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Abstract. This paper studies the problem of integrating probabilistic
uncertain information. Certain constraints are imposed by the seman-
tics of integration, but there is no guarantee that they are satisfied in
practical situations. We present a Bayesian-based approach to revise the
probability distribution of the information in the sources in a systematic
way to remedy this difficulty. The revision step is similar in spirit to tasks
like data cleaning and record linkage and should be carried out before
integration can be achieved for probabilistic uncertain data.
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1 Introduction

Information integration and modeling and management of uncertain information
have been active research areas for decades, with both areas receiving significant
renewed interest in recent years [3–6,13,15]. The importance of information inte-
gration with uncertainty, on the other hand, has been realized more recently.
[8,9,11,13–15,17–19,21,24–26]. It has been observed that [15]:

While in traditional database management managing uncertainty and
lineage seems like a nice feature, in data integration it becomes a
necessity.

In this paper we study the problem of integrating probabilistic uncertain
information. Certain constraints are imposed by the semantics of integration,
but there is no guarantee that they are satisfied in practical situations. We
present a Bayesian-based approach to revise the probability distribution of the
information in the sources in a systematic way to remedy this difficulty. The
revision step is similar in spirit to tasks like data cleaning and record linkage
and should be carried out before integration can be achieved for probabilistic
uncertain data.

This paper is organized as follows: We present the theory of uncertain informa-
tion integration in Section 2. Probabilistic constraints are discussed in Section 3
and our proposed Bayesian-based approach to revise information sources proba-
bilities is presented in Section 4. Conclusions are presented in Section 5.
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2 Preliminaries – Foundations of Information Integration

Foundations of information integration with uncertainty have been discussed in
[2,22]. We present a brief summary here. We begin with an example from [22].

Example 1. John and Jane are talking about fellow student Bob. John says “I
am taking CS100 and CS101, and Bob is in one of them, but not in both.” Jane
says “I am taking CS101 and CS102 and Bob is in one of them, but not in both.”

Intuitively, if we integrate the information from these two sources (John and
Jane), we should infer that Bob is either taking CS101, or he is taking both
CS100 and CS102. We present an algorithm for the integration of uncertain
information in Section 2.1.

The model used in [2,22] for the representation of uncertain information is the
well-known possible-worlds model [1]. We should emphasize that the possible-
worlds model is used in the formalization of information integration. It is not, in
general, efficient for implementation. In Example 1, the information presented
by the two sources (John and Jane) is represented by the possible-worlds shown
in Figures 1 and 2.

student course

Bob CS100

D1

student course

Bob CS101

D2

Fig. 1. Possible Worlds of source S1

student course

Bob CS101

D3

student course

Bob CS102

D4

Fig. 2. Possible Worlds of source S2

We will summarize the integration approach from [22] which uses a sim-
ple logic-based technique in Section 2.1). This approach has been shown to be
equivalent to the integration approach of [2] which is based on the concept of
superset-containment. Interested readers are referred to [22] for details.

First, we should mention that the pure possible world model is not adequate
for integration applications. We need additional information, namely, the set of
all tuples. The following example demonstrates the possible-worlds with tuple
sets model.

Example 2. Andy and Jane are talking about fellow student Bob. Andy says “I
am taking CS100, CS101, and CS102 and Bob is in either CS100 or CS101 but
not in both.” Jane says “I am taking CS101 and CS102 and Bob is in one of
them, but not in both.”

Intuitively, if we integrate the information from these two sources, we should
infer that Bob is taking CS101. The second possibility from Example 1, namely
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Bob taking CS100 and CS102, is not valid anymore since Andy’s statement rules
out the possibility that Bob is taking 102.

However, the possible-worlds representations of these sources (Andy and
Jane) are exactly the same as those of Example 1 (Figures 1 and 2). Only when
we add the tuple-set to possible worlds of Andy, namely {(Bob, CS100), (Bob,
CS101), (Bob, CS102)}, It becomes explicit that Andy’s statement eliminates
the possibility that Bob is taking CS102.

Hence, we will use the following definition from [2] for uncertain databases that
adds tuple sets to the possible-worlds model. To simplify presentation, we assume
that possible worlds are sets of tuples in a single relation.

Definition 1. (Uncertain Database). An uncertain database U consists of
a finite set of tuples T (U) and a nonempty set of possible worlds PW (U) =
{D1, . . . , Dm}, where each Di ⊆ T (U) is a certain database.

This definition adds tuple-set T (U) to the traditional possible-worlds model. In
fact, as shown in Example 2, there may be tuples in the tuple set, t ∈ T (U), that
do not appear in any possible world of the uncertain database U . If T (U) is not
provided explicitly, then we use the set of all tuples in the possible worlds, i.e.,
T (U) = D1 ∪ · · · ∪ Dn. It is interesting to notice that this model exhibits both
closed-world and open-world properties: If a tuple t ∈ T (U) does not appear in
a possible world Di, then it is assumed to be false for Di (hence, closed-world
assumption). In other words, Di explicitly rules out t. The justification is that
the source providing the uncertain information represented by U is aware of
(the information represented by) all t ∈ T (U). If some t ∈ T (U) is absent from
Di, then the source explicitly rules out t from Di. On the other hand, all other
tuples t �∈ T (U) are assumed possible (unknown) for possible-worlds Di (hence,
open-world assumption). This distinction is important for integration: Consider
integrating Di, where t �∈ Di, with a possible-world D′

j from another source,
where t ∈ D′j. For the first case (t ∈ T (U)), Di and D′

j are not compatible
and can not be integrated. This is because Di explicitly rules out t while D′

j

explicitly includes it. On the other hand, for the second case (t �∈ T (U)), Di and
D′

j can be integrated since Di can accept t as a valid tuple.

2.1 Integration Using Logical Representation

In this section we review some results from [22]. Given an uncertain database U ,
we assign a propositional variable xi to each tuple ti ∈ T (U). We define the for-
mula fj corresponding to a possible world Dj , and the formula f corresponding
to the uncertain database U as follows:

Definition 2. (Logical Representation of an Uncertain Database).
Let Dj be a database in the possible worlds of uncertain Database U . Construct
a formula as the conjunction of all variables xi where the corresponding tuple ti
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is in Dj, and the conjunction of ¬xi where the corresponding tuple ti is not in
Dj. That is,

fj =
∧

ti∈Dj

xi

∧

ti �∈Dj

¬xi (1)

The formula corresponding to the uncertain database U is the disjunction of the
formulas corresponding to the possible worlds of U . That is,

f =
∨

Dj∈PW (U)

fj (2)

Now we can integrate uncertain databases using their logical representations as
follows:

Let S1, . . . , Sn be sources containing (uncertain) databases U1, . . . , Un. Let
the propositional formulas corresponding to U1, . . . , Un be f1, . . . , fn. We obtain
the formula f corresponding to the uncertain database resulting from integrating
U1, . . . , Un by conjuncting the formulas of the databases: f = f1 ∧ · · · ∧ fn.

Example 3. (Integration Using Logical Representation) Consider
Example 1. The uncertain database corresponding to John’s statement is repre-
sented by (x1∧¬x2)∨(¬x1∧x2), where x1, and x2 correspond to the tuples (Bob,
CS100) and (Bob, CS101), respectively. The uncertain database corresponding
to Jane’s statement is represented by (x2 ∧ ¬x3) ∨ (¬x2 ∧ x3), where x2 is as
above and x3 corresponds to the tuple (Bob, CS102). The integration in this
case is obtained as

((x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)) ∧ ((x2 ∧ ¬x3) ∨ (¬x2 ∧ x3))
= (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ ¬x3)

which corresponds to the possible worlds of Figure 3. The result is consistent
with our intuition: Based on statements by John and Jane, Bob is taking either
CS101 or both CS100 and CS102.

student course

Bob CS101

student course

Bob CS100
Bob CS102

Fig. 3. Possible Worlds of the Integration for Example 1

Now consider Example 2. The uncertain database corresponding to Andy’s
statement is represented by (x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3), where x1, x2,
and x3 represent (Bob, CS100), (Bob, CS101), and (Bob, CS102), respectively.
The uncertain database corresponding to Jane’s statement is the same as above
(x2 ∧ ¬x3) ∨ (¬x2 ∧ x3). The integration in this case is obtained as

((x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3)) ∧ ((x2 ∧ ¬x3) ∨ (¬x2 ∧ x3))
= (¬x1 ∧ x2 ∧ ¬x3)

corresponding to the (in this case, definite) relation consisting only of the tuple
(Bob, CS101). Again, this result is consistent with our intuition: Based on state-
ments by Andy and Jane, Bob is taking CS101.
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2.2 Probabilistic Uncertain Information

The conceptual model for probabilistic uncertain information is the possible-
worlds with tuple-set model with a probability distribution over the set of pos-
sible worlds. More formally,

Definition 3. (Probabilistic Uncertain Database). A probabilistic
uncertain database U consists of a finite set of tuples T (U) and a nonempty
set of possible worlds PW (U) = {D1, . . . , Dm}. Each Di ⊆ T (U) is associated
with a probability P (Di) in the [0,1] range, where

∑m
i=1 P (Di) = 1.

The integration technique of Section 2.1 can be applied to the probabilistic case
to obtain the possible-worlds of the result. We have shown in [22] that very
interesting constraints are imposed on the probabilistic structure of information
sources in the integration of probabilistic data. We discuss these constraints in
Section 3 below. First, we need a few definitions and observations.

Definition 4. (Compatible Possible Worlds). Let S and S′ be sources con-
taining probabilistic uncertain information {D1, . . . , Dm} and {D′

1, . . . , D
′
m′},

respectively. Let T and T ′ be the tuple-sets of S and S′. A pair of possible-worlds
(Di,D

′
j) from S and S′ are said to be compatible if (1) For all tuples t ∈ Di−D′

j,
t �∈ T ′, and (2) For all tuples t ∈ D′

j − Di, t �∈ T .

It is easy to verify that, Given two information sources, only compatible pairs
of possible worlds from the two sources can be integrated (combined). Each
compatible pair produces a possible world in the answer.

We use a compatibility graph G to capture the compatibility relationship
defined above. Let S and S′ be sources containing probabilistic uncertain
information {D1, . . . , Dm} and {D′

1, . . . , D
′
m′}, respectively. The compatibil-

ity graph G for S and S′ is a bipartite graph. Nodes of G have a one-
to-one correspondence with possible worlds of S and S′. That is, G has
nodes {N1, . . . , Nm, N ′

1, . . . , N
′
m′}, where node Ni, i = 1, . . . , m, corresponds

to the world Di of S, and node N ′
j , j = 1, . . . ,m′, corresponds to the

world D′
j of S′. There is an edge between Ni and N ′

j if the pair of possi-
ble worlds (Di,D

′
j) are compatible. We sometimes overload the notation and

use {D1, . . . , Dm,D′
1, . . . , D

′
m′} for possible-worlds as well as for nodes of the

compatibility graph of the two sources.
The following result was proven in [22].

Theorem 1. Let G be the compatibility graph of sources S and S′. Each con-
nected component of G is a complete bi-partite graph.

So, if we consider a connected component of G, it has a set of nodes from S
(e.g., {Di1, . . . , Dik} ⊆ {D1, . . . , Dm}) and another set of nodes from S′ (e.g.,
{D′

j1, . . . , D
′
jk′} ⊆ {D′

1, . . . , D
′
m′}). Then, by Theorem 1, every node in the first

group is connected to every node in the second group. Further, these nodes are
not connected to any other nodes. (Note that we are using a symbol D to refer
both to a possible-world D and to the node representing D in the compatibility
graph.)
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3 Probabilistic Constraints

When integrating sources containing probabilistic uncertain information, certain
constraints are imposed on the probabilistic distributions of the possible worlds
of the sources. The following theorem is from [22]:

Theorem 2. Let S and S′ be sources containing probabilistic uncertain infor-
mation {D1, . . . , Dm} and {D′

1, . . . , D
′
m′}, respectively. Let G be their (bipartite)

compatibility graph. Let G1 be a connected component of G, with the set of nodes
{Di1, . . . , Dik} ⊆ {D1, . . . , Dm} and {D′

j1, . . . , D
′
jk′} ⊆ {D′

1, . . . , D
′
m′}. Then

the following constraint between the probabilities of the possible-worlds repre-
sented by the nodes of the connected component G1 must hold:

∑

D∈{Di1,...,Dik}
P (D) =

∑

D′∈{D′
j1,...,D

′
jk′}

P (D′) (3)

In other words, each connected component G1 of the bipartite compatibility
graph G of S and S′ enforces a constraint that the sum of probabilities of
possible-worlds associated with S in the connected component should be equal
to the sum of probabilities of possible-worlds associated with S′ in the same
connected component.

Example 4. The compatibility graph G for the sources of Example 1 (John and
Jane) is simple: G has four nodes corresponding to the possible worlds of source
1, D1 and D2, and the possible worlds of source 2, D3 and D4 (See Figures 1
and 2). The edges of G are (D1,D4) and (D2,D3). Hence, G has two connected
components: {D1,D4} and {D2,D3}. The probabilistic constraints for this case
are P (D1) = P (D4) and P (D2) = P (D3).

For another example, consider information sources B1 and B2 about books
and their authors whose possible-worlds are shown in Figures 4 and 5.

book1 Dan
book2 Jen

E1

book1 Dan
book3 Bob

E2

book2 Amy
book3 Bob

E3

Fig. 4. Possible Worlds of source B1

book1 Dan
book4 Jan

E’1

book1 Dan
book4 Pam

E’2

book4 Jan
book4 Pam

E’3

Fig. 5. Possible Worlds of source B2

The compatibility graph in this case has two connected components with
edges {(E1, E

′
1), (E1, E

′
2), (E2, E

′
1), (E2, E

′
2)}, and {(E3, E

′
3)}, respectively (See

Figure 6). There are two probabilistic constraints corresponding to the two con-
nected components: P (E1) + P (E2) = P (E′

1) + P (E′
2), and P (E3) = P (E′

3).
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Fig. 6. Compatibility graph for Sources B1 and B2 (Example 4)

These constraints may appear counterintuitive in the first sight. Basically
they state that, in general, sources containing probabilistic uncertain informa-
tion are not independent. Rather, every pair of sources may be correlated. Recent
research on data fusion (for example, [7,10,12,20,28]) confirms this fact. It has
been shown that by taking into account the correlations among sources, sig-
nificantly better fusion (integration) results can be obtained. Our framework is
different from that of data fusion. Nevertheless, the correlation between infor-
mation sources remains valid.

We will summarize the proof of Theorem 2 below to shed more light on
the correlation between sources. Let S and S′ be sources containing probabilis-
tic uncertain information {D1, . . . , Dm} and {D′

1, . . . , D
′
m′}, respectively. Let

{P (D1), . . . , P (Dm)} and {P (D′
1), . . . , P (D′

m′)} be the probability distributions
of the possible-worlds of S and S′. Intuitively, P (D) is the probability of the
event that the real world database is D. Note that the probability distribution
{P (D1), . . . , P (Dm)} consists of events that are mutually exclusive and exhaus-
tive. That is, (1) P (Di ∧ Dj) = 0 for Di �= Dj , in other words, the real world
can not be Di and Dj at the same time, and (2)

∑m
i=1 P (Di) = 1. Similarly,

the probability distribution {P (D′
1), . . . , P (D′

m′)} is also mutually exclusive and
exhaustive. So, we can write

P (Di) =
m′∑

j=1

P (Di ∧ D′
j), i = 1, . . . ,m (4)

and

P (D′
j) =

m∑

i=1

P (Di ∧ D′
j), j = 1, . . . ,m′ (5)

Given a pair of possible-worlds (Di,D
′
j), if Di and D′

j are not compatible,
they contain contradictory information and can not be combined. That is, the
events “the real world is Di” and “the real world is D′

j” are contradictory. Hence,
P (Di ∧ D′

j) = 0.
Now consider a connected component G1 with the set of nodes {Di1, . . . , Dik}

⊆ {D1, . . . , Dm} and {D′
j1, . . . , D

′
jk′} ⊆ {D′

1, . . . , D
′
m′}. Each possible-world

in the first set is compatible with every possible-world in the second set, and
vice-versa. Further, these possible worlds are not compatible with any other
possible worlds. It follows that P (Diq) =

∑k′

r=1 P (Diq ∧ D′
jr), q = 1, . . . , k, and
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P (D′
jr) =

∑k
q=1 P (Diq ∧ D′

jr), r = 1, . . . , k′. Then

k∑

q=1

P (Diq) =
k∑

q=1

k′∑

r=1

P (Diq ∧ D′
jr)

and
k′∑

r=1

P (D′
jr) =

k′∑

r=1

k∑

q=1

P (Diq ∧ D′
jr)

Hence
k∑

q=1

P (Diq) =
k′∑

r=1

P (D′
jr)

which is the same as Equation 3.
We have presented algorithms for the calculation of the probabilities of the

possible-worlds of the result of integrating probabilistic uncertain information
in the case where probabilistic constraints are satisfied [22,23]. But, in practice,
the probabilistic distribution of information sources are provided by the sources
themselves or through certain data mining or analytic processing. There is no
guarantee that probabilistic constraints are indeed satisfied in practice. The
rest of this paper provides approaches for these cases when the probabilistic
constraints are not satisfied.

4 Revising Probability Distribution of Sources

In this section we concentrate on the case where we have sources S and S′ con-
taining probabilistic uncertain information and one or more of the probabilistic
constraints are not satisfied. We use a Bayesian-based approach to revise the
probabilistic distributions of the sources such that the revised distributions do
satisfy all constraints.

Let the possible-worlds of S and S′ be {D1, . . . , Dm} and {D′
1, . . . , D

′
m′},

respectively. Let us begin by treating S as the original set of events, and S′ as
the new evidence by which the probabilities of the original events, P (Di)’s, are
revised. In other words, we want to compute the conditional probabilities

P (Di | The evidence provided by S′)

which we will simply denote by P (Di | S′) henceforth. We will use Q for the poste-
rior probability distributions. So, Q(Di) = P (Di | The evidence provided by S′)
is the revised (or posterior) probability of Di.

This is a case where the evidence itself is probabilistic. Hence, we will use
Richard Jeffrey’s rule of conditioning [16,27] which is an extension of Bayes’ rule
to probabilistic evidence.

Q(Di) =
m′∑

j=1

Q(D′
j)P (Di | D′

j), i = 1, . . . ,m (6)
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but

P (Di | D′
j) =

P (D′
j | Di)P (Di)
P (D′

j)
=

P (D′
j | Di)P (Di)∑m

k=1 P (D′
j | Dk)P (Dk)

Hence, we obtain the following alternative formulation:

Q(Di) =
m′∑

j=1

Q(D′
j)

(
P (D′

j | Di)P (Di)∑m
k=1 P (D′

j | Dk)P (Dk)

)
, i = 1, . . . , m (7)

As mentioned earlier, Given sources S and S′ containing probabilistic uncer-
tain information, probability constraints (Equation 3) may not hold in practice.
Next, we prove that the revised probability distributions Q(Di), i = 1, . . . ,m
and Q(D′

j), j = 1, . . . , m′, as obtained by Equation 6 (or Equation 7), satisfy all
probabilistic constraints.

Theorem 3. Consider sources S and S′ containing probabilistic uncertain
information {D1, . . . , Dm} and {D′

1, . . . , D
′
m′}, respectively. Let G be the com-

patibility graph of S and S′, and {P (D1), . . . , P (Dm)} and {P (D′
1), . . . , P (D′

m′)}
be their probability distributions. Consider a connected component G1 of G. Then

∑

Di∈G1

Q(Di) =
∑

D′
j∈G1

Q(D′
j)

where Q(Di) and Q(D′
j) are revised probability distributions according to

Equation 6.

Proof. Consider a node Di ∈ G1. Note that P (Di | D′) = 0 for all nodes
D′ �∈ G1 (Di and D′ are not compatible if they do not belong to the same
connected component.) So, we can write by Equation 6,

Q(Di) =
m′∑

j=1

Q(D′
j)P (Di | D′

j) =
∑

D′
j∈G1

Q(D′
j)P (Di | D′

j)

Then,
∑

Di∈G1

Q(Di) =
∑

Di∈G1

∑

D′
j∈G1

Q(D′
j)P (Di | D′

j) =
∑

D′
j∈G1

Q(D′
j)

∑

Di∈G1

P (Di | D′
j)

and (again, since P (D | D′
j) = 0 for all nodes D that are not in the same

connected component as D′
j – which is G1):

∑

Di∈G1

Q(Di) =
∑

D′
j∈G1

Q(D′
j)

m∑

i=1

P (Di | D′
j)
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But P (Di | D′
j) = P (Di∧D′

j)

P (D′
j)

. Hence,

m∑

i=1

P (Di | D′
j) =

m∑

i=1

P (Di ∧ D′
j)

P (D′
j)

=

∑m
i=1 P (Di ∧ D′

j)
P (D′

j)
=

P (D′
j)

P (D′
j)

= 1

It follows that ∑

Di∈G1

Q(Di) =
∑

D′
j∈G1

Q(D′
j)

Equations 6 and 7 contain two sets of unknowns: Both posterior probabil-
ity distributions, Q(Di), i = 1, . . . ,m and Q(D′

j), j = 1, . . . ,m′, are unknown.
Choosing the values of one set impacts those of the other set. So, our task is
to compute these two sets of unknowns. We will discuss below how to use our
confidence in the sources to compute these parameters.

4.1 Total Confidence in the Evidence

In some applications, we may have complete confidence in the evidence (i.e.,
information provided by source S′ in our case), and want to revise the probability
distribution of the original set of events (information provided by source S) with
respect to the evidence. In this case the probability distribution of S′ remains
unchanged. In other words, we have Q(D′

j) = P (D′
j), j = 1, . . . ,m.

We know by Theorem 3 that for every connected component G1 of the com-
patibility graph G: ∑

Di∈G1

Q(Di) =
∑

D′
j∈G1

Q(D′
j)

So, if we have total confidence in the evidence S′:
∑

Di∈G1

Q(Di) =
∑

D′
j∈G1

P (D′
j)

In other words, the probability distribution of S is revised in a way that the sum
of (revised) probabilities on the S side of a connected component G1 equals the
sum of (original) probabilities on the S′ side of G1.

The “dual” of this situation is when we have total confidence in S, in which
case the probability distribution of S′ will be revised such that

∑

Di∈G1

P (Di) =
∑

D′
j∈G1

Q(D′
j)

4.2 General Case

In general, we will not have total confidence in either of sources. Rather, we may
have subjective or analytic confidence measures for the sources. We formalize
this situation by introducing confidence measures αi for each source Si, such
that

∑n
i=1 αi = 1, where n is the number of sources. If there are two sources S
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and S′, their confidence measures can be denoted by α and 1−α. Our approach
is to revise the probability distributions of both sources to obtain a weighted
probability sum for each connected component G1 as follows:

∑

Di∈G1

Q(Di) =
∑

D′
j∈G1

Q(D′
j) = α

∑

Di∈G1

P (Di) + (1 − α)
∑

D′
j∈G1

P (D′
j) (8)

The cases for total confidence in S and in S′ correspond to α = 1 and α = 0,
respectively.

5 Conclusion

We have studied the problem of integrating probabilistic uncertain information.
Certain constraints are imposed by the semantics of integration, but there is no
guarantee that they are satisfied in practical situations. We presented a Bayesian-
based approach to revise the probability distribution of the information in the
sources in a systematic way to remedy this difficulty. The revision step is similar
in spirit to tasks like data cleaning and record linkage and should be carried out
before integration can be achieved for probabilistic uncertain data.

There is a close relationship between uncertain-data integration and data
fusion, which refers to the integration of massive amounts of mined data. The
process of mining data from sources such as web pages, social media and email
messgaes generate large amounts of data with differing degrees of correctness
confidence, which can be conveniently modeled by probabilistic uncertain data.
In the future, we intend to study the application of our Bayesian probability
revision approach to data fusion.
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