
© Springer International Publishing Switzerland 2015
M.A. Sharaf et al. (Eds.): ADC 2015, LNCS 9093, pp. 281–293, 2015.
DOI: 10.1007/978-3-319-19548-3_23

Presto-RDF: SPARQL Querying over Big RDF Data

Mulugeta Mammo() and Srividya K. Bansal()

Arizona State University, Mesa, AZ, USA
{mmammo,srividya.bansal}@asu.edu

Abstract. There has been a rapid increase in the amount of Resource Descrip-
tion Framework (RDF) data on the web. The processing of large volumes of
RDF data requires an efficient storage and query-processing engine that can
scale well with the volume of data. In the past two and half years, however,
heavy users of big data systems, like Facebook, noted limitations with the query
performance of these big data systems and began to develop new distributed
query engines for big data that do not rely on map-reduce. Facebook’s Presto is
one such example. This paper proposes an architecture based on Presto, called
Presto-RDF, that can be used to process big RDF data. An evaluation of per-
formance of Presto in processing big RDF data against Apache Hive is also pre-
sented. The results of the experiments show that Presto-RDF framework has a
much higher performance than Apache Hive and native RDF store - 4Store and
it can be used to process big RDF data.

Keywords: Database performance · Evaluation · Querying · Semantic web data

1 Introduction

Semantic Web is the web of data that provides a common framework and technolo-
gies for sharing data and reusing data in various applications and enterprises. Re-
source Description Framework (RDF) enables the representation of data as a set of
linked statements, each of which consists of a subject, predicate, and object called a
triple. RDF datasets, consisting of millions of triples, form a network of directed
graph (DG) and are stored in systems called triple-stores. A query language standard,
SPARQL, has also been developed to query RDF datasets. For the Semantic Web to
work, both triple-stores and SPARQL query processing engines have to scale well
with the size of data. This is especially true when the size of RDF data is too big such
that it is difficult, if not impossible, for conventional triple-stores to work with. In the
past few years, however, new advances have been made in the processing of large
volumes of data sets, aka big data, which can be made to use for processing big RDF
data. In this regard, various research studies that use big data technologies for RDF
data processing have been published [1]–[3]. The initial attempts to address this issue
focused on optimizing native RDF stores as well as conventional relational databases
management systems. But as the volume of RDF data grew to exponential propor-
tions, the limitations of these systems became apparent and researchers began to focus
on using big data analysis tools, most notably Hadoop, to process RDF data. Various

282 M. Mammo and S.K. Bansal

studies and benchmarks that evaluate these tools for RDF data processing have been
published [1], [4]–[6].

In the past two and half-years, new trends in big data technology have emerged
that use distributed in-memory query processing engines based on SQL syntax. Some
of these tools include: Facebook Presto [7], Apache Shark, and Cloudera Impala.
These tools promise to deliver high performance query execution than traditional
Hadoop system like Hive. The motivation of this paper is to validate this claim for big
RDF data – i.e. if these new in-memory query processing models work well to deliver
faster response times for SPARQL queries, which must be translated to SQL. This
paper investigates if there is a gain in query execution performance, compared to Hive
and 4store, by storing big RDF data in HDFS and using in-memory processing engine
instead of MapReduce. Specifically, it addresses the following questions:
• Is it feasible to store big RDF data in HDFS and get improved query execution

time, compared to Hive and native RDF stores like 4store, by translating
SPARQL queries into SQL and then using the Presto distributed SQL query
processing engine to run the translated queries?

• How much improvement, in query response time, can be attained by using in-
memory query processing engine, e.g. Presto, against native RDF stores, like
4store, and other query processing engines based on MapReduce, like Hive?

• How do different RDF storage schemes in HDFS affect the performance of
SPARQL queries?

• Is it possible to construct an end-to-end distributed architecture to store and query
RDF datasets?

 The rest of the paper is organized as follows: Related work is presented in section
2. The architecture of Presto-RDF framework and RDF storage strategies are pre-
sented in section 3. Section 4 describes the experimental setup for performance evalu-
ation of Presto-RDF and results. Section 5 presents conclusions and future work.

2 Related Work

This section presents a review of related works that propose and evaluate different
distributed SPARQL query engines. It also presents a review of two systems, Apache
Spark and Cloudera Impala, which are similar to Facebook Presto. Different RDF
storage schemes are discussed in section 2.3.

2.1 Distributed SPARQL

A distributed SPARQL query engine based on Apache Jena ARQ has been proposed
[11]. The query engine extends Jena ARQ and makes it distributed across a cluster of
machines. The extension involves re-designing some parts of Jena ARQ. Document
indexing and pre-computation joins were also used to optimize the design. The results
of the experiments that were conducted showed that the distributed query engine
scaled well with the size of RDF data but its overall performance was very poor. The
query engine, unlike Facebook Presto, uses MapReduce. Scalable RDF stores have
been proposed that efficiently perform distributed Merge and Sort-Merge [9].

 Presto-RDF: SPARQL Querying over Big RDF Data 283

Marcello Leida et al. [12] propose a query processing architecture that can be used
to efficiently process RDF graphs that are distributed over a local data grid. The archi-
tecture has no single point of failure and no specialized nodes – which is a different
than Hadoop. They propose a sophisticated non-memory query planning and execu-
tion algorithm based on streaming RDF triples. Presto uses a distributed in-memory
query-processing algorithm.

Xin Wang et al. [13] discuss how the performance of a distributed SPARQL query
processing can be optimized by applying methods from graph theory. The framework
presented in this paper translates a SPARQL query into its equivalent SQL query, and
hence the query optimization that is done by Presto is for the SQL query and not for
the SPARQL query.

A distributed RDF query processing engine based on a message passing has been
proposed [14]. The engine uses in-memory data structures to store indices for data
blocks and dictionaries. Just like Presto, the query-processing engine avoids disk I/O
operations. The authors experimented their design over several types of SPARQL
queries and were able to get a significant performance gain (as compared to Hadoop).
TriAD is a distributed RDF engine where communication is based on Message Pass-
ing Interface [10]. Researchers have also studied partitioning of SPARQL queries
instead of RDF datasets for significant performance gain [8].

2.2 Apache Spark and Cloudera Impala

Apache Spark and Cloudera Impala are two open-sources systems that are very simi-
lar to Facebook Presto. Both Apache Spark and Cloudera Impala offer in-memory
processing of queries over a cluster of machines. According to Apache, Apache Spark
is a “fast and general engine for large-scale data processing”. Spark uses advanced
Directed Acyclic Graph (DAG) execution engine with cyclic data flow and in-
memory processing to run programs up to 100 (for in-memory processing mode) or
10 times faster (for disk processing mode) than Hadoop MapReduce [8]. Cloudera
Impala is an open-source massively parallel processing (MPP) engine for data stored
in HDFS. Cloudera Impala is based on Cloudera’s Distribution for Hadoop (CDH)
and benefits from Hadoop’s key features – scalability, flexibility, and fault tolerance.
Cloudera Impala, just like Presto, uses Hive Metastore to store the metadata informa-
tion of directories and files in HDFS.

2.3 RDF Triple Stores

RDF triples can be stored and accessed in Hadoop Distributed File System (HDFS) by
creating a relational layer on top of HDFS that maps triples into relational schemas.
Hive, for example, allows storing data in HDFS based on a relational schema that
defined by the user. Though there are some discrepancies among researchers regard-
ing the naming and classification of relational schemas for RDF data, most research-
ers classify these schemas in to three groups [1], [4], [5], [15]:
• Triple table – the entire RDF data is stored as a single table with three columns –

subject, predicate and object. Each triple is stored as a row in this table.

284 M. Mammo and S.K. Bansal

• Property-table – triples are grouped together by predicate name. In this scheme,
all triples with the same predicate are stored in a separate table. Some researchers
call property tables vertical partitioning.

• Cluster-property tables – in this scheme triples are grouped into classes based on
correlation and occurrence of predicates. A triple is stored in the table based on
the predicate class it belongs to.

In this research study, we use Presto that is a distributed SQL query engine that runs
on a cluster of machines controlled by a single coordinator with hundreds or thou-
sands of worker nodes. Our literature review shows that there are no other studies
done on Presto for semantic data processing. Presto is optimized for ad–hoc analysis
and supports standard ANSI SQL, including complex queries, aggregation, joins, and
window function [7]. The client sends SQL query using the Presto command line
interface to the coordinator that would then parse, analyze and plan the query execu-
tion. The scheduler, component within the coordinator, connects together the execu-
tion pipeline and assigns and monitors work to worker nodes that are closer to the
data. The client gets data from the output stage, one of the worker nodes, which in
turn pulls data from the underlying stages. In this project we propose architecture for
Presto to process big RDF data.

3 Presto-RDF

This section proposes architecture, called Presto–RDF, which can be used to store and
query big RDF data using the Hadoop Distributed File System (HDFS) and Facebook
Presto. It also presents RDF–Loader, one of the key components of the architecture,
which is used to read, parse and store RDF triples.

3.1 Architecture

Presto–RDF consists of the following components: a command line interface (CLI), a
SPARQL to SQL compiler (RQ2SQL), Facebook Presto, Hive Metastore, HDFS, and
RDF–Loader. Figure 1 illustrates the different components of the architecture. RDF
data that is extracted from the Semantic Web is parsed and loaded into HDFS using a
custom–made RDF-loader, which will also store metadata information on Hive Thrift
Server. When a user submits a SPARQL query over a command line interface, the
query is processed by a custom–made SPARQL to SQL converter, RQ2SQL, that
translates the SPARQL query into SQL which would then be submitted to Facebook
Presto. Presto, using its Hive connector and Hive Thrift Server, runs the SQL against
HDFS and returns the result back to the CLI.

3.2 RDF–Loader

The purpose of the RDF–Loader is to load, parse, and store RDF data in HDFS.
RDF–Loader implements four different RDF storage schemes and creates external
Hive tables whose metadata is stored in the Hive Thrift server. Before the

 Presto-RDF: SPARQL Querying over Big RDF Data 285

RDF–Loader is executed the raw RDF data to be first processed is loaded into HDFS
using this command: hadoop fs –put file hdfs–dir
Once the raw RDF data is uploaded, RDF–Loader runs several MapReduce jobs and
stores the output back into HDFS. The structure of the data is defined by the schema
that can be specified by users of the system. In order for the RDF–Loader to run and
process raw RDF, the following input parameters are required:
• database – is the name of the database that will be created.
• target – is the type of RDF storage structure, i.e. the type of schema. There are

four options: triples, vertical, wide, and horizontal.
• expand – this option indicates if qnames are to be expanded.
• server – is the DNS name or IP address of the master node, NameNode, of the

Hadoop cluster.
• port – is the port number Hadoop listens to connections.
• input – is the path of the HDFS directory that holds the raw RDF data.
• output – is the path of the HDFS directory the processed RDF data will be stored.
• format – defines the format of the output files as they are stored in HDFS. The

current version of the Hive meta–store supports five different formats:
SEQUENCEFILE, TEXTFILE, RCFILE, ORC, and AVRO. This study makes
use of the TEXTFILE format.
The following sections discuss four different RDF storage strategies implemented

by the RDF–Loader. The next section presents an analysis of performance of each of
these storage strategies.

Fig. 1. Presto-RDF Architecture

3.3 Triple-Store Storage Strategy

In the triple-store storage scheme, an RDF triple is stored as is – resulting in a table
with three columns: subject, predicate and object. If the raw RDF data has 30 million
triples, the triple store strategy will have one table with 30 million rows.

The map–reduce algorithm that transforms the raw RDF data into the triples table
is quite simple and shown in table 1.

286 M. Mammo and S.K. Bansal

map (String key, String value)
 // key: RDF file name
 // value: file contents
 for each triple in value
 emit_intermediate (subject + '\t ' + predicate, object)
reduce (String key, Iterator values)
 // key: subject and predicate delimited by tab
 // values: list of object values
 for each v in values
 emit (subject + '\t ' + predicate + object);

For an RDF dataset with n number of triples, the map algorithm has O(n) running
time while the reducer, which is called once for each unique subject, has O(s*n) run-
ning time, where s is the number of unique subjects and o are the average number of
object values per subject. Since, s*o=n, the total running time is O(n).

3.4 Wide–Table Storage Strategy

In the wide table RDF storage scheme, the raw RDF data is parsed and stored as a
single table having one column for subject values, and multiple predicate columns for
object values. The resulting table has the following schema:
WideTable (String subject, String predicate_1, String predicate_2, …, predicate_n)

Because it is unlikely that a subject has all the predicates found in the data set, this
storage strategy will have a number of null values. For an RDF data set that has
unique object values for a subject–predicate pair, this scheme would result in a table
that has s number of rows, where s is the number of subjects in the data set. For ex-
ample, given the following triple set in Table 1, the corresponding wide table repre-
sentation for the triples would be as shown in Table 2.

Table 1. Example Triple set (a)

subject_1 predicate_1 object_1
subject_1 predicate_1 object_3

subject_2 predicate_2 object_3

Table 2. Wide table representation for
example Triple set (a)

subject predicate_1 predicate_2
subject_1 object_1 object_3

subject_2 null object_3

If the dataset, however, contains multiple values for the same subject–predicate
pair, the table will have multiple rows for the same subject. For example, given the
following triple set in Table 3, the corresponding wide table representation for the
triples would be as shown in Table 4.

Table 3. Example Triple set (b)

subject_1 predicate_1 object_1
subject_1 predicate_1 object_2
subject_2 predicate_2 object_3

 Table 4. Wide table representation for
example Triple set (b)

subject predicate_1 predicate_2
subject_1 object_1 null
subject_1 object_2 null
subject_2 null object_3

 Presto-RDF: SPARQL Querying over Big RDF Data 287

The algorithm for storing triples using the wide table storage scheme would get com-
plicated if the data set contains subjects with multiple predicates (which is natural)
and multiple object values for the same predicate. For example, given the following
triple set in Table 5, the corresponding wide table representation for the triples would
be as shown in Table 6.
The storage scheme, thus, forces new rows to be created for each unique subject–
predicate pair. The map–reduce algorithm for the wide table storage scheme, as im-
plemented in this study, is shown in the table below.

map (String key, String value)
 // key: RDF file name
 // value: file contents
 for each triple in value
 emit_intermediate (<subject, predicate>, <predicate, object>)
reduce (String key, Iterator values)
 // key: a <subject, predicate> pair
 // values: list of <predicate, object> pairs
 String subject = key.getSubject();
 String[] row = new String[1 + num_unique_predicates];
 int i = 0
 for each v in values
 row[i] = v.getObject();
 i++;
 emit (subject, row);

Table 5. Example Triple set (c)

subject_1 predicate_1 object_1
subject_1 predicate_1 object_2
subject_1 predicate_2 object_3
subject_2 predicate_2 object_4

Table 6. Wide table representation for
example Triple set (c)

subject predicate_1 predicate_2
subject_1 object_1 null
subject_1 object_2 null
subject_1 null object_3
subject_2 null object_4

3.5 Horizontal-Store Strategy

The horizontal storage scheme is similar to the wide table storage scheme in terms of
the schema of the table. However, unlike the wide–table scheme, it optimizes the
number of rows stored for subjects that have multiple object values for the same pre-
dicate. Given the example presented in the previous section in Table 5, the horizontal-
store strategy stores the triples as shown in Table 7.

288 M. Mammo and S.K. Bansal

Table 7. Horizontal-store representation for
example Triple set (c)

subject predicate_1 predicate_2
subject_1 object_1 object_3
subject_1 object_2 null
subject_2 null object_4

In this scheme, it is not necessary
to create new rows for each unique
subject–predicate pair. Instead, rows
that are already created for the same
subject, but for a different predicate
will be used.

3.6 Vertical-Store Strategy

In the vertical storage scheme implemented in this research, the raw RDF data is par-
titioned into different tables based on the predicate values of the triples in the data
with each table having two columns – the subject and object values of the triple. Thus,
if the raw RDF data has 30 million triples that have 20 unique predicates, the vertical
storage scheme will create 20 tables and stores the subject and object values of triples
that share the same predicate in the same table. The map–reduce algorithm works
with predicate as a key value and a pair of subject and object values as value:

map (String key, String value)
 // key: RDF file name
 // value: file contents
 for each triple in value
 emit_intermediate (predicate, <subject, object>);
reduce (String key, Iterator values)
 // key: predicate
 // values: list of <subject, predicate> pairs
 String table = key.replace_unwanted('_');
 MultipleOutputs<String, String> mos;
 for each v in values
 // create a directory table
 // write the subject, values inside the directory
 mos.write (v.getFirst(), v.getSecond(), table);

Because predicate values are URIs that contain non–alpha numeric characters, e.g.

http://www.w3.org/1999/02/22–rdf–syntax–ns#, which cannot be used in naming
directories, the reducer has to replace these characters with some other character, for
example the underscore character, and creates the directory (which is considered as a
table for the Hive Metastore). In the vertical storage scheme, for a raw RDF data that
contains n number of triples, the mapper runs at O(n) while the reducer runs at O(p*x)
where p and s are the number of unique predicates and subjects in the data set, respec-
tively. In the worst case scenario, where there are as many unique predicates and sub-
jects, the number of triples, the map-reduce algorithm for the vertical storage scheme
runs at O (n2).

4 Benchmarking P

This section presents the e
performance of Presto-RDF
on 4store – a native RDF st
benchmarking the performa
virtualized on a single 16G
virtualized on the Windows
the experiments conducted
queries on triples of more th
from SP2Bench [16], [17]
evaluated – triple, vertical
that is designed to test SPA
to–SQL re–write systems. S
different SPARQL operato
tions [16], [17]. SP2Bench
uni–trier.de/~ley/db/, a co
currently featuring more th
generate any number of tri
conducted in this study, fo
generated.

4.1 Benchmarking Pre

The experiment was based
different degrees of compl
based on the DBLP. The e
four and eight node clusters
cluster had a 2-core x86-64
surements were conducted
triples.

Fig. 2. Time Taken by RDF-
and Structure Raw RDF data

Presto-RDF: SPARQL Querying over Big RDF Data

Presto-RDF

experiments and the results conducted to benchmark
F against Hive. A comparative measurement was also d
tore. Overall, two experimental setups were constructed
ance of Presto-RDF. The first setup was a 4-node clu

GB memory machine. The second setup was 8-node clu
s Azure platform. The second setup was required beca
used up the hard disk space and it was not possible to

han 4 million. For the experiment, four benchmark que
were used and three different RDF storage schemes w
and horizontal stores. SP2Bench is a SPARQL benchm

ARQL queries over RDF triples stores as well as SPARQ
SP2Bench focuses on how well an RDF store supports

ors and their combination – known as operator conste
data model is based on the DBLP, http://www.informa

omputer science bibliography created in the 1980s
han 2.3 million articles. The SP2Bench data generator
iples based on what a user specifies. For the experime
for example, triples of size 10, 20, and 30 million w

sto-RDF using 10, 20, and 30M Triples

on running four benchmark queries, from SP2Bench w
lexity – query 1, 6, 8, and 11. The SP2Bench use case
experimental setup that was conducted involved setting
s on Microsoft Windows Azure Platform. Each node in

4 processor, 14GB of memory, and 1TB of hard disk. M
for the four benchmark queries for 10, 20, and 30 mill

-Loader to Parse
a

Fig. 3. Presto-RDF Query Processing Tim
of Ql over a 4 node Cluster

289

the
done
d for
uster
uster
ause
run
ries

were
mark
QL–

the
ella-
atik.
and
can
ents

were

with
e is

g up
the

Mea-
lion

me

290 M. Mammo and S.K

Loading Time
Once the RDF dataset is c
map-reduce job to convert
rage schemas – triple-store
are shown in Figure 2. The
with the size of the triples
much longer time than the
ning the above queries on P
the figures below. For Q1,
formance than the triple-sto
looking into the SQL tran
which have lesser rows invo
nodes is increased from 4
sulted in performance imp
depicts the same.

Fig. 4. Presto-RDF Query P
of Ql over 8 Node Cluster

Presto vs. Hive for Q1
Compared to Hive, Presto o
a comparison of Presto and

Fig. 6. Q1 Performance, f
Triples on 8 node Cluster

K. Bansal

copied into HDFS, the RDF-Loader will parse and ru
the raw dataset to a structured dataset based on three

e, vertical and horizontal. The results of the measurem
e performance of the RDF-loader has a linear relations
s. The horizontal store map-reduce algorithm always to

triple-store and vertical store schemes. The result of r
Presto for a 4-node and 8-node cluster setup are shown
the vertical and horizontal stores have a much better p

ore schemas shown in Figure 3. This can be explained
slations of the vertical and horizontal storage scheme
olved in JOINs. This fact remains true when the numbe
to 8 – Figure 4. For Q1, increasing number of nodes

provement for the three storage schemes. Figure 5 bel

Processing Time
Fig. 5. Performance of Presto, with Increa
in Number of Nodes, for Q1

once again has a much higher performance. Figure 6 sho
Hive for 30M triples.

Evaluation Result for Q6
The SQL translations for Q6, unlike Q
involve multiple JOINs for each of the th
storage. The results of the evaluation on a
node and 8-node cluster are shown in Fig
7 and 8 below. The results of the evaluat
above (Figure 7 and 8) indicate that the p
formance increased with increase in
number of nodes – see Figure 9 below. T
vertical store, again, has a much be
performance than the triple-store and h
zontal store. Unlike Q1, however, where

for 30M

un a
sto-

ment
ship
ook
run-
n in
per-
d by
es –
er of

re-
low

ase

ows

Q1,
hree
a 4-
gure
tion
per-
the

The
etter
ori-
the

 Presto-RDF: SPARQL Querying over Big RDF Data 291

horizontal store had a slightly better performance than the triple-store, the triple-
store in Q6 had a slightly better performance than the horizontal store, especially as
the size of the triples increases. This result can be explained by the fact that the
horizontal store SQL for Q6, unlike the triple-store, involves multiple selections
before making JOINs.

Fig. 7. Q6 Performance on Presto-RDF with
4 Nodes

Fig. 8. Q6 Performance on Presto-RDF with
8 Nodes

Fig. 9. Effect of Node Increase on Presto-
RDF, for Q6 with 30M Triples

Fig. 10. Effect of Node Increase on Hive,
for Q6 with 30M Triples

For Hive, unlike Presto-RDF, as the number of nodes was increased there was a

drop in performance – which can be attributed to increase in replication across nodes
and disk I/O operations – see figure 10.

Presto vs. Hive for Q6 and Q8
For Q6 as well, Presto-RDF has a much higher performance than Hive Evaluation.
The SQL translations for Q8 involve multiple JOINs (just as the case were in Q6) and
a UNION. The results have the same behavior as Q6 – the vertical store has a much
better performance than the triple-store and horizontal stores, and Presto-RDF has a
much higher performance than Hive. Figure 13 below shows the results of running the
above queries over 10, 20 and 30M triples.

Because Q11 involves just one table that has less number of rows for the vertical
and horizontal storage schemes than the triple-store (which is one table), the results
shown above are expected. For 8 nodes, there is a performance improvement –
see Figure 14.

292 M. Mammo and S.K. Bansal

Fig. 11. Performance Comparison of Presto-
RDF and Hive, for 30M Triples on 8-node
Cluster

Fig. 12. Q8 performance, on Presto-RDF
with 4 nodes

Fig. 13. Q11 Performance, on Presto-RDF
with 4 Nodes

Fig. 14. Q11 Performance, on Presto-RDF
with 8 Nodes

5 Conclusions and Future Work

This paper proposed a Presto-based architecture, Presto-RDF that can be used to store
and process big RDF data. This paper also presented a comparative analysis of big
RDF data using Presto, which uses in-memory query processing engine, and Hive,
which uses Map Reduce to evaluate SQL queries. From the experiments conducted,
following conclusions can be drawn:

• 4store has a much higher performance than Presto and Hive for small data sets. For
bigger data sets (10M, 20M and 30M triples), however, 4store was simply unable to
process the data and crashed. This is true when Presto, Hive and 4store are all tested
with single-node setups.

• For all queries, Presto-RDF has a much higher performance than Hive.
• The vertical storage scheme has a consistent performance advantage than both the

triple-store or horizontal storage schemes.
• As the size of data increases, the horizontal storage scheme performed relatively

better than the triple-store scheme. This is unlike the articles reviewed during this
research study, which ignore the horizontal scheme as being not efficient (because
it has many null values).

• Increasing the number of nodes improved query performance in Presto but not in
Hive. This can be explained by the fact that Hive replicates data across clusters and
does IO operations – which increase as the size of nodes increase.

There are a number of areas to extend this study: this paper used a single benchmark,
SP2Bench. This work can be investigated on different benchmarks such as LUBM [18],
BSBM [19], and DBPedia [6]. There are different optimization techniques that can be

 Presto-RDF: SPARQL Querying over Big RDF Data 293

applied to the three storage schemas as well as to the RDF data directly. The RDF data
is stored as a text file, which is not optimal. This work can be extended to test using
RCFILE, ORC, and AVRO formats, which are better optimized than text file.

References

1. Luo, Y., Picalausa, F., Fletcher, G.H., Hidders, J., Vansummeren, S.: Storing and indexing
massive RDF datasets. In: Semantic Search Over the Web, pp. 31–60. Springer (2012)

2. Cudré-Mauroux, P., Enchev, I., Fundatureanu, S., Groth, P., Haque, A., Harth, A.,
Keppmann, F.L., Miranker, D., Sequeda, J.F., Wylot, M.: NoSql databases for rdf: an
empirical evaluation. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C.,
Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II.
LNCS, vol. 8219, pp. 310–325. Springer, Heidelberg (2013)

3. RDF, S.: Efficient RDF Storage and Retrieval in Jena2 (2003)
4. Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a survey. ACM SIGMOD

Record 38(4), 23–28 (2010)
5. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data man-

agement using vertical partitioning. In: Proc. of the Intl. Conf. on Very Large Data Bases,
pp. 411–422 (2007)

6. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL benchmark –
performance assessment with real queries on real data. In: Aroyo, L., Welty, C., Alani, H.,
Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS,
vol. 7031, pp. 454–469. Springer, Heidelberg (2011)

7. Presto: Interacting with petabytes of data at Facebook. https://www.facebook.com/notes/
facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/1015178619
7628920. (accessed: December 02, 2014)

8. Hammoud, M., etal.: DREAM: distributed RDF engine with adaptive query planner and
minimal communication. In: Proc. of Intl. Conf. on Vary Large Databases (VLDB 2015)

9. Papailiou, N., Tsoumakos, D., Konstantinou, I., Karras, P., Koziris, N.: H2RDF+: an
efficient data management system for big RDF graphs. In: Proceedings of SIGMOD Con-
ference, pp. 909-912 (2014)

10. Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: TriAD: a distributed shared-nothing
RDF engine based on asynchronous message passing. In: Proceedings of SIGMOD Confe-
rence, pp. 289-300 (2014)

11. Kulkarni, P.: Distributed SPARQL query engine using MapReduce. In: Master of Science,
Computer Science, School of Informatics, University of Edinburgh (2010)

12. Leida, M., Chu, A.: Distributed SPARQL query answering over RDF data streams. In:
2013 IEEE International Congress on Big Data (BigData Congress), pp. 369–378 (2013)

13. Wang, X., Tiropanis, T., Davis, H.C.: Evaluating graph traversal algorithms for distributed
SPARQL query optimization. In: Pan, J.Z., Chen, H., Kim, H.-G., Li, J., Wu, Z., Horrocks,
I., Mizoguchi, R., Wu, Z. (eds.) JIST 2011. LNCS, vol. 7185, pp. 210–225. Springer,
Heidelberg (2012)

14. Dutta, A.K., Theobald, M., Schenkel, R.: A Distributed In-Memory SPARQL Query Pro-
cessor based on Message Passing (2012)

15. Harth, A., Hose, K., Schenkel, R.: Linked Data Management. In: CRC Press (2014)
16. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP^ 2Bench: a SPARQL performance

benchmark. In: Data Engineering, ICDE 2009, pp. 222–233 (2009)
17. The SP2Bench SPARQL Performance Benchmark. http://dbis.informatik.uni-freiburg.de/

forschung/projekte/SP2B/. (accessed: December 02, 2014)
18. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Web

Semantics: Science, Services & Agents on WWW 3(2), 158–182 (2005)
19. Berlin SPARQL Benchmark. http://wifo5-03.informatik.uni-mannheim.de/bizer/berlin

sparqlbenchmark/. (accessed: December 02, 2014)

	Presto-RDF: SPARQL Querying over Big RDF Data
	1 Introduction
	2 Related Work
	2.1 Distributed SPARQL
	2.2 Apache Spark and Cloudera Impala
	2.3 RDF Triple Stores

	3 Presto-RDF
	3.1 Architecture
	3.2 RDF–Loader
	3.3 Triple-Store Storage Strategy
	3.4 Wide–Table Storage Strategy
	3.5 Horizontal-Store Strategy
	3.6 Vertical-Store Strategy

	4 Benchmarking Presto-RDF

	4.1 Benchmarking Presto-RDF using 10, 20, and 30M Triples

	5 Conclusions and Future Work
	References

