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Abstract. Mathematical models are prevalent in modern medicine. However,
reasoning with realistic biomedical models is computationally demanding as pa-
rameters are typically subject to nonlinear relations, dynamic behavior, and un-
certainty. This paper addresses this problem by proposing a new framework based
on constraint programming for a sound propagation of uncertainty from model
parameters to results. We apply our approach to an important problem in the obe-
sity research field, the estimation of free-living energy intake in humans. Com-
plementary to alternative solutions, our approach is able to correctly characterize
the provided estimates given the uncertainty inherent to the model parameters.

1 Introduction

Uncertainty and nonlinearity play a major role in modeling most real-world continu-
ous systems. In this work we use a probabilistic constraint approach that combines a
stochastic representation of uncertainty on the parameter values with a reliable con-
straint framework robust to nonlinearity. The approach computes conditional probabil-
ity distributions of the model parameters, given the uncertainty and the constraints.

The potential of our approach to support clinical practice is illustrated in a real world
problem from the obesity research field. The impact of obesity on health is widely
documented and the main cause for the “obesity pandemics” is the energy unbalance
caused by an increased calorie intake associated to a lower energy expenditure.

Many biomedical models use the energy balance approach to simulate individual
body weight dynamics. Change of body weight over time is modeled as the rate of
energy stored (or lost), which is a function of the energy intake (from food) and the
energy expended. The inability to rigorously assess the energy intake hinders the suc-
cess and adherence to individual weight control interventions. The correct evaluation of
such interventions will be highly dependent on the precision of energy intake estimates
and the assessment of the uncertainty inherent to those estimates. We show how the
probabilistic constraint framework can be used in clinical practice to characterize such
uncertainty given the uncertainty of the underlying biomedical model.

2 Energy Intake Problem

The mathematical models that predict weight change in humans are usually based on
the energy balance equation,R = I−E, where R is the energy stored or lost (kcal/d), I
is the energy intake (kcal/d) and E is the energy expended (kcal/d). Several models have
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been applied to provide estimates of individual energy intake [10]. Our paper focus on
the EI model [6] that computes the energy intake based on the differential equation:

cf
dF

dt
+ cl

dFF

dt
= I − (DIT + PA+RMR+ SPA) (1)

The left hand side of eq. (1) represents the change in body’s energy stores (R) and is
modeled through the weighted sum of the changes in Fat mass (F ) and Fat Free mass
(FF ). Differently from other models, that express the relationship between F and FF
using a logarithmic model FF log (F ) [9], or linear model [16], the EI model uses a 4th-
order polynomial FF poly (F, a, h) to estimate FF as a function of F , the age of the
subject a, and its height h. The rate of energy expended (E) is the total energy spent in
several physiological processes: Diet Induced Thermogenesis (DIT ); Physical Activity
(PA); Resting Metabolic Rate (RMR); Spontaneous Physical Activity (SPA).

3 Constraint Programming

Continuous constraint programming [13,7] has been widely used to model safe rea-
soning in applications where uncertainty on parameter values is modeled by intervals
including all their possibilities. A Continuous Constraint Satisfaction Problem (CCSP)
is a triple 〈X,D,C〉 where X is a tuple of n real variables 〈x1, · · · , xn〉, D is a Carte-
sian product of intervals D(x1)×· · ·×D(xn) (a box), where each D(xi) is the domain
of xi and C is a set of numerical constraints (equations or inequalities) on subsets of the
variables in X . A solution of the CCSP is a value assignment to all variables satisfying
all the constraints in C. The feasible space F is the set of all CCSP solutions within D.

Continuous constraint reasoning relies on branch-and-prune algorithms [12] to ob-
tain sets of boxes that cover the feasible space F . These algorithms begin with an initial
crude cover of the feasible space (D) which is recursively refined by interleaving prun-
ing and branching steps until a stopping criterion is satisfied. The branching step splits
a box from the covering into sub-boxes (usually two). The pruning step either elimi-
nates a box from the covering or reduces it into a smaller (or equal) box maintaining all
the exact solutions. Pruning is achieved through an algorithm that combines constraint
propagation and consistency techniques based on interval analysis methods [14].

The direct application of classical constraint programming to biomedical models suf-
fers from two major pitfalls: system dynamics modeled through differential equations
cannot be represented and integrated within the constraint model; the interval represen-
tation of uncertainty is inadequate to distinguish between consistent scenarios.

Differential Equations. The behavior of many systems is naturally modeled by a sys-
tem of Ordinary Differential Equations (ODEs). A parametric ODE system, with pa-
rameters p, represented as y′ = f(p, y, t), is a restriction on the sequence of values
that y can take over t. A solution within interval T , is any function that satisfies the
equation for all values of t ∈ T . An Initial Value Problem (IVP) is characterized by an
ODE system together with the initial condition y(t0) = y0 and its solution is the unique
function that is a solution of the ODE system and satisfies the initial condition.

Several extensions to constraint programming [5,3,4] were proposed for handling
differential equations based on interval methods for solving IVPs [14] which verify
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the existence of unique solutions and produce guaranteed error bounds for the solution
trajectory along an interval T . They use interval arithmetic to compute safe enclosures
for the trajectory, explicitly keeping the error term within safe bounds.

In this paper we use an approach similar to [5]. The idea is to consider an IVP as a
function Φ where the first argument are the parameters p, the second argument is the
initial condition to be verified at time point t0 (third argument) and the last argument is
a time point t ∈ T . A relation between the values at two time points t0 and t1 along the
trajectory is represented by the equation y(t1) = Φ (p, y(t0), t0, t1). Using variables
x0 and x1 to represent respectively y(t0) and y(t1), the equation is integrated into the
CCSP as a constraint x1 = Φ (p, x0, t0, t1) with specialized constraint propagators to
safely prune both variable domains based on a validated solver for IVPs [15].

Probabilistic Constraint Programming. An extension of the classical constraint pro-
gramming paradigm is used to support probabilistic reasoning. Probabilistic constraint
programming [2] associates a probabilistic space to the classical CCSP by defining an
appropriate density function. A probabilistic constraint space is a pair 〈〈X,D,C〉 , f〉,
where 〈X,D,C〉 is a CCSP and f a p.d.f. defined in Ω ⊇ D such that:

´
Ω f(x)dx = 1.

The constraints C can be viewed as an event H whose probability can be computed by
integrating f over its feasible space. The probabilistic constraint framework relies on
continuous constraint reasoning to get a box cover of the region of integration H and
compute the overall integral by summing up the contributions of each box in the cover.

Monte Carlo methods [11] are used to estimate the integrals at each box. The success
of this technique relies on the reduction of the sampling space where a pure Monte Carlo
method is not only hard to tune but also impractical in small error settings.

4 Probabilistic Constraints for Solving the EI Problem

Let t be the number of days since the beginning of treatment of a given subject, F (t)
the fat mass at time t, w (t) the weight observed at time t, and I the subject’s energy
intake, which is assumed to be a constant parameter between consecutive observations
[6]. The energy balance equation and total body mass are related through the model:

F ′ (t) = g (I, F (t) , t) w (t) = FF (a, h, F (t)) + F (t) (2)

where g is obtained by solving equation (1) with respect to F ′ (t).
Let i ∈ {0, . . . , n} denote the i’th observation since beginning of treatment, occurred

at time ti, and let Fi and wi be respectively the fat mass and the weight of the patient
at time ti (with t0 = 0). The EI model may be formalized as a CCSP

〈
X, IR2n+1, C

〉

with a set of variables X = {F0}
⋃n

i=1 {Fi, Ii} representing the fat mass Fi at each
observation and the energy intake Ii between consecutive observations (at ti−1 and ti),
and a set of constraints C = {b0}

⋃n
i=1 {ai, bi} enforcing eqs. (2):

ai ≡ [Fi = Φ (Ii, Fi−1, ti−1, ti)] bi ≡
[
wi = FFM (a, h, Fi) + εi + Fi

]

where uncertainty inherent to FF estimation is integrated by considering that the true
value of FF is the model given FFM plus an error term εi ∼ N (μ = 0, σε). Addi-
tionally, bounding constraints are considered for each observation: 3σε ≤ εi ≤ 3σε.
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If we assume that the FF model errors over the n + 1 distinct observations are
independent, then each solution has an associated probability density value given by the
joint p.d.f.

∏n
i=0 fi (εi) where fi is the normal distribution associated with the error εi.

A more realistic alternative to errors independence, explicitly represents the deviation
between error εi and the previous error εi−1 as a normally distributed random variable
δi ∼ N (μ = 0, σδ), resulting in the joint p.d.f.

∏n
i=0 fi (εi)

∏n
i=1 hi (εi − εi−1) where

fi and hi are the normal distributions associated with the errors εi and δi respectively.

Method. We developed an incremental method to efficiently solve the problem. It starts
by computing the probability distribution of F0 given the initial weight w0 subject to
the constraint b0 and the bounding constraints for ε0. This distribution, P� (F0), is dis-
cretized on a grid over D (F0) computed through probabilistic constraint programming.
Given a sampled point Ḟ0, value ε̇0 is determined by the constraint b0, and its p.d.f. value
is f(Ḟ0) = f0 (ε̇0). Similarly, the joint probability P� (F1, I1), is computed through
probabilistic constraint programming by considering the constraints associated with ob-
servation 1, the observed weight w1, and P� (F0). Given a sampled point (Ḟ1, İ1), the
values Ḟ0 and ε̇1 are determined by constraints a1 and b1, and assuming errors indepen-
dence, its p.d.f. is f0 (ε̇0) f1 (ε̇1). However, we replace the computation of f0 (ε̇0) with
the value of the probability P�(Ḟ0) computed in the previous step providing an approx-
imation that converges to the correct value when the number of grid subdivisions goes to
infinity: f(Ḟ1, İ1) ≈ P�(Ḟ0)f1 (ε̇1). If the alternative p.d.f. is used, the approximation
is: f(Ḟ1, İ1) ≈ P�(Ḟ0)f1(ε̇1)h1(εi − εi−1). Finally, the P� (F1, I1) is marginalized
to obtain P� (F1), and the process is iterated for the remaining observations.

5 Experimental Results

This section demonstrates how the approach may be applied to complement EI model
predictions with measures of confidence. The algorithm was implemented in C++ and
used for obtaining the probability distribution approximations P� (Fi, Ii) of a 45 years
old woman over the course of the 24-week trial (CALERIE Study phase I [8]). The
runtime was about 2 minutes per observation on an Intel Core i7 @ 2.4 GHz.

Fat Free mass is estimated using two distinct models: FF poly[6], and FF log[9].
Both models were initially fit to a set of 7278 North American women resulting in
the standard deviation of the error, σpoly

ε = 3.35 and σlog
ε = 5.04. This data set was

collected during NHANES surveys (1994 to 2004) and is available online [1]. We con-
sidered both assumptions regarding independence of the error. Due to space reasons we
only show the results of the FF poly model assuming a correlated error with σδ = 0.5.

Joint Probability Distributions. Figure 1(left) plots the results regarding the first ob-
servation showing the correlation between the uncertainty on F and I . Experiments
with the error independence assumption clarify its negative repercussion on the pre-
dicted distribution of I . Experiments with the FF log model revealed that the improved
accuracy of FF poly model (σpoly

ε < σlog
ε ) does not seem to impact the estimation of I .

Marginal Probability Distributions with Confidence Intervals. Figure 1(right) shows
the estimated Ii over time. Each box depicts the most probable value (marked in the center
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Fig. 1. Joint probabilities on the 1st observation (left). Confidence intervals for I over time (right)

of the box), the union hull of the 50% most probable values (rectangle), and the union hull
of the 82% most probable values (whiskers). Additionally, the plot overlays the estimates
obtained from the algorithm published by the author of the EI model.

6 Conclusions

The standard practice for characterizing confidence on the predictions resulting from
a complex model is to perform controlled experiments to assess its fitness statistically.
However, controlled experiments are not always practical or have associated high costs.
Contrary to the empirical, black-box approach, this paper proposes to characterize the
uncertainty on the model estimates by propagating the errors stemming from each of its
parts. The approach extends constraint programming to integrate probabilistic reasoning
and dynamic behavior, offering a mathematically sound and efficient alternative.

The application field of the presented approach is quite broad: it targets models which
are themselves composed of other (sub)models, for which there is a known characteri-
zation of the error. The selected EI model is a fairly complex model including dynamic
behavior and nonlinear relations, and integrates various (sub)models with associated
uncertainty. The experimental section illustrated how different choices for one of these
(sub)models, the FF model, impacts the error of the complete EI model, providing
valuable information that can be integrated in a decision making support tool.
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