues encountered in the implementation of MrsP: we
discuss possible design choices and detail on the specific solutions adopted on
each RTOS. In Section 4 we assess the runtime overheads and performances
of our implementations. Section 5 discusses relevant related works. Finally, in
Section 6 we summarize our efforts and outline our future lines of work.

2 Background on MrsP and Target RTOSes

Before delving into the subject matter, we provide first a high-level description
of the MrsP protocol and briefly introduce LITMUSRT and RTEMS, the RTOS
we used as targets in our implementation and evaluation.

MrsP. MrsP [11] is an optimal resource sharing protocol for multiprocessor sys-
tems, explicitly developed with the intent of being fully compatible (analyzable)
with the standard response time analysis (RTA) framework, similarly to SRP [4]
in single processor systems. The timing effects of the protocol can be simply fed
into the RTA iterative equation as an additive factor, whose order of magnitude
is proportional to the potential parallel contention incurred by global resources.

The core concept of MrsP is closely inspired by SRP: a resource request
triggers a change of priority for the requesting task (to the local ceiling) and
the task busy waits until it is granted the resource. Requests are organized
(and satisfied) according to a FIFO ordering, as represented in Figure 1. A
ceiling is defined within each processor, corresponding to the highest priority
among all the tasks that may require access to a resource within the partition.
This preserves independence of all tasks with priority higher than the ceiling. In
order to contain the waiting time, MrsP provides a helping mechanism to enable
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a task waiting for a resource already locked by a preempted task on a different
partition, to allow the lock holder to progress within its critical section: this
way the resource can be relinquished faster and used by the next-in-order task.
In [11], two solutions are suggested: (i) if the critical section is stateless, then it
is sufficient that one waiting task executes in place of the actual resource holder;
(ii) in the more general case, with stateful resources, the resource holder should
be allowed to migrate to and then to execute in the partition where there is a
task busy-waiting for the same resource.
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Fig. 1. Visual representation of MrsP

From a theoretical point of view, the contribution of SRP to the RTA equa-
tion for a fixed-priority scheduler has been given in [11]. The MrsP algorithm
allows each partition to be regarded as a plain uniprocessor system, with the sole
exception that the RTA equations need to be updated to account for parallel
contention on global resources:

Ri = Ci + Bi +
∑

τj∈lhp(i)

⌈
Ri

Tj

⌉
Cj (1)

where the response time Ri for task τi is defined as the sum of three terms. The
execution time contribution of τi itself (first term), the maximum blocking time
induced by SRP, that is determined by the maximum computation time of all
resources that are shared between a lower priority task and a task with priority
greater or equal to τi (second term) and the interference caused by local higher
priority tasks (lhp(i) in the third term). The worst-case execution time Ci of
τi can be broken down to explicitly represent the time spent to execute within
each resource and the effect of serialization:

Ci = WCETi +
∑

rj∈F (τi)

nie
j (2)

where ni represents the number of times τi uses rj (in the set of accessed resources
F (τi)), and ej represents the effect of serialization (the cost of executing within
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the resource for each processor whose tasks may access the global resource). As
shown in equation 1, a task can be delayed by lower priority tasks for a total
duration of Bi. Since this quantity is bounded by the number of processors m,
MrsP can therefore be considered an optimal resource sharing protocol [9] since
the maximum blocking incurred by a task is O(m).

LITMUSRT. The LInux Testbed for MUltiprocessor Scheduling in Real-Time
system [12], [20], abbreviated as LITMUSRT, is a real-time extension of the
Linux kernel, aiming at providing a configurable testbed for the implementa-
tion of multiprocessor real-time scheduling policies and locking protocols. The
LITMUSRT framework adds an abstraction layer to the execution domain, which
provides a set of functionalities and data structures that are compatible with the
underlying Linux kernel, regardless of the specific version.

From a scheduling point of view, Linux relies on a list of classes of processes
with increasing priority. A specific scheduling policy is associated to each class
and a process can execute only if there is no ready process in the higher priority
classes. On top of this framework, LITMUSRT adds a scheduling class at the top
of the scheduling hierarchy – thus characterized by the highest priority – and
provides an interface to implement the scheduling logic. Through such interface,
it is possible to define a specific behavior for each scheduling event (dispatch,
job release, blocking, etc.) via a set of primitives. LITMUSRT also provides a
generic interface for implementing locking protocols (based on primitives as lock,
unlock, etc.). The system overrides the primitives of a class with those provided
by the given implementation.

RTEMS. The Real-Time Executive for Multiprocessor Systems (RTEMS) [23]
is an open-source fully featured RTOS that supports a variety of open stan-
dard application programming interfaces (API) and interface standards such as
POSIX and BSD sockets. In this work we specifically focus on the symmet-
ric multiprocessor (SMP) support in RTEMS, in particular on its scheduling
framework. The SMP scheduling framework is structured as a plugin: a set of
operations must be provided (e.g., yield, change priority) that are called from
within the implementation of the API (e.g, start task). This plugin-like struc-
ture makes it possible to assign different schedulers to distinct processors (or
partitions).

A fundamental entity that is replicated on each scheduler is the scheduler
node. Scheduler nodes are used to build up the sets of scheduled and ready tasks
and are used to guide the scheduling decisions: each scheduler node corresponds
to a specific task and maintains the task’s priority with respect to the scheduler.
For this last reason a scheduler node is local to a specific scheduler instance and
therefore cannot migrate. A scheduler node can be viewed as a box containing a
task, a box residing on a specific shelf (a scheduler instance) with other boxes.
If a task must migrate then the content of the box is moved from one box to a
box of another scheduler instance.
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3 Implementation Issues

As summarized in Section 2, MrsP offers an optimal solution for logical resource
sharing in partitioned systems that is fully compatible with the standard unipro-
cessor response time analysis framework. From a practical standpoint, the desir-
able properties offered by MrsP builds on the provision of three items: (1) a
FIFO ordering of global requests; (2) a busy wait mechanism at ceiling priority
(until a task reaches the head of the FIFO queue); and (3) a helping mecha-
nism, to speed up the fulfillment of global requests. These three mechanisms
together guarantee a nice bound on the effects of serialization. With respect to
their actual implementation, some high-level considerations are provided in [11].
However, the focus in [11] is set on the theoretical traits of MrsP and most
implementation-specific details were intentionally omitted. Although the three
MrsP requirements are relatively simple to accomplish, the way they are actually
implemented could largely affect the performance of the protocol.

In the following sections we discuss the main challenges we faced while imple-
menting those three key mechanisms on top of LITMUSRT and RTEMS, and
discuss possible solutions. It is worth noting that among the theoretical help-
ing mechanisms proposed in [11], we decided to stick to the one relying on job
migration to support stateful logical resources.

3.1 FIFO Ordering

FIFO ordering for global requests can easily be implemented as an ordered list,
either dynamic or static. It is worth noting that MrsP can do with simple fixed-
length lists because the maximum length of the FIFO queue is known a-priori,
independently from the specific application, as the number of processors available
determines the maximum degree of parallelism for the platform. The use of a
dynamic list is also a viable option: since each task can participate at most in
one FIFO queue, it is possible to statically allocate a node for each task, and
then add or remove it from a specific resource list when required.

A more interesting design choice consists in how to organize the FIFO queues
in case of nested resources as it may have considerable consequences at run
time. With nested resources, as depicted in Figure 2, the helping mechanism
will undergo a look-up procedure along several queues to look for an available
spinning task to help: clearly, the search space is no more bounded by the length
of a single queue. The more intuitive way to combine queues of nested resources
is to create a sort of hierarchy (e.g., a tree). The possibility to avoid a deep search
is heavily coupled to the busy-waiting technique and the amount of additional
information saved in this hierarchy. However, frequent updates to this additional
information could end up being even more onerous than sporadic deep searches.
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T1

RB T2 T3

RC T5RA T4

Fig. 2. Scenario with nested resources: the property of being a “task offering help”
must be transitive. In this example, task T5 which is waiting for resource RC , can help
both task T3, which is directly preventing its execution, and task T1, which is instead
doing it indirectly, through RB . Symmetrically, a helper for T1 is to be searched within
the set of tasks it is directly or indirectly blocking.

RTEMS implementation: the FIFO queues are implemented as dynamic lists
where their nodes are created (at system start time) for each task. In case of
nested resources these queues naturally form a tree, where all operations per-
formed on resources are bounded by the size of the tree, which could be quite
onerous. However, the choice of using the tree finds its motivation in the desire
to have a more general structure that could be used to implement several types
of semaphores (e.g., using the same structure for both MrsP and OMIP [7]).
LITMUSRT implementation: the FIFO queue is implemented as a list of stat-
ically allocated nodes that are dynamically added/removed at need. The cur-
rent implementation of the protocol does not support nested resources as their
implementation would have required a major refactoring of MrsP data structures
on LITMUSRT. Anyway, LITMUSRT provides an optimized implementation of
binary heaps that may enable low-latency solutions to this problem.

3.2 Busy Waiting

Busy-waiting is commonly associated to spinning, for which several implemen-
tations are possible [2], [21]. From our standpoint, the most interesting design
decision here is related to whether spinning should be used just to delay the task
until it becomes the owner of the resource (i.e., the head of the FIFO queue)
or it should be used to check whether the task holding the resource is in need
of help (i.e., the resource holder is being preempted and no other task has still
offered help). In the first scenario, it is possible to organize the spinning mech-
anism locally to each task, thus minimizing the interference incurred on shared
hardware resources (e.g., bus). In the second scenario, instead, the helping mech-
anism can be made simpler, at the expenses of a global state for all spinning
tasks. Since every spinning task must peek the state of the resource holder, this
latter approach could lead to higher contention on hardware resources.
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It is worth noting that busy-waiting is not strictly necessary to achieve the
intent of MrsP: we only need to prevent all tasks with a priority lower than
the ceiling of a partition from resuming execution. This could be achieved, for
example, also by suspending all lower priority tasks, or by rising the priority of
the idle thread to the ceiling level.
RTEMS implementation: busy wait is implemented as a MCS (Mellor-Crummey
and Scott) queue-based locks [21] exploiting the memory hierarchy of the plat-
form: spinning is performed on a local flag, easily fitting inside L1 cache (no bus
accesses), whose value is updated only once by the remote task that is releasing
the resource (just one bus access).
LITMUSRT implementation: in the baseline implementation a global state is
shared among all spinning tasks. A waiting task repeatedly polls the semaphore
data structure, which causes high contention on the hardware bus.

3.3 Helping Mechanism

The helping mechanism is surely the most challenging part of the protocol as it is
expected to interact with the nominal scheduling operations. The very fact that
MrsP introduces job migration into a partitioned system introduces unexpected
issues and corner cases.

The strict correlation of the helping mechanism with the scheduling primi-
tives stems from the necessity to enforce the invariant of MrsP, stating that an
helping mechanism shall be in place whenever the following conditions hold: (i)
a resource holder is not executing; (ii) there is at least one task that is spinning
while waiting for the same resource. This invariant must be enforced not only
when the resource holder is going to be preempted (and therefore it is necessary
to look for a candidate available to help it), but at any scheduling decision. In
fact, it may be the case that a spinning task is being resumed while both the
resource holder and all other spinning tasks are not executing, and in such case
the resumed spinning task must be able to help the resource holder. In practice,
this means that the spinning task itself must be able to realize that the holding
task is not executing nor already being helped (and then help it) or that a super-
partes entity (i.e., the scheduler) recognizes the situation and acts accordingly
to enforce the MrsP invariant.

Another problem caused by the helping protocol regards job migrations. A
freshly migrated task (the resource holder) is coming from a different partition,
with a priority that likely has no meaning in the new partition. Moreover, such
task must be able to execute in place of the spinning task (i.e., must be able
to preempt it). The solution to this issue is strictly related to the scheduling
framework of the RTOS. However, as noted by the authors of MrsP, the issue
can be easily solved by updating the priority of the migrated task to a level
higher than the priority of the spinning task (which must be equal to the ceiling
priority of the resource in that partition). This workaround postulates that the
priorities used by the tasks in each partition grows by steps of 2 (so that a
migrated task will never hinder a higher priority task of that partition).
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A third, possibly subtler problem, is raised by the possibility to migrate tasks
while enforcing the ceiling priority in each partition. The definition of MrsP
states that a task can execute in a partition different from its own only if it has
been preempted in its own partition. This means that whenever the partition
of the holding task can execute it, the holding task must be executing there.
Therefore, if the holding task is being helped and executes in another partition
while in its own partition a local scheduling event makes it available to execute,
it should be migrated back. However, this can be less efficient than letting the
holding task execute where it migrated to. Even in case the task holding the
resource does not migrate back to its own partition, it is still fundamental to
preserve the ceiling priority property in that partition: no lower priority tasks
should be able to execute. A possible solution to this problem consists in blocking
all lower priority tasks until the resource holder completes, which, however, would
cause a non-strictly-necessary disturbance to the nominal scheduling operation.
A more elegant and efficient way to ensure the ceiling priority property is to
let a dummy placeholder execute at the priority of the resource holder. Such
placeholder can be created to this end, but the idle thread could be used as well.
RTEMS implementation: all these issues are managed by the built-in scheduler.
The helping mechanism is strictly coupled with the procedures that change the
scheduler state. A task that is going to be preempted is moved to another parti-
tion by the scheduler to enforce the MrsP invariant. Interestingly, the schedulable
entity inside RTEMS are the scheduler nodes, which are always updated to point
to the task that must be executing (e.g., if the resource holder or the spinning
task must execute). Hence, whenever a task is resumed, it is not necessary to
check for the MrsP invariant since it is already enforced by the operations that
update the scheduler nodes (i.e., obtain and release resource, block, unblock).

Scheduler nodes also simplify the management of priorities of migrated tasks:
it is not necessary to change the priority of tasks when they migrate. In fact, the
priority of the task with respect to the scheduler is maintained inside a scheduler
node, and these nodes do not migrate, only their tasks do. A migrated task takes
control of a remote scheduler node and automatically uses the priority of that
node (which will be the partition-specific ceiling priority of the resource that
the task holder is using since the node belongs to a spinning task, waiting for
the same resource). Moreover, scheduler nodes are also used by the idle tasks
whenever the rightful owner of a node is executing in another partition: in this
way the per-partition ceiling is not violated and the holding task is not forced
to migrate back as soon as possible.

LITMUSRT implementation: the invariant of MrsP is enforced in LITMUSRT

by a combination of scheduling and locking primitives. The migration of a
preempted resource owner cannot be performed contextually within the con-
text switch: scheduling primitives cannot directly access the list of tasks waiting
on a semaphore since both scheduling structures and semaphores are protected
through dedicated spin locks, which cannot be simultaneously acquired. Migra-
tions are handled at the end of the scheduling primitive, where the state of the
resource holder is checked: if a partition becomes available and the task is not
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running, a migration will occur. A partition becomes available when a waiting
task is resumed or when the processor of the resource owner becomes idle.

These mechanisms are not sufficient to guarantee the MrsP invariant requir-
ing that a (preempted) task holding a resources makes progress whenever at least
a task is running and waiting to access the same resource. This is accomplished
within the lock and unlock primitives: within the lock primitive, when a task
requires the resource and the resource holder is preempted, the protocol triggers
a migration; within the unlock, the state of the next resource holder is checked
and, if it is not running, the protocol searches an available partition for the
migration. This mechanism reduces both the workload of the waiting tasks and
the burden of ensuring the invariant of the protocol is charged to the scheduler.
In case of migration, the lock holder inherits a priority level above the ceiling
of the new partition (destination) in order to preempt the waiting task and to
prevent the execution of lower-priority tasks. To this end, each partition uses a
specific data structure to keep track of the highest “active” local ceiling, which
is equal to the lowest priority available or to the local ceiling of a resource.

4 Evaluation

In this work we focused on the implementation of MrsP on top of two repre-
sentative RTOSes to assess the protocol in terms of performance and induced
overheads. To this end, we performed two groups of experiments on both plat-
forms: on the one hand, we wanted to measure the explicit cost of the primitives
involved in the realization of the resource access protocols; on the other hand, we
wanted to evaluate the intrusiveness of MrsP, in terms of the additional overhead
incurred simply by having the protocol implemented but not used. To comple-
ment our evaluation, we conducted a further experiment specific to RTEMS to
assess the variation in the cost incurred by the tree-shaped structure used to
represent nested resources, with the increase of the nesting depth. Our experi-
ments were conducted on different platforms and execution stacks, according to
the support offered by the respective RTOS. For LITMUSRT, experiments were
performed on an Intel Quad Core i7-2670QM, running at 2.2GHz. Each core is
equipped with a 64KB L1 and 256KB L2 caches, and all four share a 6MB L3
one. The platform includes an internal bus (100MHz) and a serial bus, 5GT/s.
The system execution is supported by a Kernel-based Virtual Machine (KVM),
providing direct access to the hardware platform without a virtualization mid-
dleware, on top of which the LITMUSRT environment is executed (4 physical
processors and 512MB of RAM). For RTEMS, the experiments were performed
on a Freescale T4240, a 24-processor PowerPC system with 32KB L1 caches and
2MB L2 caches (where 8 processors share one L2 cache) running at 1667MHz.

4.1 Overhead of MrsP Primitives

A first important metric is the cost of the primitives involved in the use of MrsP
resources. Such overhead gives a threshold under which it is not convenient to use
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the protocol: if the use of the resource is less than the overhead of the protocol,
a simple non-preemptive section is a better approach. The overhead we report
is by no means an absolute value (since it depends on both the OS and the
hardware), but it can give an idea of the general cost of using MrsP resources.
Results are summarized in Table 1. All the experiments were performed in the
scenario where resources are not nested.

Table 1. Overhead of conceptually similar primitives in RTEMS and LITMUSRT

RTEMS LITMUSRT

obtain 5, 376 ns 8, 800 ns lock

release 5, 514 ns 8, 500 ns unlock

ask for help 1, 827 ns 35, 000 ns finish switch

Results on RTEMS. In RTEMS there are three main procedures in which
MrsP performs its work: obtain resource, release resource and ask for help. The
experiments are performed incrementing up to 23 the number of tasks that act
as rivals on a specific resource (one task per partition). The thread dispatch
was intentionally disabled in order to evaluate the cost of the procedure while
avoiding the cost of preemptions and migrations.
Obtain resource updates the necessary data structures (e.g., raise the priority of
the task to the ceiling) and, if necessary, initializes the MCS lock. The maximum
observed value is 5, 376 ns.
Release resource: it restores the state of the used data structures (e.g., restore
the priority to the task) and, if necessary, updates the resource tree to point to
the next resource holder. The maximum observed value is 5, 514 ns.
Ask for help looks inside the resource tree (since there is no nesting, the tree
equals a list) and finds a possible spinning task that is available to help. The
worst case is met when all 23 threads are queued but no one of them is actually
spinning, and its maximum observed value is 1, 827 ns.

The release resource and help procedures are subjected to variability. In fact,
both these procedures need to inspect the resource tree: the bigger it is, the costly
the primitive. A valid upper bound for these procedures depends on the available
number of processors, that is, the maximum degree of parallelism available.
Results on LITMUSRT. MrsP operates using three LITMUSRT primitives:
resource lock, resource unlock and finish switch.
Resource lock manages the ceiling and the FIFO queue in 800 ns, when it is
necessary to yield the processor to the resource holder it updates the remote
partition and perform the migration in 8, 000 ns, and each spinning cycle costs
500 ns (maximum delay to stop spinning).
Resource unlock restores priorities and releases the resource in 500 ns; the oper-
ations on remote processors, to migrate back or to migrate the new resource
holder in another partition (when necessary) cost 8, 000 ns.
Finish switch operates under different scenarios to enforce the MrsP invariant.
If the lock holder is preempted and there is at least one running task waiting for
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the resource, the task migrates to that partition. This requires to search for a
spinning task and to perform a migration, for a cost of 35, 000 ns. If the resource
owner migrated to a remote processor but it is not running any more, then it
needs to migrate back. The notify mechanism involved requires 6, 000 ns.

Part of the observed overheads are intrinsic to the implementation of MrsP
and they reflect the need to share the data structures of the protocol. The high
cost of migrations (an average of 6, 000 ns per migration) is to be attributed
to different sources (e.g., the operations that Linux uses to enforce consistency
before and after a migration, the internal state of the partitions). Our experiment
shows anyhow that in absence of migrations the protocol adds a small overhead:
in the average case where no migration is needed to obtain or release a resource,
the protocol overhead is less than 1 μs.

4.2 Intrusiveness of MrsP

This second experiment evaluates the net cost of the MrsP framework when
no MrsP resources are actually used. The experiment highlights how much the
implementation of MrsP must interact with normal scheduling operations.
Results on RTEMS. Figure 3 shows the maximum observed time to perform
three of the main procedures used by the FP scheduler in RTEMS while the
MrsP protocol is or is not implemented. The simple fact of having available
MrsP inside RTEMS even while not using it, causes an overhead (approximately
100 instructions) to the main scheduling procedures. This stems from the need
to modify the internals of the scheduler to correctly manage the migration of
tasks (in an environment that normally does not permit it) as well as to perform
part of the checks required to enforce the MrsP invariant.
Results on LITMUSRT. Figure 4 shows the maximum observed time to per-
form the main scheduling primitives in the partitioned fixed-priority scheduler
(PFP): schedule, job release and finish switch. The experiment reveals that the
integration of MrsP has a low impact when not in use, despite the support
required by the helping mechanism: the complexity of the Linux kernel far out-
weighs the operations needed to enforce the MrsP invariant.

4.3 Cost of Supporting Nested Resources

As highlighted in Section 3.1, the implementation of MrsP in RTEMS uses a
resource tree. Since the tree grows dynamically and its size is proportional to
the number of tasks partaking in the protocol, and since it is scanned in order
to find tasks available to help, we performed and experiment to understand how
much overhead the use of the tree induces. Each sampled value in Figure 5
represents the maximum time that it takes to look inside a full tree of height x,
with no task available to help. Each level of the tree contains 23 tasks.

It comes without surprise that the overhead induced by the inspection of
the resource tree is linear to its size. This shows an implementation flaw in
the MrsP implementation of RTEMS. Unrelated high priority tasks can suffer
from excessive resource nesting of unrelated lower priority tasks. A possible
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(a) block procedure (b) unblock procedure

(c) yield procedure

Fig. 3. Max observed behavior of relevant primitives on RTEMS

improvement would be to pre-compute the highest priority tasks available for
help in each partition. This would limit the cost of the search by the number
of partition in the system. However, the obtain and release operations would be
more expensive since such information must be kept updated.

5 Related Work

A large majority of state-of-the-art multiprocessor resource sharing protocols
were originally conceived as an extension of well-known uniprocessor techniques
to a new scenario where resource accesses can happen in parallel and task prior-
ities (used by ceiling-based protocols) are not comparable when tasks belong to
different partitions. Simpler multiprocessor protocols [22], [19] use some kind
of priority boosting mechanism to speed up the use (and release) of global
resources and to reduce the time spent by tasks waiting for remotely locked
global resources. Concepts that are very similar to priority boosting are also
exploited by more advanced approaches, e.g.,[17], [9], [5]. The main drawback
of priority boosting mechanism and its derivatives, however, is that they indis-
criminately interfere with all local tasks. A possible solution to this problem
has been identified in the use of a helping mechanism: a mechanism that lets
tasks waiting on a global resource “help” (take care of the execution of) a
remote preempted resource holder. A helping mechanism is used, for example, in
the Multiprocessor Bandwidth Inheritance Protocol (M-BWI) [15], in the O(m)
Independence-preserving Protocol (OMIP) [7] and in the Server Based Locking
Protocol (SBLP) [6]. All these approaches, however, do not lend themselves to
an easy integration in the classic RTA framework, which instead MrsP does.
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(a) schedule procedure (b) job release procedure

(c) finish switch procedure

Fig. 4. Max observed behavior of relevant primitives on LITMUSRT

Fig. 5. Overhead induced by traversing the whole resource tree. Each level of the tree
has 23 elements: the size of the tree is (x + 1) ∗ 23.

To the best of our knowledge, only few works in literature address the problem
of implementing and evaluating a multiprocessor resource sharing protocol with a
strong emphasis on low-level design and implementation issues. The work in [8]
offers two main contributions: an improved analysis to accurately account for
the blocking contributions of several multiprocessor resource sharing protocols
(MPCP[19], DPCP[22] and FMLP+[5], among others) and an extensive empir-
ical evaluation of such protocols, spanning from their algorithmic comparison
to the evaluation of their implementations in LITMUSRT. The evaluation is
however limited to the lock and unlock procedures, since the studied protocols
make no use of a helping mechanism. Consequently, the induced overhead on
other scheduling procedures is almost null. The same work also discusses the
algorithmic principles for multiprocessor resource sharing protocols, giving some
coarse grained guidelines about queueing resource requests (either FIFO or pri-
ority ordered) and the opportunity of executing critical sections through remote
agents or locally.
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The same protocols have been also evaluated in a previous work [10], whose
main goal was to describe their implementation on top of LITMUSRT. A first con-
tribution in [10] consists in the exploration of a number of design issues, arising
from practically implementing non-trivial resource sharing protocols. In contrast
with our work, such issues are largely related to the provision of an efficient and
robust support for resource sharing in LITMUSRT (e.g, where to store the prior-
ity for inheritance/ceiling protocols, how to generalize the Linux wait queues to
allow ordering elements). The implemented protocols were also compared based
on their runtime performances. An important conclusion drawn from the authors
is that the algorithmic performance of a multiprocessor resource sharing proto-
col dominates its runtime performance: the general overhead induced from the
lock and unlock procedures is small compared to the advantages that stem from
the determinism that the use of such protocols give.

The work in [16] deals with the construction, implementation and evaluation
of M-BWI protocol. Similar to the work in [10], the discussion on the implemen-
tation of the M-BWI protocol focuses on explaining the specific solution used
by the authors to adapt the protocol inside LITMUSRT without exploring other
possible designs, but still exposing (hidden) corner cases that must be addressed
to soundly implement the protocol. The evaluation of M-BWI that the authors
propose in their work, share similar traits with our work. Similar to our evalu-
ation, they compared the cost of the three main primitives involved in the use
of global resources (i.e., schedule, lock and unlock) when (i) the system does not
support the protocol, (ii) the system support the protocol but no global resource
is used, and (iii) global resources are used. Their results depict the same trend of
our implementation of MrsP in LITMUSRT: the overhead induced by the proto-
col in the scheduling decision, besides the lock and unlock primitives, is negligible
as compared to the cost induced by the Linux kernel primitives.

6 Conclusions

With this work we provide evidence that MrsP can effectively be implemented on
standard RTOS. In our implementation effort we identified and addressed some
design issues, spanning from the data structures to be used, to the management
of particularly subtle corner cases in the scheduling operations. Arguably, these
implementation issues were not explicitly in the original formulation of MrsP [11]
because they are strictly coupled with the kernel support and structures provided
by the specific RTOS.

We also performed some experiments to evaluate the runtime behavior of the
protocol. The overheads incurred by our implementation of MrsP are generally
acceptable, assuming critical sections of non-negligible length. A limited increase
in the execution time of the kernel primitives is compensated by the improvement
in the response time of tasks sharing global resources, with no interference on
independent tasks [11]. In future work, we are interested in further analyzing the
various contributions (in terms of kernel overhead) that MrsP induces at runtime.
We are particularly interested in evaluating the costs of job migration. Finally,
we aim at taking all the overheads into account within the RTA framework.
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