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Abstract. Location recommendation aims at providing personalized
suggestions of a set of new and potentially interesting locations to a
target user. The underlying principle of this problem is to predict the
Degree of Relevance of candidate locations to the user and make recom-
mendations accordingly. Enormous attention has been devoted to this
problem by research and industrial community lately due to its applica-
bility in numerous applications. In this work we develop an effective GPS
trajectory-based location recommendation framework for Location Based
Social Networks. We propose an algorithm, STS Location Recommender,
to leverage unique properties of GPS trajectories namely spatial, tempo-
ral and semantic features for recommendation. Our algorithm specifically
exploits temporal and semantic influence on users’ mobility fused with
spatial properties of locations to model relevance of locations to users.
Prior to our work, no existing studies based on GPS trajectories simul-
taneously used all of these features for location recommendation. We
experiment on real-world GPS datasets to show that our approach pro-
vides more precise recommendations compared with baseline approaches.

Keywords: GPS trajectory data mining · Collaborative filtering · Loca-
tion recommendation systems · Location-based social networks

1 Introduction

Location Based Social Networks (LBSNs) are new wave of interactive platforms
which allow users to share their geospatial locations alongside other location-
related contents such as comments, experiences etc. The advent of LBSNs is a
direct consequence of recent advances and ubiquity of Web and mobile technolo-
gies [1–3]. Since their evolution, LBSNs have received considerable attention from
research and industry because they play crucial role in the development of many
important applications [2,4]. Popular among these are location recommendation
systems, urban planning, counter-terrorism etc.

The object of this study is to develop a GPS trajectory-based Location Rec-
ommendation System (LRS) for LBSNs. This problem fundamentally aims at
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exploiting historical GPS trajectory data to provide personalized suggestions of
previously unvisited locations to users in LBSNs. The core issue is to predict,
with a reasonable level of accuracy, the Degree of Relevance (DoR) of candidate
locations to users and to make recommendations accordingly. For example if a
user highly favours a particular type of restaurant e.g. Asian restaurants, LRS
can infer this and make recommendations accordingly.

The major challenges that confront LRSs entail how to effectively model
the DoR of locations to users that is - (i) able to leverage spatial features,
temporal features and semantic features of locations for recommendation, (ii)
personalized and diverse i.e. capable of recommending truly relevant locations
which represent all possible interests to users. This is challenging considering the
number of factors that must by taken into account.

In a bid to address these challenges a number of techniques have been pro-
posed. For example Ye et al [5] exploit three factors namely user preference,
social influence and geographical influence for PoI recommendations based on
user check-in datasets. Yuan et al [3] is similar to [5] except that, [3] considers
temporal factor as an additional constraint for time-specific PoI recommenda-
tion. Zheng et al al. [6] proposed a matrix decomposition technique using GPS
trajectories combined with activity information, for global location and activity
recommendations. As an extension to [6], Zheng et al [1] proposed UCLAF that
incorporates a user dimension as an additional entity for personalized location
and activity recommendations using Tensor decomposition technique.

These existing works are riddled with either one or both of two major flaws.
These flaws include the fact that (i) they are geographically constrained − can-
not make recommendations when there exist no geographical overlap between a
target user’s location history and candidate locations. (ii) they are time-unaware
− only recommend locations globally and cannot tell where a user will like to
be at a specific time. This is because majority of the works [2,5,7] only rely on
spatial features for recommendation. Few others [1,6,8] consider semantic fea-
tures in addition to spatial features. Even fewer works [3,4] consider temporal
features in addition to spatial features. To the best of our knowledge, no existing
work based on GPS trajectories simultaneously used all the three features for
location recommendation. Our work bridges these knowledge gaps by consid-
ering all three features simultaneously to provide more precise time-aware and
semantically meaningful recommendations.

We summarize the main contributions of this paper as follows.

– We develop a novel approach for modeling DoR of locations to users that
simultaneously exploits semantic, temporal and spatial features of locations.

– We develop an effective algorithm STS Location Recommender, the provides
more precise, time-aware and semantically meaningful locations recommen-
dations based on historical GPS trajectory data.

We evaluate our proposed location recommendation framework by conduct-
ing experiments using real-world GPS dataset. Experimental results show that
our proposed LRS is more precise compared with baseline approaches.
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The rest of this work is organized as follows. We explain relevant concepts
and our problem statement in Section 2. In Section 3, we detail our proposed
technique, present our experiments in Section 4 and conclude in Section 5.

2 Statement of Problem

In this section, we clarify relevant concepts and present formal statement of the
problem addressed in this paper.

2.1 Preliminaries

UserID Date Time Latitude Longitude
1509 2008-02-06 16:29:31 123.5322 42.30713
1509 2008-02-06 16:29:36 123.53218 42.30713
1509 2008-02-06 16:29:41 123.53217 42.30713
1509 2008-02-06 16:29:46 123.53217 42.30714
1509 2008-02-06 16:29:51 123.53217 42.30713

Table 1. Sample Trajectory Dataset

Historical human mobility behaviour
can be reconstructed using traces of
geographic points known as trajec-
tory points. A Trajectory Point p is a
spatial point associated with a times-
tamp, denoted by the triple p =
(x, y, t) where x and y are the latitude
and longitude respectively of point p at timestamp t.

Definition 1. Trajectory denoted by P = 〈p1, p2, ..., pz〉 is a sequence of trajec-
tory points organised in ascending order of timestamps, where {pi ∈ P : pi =
(xi, yi, ti)} is a trajectory point and ti < ti+1, ∀i ∈ [1, z].

Typically, raw trajectory datasets (see sample in Table 1) are available as very
large volumes of geographically close points. Analysing such datasets directly can
introduce significant computational overheads. To curb this problem, we follow
the intuition that when people visit places of interest, they stay within nearby
areas for significant periods of time. For example, in a cinema people usually
stay within the Cinema Hall for considerably periods of time watching movies.
We therefore extract such significant areas called Stay Points from trajectories.

Definition 2. Stay Point denoted by s = [(x, y), ta, ts] is a geographical area
characterized by a maximum distance threshold δd where a user stayed for at
least a minimum threshold period of time δt, and x, y, ta and (ts ≥ δt) are
respectively latitude, longitude, arrival time and stay time of s.

(a) Stay Point (b) Reference Points

Fig. 1. Trajectory Transformation

To extract stay points, we
implement an existing algo-
rithm by Zheng et al [2]. We
chose this approach for its intu-
itive and consistency with our
definition. Figure 1a illustrates
the approach diagrammatically
(please refer to [2] for depths).

Transformation of trajectory
points to stay points drastically
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reduces the trajectory data. However, the volume of stay points can still be
reduced by clustering close and adjacent stay points representing the same
location but having slightly different coordinates. To achieve this we employ
a density-based clustering algorithm OPTICS [9] to cluster geographically close
stay points into non-overlapping clusters. We represent each discovered cluster
with a single point called Reference Point (see Figure 1b) defined below.

Definition 3. A Reference Point denoted by r = [(xr, yr), ta, ts], is a represen-
tative of a cluster of stay points Sc={s′

1, s
′
2, ..., s

′
q}, where (xr, yr) is the average

coordinate of the stay points s′
i ∈ Sc, ta and ts are respectively the earliest

arrival time and mean stay time of the stay points in Sc.

Since our core objective in this study is to recommend semantically meaningful
locations to users, it is necessary to enrich reference points discovered with their
underlying semantic tags such as gym, restaurant, park etc. Fortunately, many
places in LBSNs have been labeled with semantic tags [8]. We therefore take
steps to annotate each reference point with its corresponding semantic tag and
call it a Semantic Location.

Definition 4. Semantic Location L, denoted by L = [(xr, yr) : lf , ta, ts] sym-
bolizes a reference point annotated with a semantic tag where lf represents
semantic tag, and (xr, yr), ta, ts have their usual meanings.

To date, there exists no universally accepted standard for assigning precise
semantic tags to geographic points even though there has been attempts by some
studies [10,11]. In this work, we use of a Point of Interest (PoI) database for this
task. A PoI database is a corpus of PoIs such as restaurant, shop, cinema, etc
associated with geographic coordinates. Specifically, we use Foursquare1 category
database because it’s PoI data is highly reliable [12] and used by popular search
engines such as Microsoft Bing.

Having obtained semantic locations from reference points we model users’
mobilities as sequences of semantic locations called semantic trajectories.

Definition 5. Semantic Trajectory denoted by Ts = 〈L1, L2, ..., Lm〉 is a time-
ordered sequence of semantic locations where Li ∈ Ts (1 ≤ i ≤ m) is a semantic
location.

As an example, a semantic trajectory of a user can be represented by the sequence
〈[(39.9993,116.3269) : Hotel, 13:30, 72 min ] → [(39.9952,116.3272) : Park, 14:43,
54 min ] → [(39.8201,116.2766) : Restaurant, 17:02, 32 min ]〉.

2.2 Semantic Trajectory Pattern Mining

A Semantic Trajectory Pattern represents routine mobility behaviour of a user
discovered from his/her semantic trajectories. For example, if on most days a
user goes to work at 9 am, restaurant at 12 pm and gym at 6 pm we call such a
mobility behaviour a semantic trajectory pattern.
1 www.foursquare.com

www.foursquare.com
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A number of works [8,13] have tackled the problem of mining mobility pat-
terns. These studies, inspired by the fact that user mobility is typically sequential
in nature, perform sequential pattern mining on preprocessed mobility histories
to discover frequent mobility behaviours. However, most of these works neglect
temporal information in their approaches. For example Ying et al [8] represent
a semantic trajectory pattern in the form 〈{Hospital}{Park}{Bank}〉, which
clearly does not contain temporal information. We argue that, temporal infor-
mation is crucial in understanding mobility behaviours because users’ mobilities
typically exhibit temporal patterns. For example, a user might visit a restaurant
at 12 pm everyday, but he/she may typically visit other places at nighttime.

In our work, we take temporal information into account in mining semantic
trajectory patterns. To facilitate this, we encode each semantic location with an
equivalent numerical representation in a three-step process. Firstly, we assign the
semantic tag associated with each semantic location a unique integer identifier.
For example (Restaurant ⇒ 103) denotes a transformation of Restaurant to an
integer value 103. Secondly we split each day into six equal four-hourly non-
overlapping time slots e.g. [00:00 − 03:59 ]⇒ 1, [04:00 − 7:59 ]⇒ 2 etc. Finally
we identify each stay time by integers 1, 2 or 3 denoting short, medium and
long stay times respectively. As an example, the semantic location [(39.8201,
116.2766) : Restaurant, 17:02, 32 mins] is transformed to [103, 4, 1] meaning the
user visited semantic feature 103 during time slot 4 and stayed for short time
period. We then perform sequential pattern mining on the transformed dataset
to extract frequent semantic trajectory patterns.

2.3 Problem Formalization

Having explained basic concepts, we now detail our problem definition.

Problem Definition Given a target user ui ∈ U such that U = {u1, u2, ..., un} is
a set of users in a city, the problem is to recommend top k previously unvisited
and semantically meaningful locations that ui might be interested in at time t,
based on his/her location preferences and current location in the city.

To address this problem there is a need to : (i) precisely model ui’s preferences
for past locations using his/her location histories, (ii) accurately estimates the
DoR of each previously unvisited location to ui based on his/her preferences. We
propose an algorithm, Spatio-Temporal and Semantic-Aware (STS) Location
Recommender to solve the problem. The novelty of our algorithm lies in its
ability to leverage semantic, temporal and spatial feature for time-aware and
semantically meaningful location recommendation even where there exist no
geographical overlap between unvisited locations and users’ location histories.

3 The STS Location Recommender

In this section, we elaborate on the STS Location Recommender. The recom-
mender takes a three-step approach summarized as follows: (i) Location pref-
erence estimation (ii) User similarity estimation (iii) User-based collaborative
location recommendation. We explain each step in the following subsections.
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3.1 User Preference Estimation

A User’s preference for a semantic location is a measure of interestingness of
the location to the user. We express this measure mathematically in terms of
Preference Score defined and formulated as follows.

Definition 6. Preference Score of a location with respect to a target user during
a specified time slot is a numerical estimate of the likelihood of the user visiting
the location during the given time slot.

Preference score comprises two component probabilities viz Visit Probability in
terms of (i) Semantic Influence; (ii) Temporal Influence, derived as follows.

Suppose Ts(u) = {L1, L2, ..., Lm} denotes a set of semantic locations visited
by a user u and let τ(u) = {l1, l2, ..., lm} be corresponding set of semantic tags
of Ts(u), where each li ∈ τ(u) is the semantic tag of Li ∈ Ts(u) (1 ≤ i ≤ m).
Let φli be a binary variable denoting a visit to a location tagged by li. Visit
Probability in terms of semantic influence P (li) of li is expressed as P (li) =
ws × c(φli

)/|τ(u)|, where c(φli) is total count of φli and ws is a weight expressed in
terms of popularity of li. That is, ws = 1+ log(Nu/Nli

) where Nu is total number
of users, and Nli is the number of users who visited a location tagged by li.

Also, suppose T t
s(u) = {Lt

1, L
t
2, ..., L

t
k} denotes a set of semantic locations

visited by u during a specific time slot t and let τ t(u) = {lt1, l
t
2, ..., l

t
k} be corre-

sponding set of semantic tags of T t
s(u), where each lti ∈ τ t(u) is the semantic tag

of Lt
i ∈ T t

s(u) (1 ≤ i ≤ m). Let φlti
be a binary variable denoting a visit to a loca-

tion tagged by li by u during t. Visit probability in terms of temporal influence
P (lti) of li is expressed as P (lti) = wt ×

∑
φlt

i
/|T t

s (u)|, where wt = 2δt(lt
i
)/
∑

δt(lt
j

∈τt(u))

such that δt(lti) is the mean stay time at li during t and
∑

δt(ltj ∈ τ t(u)) is the
sum of mean stay times for all locations visited during t.

Finally, Preference Score for a semantic location with semantic tag li with
respect u during time slot t expressed in terms of P (li) and P (lti) is given by

Pu(li, t) = λP (li) + (1 − λ)P (lti) (1)

where λ in Equation 1 is a tuning parameter that controls the influence of seman-
tic and temporal factors on Pu(li, t).

3.2 User Similarity Estimation

User similarity measures the extent to which two users share preferences for
semantic locations visited during specified time slots. Intuitively, users who share
similar lifestyles will exhibit similar preferences for semantic locations during
specific time slots. We estimate similarity between any two users using Pearson’s
correlation coefficient similarity metric explained as follows.

Let τ t = τ t(u) ∪ τ t(v) be a set of semantic tags corresponding to semantic
locations visited by users u and v during a given time slot t. For u, there exists a
preference score Pu(li, t) for li ∈ τ t if u has visited li. Similarly for v, there exist a
preference score Pv(li, t) if v has visited li ∈ τ t. Given vectors of preference scores
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for u and v corresponding to semantic locations visited during t, the similarity
between u and v during t is given by

simt(u, v) =

∑

li∈τt

[Pu(li, t) − Pu(τ t(u))][Pv(li, t) − Pv(τ t(v))]

√ ∑

li∈τt

[Pu(li, t) − Pu(τ t(u))]2
√ ∑

li∈τt

[Pv(li, t) − Pv(τ t(v))]2
(2)

where Pu(τ t(u)) and Pv(τ t(v)) are the mean preference scores of locations visited
by u and v during t respectively.

Given a set of time slots T , the overall similarity between the two users
measured over all time slots is given by

Sim(u, v) =

∑

t∈T

simt(u, v)

|T | (3)

3.3 Location Recommendation

In this subsection we present our algorithm for location recommendation.

Fig. 2. Aggregated Users’ Location Histories

Our idea follows user-based
Collaborative Filtering (CF) [14]
model. We utilize the intuition that
like-minded individuals who share
similar lifestyles are most likely to
visit similar semantic locations at
similar times. For example, two
users who exhibit similar levels of
preferences for nightlife are likely to
visit say, a cinema for movies at night time.

Fig. 3. STS Location Recommender

Specifically, we treat
each semantic location vis-
ited at a specific time
as an “item” and users’
preference scores for these
locations as their implicit
ratings on the locations.
We then build user-
location matrix for each
time slot, where entries
are preference scores for
corresponding user-location
pairs. For all time slots the
user-location matrices are
aggregated into a three dimensional representation (see Figure 2). Based on this
model STS Location Recommender algorithm 3 is executed for recommendation.
We summarize the steps in the algorithm as follows.
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Firstly, given a target user u during a specific time slot t ∈ T and a set of
LBSN users U , the similarity Sim(u, v) between u and each user v (v ∈ U) is
computed. Secondly, a set of K users UK , with the highest similarity score is
selected. For each vK ∈ UK , a set of semantic locations Lr, previously unvisited
by u but visited by vK are extracted as candidates. For each semantic location
in this set, the DoR of its semantic tag lj to u given by

Rt(u, lj) = Pu(τ t(u)) +
ΣvK∈UK

Sim(u, vK).PvK
(lj , t)

ΣvK∈UK
Sim(u, vK)

(4)

is computed as u’s implicit preference for the lj , where Pu(τ t(u)), PvK
(lj , t)

and Sim(u, vK) have their usual meanings. Finally, the recommendation score
for the semantic location tagged by lj during time slot t is obtained by taking
into account the geospatial distance of u’s current location to the semantic loca-
tion corresponding to lj . We use a Proximity Measure ωlj defined in terms of
geospatial distance to implicitly determine u’s willingness to visit the candidate

locations. That is ωlj =
1

log(dist(lc, lj))
, where dist(lc, lj) is the geospatial dis-

tance between the current semantic location of u having semantic tag lc and
semantic location having semantic tags lj . Using the proximity measure, u’s
recommendation score for lj is computed as

R̂t
u,lj = ωlj × Rt(u, lj) (5)

The top-N semantic locations with the highest R̂t
u,lj

are returned as recommen-
dations for the user u during time slot t.

4 Experiments

In this section, we evaluate the effectiveness of STS Location Recommender
through experiments. We present a description of our dataset, then discuss met-
rics employed for evaluation and compare our approach with baseline models.

4.1 Description of Dataset and Experimental Settings

In this work, we utilized GeoLife2 real-world GPS trajectory dataset collected
from 182 individuals over a period of 5 years (April 2007 to August 2012). We
chose individuals with sufficiently large number trajectories (i.e. having trajec-
tories spanning a period of at least one week) in order to increase our chances
of finding trajectories which exhibit routine mobility cycles. We found that tra-
jectories of 149 users satisfied this requirement and processed their datasets
accordingly. To evaluate our approach we compared with the methods in [15]
herein abbreviated as UBCF and [1] abbreviated as UCLAF . We describe how
we adapt our dataset to perform these comparisons as follows.
2 http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2

b2e13/

http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2
b2e13/
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UBCF by Herlocker et al [15] is a benchmark for most conventional user-based
CF approaches. The idea behind UBCF is to perform location recommendations
based on users’ implicit ratings on locations estimated from their location histo-
ries, regardless of temporal information. For each user we used visit probability
in terms of semantic influence as his/her implicit rating on corresponding loca-
tions. We then construct a user-location matrix to perform UBCF.

In UCLAF [1], Zheng et al employed a User-Location-Activity tensor in
addition to User-User, Location-Feature, User-Location and Activity-Activity
matrices for collaborative location and activity recommendation using a ten-
sor decomposition technique. Since our dataset lacks activity information and
we did not have access to their dataset, we adapt our dataset to conform to
their settings. To do this, we utilized activity information mentioned in their
experiments namely Food & Drink, Shopping, Movies & Shows, Sports & Exer-
cise and Tourism & Amusement in addition to our user-location information
to generate User-Location-Activity tensor. Further we considered the first five
closest semantic features to each reference point to construct location-feature
matrix. We utilized Pearson correlation similarity metric to compute similarity
between users to construct user-user matrix. For activity-activity matrix, we
employed the web in the same manner as their work, using activity information
mentioned earlier to get the entries. Finally, we use frequency of visit of each
semantic location to generate entries for user-location matrix .

4.2 Evaluation Methodology

Our STS Location Recommender under investigation estimates a recommen-
dation score for each candidate location and returns the top-N highest ranked
locations to a target user as recommendations, given his/her current location
and time of the day. To study the effectiveness and prediction accuracy of our
proposed approach, we evaluate our LRS in terms of (i) Precision and Recall;
(ii) Root Mean Square Error (RMSE).

Precision and Recall investigate how many locations marked off in our test
dataset during the processing step are recovered in the returned recommended
locations. More specifically, we examine

1. Precision@N : how many locations in the top-N recommended locations dur-
ing timeslot t correspond to the hold-off locations in the testing data.

2. Recall@N : how many locations in the hold-off locations in the testing set
are returned as top-N recommended locations during timeslot t.

We tested the performance when N = 5, 10, 15 with 5 as default value.
Root Mean Squared Error (RMSE) measures deviation of generated recom-

mendation scores R̂u,lj .predicted, for each user-location pair (u, lj) from the
actual values R̂u,lj .actual. RMSE between predicted and actual scores is given
by

RMSE =

√
√
√
√

1
|TestSet|

∑

(u,lj)∈Set

(R̂u,lj .predicted − R̂u,lj .actual)2 (6)
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Note that low values of RMSE indicate a good quality of prediction.
Since we do not have ground truth evaluation of our work due to the source

of our dataset, we only rely on these metrics for evaluations. For each user, we
randomly mark-off 30%, 40% and 50% of all locations visited for testing.

4.3 Experimental Results and Comparison

Firstly, we investigate the impact of semantic and temporal information on the
performance of STS Location Recommender. We then compare the effectiveness
of our algorithm with a conventional approaches namely UBCF [15]. Finally, we
compare our accuracy with UCLAF [6] and UBCF [15] in terms of RMSE.

Fig. 4. Variations in Tuning Parameter

Influence of Semantic and Tem-
poral Information. We study
influence of temporal and seman-
tic features on recommendations
by varying tuning parameter λ in
Equation 1. A high value of λ
indicates semantic information has
a higher impact on the accuracy
of recommendation. On the other
hand, a low value of λ means accu-
racy of recommendation improves
with increase in temporal information. Our findings are shown in Figure 4.

As shown in the Figure 4, the best precision was achieved at λ = 0.7 and
the best recall at λ = 0.3. This shows that semantic information has more effect
on determining precision whiles recall is predominantly determined by temporal
factor. Since the best value of λ is not the same for precision and recall, we take
the harmonic mean of precision and recall. In particular, for each value of λ, we
find the F-measure given by F -measure = 2 ∗ precision∗recall

precision+recall . We found that λ
value of 0.7 gave the best value for F-measure as shown in Figure 4. We therefore
set our λ = 0.7 in our experiments to measure precision and recall.

Comparison of Precision and Recall with Conventional Approach. We
investigate the impact of temporal information on the effectiveness of STS Loca-
tion Recommender in comparison with a conventional approach. Specifically,
we compare Precision and Recall for various percentages of test dataset using
our algorithm in comparison with UBCF. UBCF is purely based on conven-
tional user-based collaborative filtering technique which does not take temporal
information of users’ movement into account. Our algorithm on the other hand
uses temporal information in terms of time of visit weighted by stay time at
visited locations. Figure 5 shows the results obtained. From the results, both
STS Location Recommender and UBCF show similar trends in performances in
terms of both precision and recall. That is, both precision and recall generally
increase with increase in percentage test of datasets using the two approaches.
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(a) Precision@N (b) Recall@N

Fig. 5. Comparison of Precision and Recall

Also increase in the number of top recommended locations leads to decrease in
precision but increase in recall in both cases. However, in spite of the similari-
ties in the trends, STS Location Recommender significantly outperforms UBCF
in terms of precision and recall in all cases. This indicates that incorporating
temporal information improves both the quality and accuracy of location rec-
ommendation.

We record low values for both precision and recall using STS Location Rec-
ommender and UBCF. This is not surprising because GPS trajectory datasets
are typically sparse in nature and thus contribute to the low values of precision
and recall. However, it is much better than random prediction. In this work, we
emphasize on the relative improvements achieved instead of the absolute values
we obtained. Note that we do not compare precision and recall with UCLAF
because we run UCLAF on our pre-processed dataset using the authors code
which does not consider these metrics in their evaluations.

Comparison of RMSE Evaluation with Baseline Methods. We investi-
gate the accuracy of our algorithm in comparison with UCLAF and UBCF using
RMSE evaluation. We run each method 5 times for various percentages of test
dataset and report the mean values and standard deviations in Table 2.

Method RMSE@50% RMSE@40% RMSE@30%

UBCF 0.009962 ± 0.001 0.008146 ± 0.003 0.006443 ± 0.001

UCLAF 0.00824 ± 0.001 0.006889 ± 0.002 0.00423620 ± 0.001

STS Location Recommender 0.005511 ± 0.002 0.003567 ± 0.001 0.002252 ± 0.001

Table 2. Root Mean Square Error Evaluation

The results obtained
show that STS Loca-
tion Recommender out-
performs both UCLAF
and UBCF for all per-
centages of test data.
Note that UCLAF also
performs better than UBCF. This can be attributed to the fact that UBCF is
purely based on conventional user-based collaborative filtering that relies only on
user location features. UCLAF on the other hand employs additional information
mentioned earlier to improve accuracy of recommendation. STS Location Recom-
mender outperforms both approaches because incorporating temporal dimension
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of users’ location histories significantly impacts positively on the accuracy our
location recommendation. The results underscore the importance of temporal
information as an additional factor for location recommendation.

5 Conclusions

In this work, we demonstrate how to model temporal and semantically meaning-
ful user mobility behaviours using GPS trajectories. We also show how to lever-
age spatial, temporal and semantic information to estimate users’ preference for
location. Finally, using our proposed STS Location Recommender algorithm, we
demonstrate how we achieve location recommendation based on our proposed
mobility model. Through experimental evaluation, we show that our approach
improves location recommendation compared with the baseline approaches.
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