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Abstract. There has been a rapid increase in the amount of Resource Descrip-
tion Framework (RDF) data on the web. The processing of large volumes of 
RDF data requires an efficient storage and query-processing engine that can 
scale well with the volume of data. In the past two and half years, however, 
heavy users of big data systems, like Facebook, noted limitations with the query 
performance of these big data systems and began to develop new distributed 
query engines for big data that do not rely on map-reduce. Facebook’s Presto is 
one such example. This paper proposes an architecture based on Presto, called 
Presto-RDF, that can be used to process big RDF data. An evaluation of per-
formance of Presto in processing big RDF data against Apache Hive is also pre-
sented. The results of the experiments show that Presto-RDF framework has a 
much higher performance than Apache Hive and native RDF store - 4Store and 
it can be used to process big RDF data. 
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1 Introduction 

Semantic Web is the web of data that provides a common framework and technolo-
gies for sharing data and reusing data in various applications and enterprises. Re-
source Description Framework (RDF) enables the representation of data as a set of 
linked statements, each of which consists of a subject, predicate, and object called a 
triple. RDF datasets, consisting of millions of triples, form a network of directed 
graph (DG) and are stored in systems called triple-stores. A query language standard, 
SPARQL, has also been developed to query RDF datasets. For the Semantic Web to 
work, both triple-stores and SPARQL query processing engines have to scale well 
with the size of data. This is especially true when the size of RDF data is too big such 
that it is difficult, if not impossible, for conventional triple-stores to work with. In the 
past few years, however, new advances have been made in the processing of large 
volumes of data sets, aka big data, which can be made to use for processing big RDF 
data. In this regard, various research studies that use big data technologies for RDF 
data processing have been published [1]–[3]. The initial attempts to address this issue 
focused on optimizing native RDF stores as well as conventional relational databases 
management systems. But as the volume of RDF data grew to exponential propor-
tions, the limitations of these systems became apparent and researchers began to focus 
on using big data analysis tools, most notably Hadoop, to process RDF data. Various 
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studies and benchmarks that evaluate these tools for RDF data processing have been 
published [1], [4]–[6].  

In the past two and half-years, new trends in big data technology have emerged 
that use distributed in-memory query processing engines based on SQL syntax. Some 
of these tools include: Facebook Presto [7], Apache Shark, and Cloudera Impala.  
These tools promise to deliver high performance query execution than traditional 
Hadoop system like Hive. The motivation of this paper is to validate this claim for big 
RDF data – i.e. if these new in-memory query processing models work well to deliver 
faster response times for SPARQL queries, which must be translated to SQL.  This 
paper investigates if there is a gain in query execution performance, compared to Hive 
and 4store, by storing big RDF data in HDFS and using in-memory processing engine 
instead of MapReduce. Specifically, it addresses the following questions:  
• Is it feasible to store big RDF data in HDFS and get improved query execution 

time, compared to Hive and native RDF stores like 4store, by translating 
SPARQL queries into SQL and then using the Presto distributed SQL query 
processing engine to run the translated queries?  

• How much improvement, in query response time, can be attained by using in-
memory query processing engine, e.g. Presto, against native RDF stores, like 
4store, and other query processing engines based on MapReduce, like Hive?  

• How do different RDF storage schemes in HDFS affect the performance of 
SPARQL queries?  

• Is it possible to construct an end-to-end distributed architecture to store and query 
RDF datasets?  

  The rest of the paper is organized as follows: Related work is presented in section 
2. The architecture of Presto-RDF framework and RDF storage strategies are pre-
sented in section 3. Section 4 describes the experimental setup for performance evalu-
ation of Presto-RDF and results. Section 5 presents conclusions and future work.  

2 Related Work 

This section presents a review of related works that propose and evaluate different 
distributed SPARQL query engines. It also presents a review of two systems, Apache 
Spark and Cloudera Impala, which are similar to Facebook Presto. Different RDF 
storage schemes are discussed in section 2.3. 

2.1 Distributed SPARQL 

A distributed SPARQL query engine based on Apache Jena ARQ has been proposed 
[11]. The query engine extends Jena ARQ and makes it distributed across a cluster of 
machines. The extension involves re-designing some parts of Jena ARQ. Document 
indexing and pre-computation joins were also used to optimize the design. The results 
of the experiments that were conducted showed that the distributed query engine 
scaled well with the size of RDF data but its overall performance was very poor. The 
query engine, unlike Facebook Presto, uses MapReduce. Scalable RDF stores have 
been proposed that efficiently perform distributed Merge and Sort-Merge [9]. 
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Marcello Leida et al. [12] propose a query processing architecture that can be used 
to efficiently process RDF graphs that are distributed over a local data grid. The archi-
tecture has no single point of failure and no specialized nodes – which is a different 
than Hadoop. They propose a sophisticated non-memory query planning and execu-
tion algorithm based on streaming RDF triples.  Presto uses a distributed in-memory 
query-processing algorithm.  

Xin Wang et al. [13] discuss how the performance of a distributed SPARQL query 
processing can be optimized by applying methods from graph theory. The framework 
presented in this paper translates a SPARQL query into its equivalent SQL query, and 
hence the query optimization that is done by Presto is for the SQL query and not for 
the SPARQL query.  

A distributed RDF query processing engine based on a message passing has been 
proposed [14]. The engine uses in-memory data structures to store indices for data 
blocks and dictionaries. Just like Presto, the query-processing engine avoids disk I/O 
operations. The authors experimented their design over several types of SPARQL 
queries and were able to get a significant performance gain (as compared to Hadoop). 
TriAD is a distributed RDF engine where communication is based on Message Pass-
ing Interface [10]. Researchers have also studied partitioning of SPARQL queries 
instead of RDF datasets for significant performance gain [8].  

2.2 Apache Spark and Cloudera Impala 

Apache Spark and Cloudera Impala are two open-sources systems that are very simi-
lar to Facebook Presto. Both Apache Spark and Cloudera Impala offer in-memory 
processing of queries over a cluster of machines. According to Apache, Apache Spark 
is a “fast and general engine for large-scale data processing”. Spark uses advanced 
Directed Acyclic Graph (DAG) execution engine with cyclic data flow and in-
memory processing to run programs up to 100 (for in-memory processing mode) or 
10 times faster (for disk processing mode) than Hadoop MapReduce [8]. Cloudera 
Impala is an open-source massively parallel processing (MPP) engine for data stored 
in HDFS. Cloudera Impala is based on Cloudera’s Distribution for Hadoop (CDH) 
and benefits from Hadoop’s key features – scalability, flexibility, and fault tolerance. 
Cloudera Impala, just like Presto, uses Hive Metastore to store the metadata informa-
tion of directories and files in HDFS.  

2.3 RDF Triple Stores   

RDF triples can be stored and accessed in Hadoop Distributed File System (HDFS) by 
creating a relational layer on top of HDFS that maps triples into relational schemas. 
Hive, for example, allows storing data in HDFS based on a relational schema that 
defined by the user. Though there are some discrepancies among researchers regard-
ing the naming and classification of relational schemas for RDF data, most research-
ers classify these schemas in to three groups [1], [4], [5], [15]:  
• Triple table – the entire RDF data is stored as a single table with three columns – 

subject, predicate and object. Each triple is stored as a row in this table. 
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• Property-table – triples are grouped together by predicate name. In this scheme, 
all triples with the same predicate are stored in a separate table. Some researchers 
call property tables vertical partitioning. 

• Cluster-property tables – in this scheme triples are grouped into classes based on 
correlation and occurrence of predicates. A triple is stored in the table based on 
the predicate class it belongs to.  

In this research study, we use Presto that is a distributed SQL query engine that runs 
on a cluster of machines controlled by a single coordinator with hundreds or thou-
sands of worker nodes. Our literature review shows that there are no other studies 
done on Presto for semantic data processing. Presto is optimized for ad–hoc analysis 
and supports standard ANSI SQL, including complex queries, aggregation, joins, and 
window function [7]. The client sends SQL query using the Presto command line 
interface to the coordinator that would then parse, analyze and plan the query execu-
tion. The scheduler, component within the coordinator, connects together the execu-
tion pipeline and assigns and monitors work to worker nodes that are closer to the 
data. The client gets data from the output stage, one of the worker nodes, which in 
turn pulls data from the underlying stages. In this project we propose architecture for 
Presto to process big RDF data. 

3 Presto-RDF 

This section proposes architecture, called Presto–RDF, which can be used to store and 
query big RDF data using the Hadoop Distributed File System (HDFS) and Facebook 
Presto. It also presents RDF–Loader, one of the key components of the architecture, 
which is used to read, parse and store RDF triples.  

3.1 Architecture 

Presto–RDF consists of the following components: a command line interface (CLI), a 
SPARQL to SQL compiler (RQ2SQL), Facebook Presto, Hive Metastore, HDFS, and 
RDF–Loader. Figure 1 illustrates the different components of the architecture. RDF 
data that is extracted from the Semantic Web is parsed and loaded into HDFS using a 
custom–made RDF-loader, which will also store metadata information on Hive Thrift 
Server. When a user submits a SPARQL query over a command line interface, the 
query is processed by a custom–made SPARQL to SQL converter, RQ2SQL, that 
translates the SPARQL query into SQL which would then be submitted to Facebook 
Presto. Presto, using its Hive connector and Hive Thrift Server, runs the SQL against 
HDFS and returns the result back to the CLI. 

3.2 RDF–Loader 

The purpose of the RDF–Loader is to load, parse, and store RDF data in HDFS. 
RDF–Loader implements four different RDF storage schemes and creates external 
Hive tables whose metadata is stored in the Hive Thrift server. Before the  



 Presto-RDF: SPARQL Querying over Big RDF Data 285 

RDF–Loader is executed the raw RDF data to be first processed is loaded into HDFS 
using this command:  hadoop fs –put file hdfs–dir  
Once the raw RDF data is uploaded, RDF–Loader runs several MapReduce jobs and 
stores the output back into HDFS. The structure of the data is defined by the schema 
that can be specified by users of the system. In order for the RDF–Loader to run and 
process raw RDF, the following input parameters are required: 
• database – is the name of the database that will be created. 
• target – is the type of RDF storage structure, i.e. the type of schema. There are 

four options: triples, vertical, wide, and horizontal. 
• expand – this option indicates if qnames are to be expanded.  
• server – is the DNS name or IP address of the master node, NameNode, of the 

Hadoop cluster. 
• port – is the port number Hadoop listens to connections. 
• input – is the path of the HDFS directory that holds the raw RDF data. 
• output – is the path of the HDFS directory the processed RDF data will be stored. 
• format – defines the format of the output files as they are stored in HDFS. The 

current version of the Hive meta–store supports five different formats: 
SEQUENCEFILE, TEXTFILE, RCFILE, ORC, and AVRO.  This study makes 
use of the TEXTFILE format. 
The following sections discuss four different RDF storage strategies implemented 

by the RDF–Loader. The next section presents an analysis of performance of each of 
these storage strategies. 

 

Fig. 1. Presto-RDF Architecture 

3.3 Triple-Store Storage Strategy 

In the triple-store storage scheme, an RDF triple is stored as is – resulting in a table 
with three columns: subject, predicate and object. If the raw RDF data has 30 million 
triples, the triple store strategy will have one table with 30 million rows. 

The map–reduce algorithm that transforms the raw RDF data into the triples table 
is quite simple and shown in table 1. 
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map (String key, String value) 
    // key: RDF file name 
    // value: file contents 
    for each triple in value 
        emit_intermediate (subject + '\t ' + predicate, object) 
reduce (String key, Iterator values) 
    // key: subject and predicate delimited by tab 
    // values: list of object values 
   for each v in values 
       emit (subject + '\t ' + predicate + object);     
 

For an RDF dataset with n number of triples, the map algorithm has O(n) running 
time while the reducer, which is called once for each unique subject, has O(s*n) run-
ning time, where s is the number of unique subjects and o are the average number of 
object values per subject. Since, s*o=n, the total running time is O(n). 

3.4 Wide–Table Storage Strategy 

In the wide table RDF storage scheme, the raw RDF data is parsed and stored as a 
single table having one column for subject values, and multiple predicate columns for 
object values. The resulting table has the following schema: 
WideTable (String subject, String predicate_1, String predicate_2, …, predicate_n)  

Because it is unlikely that a subject has all the predicates found in the data set, this 
storage strategy will have a number of null values. For an RDF data set that has 
unique object values for a subject–predicate pair, this scheme would result in a table 
that has s number of rows, where s is the number of subjects in the data set. For ex-
ample, given the following triple set in Table 1, the corresponding wide table repre-
sentation for the triples would be as shown in Table 2. 

Table 1. Example Triple set (a) 

 
subject_1 predicate_1 object_1
subject_1 predicate_1 object_3

subject_2 predicate_2 object_3
 

Table 2. Wide table representation for 
example Triple set (a) 

subject predicate_1 predicate_2 
subject_1 object_1 object_3 

subject_2 null object_3 
 

 

If the dataset, however, contains multiple values for the same subject–predicate 
pair, the table will have multiple rows for the same subject. For example, given the 
following triple set in Table 3, the corresponding wide table representation for the 
triples would be as shown in Table 4. 

 
Table 3. Example Triple set (b) 

 
subject_1 predicate_1 object_1 
subject_1 predicate_1 object_2 
subject_2 predicate_2 object_3 

 

 Table 4. Wide table representation for 
example Triple set (b) 

subject predicate_1 predicate_2 
subject_1 object_1 null 
subject_1 object_2 null 
subject_2 null object_3 
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The algorithm for storing triples using the wide table storage scheme would get com-
plicated if the data set contains subjects with multiple predicates (which is natural) 
and multiple object values for the same predicate. For example, given the following 
triple set in Table 5, the corresponding wide table representation for the triples would 
be as shown in Table 6. 
The storage scheme, thus, forces new rows to be created for each unique subject–
predicate pair. The map–reduce algorithm for the wide table storage scheme, as im-
plemented in this study, is shown in the table below.  
 

map (String key, String value) 
    // key: RDF file name 
    // value: file contents 
    for each triple in value 
        emit_intermediate (<subject, predicate>, <predicate, object>)  
reduce (String key, Iterator values) 
    // key: a <subject, predicate> pair 
    // values: list of <predicate, object> pairs 
    String subject = key.getSubject(); 
    String[] row = new String[1 + num_unique_predicates]; 
    int i = 0 
    for each v in values 
        row[i] = v.getObject();   
        i++; 
        emit (subject, row); 

 

Table 5. Example Triple set (c) 

 
subject_1 predicate_1 object_1 
subject_1 predicate_1 object_2 
subject_1 predicate_2 object_3 
subject_2 predicate_2 object_4 

 

Table 6. Wide table representation for 
example Triple set (c) 

subject predicate_1 predicate_2 
subject_1 object_1 null 
subject_1 object_2 null 
subject_1 null object_3 
subject_2 null object_4 

3.5 Horizontal-Store Strategy 

The horizontal storage scheme is similar to the wide table storage scheme in terms of 
the schema of the table. However, unlike the wide–table scheme, it optimizes the 
number of rows stored for subjects that have multiple object values for the same pre-
dicate. Given the example presented in the previous section in Table 5, the horizontal-
store strategy stores the triples as shown in Table 7. 
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Table 7. Horizontal-store representation for 
example Triple set (c) 

 

 

subject predicate_1 predicate_2 
subject_1 object_1 object_3 
subject_1 object_2 null 
subject_2 null object_4 

In this scheme, it is not necessary 
to create new rows for each unique 
subject–predicate pair. Instead, rows 
that are already created for the same 
subject, but for a different predicate 
will be used.  

3.6 Vertical-Store Strategy 

In the vertical storage scheme implemented in this research, the raw RDF data is par-
titioned into different tables based on the predicate values of the triples in the data 
with each table having two columns – the subject and object values of the triple. Thus, 
if the raw RDF data has 30 million triples that have 20 unique predicates, the vertical 
storage scheme will create 20 tables and stores the subject and object values of triples 
that share the same predicate in the same table. The map–reduce algorithm works 
with predicate as a key value and a pair of subject and object values as value: 
 

map (String key, String value) 
    // key: RDF file name 
    // value: file contents 
    for each triple in value 
        emit_intermediate (predicate, <subject, object>); 
reduce (String key, Iterator values) 
    // key: predicate 
    // values: list of <subject, predicate> pairs 
    String table = key.replace_unwanted('_'); 
    MultipleOutputs<String, String> mos; 
    for each v in values 
        // create a directory table 
       // write the subject, values inside the directory 
       mos.write (v.getFirst(), v.getSecond(), table); 

 
Because predicate values are URIs that contain non–alpha numeric characters, e.g. 

http://www.w3.org/1999/02/22–rdf–syntax–ns#, which cannot be used in naming 
directories, the reducer has to replace these characters with some other character, for 
example the underscore character, and creates the directory (which is considered as a 
table for the Hive Metastore). In the vertical storage scheme, for a raw RDF data that 
contains n number of triples, the mapper runs at O(n) while the reducer runs at O(p*x) 
where p and s are the number of unique predicates and subjects in the data set, respec-
tively. In the worst case scenario, where there are as many unique predicates and sub-
jects, the number of triples, the map-reduce algorithm for the vertical storage scheme 
runs at O (n2). 
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horizontal store had a slightly better performance than the triple-store, the triple-
store in Q6 had a slightly better performance than the horizontal store, especially as 
the size of the triples increases. This result can be explained by the fact that the 
horizontal store SQL for Q6, unlike the triple-store, involves multiple selections 
before making JOINs. 
 

 

Fig. 7. Q6 Performance on Presto-RDF with 
4 Nodes 

 

Fig. 8. Q6 Performance on Presto-RDF with 
8 Nodes 

 

 

Fig. 9. Effect of Node Increase on Presto-
RDF, for Q6 with 30M Triples 

 

Fig. 10. Effect of Node Increase on Hive, 
for Q6 with 30M Triples 

 
For Hive, unlike Presto-RDF, as the number of nodes was increased there was a 

drop in performance – which can be attributed to increase in replication across nodes 
and disk I/O operations – see figure 10.  

Presto vs. Hive for Q6 and Q8 
For Q6 as well, Presto-RDF has a much higher performance than Hive Evaluation. 
The SQL translations for Q8 involve multiple JOINs (just as the case were in Q6) and 
a UNION. The results have the same behavior as Q6 – the vertical store has a much 
better performance than the triple-store and horizontal stores, and Presto-RDF has a 
much higher performance than Hive. Figure 13 below shows the results of running the 
above queries over 10, 20 and 30M triples. 

Because Q11 involves just one table that has less number of rows for the vertical 
and horizontal storage schemes than the triple-store (which is one table), the results 
shown above are expected. For 8 nodes, there is a performance improvement –  
see Figure 14. 
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Fig. 11. Performance Comparison of Presto-
RDF and Hive, for 30M Triples on 8-node 
Cluster 

 

Fig. 12. Q8 performance, on Presto-RDF 
with 4 nodes 

 
Fig. 13. Q11 Performance, on Presto-RDF 
with 4 Nodes 

 

Fig. 14. Q11 Performance, on Presto-RDF 
with 8 Nodes 

5 Conclusions and Future Work 

This paper proposed a Presto-based architecture, Presto-RDF that can be used to store 
and process big RDF data. This paper also presented a comparative analysis of big 
RDF data using Presto, which uses in-memory query processing engine, and Hive, 
which uses Map Reduce to evaluate SQL queries. From the experiments conducted, 
following conclusions can be drawn: 

• 4store has a much higher performance than Presto and Hive for small data sets. For 
bigger data sets (10M, 20M and 30M triples), however, 4store was simply unable to 
process the data and crashed. This is true when Presto, Hive and 4store are all tested 
with single-node setups.    

• For all queries, Presto-RDF has a much higher performance than Hive. 
• The vertical storage scheme has a consistent performance advantage than both the 

triple-store or horizontal storage schemes. 
• As the size of data increases, the horizontal storage scheme performed relatively 

better than the triple-store scheme. This is unlike the articles reviewed during this 
research study, which ignore the horizontal scheme as being not efficient (because 
it has many null values).  

• Increasing the number of nodes improved query performance in Presto but not in 
Hive. This can be explained by the fact that Hive replicates data across clusters and 
does IO operations – which increase as the size of nodes increase. 

There are a number of areas to extend this study: this paper used a single benchmark, 
SP2Bench. This work can be investigated on different benchmarks such as LUBM [18], 
BSBM [19], and DBPedia [6]. There are different optimization techniques that can be 
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applied to the three storage schemas as well as to the RDF data directly. The RDF data 
is stored as a text file, which is not optimal. This work can be extended to test using 
RCFILE, ORC, and AVRO formats, which are better optimized than text file.  
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