
Effective Spatial Keyword Query Processing
on Road Networks

Hailin Fang1, Pengpeng Zhao1(B), Victor S. Sheng2, Jian Wu1,
Jiajie Xu1, An Liu1, and Zhiming Cui1

1 School of Computer Science and Technology, Soochow University,
Suzhou 215006, People’s Republic of China

{hlfang,ppzhao,jianwu,xujj,anliu,szzmcui}@suda.edu.cn
2 Computer Science Department, University of Central Arkansas, Conway, USA

ssheng@uca.edu

Abstract. Spatial keyword query plays an important role in many appli-
cations with rapid growth of spatio-textual objects collected. In this con-
text, processing boolean spatial keyword query on road networks is one
of the most interesting problems. When giving a query which contains a
location and a group of keywords, our aim is to return k objects contain-
ing all the query keywords which are the nearest to the query location.
Though the research on this problem has received extensive studies in
Euclidean space, little is done to deal with it on road networks. We first
propose novel indexing structures and algorithms that are able to pro-
cess such query efficiently. Experimental results on multiple real-word
datasets show that our methods achieves high performance.

Keywords: Road networks · Spatial keyword search · Spatial indexing

1 Introduction

With the increasing pervasiveness of the mobile devices and geo-location services,
there are large amounts of spatio-textual data available in many applications.
For instance, many applications (e.g, Twitter, Yellow page etc) provide target
location information with a short text description. People can publish contents
with geographical position information in these applications every day. For these
huge spatial textual data, how to establish an effective real time query mech-
anism is a great challenge. The current approaches processing spatial keyword
queries are mostly developed in Euclidean space [1–4,13,14,16]. In reality, our
daily travels are usually constrained by the road networks, which leads to the
network distance between two locations may be larger than their Euclidean dis-
tance. For example, the network distance between two hotels on the opposite
banks of a river is completely different from their Euclidean distance. Then the
result obtained under the Euclidean space may not be close to a query location
on its road network.

For example, Fig.1 illustrates a part of road network and some spatio-textual
objects residing on some roads. Fig.2 provides text descriptions of the all objects
c© Springer International Publishing Switzerland 2015
M.A. Sharaf et al. (Eds.): ADC 2015, LNCS 9093, pp. 194–206, 2015.
DOI: 10.1007/978-3-319-19548-3 16

Effective Spatial Keyword Query Processing on Road Networks 195

Fig. 1. Road network

d1 steam-bath,laundry-service,lounge
d2 steam-bath,restaurant
d3 steam-bath,restaurant,safe
d4 Wi-Fi,restaurant,laundry-service
d5 steam-bath,safe,wellness
d6 Wi-Fi,restaurant,lounge
d7 steam-bath,restaurant,flowershop
d8 casino,restaurant,fitness root

Fig. 2. The descriptions of objects on
Road network

(represent hotels) shown in Fig.1. On this partial road network, there are 6
vertices(road intersections) and 8 objects, which are denoted as grids and cir-
cles, respectively. Each digit on edge presents the length of it. Given a query
such as q={q.loc, q.term, k} in Fig.1, q.loc indicates the location of the query,
q.term={steam-bath,restaurant} presents a set of keywords, and k is the limited
number of returns. Supposed that the user intends to find two nearest hotels to
q.loc. According to the Euclidean distance, the result of this query is {d2, d3}. But
due to the constrains of the road network, the road distance between q.loc and
the objects d2 is 8, denoted as δ(q, d2) = 8. Similarly we have δ(q.loc, d3) = 20.
However, we find d7 also meets the text description of the query and its distance
δ(q.loc, d7) = 10 is shorter than the distance to the object d3. Therefore the best
query result set is {d2, d7} rather than {d2, d3}.

This example shows that the results of query on road networks are very
different from Euclidean space. Compared with Euclidean space, it is much more
challenging on road networks. The reason is that what we need is to compute
the network distance between two objects rather than Euclidean distance. Thus
existing methods in Euclidean space cannot be directly applied to road networks.
Although spatial keyword query on road networks have attracted some research
efforts in recent years [8,10], which are focused on different type of query like
range, top-k query, but their solutions can not directly applied to boolean spatial
keyword query(BSKQ) on road networks. To the best of our knowledge, there
are no work studying the BSKQ on road networks.

In this paper, we propose two novel approaches to deal with boolean spatial
keyword on road networks. The basic spatial keyword query method on road
networks is to expanse the network from the query location using Dijkstra’s
algorithm, but during the process of traversing a network, the performance is
very poor. So we propose a new method First Inverted file Then G-Tree, called
FITG, by combining inverted index with spatial index G-Tree [15]. According
to the principle of first text pruning then spatial pruning, it is avoid traversing
the network in a point-to-point manner. Furthermore, we also propose a hybrid
index named SG-Tree(Signature based G-Tree). The idea of SG-Tree is to create
a signature for each node in G-Tree and partitions the whole road network
into a group of interconnected sub-networks and organizes them in a hierarchy
structure, which improves query efficiency tremendously.

196 H. Fang et al.

The rest of the paper is organized as follows. Section 2 introduces related
work in this field. Section 3 formally defines basic concepts and notations used
in this paper. Section 4-5 elaborates the proposed methods, i.e., FITG and SG-
Tree, respectively. Section 6 conducts the evaluation on three real-word datasets
and shows our experimental results. Finally, we conclude our paper in Section 7.

2 Related Works

Currently there are three types of spatial keyword query(SKQ): boolean spatial
keyword query (BSKQ), top-k spatial keyword query (Top-k SKQ) and range
constrained spatial keyword query (RC-SKQ). In the past decades, researchers
have done a lot of work on k-nearest neighbors(KNN) on road networks
[5–7,9,11,15].

In recent years, SKQ has received extensive studies in Euclidean distance
space [1–4,13,14,16], and achieved very significant results(e.g., [1,3] for a com-
prehensive survey). BSKQ is one of the most important query problems and
many efficient query approaches have been proposed such as inverted R-tree
[16], information retrieval R-tree [4], Inverted Linear Quad-tree [13], and some
solve other types of query(e.g., top-k) method were proposed, like I3 [14] and so
on. However, all of these algorithms are based on Euclidean space, but real-life
travel trajectories are constrained by road networks.

Recently, the problem of SKQ on road networks has been studied by [8–10,
12]. Shekhar et al. [12] proposed the CCAM method which reduces 2-dimensional
data of a node to a single dimensional and effectively organizes the adjacent
list of road nodes. We can take advantage of the access locality in the query
processing that can reduce the I/O costs to improve query efficiency. Papadias
et al. [9] proposed an efficient framework to store road networks and spatio-
textual objects. Recently, Rocha-Junior et al. [10] raised efficient methods to
address Top-k SKQ on road networks. They designed a framework of the index
for using overlay networks to prune the regions of the network. Li et al. [8]
proposed a new query that range-constrained SKQ on road networks and put
forward several different indexing strategies to address this type of SKQ. Their
proposed approaches are very similar, although addressing different types of
problems. But all the above works have not been studied the BSKQ problem
on road networks. Furthermore, we exploit a new elegant and efficient road
networks index G-Tree[15] and the ubiquitous text index signature to propose a
novel hybrid index called SG-Tree that can scale to large road networks.

3 Problem Statement

In this section, we introduce a graph model to represent a road network. Then,
we define the related concepts which will be used in the following of this paper.

Road Networks: This paper uses a weighted graph to describe a road network,
which is denoted as G = (V,E,W), where V is a set of nodes that represent a

Effective Spatial Keyword Query Processing on Road Networks 197

road segment, the edge set is denoted as E and W is a set of weights denoting
the cost on the corresponding edge, such as travel time or distance. (υ, ν) ∈ E
denotes an edge, and wυ,v is a weight on this edge. The shortest path between
two nodes υ and ν is denoted as |υ, ν|, an ‖υ, ν‖ is the minimum length between
υ and ν, i.e., ‖υ, ν‖=wυ,v. Let q.loc be a query, and o be a spatio-textual object
on the road network, then the shortest distance between the query and o is
denoted as follows:

‖q.loc, o‖ =
{ ‖q.loc, o‖ both q.loc and o are on the same edge

min{‖q.loc, υ‖ + ‖o, υ‖ , ‖q.loc, ν‖ + ‖o, ν‖} otherwise
(1)

Spatio-Textual Object: A spatio-textual object is normally expressed by a
point with coordinates and a set of keywords, which is described in a two dimen-
sional space. For example, {loc, term} presents a spatio-textual object, where
o.loc is the location of the object, including its latitude and longitude, and
o.term presents a set of keywords describing some text expressions, such as
term = {t1, t2 tf}. For simplicity, each object lies in its corresponding edge.

Spatial Keyword Query: According to the spatio-textual object definition,
we use D to represent all objects in a spatial database as follows: D = {o|∀o ∈
D, o = {o.loc, o.term}}. Given a road network as a weight graph G and a query
point q, a spatial keyword search can retrieve k objects, each of which contains
all keywords of the query and whose network distance is the shortest to the
query location.

The Baseline Approach: Traditional spatial keyword query methods use the
network expansion on road networks. On this basis, we combine the signature
index on edge with network expansion and develop an enhance method called
Signature based Network Expansion (SNE) as our baseline method. The struc-
ture of SNE we adopt a very popular data structure connectivity clustered access
method (CCAM) [12] used to store a road network. We build a network R-tree
to identify the road segment where the location of query is. In order to avoid
loading a large number of irrelevant objects, we use the signature technology to
organize all objects on each edge. We use I(e, term) as the signature of each edge
e. If there is at least one object contains the query keywords lying on the edge
e, I(e, term) = 1; otherwise I(e, term) = 0, thus only partial edges containing
query keywords can be loaded.

After providing the definitions of the related concepts, we will discuss the
three proposed methods for spatial keyword query on road networks in details.

4 The First Inverted File Then G-Tree Approach

In the above baseline method, if the road network data is very complicated
with a huge number of spatio-textual objects or locations of objects satisfying
the condition are far away from the query, it needs to spend a lot of time on
the edge expansion process. It means that, the time complexity is very high.

198 H. Fang et al.

In order to solve this problem, we employ an excellent spatial road network
index technique by combing G-Tree and a current traditional text inverted index.
Using two separated indexes to present a new method called First Inverted file
Then G-Tree (FITG in short). The index structure is as follows.

4.1 Index Structure

FITG method is executed according to the principle of first text pruning then
spatial pruning. It avoids a point-to-point manner to traverse the network which
can save much cost and improve query efficiency. In this algorithm, we first use
a text index to find all objects which contain all the keywords of the query, and
then set them as candidates to calculate the shortest network distance to query
location. Since inverted index has been explained in many papers, we will not
repeat it in this paper. G-Tree index is a novel and efficient spatial road network
index structure, proposed by Zhong et al. [15]. G-Tree has two core features. The
first feature is that it has a highly balanced tree structure which can recursively
divide the road network into a plurality of sub networks and map each vertex
to a corresponding sub network. The other is that it uses the best-first search
algorithm, greatly improving the performance. For other details of G-Tree, please
refer to the paper [15].

For example, given a query q whose location is show in Fig.1 and it contains
the text description q.term = {steam-bath, restaurant}, whose aim is to find
k = 2 spatio-textual objects. The steps of the FITG algorithm are as following:

step 1: According to the inverted index, the returned candidates of the keyword
“steam-bath” are: d1, d2, d3, d5, d7.

step 2: According to the inverted index, the returned candidates of the keyword
“restaurant” are: d2, d3, d4, d6, d7, d8.

step 3: After the intersection, three candidates are returned, which contain all
the keywords: d2, d3, d7.

step 4: Initialize the occurrence lists of d2, d3, d7 by G-Tree.
step 5: Add d2 to the result set R = < d2, 8 >.
step 6: Add d7 to the result set R = < d2, 8 >,< d7, 10 >.
step 7: Because the size of R.size = 2 is equal to k, so the process terminates

and returns the result.

4.2 Query Processing

In Algorithm 1, for lines 1-3 we use the inverted index technique to prune the
whole text dimension first to find the object list Li which contains any one of
the keywords in a query. Then we make an intersection for these lists denoted as
L. So the L is contain all objects which contains all query keywords. Then the
priority queue, the result set and the occurrence list of candidates are initialized
respectively in lines 4-6. Second, we use the spatial index G-Tree to calculate
the network distance between any objects in L and the location of the query in
lines 7-22, If a priority queue is null or the number of the result set is more than
k, the process terminates.

Effective Spatial Keyword Query Processing on Road Networks 199

Algorithm 1. FITGTreeQueryProcessing(q.loc,q.term,k,I,Tg)

Input: q.loc, q.term, k.I :is the Inverted index, Tg a G-Tree index.
Output: � objects satisfying the query condition.
1: for each word ti in q.term do
2: Li ← I.getDocListByTerm(ti);

3: InvL ← the intersection of object pointers in Li;
4: Initialize : � := ∅; Q := ∅;
5: Γ ← InvL; initialize the occurrence list from the candidate set
6: Q.Enqueue(

〈
Tgroot, 0

〉
)

7: while Q �= ∅ and |�| ≤ k do
8: n = Q.pop();
9: if n is a leaf node then

10: if q.loc ∈ n then
11: mindist inside leaf(q.loc, n);
12: else mindist outside leaf(q.loc, n);

13: for each τ ∈ Γ (n) do
14: Q.Enqueue(τ, SPDist(n, τ));

15: else if n is a non-leaf node then
16: for each child node c ∈ Γ (n) do
17: if q.loc is in c then
18: Q.Enqueue(c, SPDist(q.loc, c) = 0);
19: else
20: mindist outside nonleaf(q.loc, c);
21: Q.Enqueue(c, SPDist(q.loc, c));

22: else if n is is an object then insert then insert n into �
return �;

5 The Signature Based G-Tree Index Approach

From the above algorithm, the efficiency of the FITG approach is much higher
than that of the baseline method SNE. FITG method can not only enhance the
text pruning ability but also reduce the time on network distance computing.
It dose not need to traverse the entire network. It only needs to calculate the
network distance between the query and candidates, which reduces the time
complexity and the computation cost. However, the FITG algorithm will cause
a serious performance deterioration of algorithm if a great deal of object contain
the query keywords or the query condition contains a large number of keywords.
A large number of objects will be retrieved, which results in a high computation
cost on finding the intersection from the candidates for each query keyword. So
we propose an efficient and elegant method which can support an efficient spatial
keyword query on large road networks. We integrate the popular textual index
signature into spatial index G-Tree named Signature based G-Tree(SG-Tree).
We will detail our index structure as follows.

200 H. Fang et al.

5.1 Index Structure

In this approach, we create a signature for each node in G-Tree which node rep-
resents a sub-tree root node. The objects that each root node contains consist of
those objects of its children nodes. We use the signature to determine whether
the root node contains the query keywords. It will prune the entire sub-tree if it
dose not match with query signature. The reason is that the signature of non-
leaf node is composed of all children signatures. In order to enhance the spatial
pruning ability, we integrate the traditional Incremental Nearest Neighbor(INE)
method into the G-Tree. By integrating the traditional INE with the signature,
the distance-first SG-Tree access nodes and spatio-textual objects have a mini-
mum distance away from the location of the query, which contributes to improve
the query efficiency of the distance-first spatial keyword.

Fig. 3. Graph partition Fig. 4. SG-Tree structure

For example, Fig.4 shows an example of SG-Tree which integrates the G-Tree
of the partial road network in Fig.3 with the spatial-textual objects in Fig.2.
Given a query point q.loc as is shown in Fig.3 and its keywords description such
as q.term={steam-bath, restaurant}, k objects which are the nearest to the query
location and containing all keywords of the query will be returned. The sequence
of steps is as follows.

step 1: Enqueue g0: Q = {g0, 0};
step 2: Enqueue g0: match the signature, Enqueue g1, g2;Q = {(g1, 0), (g2, 7)};
step 3: Enqueue g1: match the signature, Enqueue g4, Q = {(g4, 0), (g2, 7)};
step 4: Enqueue g3: is a leaf node, d2 contains keyword, Enqueue d2, Q =

{(d2, 8), (g2, 7)};
step 5: Enqueue g2: match the signature,Enqueue g5Q = {(g5, 7), (d2, 8)};
step 6: Enqueue g5: is a leaf node then d7 contains keywords, Enqueue d7, Q =

{(d2, 8), (d7, 10)};
step 7: Enqueue d2: d2 is an object and added to �, Q = {(d7, 10)};
step 8: Enqueue d7: d7 is an object and added to �;
step 9: �.size = 2, then algorithm terminate and return �

Effective Spatial Keyword Query Processing on Road Networks 201

5.2 Query Processing

The SG-Tree query method has two advantages. One is using the text index
signature to prune on text and the other is to conduct spatial pruning using
the distance-first algorithm. It is SG-Tree that simultaneously prunes on the
spatial and text two dimensions. In algorithm 2, all node signatures, occurrence
lists and the priority queue are initialized in lines 1-4. For the objects in the
queue, we iteratively dequeue and handle each element in the queue separately
with three possibilities, such as a leaf node, a non leaf node and a spatial object
respectively in lines 7, 15, 21 respectively. The priority queue is employed to
keep objects accessed during the G-Tree traversing. It is used to determine the
signature of a node whether it matches the query signature. If it does not match
the whole sub-trees, it will be pruned in lines 11, 17. If the node matches the
signature of the query, then it will be pushed into the priority queue according
to their network distance. The algorithm will safely terminate when k answers
are returned or the priority queue is empty.

Algorithm 2. SignatureGtreeQueryProcessing(q.loc,q.term,k,Tg)

Input: q.loc, q.term, k, Tg.
Output: � objects satisfying the query condition.
1: Initialize : S ← node; initialize all node signature
2: Initialize : � := ∅; Q := ∅; Gamma = ∅;
3: Q.Enqueue(

〈
Tgroot, 0

〉
)

4: W ← signature(q.term)
5: while Q �= ∅ and |�| ≤ k do
6: n = Q.pool();
7: if thenn is a leaf node then
8: if q.loc ∈ n then
9: mindist inside leaf(q.loc, n);

10: else mindist outside leaf(q.loc, n);

11: if S matches W then
12: for each o ∈ n do
13: if o contain q.term then
14: Γ ← o; Q.Enqueue(o,SPDist(q.loc, o));

15: else if n is a non-leaf node then
16: for each child node c ∈ Γ (n) do
17: if S matches W then Γ ← c;

18: if q.loc is in c then
19: Q.Enqueue(c, SPDist(q.loc, c) = 0);
20: else mindist outside nonleaf(q.loc, c);

21: else if n is is an object then insert then insert n into �;
return �;

202 H. Fang et al.

6 Experimental Evaluation

In this section, we will investigate our three approaches on three real-world road
networks according to different evaluation criterions.

6.1 Setup

In this section, we evaluate the performance of our three approaches SNE, FITG
and SG-Tree. The experiments are conducted on three real datasets which are
road networks of CAL, NA, and SF(shown in Table 1) respectively. All datasets
are obtained from the webset1. The spatio-textual objects are obtained from
the US Board on Geographic Names2 in which each objects is composed of a
short text description with a geographic location. Table 1 summaries the detail
of three datasets. Note that the scalability of G-Tree have been proved in paper
[15], so do not repeat it. Our experiments were executed on Linux computer with
3.0 GHz CPU Inter processor and 4G RAM.

Table 1. Summary of the three Datasets

Data Description Vertices Edge Spatio textual object size(MB)

CAL California 21,048 21,693 13.1
NA North America 175,812 179,178 25.7
SF San Francisco 174,956 223,001 62.9

6.2 Experimental Results

In this section, we will evaluate three approaches of spatial keyword query on
road networks from different perspectives, such as index construction time, index
size, a varied number of results, and a varied number of query keywords.

Evaluation on Index Construction: First, we evaluate the space and time
consumption overhead of the index construction of three methods. Fig.5(a) illus-
trates the time consumption of the three index methods on the three different
real datasets. From Fig.5(a), we can see that the index construction time of the
baseline method is significantly more than that of the other two methods pro-
posed in this paper. This is because SNE method utilizes the CCAM structure,
it needs to take the longest time to partition the edges and to create the sig-
nature of each edge. As is shown in Fig.5(c), FITG method creating the spatial
index for a road network dose not need to spend too much time so that the most
of that time can be consumed for text indexing. The greater the spatio-textual
object on a road network, the more time it requires. Note that its time spending
on index creating index increases when the text data is relatively large. SG-Tree
builds signatures based on a pseudo-document for each node on the G-Tree, so

1 http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm
2 http://geonames.usgs.gov

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://geonames.usgs.gov

Effective Spatial Keyword Query Processing on Road Networks 203

it is more efficient than FITG. Both FITG and SG-Tree approaches spend less
time creating index than of the baseline approach.

Evaluation on Index Size: Fig.5(b) shows that the index size of three appro-
aches on three real different datasets. It can be seen that both baseline and
FITG approaches need more external memory space to store index, which dues
to that two methods need store more index information easy to search. The
Baseline method, utilizing the CCAM structure, which needs more space to
store adjacency information of each vertex and each edge. Besides, it also has to
store signatures, so that its external memory consumption is very high. As we
can see from Fig.5(d) that FITG needs more external memory because it keeps
the inverted index. Fig.5(d) shows that the spatial index G-Tree only needs
small extra space, while the Inverted File requires more space. In contrast, our
proposed SG-Tree method only needs a very small space to store nodes and the
signature on each node of G-Tree.

SF NA CA
0

50

100

150

200

250

300

350

Datasets

In
de

x
C

on
st

ru
ct

io
n

T
im

e(
s)

SNE
FITG
SG−Tree

(a) Index construc-
tion time

SF NA CA
0

100

200

300

400

500

600

700

800

Datasets

In
de

x
S

iz
e(

M
B

)

SNE
FITG
SG−Tree

(b) Index size

SF NA CA
0

5

10

15

20

25

30

35

40

45

50

Datasets

In
de

x
C

on
st

ru
ct

io
n

T
im

e(
s)

Inverted File Time
Spatial Index Time

(c) FITG Index con-
struction time

SF NA CA
0

100

200

300

400

500

600

700

Datasets

In
de

x
S

iz
e(

M
B

)

Inverted File Time
Spatial Index Time

(d) FITG Index size

Fig. 5. Index Construction Size and Index Size

Evaluation on the varied Number of Results: Fig.6 depicts the response
time within various numbers of results on the different datasets and the query
has three keywords. We compare these three methods with varying number of
results in our experiments. Fig.6(a), Fig.6(b) and Fig.6(c) show that both SG-
Tree and FITG have better performance than that of SNE on three datasets.
We can also find that the response time of SNE has little increment with the
increment of the number of results. The reason is that SNE method in the query
process needs to expand access edges. Thus, it needs to spend more time to
check edges whether they contain the keywords when the result numbers are
increased. However, the response time of both FITG and SG-Tree is almost
unchanged. This is because both FITG and SG-Tree only need to calculate the
shortest distance of few objects and this process does not need to spend much
time.
Evaluation on the Number of Query Keywords: We evaluate the response
time under the varying number of query keywords on different real datasets. The
experimental results are shown in Fig.7. It shows that SG-Tree method performs
much better than SNE and FITG. It can be ascribed to that it bypasses the
hierarchy pruning on tree. With the keywords increasing, more and more nodes
are pruned, so that the number of candidates becomes small. In Fig.7(a), we

204 H. Fang et al.

5 10 20 30 40
50

100

150

200

250

300

350

Number of Result(CAL Dataset)

R
es

po
ns

e
T

im
e(

m
s)

SNE
FITG
SG−Tree

(a) Dataset: CAL

5 10 20 30 40
100

200

300

400

500

600

700

Number of Result(NA Dataset)

R
es

po
ns

e
T

im
e(

m
s)

SNE
FITG
SG−Tree

(b) Dataset: NA

5 10 20 30 40
200

250

300

350

400

450

500

550

600

650

Number of Result(SF Dataset)

R
es

po
ns

e
T

im
e(

m
s)

SNE
FITG
SG−Tree

(c) Dataset: SF

Fig. 6. Varying Numbers of Results on Different three Datasets

1 3 5 7 10
0

100

200

300

400

500

600

700

Number of keywords(CAL Dataset)

R
es

po
ns

e
T

im
e(

m
s)

SNE
FITG
SG−Tree

(a) Dataset: CAL

1 3 5 7 10
0

100

200

300

400

500

600

700

800

Number of keywords(NA Dataset)

R
es

po
ns

e
T

im
e(

m
s)

SNE
FITG
SG−Tree

(b) Dataset: NA

1 3 5 7 10
100

200

300

400

500

600

700

800

900

Number of keywords(SF Dataset)

R
es

po
ns

e
T

im
e(

m
s)

SNE
FITG
SG−Tree

(c) Dataset: SF

Fig. 7. Varying Numbers of Keywords on Different three Datasets

can see that with the increase in the number of keywords, the processing time
in method FITG and SNE are growing gradually, while in method SG-Tree it
is reducing. The same performance also can be seen in Fig.7(b) and Fig.7(c).
The reason is that SG-Tree Method can prune lots of unrelated objects through
eliminating many more G-Tree nodes. On the contrary, FITG and SNE need to
check whether the object contains the keyword repeatedly. When the query has
one keyword, SNE performance is reasonable. With the increment of the number
of query keywords, its response time rises rapidly because it has to expand large
edges. Compared to SNE, FITG performs better because it dose not expand
edges and can save a lot of time.

In all, our experimental results show that our proposed two hybrid indexes
and query algorithms outperform the baseline method. In particular, the SG-
Tree index exploits the advantages of the hierarchical tree pruning on the text
and spatial dimensions, and improves the query efficiency tremendously.

7 Conclusion

In this paper, we analyzed the advantages and disadvantages of the existing
methods on road networks. After that, we proposed three novel approaches (SNE,
FITG, and SG-Tree) to achieve rapid and efficient spatial keyword search. Our
experimental results on real-world road networks show that the SG-Tree index
structure is the most efficient method.

Effective Spatial Keyword Query Processing on Road Networks 205

In the future, since real-time is quite important for urban planning, trans-
portation planning, route planning with heavy traffic, we will integrate temporal
information into spatial keyword query on road networks.

Acknowledgments. This work was partially supported by Chinese NSFC project
(61170020, 61402311, 61440053), and the US National Science Foundation (IIS-1115417).

References

1. Cao, X., Chen, L., Cong, G., Jensen, C.S., Qu, Q., Skovsgaard, A., Wu, D., Yiu,
M.L.: Spatial keyword querying. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012
Main Conference 2012. LNCS, vol. 7532, pp. 16–29. Springer, Heidelberg (2012)

2. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In:
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data, pp. 373–384. ACM (2011)

3. Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing:
an experimental evaluation. Proceedings of the VLDB Endowment 6(3), 217–228
(2013)

4. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases.
In: IEEE 24th International Conference on Data Engineering, ICDE 2008,
pp. 656–665. IEEE (2008)

5. Jensen, C.S., Kolářvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in
road networks. In: Proceedings of the 11th ACM International Symposium on
Advances in Geographic Information Systems, pp. 1–8. ACM (2003)

6. Lee, K.C., Lee, W.C., Zheng, B.: Fast object search on road networks. In: Pro-
ceedings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology, pp. 1018–1029. ACM (2009)

7. Lee, K.C., Lee, W.C., Zheng, B., Tian, Y.: Road: a new spatial object search frame-
work for road networks. IEEE Transactions on Knowledge and Data Engineering
24(3), 547–560 (2012)

8. Li, W., Guan, J., Zhou, S.: Efficiently evaluating range-constrained spatial key-
word query on road networks. In: Han, W.-S., Lee, M.L., Muliantara, A., Sanjaya,
N.A., Thalheim, B., Zhou, S. (eds.) DASFAA 2014. LNCS, vol. 8505, pp. 283–295.
Springer, Heidelberg (2014)

9. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial net-
work databases. In: Proceedings of the 29th International Conference on Very Large
Data Bases, vol. 29, pp. 802–813. VLDB Endowment (2003)

10. Rocha-Junior, J.B., Nørv̊ag, K.: Top-k spatial keyword queries on road networks.
In: Proceedings of the 15th International Conference on Extending Database Tech-
nology, pp. 168–179. ACM (2012)

11. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, pp. 43–54. ACM (2008)

12. Shekhar, S., Liu, D.R.: Ccam: A connectivity-clustered access method for networks
and network computations. IEEE Transactions on Knowledge and Data Engineer-
ing 9(1), 102–119 (1997)

206 H. Fang et al.

13. Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: efficient top
k spatial keyword search. In: 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pp. 901–912. IEEE (2013)

14. Zhang, D., Tan, K.L., Tung, A.K.: Scalable top-k spatial keyword search. In: Pro-
ceedings of the 16th International Conference on Extending Database Technology,
pp. 359–370. ACM (2013)

15. Zhong, R., Li, G., Tan, K.L., Zhou, L.: G-tree: an efficient index for knn search
on road networks. In: Proceedings of the 22nd ACM International Conference on
Conference on Information & Knowledge Management, pp. 39–48. ACM (2013)

16. Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.Y.: Hybrid index structures for
location-based web search. In: Proceedings of the 14th ACM International Confer-
ence on Information and Knowledge Management, pp. 155–162. ACM (2005)

	Effective Spatial Keyword Query Processing on Road Networks
	1 Introduction
	2 Related Works
	3 Problem Statement
	4 The First Inverted File Then G-Tree Approach
	4.1 Index Structure
	4.2 Query Processing

	5 The Signature Based G-Tree Index Approach
	5.1 Index Structure
	5.2 Query Processing

	6 Experimental Evaluation
	6.1 Setup
	6.2 Experimental Results

	7 Conclusion
	References

