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Abstract. We consider the problem of bonds between L-fuzzy contexts
over different complete residuated lattices. For this purpose we define
(l, k)-connection and dual (l, k)-connection – pairs of mappings between
the residuated lattices based on Krupka’s results on factorizations of
complete residuated lattices. We show that the bonds defined using the
dual (l, k)-connection have very natural properties.
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1 Introduction

We study the problem of bonding formal fuzzy contexts over different structures
of truth-degrees. This problem was addressed in [12]1 where the authors used
residuation-preserving isotone Galois connections between complete residuated
lattices to define bonds. We find the definition of residuation-preserving isotone
Galois connection unnecessarily strict for its purpose and we take a new look
at it.

Similarly as in [12] we look for an isotone Galois connection between two com-
plete residuated lattices. We apply Krupka’s results on factorization of residuated
lattices [13] to find looser and more flexible requirements for the correspondence.
As a result we obtain two interrelated correspondences between complete resid-
uated concept lattices — (l, k)-connection and dual (l, k)-connection. Both of
them can be considered to be a variant of the residuation-preserving isotone
Galois connection from [12]. Using the dual (l, k)-connection we define bonds
between formal fuzzy contexts over different complete residuated lattices.

The paper is organized as follows. In Sect. 2, we recall fundamental notions
used in the paper. Sections 3 and 4 introduce the (l, k)-connection and dual the
(l, k)-connection, respectively, and describe their properties. In Sect. 5 we utilize
the new connections in formal concept analysis to define bonds between formal
fuzzy contexts over different residuated lattices. Finally, Sect. 6 summarizes our
conclusions and ideas for future research in this area.
1 See [12] for motivations of the present research.
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2 Preliminaries

2.1 Residuated Lattices, Fuzzy Sets, and Fuzzy Relations

We use complete residuated lattices as basic structures of truth-degrees. A com-
plete residuated lattice is a structure L = 〈L,∧,∨,⊗,→, 0, 1〉 such that

(i) 〈L,∧,∨, 0, 1〉 is a complete lattice, i.e. a partially ordered set in which arbi-
trary infima and suprema exist;

(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is
commutative, associative, and a ⊗ 1 = a for each a ∈ L;

(iii) ⊗ and → satisfy adjointness, i.e. a ⊗ b � c iff a � b → c.

0 and 1 denote the least and greatest elements. The partial order of L is
denoted by �. Throughout this work, L denotes an arbitrary complete residuated
lattice.

Elements a of L are called truth degrees. Operations ⊗ (multiplication) and
→ (residuum) play the role of (truth functions of) “fuzzy conjunction” and
“fuzzy implication”. Furthermore, we define the complement of a ∈ L as

¬a = a → 0, (1)

and binary operation of biresiduum ↔ as

a ↔ b = (a → b) ∧ (b → a) for each a, b ∈ L (2)

An L-set (or L-fuzzy set) A in a universe set X is a mapping assigning to each
x ∈ X some truth degree A(x) ∈ L. The set of all L-sets in a universe X is
denoted LX .

The operations with L-sets are defined componentwise. For instance, the
intersection of L-sets A,B ∈ LX is an L-set A ∩ B in X such that (A ∩ B)(x) =
A(x) ∧ B(x) for each x ∈ X, etc. An L-set A ∈ LX is also denoted {A(x)/x | x ∈
X}. If for all y ∈ X distinct from x1, x2, . . . , xn we have A(y) = 0, we also write

{A(x1)/x1,
A(x2)/x2, . . . ,

A(xn)/xn}.

An L-set A ∈ LX is called crisp if A(x) ∈ {0, 1} for each x ∈ X. Crisp L-sets can
be identified with ordinary sets. For a crisp A, we also write x ∈ A for A(x) = 1
and x �∈ A for A(x) = 0. An L-set A ∈ LX is called empty (denoted by ∅) if
A(x) = 0 for each x ∈ X.

Binary L-relations (binary L-fuzzy relations) between X and Y can be
thought of as L-sets in the universe X×Y . That is, a binary L-relation I ∈ LX×Y

between a set X and a set Y is a mapping assigning to each x ∈ X and each
y ∈ Y a truth degree I(x, y) ∈ L (a degree to which x and y are related by I).

Various composition operators for binary L-relations were extensively studied
by [7]; we will use the following three composition operators, defined for relations
A ∈ LX×F and B ∈ LF×Y :
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(A ◦ B)(x, y) =
∨

f∈F

A(x, f) ⊗ B(f, y), (3)

(A � B)(x, y) =
∧

f∈F

A(x, f) → B(f, y), (4)

(A � B)(x, y) =
∧

f∈F

B(f, y) → A(x, f). (5)

All of them have natural verbal descriptions. For instance, (A ◦ B)(x, y) is the
truth degree of the proposition “there is a factor f such that f applies to object x
and attribute y is a manifestation of f”; (A�B)(x, y) is the truth degree of “for
every factor f , if f applies to object x then attribute y is a manifestation of f”.
Note also that for L = {0, 1}, A ◦ B coincides with the well-known composition
of binary relations.

2.2 Formal Fuzzy Concept Analysis

An L-context is a triplet 〈X,Y, I〉 where X and Y are (ordinary nonempty) sets
and I ∈ LX×Y is an L-relation between X and Y . Elements of X are called
objects, elements of Y are called attributes, I is called an incidence relation.
I(x, y) = a is read: “The object x has the attribute y to degree a.”

Consider the following pair 〈↑, ↓〉 of operators ↑ : LX → LY and ↓ : LY → LX

induced by an L-context 〈X,Y, I〉 as

A↑(y) =
∧

x∈X

A(x) → I(x, y) and B↓(x) =
∧

y∈Y

B(y) → I(x, y) (6)

for all A ∈ LX and B ∈ LY .
Furthermore, denote the set of fixed points of 〈↑, ↓〉 by B↑↓(X,Y, I), i.e.

B↑↓(X,Y, I) = {〈A,B〉 ∈ LX × LY | A↑ = B, B↓ = A}. (7)

The set of fixed points endowed with �, defined by

〈A1, B1〉 � 〈A2, B2〉 if A1 ⊆ A2 (equivalently B2 ⊆ B1)

is a complete lattice [2,15], called a standard L-concept lattice associated with
I, and its elements are called formal concepts. In a formal concept 〈A,B〉, the A
is called an extent, and B is called an intent. The set of all extents and the set
of all intents are denoted by Ext↑↓ and Int↑↓, respectively. That is,

Ext↑↓(X,Y, I) = {A ∈ LX | 〈A,B〉 ∈ B↑↓(X,Y, I) for some B},

Int↑↓(X,Y, I) = {B ∈ LY | 〈A,B〉 ∈ B↑↓(X,Y, I) for some A}.
(8)

An L-relation β ∈ LX1×Y2 is called an L-bond2 from L-context 〈X1, Y1, I1〉 to
L-context 〈X2, Y2, I2〉 if

Ext↑↓(X1, Y2, β) ⊆ Ext↑↓(X1, Y1, I1),

Int↑↓(X1, Y2, β) ⊆ Int↑↓(X2, Y2, I2).
(9)

2 The notion of L-bond was introduced in [11]; however we adapt its definition the
same way as in [8,9].
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3 (l, k)-Connections Between Complete Residuated
Lattices

Similarly as in [12] we look for a pair of mappings λ : L1 → L2 and κ : L2 → L1

which form an isotone Galois connection. Set of its fixpoints with order defined as

〈a1, a2〉 � 〈b1, b2〉 iff a1 � b1 (or equivalently a2 � b2) (10)

is a complete lattice. We denote it as L〈λ,κ〉. We need to assure that an adjoint
pair exists in L〈λ,κ〉 and this pair is related to adjoint pairs of both, L1 and L2.
To this purpose we apply Krupka’s results on factorization of residuated lattices
[13]. In fact, the problem can be reformulated as finding an isomorphism between
some factorizations of L1 and L2 as depicted in Fig. 1.

Let us recollect Krupka’s approach to factorization of complete residuated
lattices. Krupka defines the factorization by cuts of biresiduum as follows. Con-
sider a complete residuated lattice L, a truth degree e ∈ L, and mappings

ae =
∨

{b ∈ L | a ↔ b � e} = e → a, (11)

ae =
∧

{b ∈ L | a ↔ b � e} = e ⊗ a. (12)

For each a ∈ L define intervals

[a]e = [ae, (ae)e] = [e ⊗ a, e → (e ⊗ a)],
[a]e = [(ae)e, a

e] = [e ⊗ (e → a), e → a].

Denote L/e = {[a]e | a ∈ L}(= {[a]e | a ∈ L}). Then we have the following
result.

Theorem 1 ([13]). L/e = 〈L/e,∧,∨,⊗,→, 0, 1〉, where ∧ and ∨ are given by
the order

B1 � B2 iff
∨

B1 �
∨

B2

and

B1 ⊗ B2 = [
∨

B1 ⊗
∨

B2]e,

B1 → B2 = [
∨

B1 →
∨

B2]e,

0 = [0, e → 0],
1 = [e, 1]

for each B1, B2 ∈ L/e, is a complete residuated lattice.

Following lemma shows alternative ways to define ⊗ and → in L/e
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Fig. 1. Six-element residuated lattice, with ⊗ and → as showed in the bottom part
(011010:00A0B0BCAB in [6]), factorized by c-cuts of biresiduum (left), five-element
�Lukasiewicz chain (111:000AB in [6]) factorized by 0.5-cuts of biresiduum (right), and
their common lattice of factors (middle).

Lemma 1 ([13]). For any B1, B2 ∈ L/e we have
∨

B1 ⊗
∧

B2 =
∧

B1 ⊗ B2,
∨

B1 →
∨

B2 =
∨

(B1 → B2),
∧

B1 →
∧

B2 =
∨

(B1 → B2).

Note that the operators (11) and (12) form an isotone Galois connection on the
complete residuated lattice L. We extend this approach to have an isotone Galois
connection between two (different) complete residuated lattices.

Definition 1. Let L1=〈L1,∧1,∨1,⊗1,→1, 01, 11〉,L2=〈L2,∧2,∨2,⊗2,→2, 02, 12〉
be complete residuated lattices, let l ∈ L1, k ∈ L2 and let λ : L1 → L2, κ : L2 →
L1 be mappings, such that

1. 〈λ, κ〉 is an isotone Galois connection between L1 and L2,
2. κλ(a1) = l →1 (l ⊗1 a1) for each a1 ∈ L1,
3. λκ(a2) = k ⊗2 (k →2 a2) for each a2 ∈ L2.
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Fig. 2. (c, 0.5)-connection between the residuated lattices from Fig. 1.

We call 〈λ, κ〉 an (l, k)-connection from L1 to L2.

Figure 2 shows an example of (l, k)-connection corresponding to the factor-
izations in Fig. 1.

Remark 1.

(a) A pair of identities 〈id, id〉 on a complete residuated lattice L is (1, 1)-
connection from L to L.

(b) It is worth noting that an (l, k)-connection from L1 to L2 is not uniquely
given by the pair of truth degrees l ∈ L1, k ∈ L2 as more than one isomor-
phism between L1/l and L2/k can exist. For example, consider four-element
complete residuated lattice L in Fig. 3 (left) with ⊗ = ∧ and → as in Fig. 3
(right) and mapping f : L → L given by f(0) = 0, f(a) = b, f(b) = a, and
f(1) = 1. Then 〈idL, idL〉 and 〈f, f〉 are both (1, 1)-connections from L to L.

Utilizing Theorem 1 we can find particular adjoint pairs in the lattice of fixed
points of 〈λ, κ〉.
Theorem 2. Denote by L〈λ,κ〉 the set of all fixed points of (l, k)-connection
〈λ, κ〉 between L1 and L2.

1. The algebra 〈L〈λ,κ〉,∧,∨,⊗,→, 0, 1〉 where ∧, ∨, 0, and 1 are given by the
order (10) and

〈a1, a2〉 → 〈b1, b2〉 = 〈a1 →1 b1, λ(a1 →1 b1)〉,
〈a1, a2〉 ⊗ 〈b1, b2〉 = 〈l → (l ⊗1 a1 ⊗1 b1), λ(a1 ⊗1 b1)〉

is a complete residuated lattice.
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Fig. 3. Complete residuated lattice from Remark 1(b); (0:a0b in [6])

2. The algebra 〈L〈λ,κ〉,∧,∨,�,↘, 0, 1〉 where ∧, ∨, 0, and 1 are given by the
order (10) and

〈a1, a2〉 ↘ 〈b1, b2〉 = 〈κ(k ⊗2 (a2 →2 b2)), k ⊗2 (a2 →2 b2)〉
= 〈κ((k →2 b2) →2 (k →2 b2)), (k →2 a2) →2 (k →2 b2)〉,

〈a1, a2〉 � 〈b1, b2〉 = 〈κ(a2 ⊗2 (k →2 b2)), a2 ⊗2 (k →2 b2)〉
= 〈κ((k →2 a2) ⊗2 b2), (k →2 a2) ⊗2 b2〉

is a complete residuated lattice.

Proof. Directly from Definition 1, Theorem 1 and Lemma 1. ��
Remark 2. For sake of completeness, we show how the meet, join, 0, and 1 given
by the order (10) are defined in L〈λ,κ〉:

〈a1, a2〉 ∧ 〈b1, b2〉 = 〈a1 ∧1 b1, k ⊗2 ((k →2 a2) ∧2 (k →2 b2))〉, (13)
〈a1, a2〉 ∨ 〈b1, b2〉 = 〈l →1 ((l ⊗1 a1) ∨1 (l ⊗1 b1)), a2 ∨2 b2〉, (14)

0 = 〈l → 01, 02〉, (15)
1 = 〈11, k〉. (16)

It is easy to see, that the two ajdoint pairs, 〈⊗,→〉 and 〈�,↘〉, from Theorem 2
can be different. As an example consider L1 being three-element �Lukasiewicz
chain, L2 being three-element Gödel chain and λ and κ being identities on L1 =
L2. The related factorizations, L1/1 and L2/1 are the three-element �Lukasiewicz
chain and the three-element Gödel chain, respectively, again. Clearly, their
adjoint pairs are different.

We call the (l, k)-connections whose factorizations produce the same adjoint
pair residuation-preserving. The following corollary shows that for residuation-
preserving (l, k)-connection 〈λ, κ〉 we can specify the adjoint pair on the lattice
of its fixed points without the mappings 〈λ, κ〉.
Corollary 1. Let 〈λ, κ〉 be a residuation-preserving (l, k)-connection from L1

to L2. The algebra L〈λ,κ〉 = 〈L〈λ,κ〉,∧,∨,⊗,→, 0, 1〉 where ∧,∨, 0, 1 are given by
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the order (10) and

〈a1, a2〉 → 〈b1, b2〉 = 〈a1 →1 b1, k ⊗2 (a2 →2 b2)〉 (17)
= 〈a1 →1 b1, k ⊗2 ((k →2 a2) →2 (k →2 b2))〉, (18)

〈a1, a2〉 ⊗ 〈b1, b2〉 = 〈l →1 (l ⊗1 a1 ⊗1 b1)a2 ⊗2 (k →2 b2)〉 (19)
= 〈l →1 (l ⊗1 a1 ⊗1 b1), (k →2 a2) ⊗2 b2〉 (20)

is a complete residuated lattice.

Proof. Directly from Theorem 2 and the property of residuation-preservation,
that is ⊗ = � and →=↘. ��
The following theorem provides more practical characterization of residuation-
preserving (l, k)-connections.

Theorem 3. Let 〈λ, κ〉 be an (l, k)-connection from L1 to L2. The following
statements are equivalent

(a) 〈λ, κ〉 is residuation-preserving.
(b) κ(k ⊗2 (λ(a) →2 λ(b))) = κλ(a) →1 κλ(b) holds true for any a, b ∈ L1.
(c) k ⊗2 (λκ(a) →2 λκ(b)) = λ(κ(a) →1 κ(b)) holds true for any a, b ∈ L2.

Proof. (sketch) Follows from the fact, that pairs in L〈λ,κ〉 are exactly pairs
〈κλ(a1), λ(a1)〉 for a1 ∈ L1 and exactly pairs 〈κ(a2), λκ(a2)〉 for a2 ∈ L2. ��
Note that left-hand sides of the equations in (b) and (c) of Theorem 3 contain an
inconvenient multiplication by k. This leads to a quite cumbersome definition
when we try to use them to define bonds between formal fuzzy context over
different residuated lattices. In the next section we provide an alternative to
(l, k)-connection which avoids this inconvenience.

4 Dual (l, k)-Connections Between Complete Residuated
Lattices

We defined (l, k)-connections as an isotone Galois connection to assure that the
set of its fixed points is a complete lattice and that it preserves order of both
L1 and L2. But another property of isotone Galois connection, namely its non-
duality, is undesired for our purpose, that is bonding fuzzy contexts over different
residuated lattices. To fix this, we make a small trick with the (l, k)-connections.
Instead of connecting upper bounds of intervals from L1/l with lower bounds of
intervals in L2/k, we simply connect upper bounds with upper bounds. To do
that we need to drop the requirement of being an isotone Galois connection.

Definition 2. Let L1 = 〈L1,∧1,∨1,⊗1,→1, 01,11〉, L2 = 〈L2,∧2,∨2,⊗2,→2,02,12〉
be complete residuated lattices, let l ∈ L1, k ∈ L2 and let λ′ : L1 → L2, κ

′ : L2 →
L1 be mappings, such that
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Fig. 4. Dual (c, 0.5)-connection between the residuated lattices from Fig. 1

– λ′ and κ′ are order-preserving,
– λ′κ′λ′(a1) = λ′(a1) and κ′λ′κ′(a2) = κ′(a2) for each a1 ∈ L1 and a2 ∈ L2,
– κ′λ′(a1) = l →1 (l ⊗1 a1) for each a1 ∈ L1,
– λ′κ′(a2) = k →2 (k ⊗2 a2) for each a2 ∈ L2.

We call the pair 〈λ′, κ′〉3 a dual (l, k)-connection from L1 to L2.

The notion of dual and non-dual (l, k)-connections are related in following
way.

Theorem 4.

(a) For each (l, k)-connection 〈λ, κ〉 from L1 to L2 there is a dual (l, k)-
connection 〈λ′, κ′〉 from L1 to L2, such that for each a1 ∈ L1, a2 ∈ L2,

〈a1, a2〉 ∈ L〈λ,κ〉 implies 〈a1, k →2 a2〉 ∈ L〈λ′,κ′〉,
〈a1, a2〉 ∈ L〈λ′,κ′〉 implies 〈a1, k ⊗2 a2〉 ∈ L〈λ,κ〉.

(21)

(b) For each dual (l, k)-connection 〈λ′, κ′〉 from L1 and L2 there is an (l, k)-
connection 〈λ, κ〉 from L1 to L2 such that (21) is satisfied.

Proof.

(a) Let 〈λ, κ〉 be an (l, k)-connection from L1 to L2. We show that 〈λ′, κ′〉 defined
as

λ′ = k →2 λ(a1) and κ′ = κ(k ⊗2 a2) (22)

for each a1 ∈ L1, a2 ∈ L2 is a dual (l, k)-connection from L1 to L2

which satisfies (21). Since λ and κ are order-preserving and → and ⊗ are
3 In this section, we consistently denote dual (l, k)-connections by prime, as 〈λ′, κ′〉,

to distinguish them from the non-dual (l, k)-connections introduced in the previous
section.
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both monotone in the second argument, the mapping λ′ and κ′ are order-
preserving as well. We have for each a1 ∈ L1, a2 ∈ L2

κ′λ′(a1) = κ(k ⊗2 (k →2 (λ(a1)))) = κλκλ(a1) = κλ(a1) = l →1 (l ⊗1 a1)

and

λ′κ′(a2)=k →2 λκ(k⊗2a2) = k →2 (k⊗2(k →2 (k⊗2a2))) = k →2 (k⊗2a2).

Finally, we have for each a1 ∈ L1, a2 ∈ L2

λ′κ′λ′(a1) = k →2 (k ⊗2 (k →2 λ(a1))) = k →2 λ(a1) = λ′(a1)

and

κ′λ′κ′(a2) = κ′λ′(κ(k ⊗2 a2) = κλκ(k ⊗2 a2) = κ(k ⊗2 a2) = κ′(a2).

Thus, 〈λ′, κ′〉 is a dual (l, k)-connection from L1 to L2. Now we show that
〈λ′, κ′〉 satisfies (21). Let 〈a1, a2〉 ∈ L〈λ,κ〉; from that we have

〈a1, k → a2〉 = 〈κ(a2), k →2 λ(a1)〉
= 〈κλ(a1), k →2 λ(a1)〉
= 〈κ′λ′(a1), λ′(a1)〉

showing 〈a1, k →2 a2〉 ∈ L〈λ′,κ′〉. The other part can be showed similarly.
(b) Similarly as in (a) we can show that 〈λ, κ〉 defined as

λ = k ⊗2 λ′(a1) and κ = κ′(k →2 a2) (23)

for each a1 ∈ L1, a2 ∈ L2 is a (l, k)-connection from L1 to L2 which satisfies
(21).

��
What we get from this trick are more convenient operations ∧ and → in the
complete residuated lattice L〈λ,κ〉 of fixed points of 〈λ, κ〉. That is important for
definition of bonds because concept-forming operators 〈↑, ↓〉 are defined using
the operations ∧ and →.

Theorem 5. The (l, k)-connections from L1 to L2 are in one-to-one correspon-
dence with dual (l, k)-connections from L1 to L2.

Proof. From proof of Theorem4 we have (22) and (23) providing ways to get a
dual (l, k)-connection from an (l, k)-connection and vice versa. We only need to
show, that they are mutually inverse. Let 〈λ, κ〉 be an (l, k)-connection from L1

and L2 and let 〈λ′, κ′〉 be a dual (l, k)-connection from L1 to L2 defined by (22).
Applying (23) we get

λ′′(a1) = k ⊗2 λ′(a1) = k ⊗2 (k →2 λ(a1)) = λκλ(a1) = λ(a1)
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for each a1 ∈ L1 and

κ′′(a2) = κ′(k →2 a2) = κ(k ⊗2 (k →2 a2)) = κλκ(a2) = κ(a2)

for each a2 ∈ L2. Similarly, the other composition can be showed to be an
identity. ��

From the above one-to-one correspondence we obtain the following theorem.

Theorem 6. Let be 〈λ′, κ′〉 dual (l, k)-connection from L1 to L2.

1. The algebra 〈L〈λ′,κ′〉,∧,∨,⊗1,→1, 0, 1〉 where ∧ and ∨ are given by the order
(10) and

〈a1, a2〉 → 〈b1, b2〉 = 〈a1 →1 b1, λ
′(a1 →1 b1)〉

〈a1, a2〉 ⊗ 〈b1, b2〉 = 〈l →1 (l ⊗1 a1 ⊗1 b1), λ′(a1 ⊗1 b1)))〉

is a complete residuated lattice.
2. The algebra 〈L〈λ′,κ′〉,∧,∨,�,↘, 0, 1〉 where ∧ and ∨ are given by the order

(10) and

〈a1, a2〉 ↘ 〈b1, b2〉 = 〈κ′(a2 →2 b2), a2 →2 b2〉
〈a1, a2〉 � 〈b1, b2〉 = 〈κ′(a2 ⊗2 b2), k →2 (k ⊗2 a2 ⊗2 b2)〉

is a complete residuated lattice.

Proof. Directly from Theorems 2 and 4 and its proof, and Theorem5. ��
For sake of completeness, we also show how ∧,∨, 0 and 1 are defined in the
complete residuated lattice from the previous theorem:

〈a1, a2〉 ∧ 〈b1, b2〉 = 〈a1 ∧1 b1, a2 ∧2 b2〉, (24)
〈a1, a2〉 ∨ 〈b1, b2〉 = 〈l →1 (l ⊗1 (a1 ∨1 b1)), k →2 (k ⊗2 (a2 ∨2 b2))〉, (25)

and 0 = 〈l → 01, k → 02〉, 1 = 〈11, 12〉.
Again, we want the two adjoint pairs from Theorem 6 to be equal. We define

the notion of residuation-preserving dual (l, k)-connection analogously, as in the
non-dual case.

Theorem 7. Let 〈λ′, κ′〉 be a dual (l, k)-connection from L1 to L2. The following
statements are equivalent

(a) 〈λ′, κ′〉 is residuation-preserving.
(b) κ′(λ′(a1) →2 λ′(b1)) = κ′λ′(a1) →1 κ′λ′(b1) holds true for any a1, b1 ∈ L1.
(c) λ′(κ′(a2) →1 κ′(b2)) = λ′κ′(a2) →2 λ′κ′(b2) holds true for any for any

a2, b2 ∈ L2.

Proof. Similar as proof of Theorem 3. ��
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Theorem 8. A dual (l, k)-connection 〈λ′, κ′〉 from L1 to L2 is residuation-
preserving if and only if its associated (l, k)-connection is residuation-preserving.

Proof. We have

κ′(λ′(a1) →2 λ′(b1)) = κ(k ⊗2 ((k →2 λ(a1)) →2 (k →2 λ(b1))))
= κ(k ⊗2 ((k ⊗2 (k →2 λ(a1))) →2 λ(b1)))
= κ(k ⊗2 ((λκλ(a1)) →2 λ(b1)))
= κ(k ⊗2 (λ(a1) →2 λ(b1)))

and
κ′λ′(a1) →2 κ′λ′(b1) = κλ(a1) →2 κλ(b1)

showing that the condition Theorem 7(b) is equivalent to Theorem 3(b). The
statement of Theorem 8 then follows from Theorems 3 and 7. ��
Remark 3. In the previous approach [12], the residuation-preserving Galois con-
nections are defined as isotone Galois connections, as in the case of (l, k)-connect-
ions. In the same time, they have to satisfy conditions similar to Theorem 7(b)
and (c), as in the case of dual (l, k)-connections. This is where we see the unnec-
essary strictness of the previous approach. Loosely speaking, the residuation-
preserving isotone Galois connections were wanted to be both, (l, k)-connections
and dual (l, k)-connections.

5 〈λ, κ〉-Bonds

In this section, we define bond between formal fuzzy contexts over different com-
plete residuated lattices L1 and L2 and describe their properties. More specif-
ically, we propose new bonds, called 〈λ, κ〉-bonds, which are based directly on
dual (l, k)-connections4 from L1 to L2. In this section we omit proofs due to
page limit.

Below, we define the 〈λ, κ〉-bonds as a special L〈λ,κ〉-relation β between X1

and Y2 and we define concept-forming operators � : LX1
1 → LY2

2 and � : LY1
2 →

LX2
2 induced by 〈λ, κ〉-bond by5

A�(y2) =
∧

2
x1∈X1

λ(A(x1)) →2 proj2(β(x1, y2)),

B�(x1) =
∧

1
y2∈Y2

κ(B(y2)) →1 proj1(β(x1, y2)).
(26)

Thus we can express the concept-forming operators 〈�,�〉 using the classic ones,
i.e. 〈↑, ↓〉, as

A� = (λ(A))↑proj2(β) and B� = (κ(B))↓proj1(β)

for each A ∈ LX1
1 and B ∈ LY2

2 .
4 In this section 〈λ, κ〉 always denotes a dual (l, k)-connection.
5 By proj1 and proj2 we denote projection of first and second entry of a pair, respec-

tively; i.e. proj1(〈a1, a2〉) �→ a1, proj2(〈a1, a2〉) �→ a2.
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Remark 4. The definition of concept-forming operators (26) actually follows as
a corollary of particular setting in the framework of supremum-preserving aggre-
gation structures. The framework was introduced in [3] and studied further in
[4] (see also [1,5,10,14] for related works). We will bring detailed explanation in
the full version of this paper.

Definition 3. Let L1,L2 be complete residuated lattices, 〈λ, κ〉 be dual (l, k)-
connection from L1 to L2, and let 〈X1, Y1, I1〉 and 〈X2, Y2, I2〉 be L1-context and
L2-context, respectively. We call β ∈ LX1×Y2

〈λ,κ〉 a 〈λ, κ〉-bond from 〈X1, Y1, I1〉 to
〈X2, Y2, I2〉 if the following inclusions hold:

Ext��(X1, Y2, β) ⊆ Ext↑↓(X1, Y1, κλ(I1)), (27)

Int��(X1, Y2, β) ⊆ Int↑↓(X2, Y2, λκ(I2)). (28)

Obviously, when L1 = L2 = L the pair of identities 〈id, id〉 on L is a (1, 1)-
connection between them and the 〈id, id〉-bonds correspond with L-bonds. The
following theorem explains the relationship of 〈λ, κ〉-bonds with the L-bonds
more generally.

Theorem 9. Let β ∈ LX1×Y2
〈λ,κ〉 . The following statements are equivalent.

(a) β is a 〈λ, κ〉-bond from 〈X1, Y1, I1〉 to 〈X2, Y2, I2〉;
(b) proj1(β) is a L1-bond from 〈X1, Y1, κλ(I1)〉 to 〈X2, Y2, κ(I2)〉;
(c) proj2(β) is a L2-bond from 〈X1, Y1, λ(I1)〉 to 〈X2, Y2, λκ(I2)〉;
(d) proj1(β) = λκ(I1) �1 Si and proj2(β) = Se �2 λκ(I2) for some Se ∈ LX1×X2

1

and Si ∈ LY1×X2
2 .

From Theorem 9(a)⇔(d) we have the following corollary.

Corollary 2. Set of all 〈λ, κ〉-bonds is an L〈λ,κ〉-closure system.

〈λ, κ〉-direct products and regular 〈λ, κ〉-bonds
In this part, we assume that L〈λ,κ〉 satisfies the double negation law, that is

(a → 0) → 0 = a for each a ∈ L〈λ,κ〉.

Note that it means

〈a1, a2〉 = (〈a1, a2〉 → 〈l →1 01, k →2 02〉) → 〈l →1 01, k →2 02〉
= 〈(a1 →1 (l →1 0)) →1 (l →1 0), (a2 →2 (k →2 02)) →2 (k →2 02)〉

for each 〈a1, a2〉 ∈ L〈λ,κ〉.

Definition 4. Let K1 = 〈X1, Y1, I1〉 be an L1-context, K2 = 〈X2, Y2, I2〉 be
an L2-context, and 〈λ, κ〉 be a dual (l, k)-connection from L1 to L2. We define
〈λ, κ〉-direct product K1 �〈λ,κ〉 K2 as L〈λ,κ〉-context 〈X2 × Y1,X1 × Y2,Δ〉 with

Δ(〈x2, y1〉, 〈x1, y2〉) = ¬〈κλI1(x1, y1), λI1(x1, y1)〉 → 〈κI2(x2, y2), λκI2(x2, y2)〉
for each x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2.
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Fig. 5. A L1-context K1 and L2-context K2 (top left and top right) with L1,L2 as
in Fig. 1; K1 �〈λ,κ〉 K2 (middle) with 〈λ, κ〉 as in Fig. 4.; Lattice of all 〈λ, κ〉-bonds
(bottom); the solid lined bonds are regular and the dotted lined bonds are irregular.
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Extents of the 〈λ, κ〉-direct product are 〈λ, κ〉-bonds:

Theorem 10. Let K1�〈λ,κ〉K2 = 〈X1 × Y2,X2 × Y1,Δ〉 be a 〈λ, κ〉-direct prod-
uct. Extents in Ext↑↓(X1 × Y2,X2 × Y1,Δ) are 〈λ, κ〉-bonds from K1 to K2.

Analogously, with the L-bonds there exist 〈λ, κ〉-bonds which are not extents of
the direct product K1 �〈λ,κ〉 K2 (see Fig. 5). A 〈λ, κ〉-bond is called regular if it
is extent of the direct product, otherwise it is called irregular.

6 Conclusions and Further Research

We revisited results on bonding formal fuzzy contexts in [12] and identified
the main flaw: the residuation-preserving isotone Galois connections between
complete residuated concept lattices had to fulfill two conflicting sets of require-
ments. In the present paper we studied two variants of residuation-preserving
isotone Galois connections emerging by altering one of the two conflicting sets
of requirements. One of the variants, namely dual (l, k)-connections, brought
very convenient definition of bonds between formal fuzzy contexts with different
structures of truth-degrees.

Our future research in this area includes:

– Extension of the present results to homogeneous bonds wrt. isotone concept-
forming operators and heterogeneous bonds studied in [8,9]. We are going
to generalize our previous results on bonds. Our preliminary observations
show that (l, k)-connections will be useful for homogeneous bonds wrt. iso-
tone concept-forming operators and for heterogeneous bonds.

– Connections between complete residuated lattices based on antitone Galois con-
nections.
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