
Chapter 13
Neuronal Spike Train Analysis
Using Gaussian Process Models

Babak Shahbaba, Sam Behseta, and Alexander Vandenberg-Rodes

Abstract Statistical analysis of simultaneously recorded neurons plays an important
role in understanding complex behaviors, decision making process, and neurophys-
iological disorders. Here, we briefly review several statistical methods specifically
developed for analysis of neuronal spike trains. We then focus on application of
Gaussian process models for estimating time-varying firing rates of neurons and
show how this approach can be extended for modeling synchrony among multiple
neurons. We finish this chapter by discussing some possible future directions where
more advanced nonparametric Bayesian methods can be utilized to improve existing
models.

13.1 Introduction

A common approach in neuroscience involves recording spiking activities or action
potentials of neurons using microelectrodes. Subsequently, neuronal data may be
represented as the times at which spikes occur. The main objective of a considerably
large number of statistical methods then is to model the temporal evolution of the
firing patterns of a group of neurons (Brillinger 1988; Brown et al. 2004; Kass et al.
2005; Gerstner and Kistler 2002; Tuckwell 1988; H.C. 1989; Riccardi 1977; Holden
1976; West 2007; Rigat et al. 2006). For a comprehensive review of the topic see
Kass et al. (2005).
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Fig. 13.1 Raster and PSTH plots for a neuron under repeating (left panel) and random (right panel)
modes

As an example, consider a study of neurons recorded from the primary motor
cortex (M1) area of a Macaque monkey, performing a sequential task of reach-
ing five targets arranged horizontally on a touch sensitive screen (Matsuzaka et al.
2007). The targets were numbered 1 to 5 from left to right and could be illuminated
upon reaching them. The animal was trained to respond to the visual stimuli under
two experimental conditions or modes. In the “repeating mode,” a sequence of tar-
gets appeared on the screen in a repeating order. In the “random mode,” targets ap-
pear in a pseudo-random order. An experimental window of 300 milliseconds (ms)
was used. This time window began at 200 ms prior to the target reach and continued
for 100 ms after that. The upper segment of Fig. 13.1 shows the corresponding raster
plots for a neuron recorded under both modes of this task. Rows in the raster plot
represent trials, and the tick-marks are spike time occurrences.

Typically, neuronal data are summarized through peri-stimulus time histograms
(PSTH). For the above example, by dividing the window of 300 ms into bins of
10 ms, and pooling the spike occurrences within each bin, one can create the PSTH
plots shown in the lower segment of Fig. 13.1.

Let Y1, . . . ,Yn denote the number of spike occurrences within the bins centered
at times t1, . . . , tn. A common approach to modeling the neuronal firing rates is by
discretizing an inhomogeneous Poisson point process, resulting in a hierarchical
model of the form

Yj ∼ p(y j|θ j, ζ )
θ j = f (t j),

(13.1)

where the data model p(y j|θ j, ζ ) is usually a Poisson(θ j) density. If the bins are
narrow enough they can safely be assumed (or thresholded) to contain at most one
spike, so that Yj can be modeled as a Bernoulli random variable. The model includes
a vector of nuisance parameters ζ to allow for generality.
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The (latent) firing rates f (t j) are often the key quantity of interest. In particular—
ignoring the details of binning or the data model—one should think of f (t) as a
latent function over the whole time interval of interest. Thus in the Bayesian ap-
proach a key challenge is to produce an appropriately realistic and flexible prior
distribution over latent functions, and to then provide computationally efficient pro-
cedures for approximating the posterior distribution of f given the observed spike
data Y1, . . . ,Yn.

One highly flexible approach is known as Bayesian adaptive regression splines
(BARS) (Dimatteo et al. 2001). In this model the latent function f is assumed to be
a spline having knots at unknown locations ξ1, . . . ,ξk. Writing f (t) in terms of basis
functions bξ ,h(t) as f (t) = ∑h bξ ,h(t)βξ ,h, the function evaluations f (t1), . . . , f (tn)
may be collected into a vector ( f (t1), . . . , f (tn))T = Xξ βξ , where Xξ is the design
matrix and βξ the coefficient vector. BARS then employs a reversible jump MCMC
algorithm (Green 1995) to sample from a suitable approximate posterior distribution
on the knot set ξ . Eventually, curves are fitted via model averaging.

One advantage of using BARS for modeling PSTH is the ability to develop in-
ferential methods, suitable for comparing the patterns of spiking activities for com-
parative problems similar to the one depicted in Fig. 13.1 (Behseta and S. 2011;
Behseta et al. 2005). Kottas et al. (2012) and Kottas and Behseta (2010) also treated
the problem of comparing the spike trains resulting in the experiments similar to the
ones shown in Fig. 13.1, and subsequently developed a fully-Bayesian inferential
methodology for such comparative studies; however, they used a Dirichlet process
mixture of Beta densities as the prior for f .

Although single-neuron analysis of this type has led to many interesting dis-
coveries, it is widely perceived that complex behaviors are driven by networks of
neurons instead of a single neuron (Buzsáki 2010). Therefore, investigators have
been recording neuronal activity from multi-probe electrodes. From the statistical
point of view, multiple channel recordings greatly facilitate assessing the temporal
properties of networks of neurons in real time.

Early analysis of simultaneously recorded neurons focused on correlation of
activity across pairs of neurons using cross-correlation analyses (Narayanan and
Laubach 2009) and analyses of changes in correlation over time, i.e., by using a
Joint Peri-Stimulus Time Histogram or PSTH (Gerstein and Perkel 1969). Simi-
lar analyses were performed in the frequency domain by using coherence analy-
sis of neuron pairs using Fourier-transformed neural activity (Brown et al. 2004).
For the Bayesian correction for attenuation of correlation in multi-trial spike see
Behseta et al. (2009). There are also a number of multivariate analysis techniques
for the investigation of simultaneously recorded populations of neurons (Chapin
1999; Nicolelis 1999; Grün et al. 2002; Pillow et al. 2008; Harrison et al. 2013;
Brillinger 1988; Brown et al. 2004; Kass et al. 2005; West 2007; Rigat et al. 2006;
Patnaik et al. 2008; Diekman et al. 2009; Sastry and Unnikrishnan 2010; Kottas
et al. 2012).

Recently, Kelly and Kass (2012) proposed a new method to quantify synchrony
among multiple neurons. The authors argued that separating stimulus effects from
history effects would allow for a more precise estimation of the instantaneous
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conditional firing rate. Specifically, given the firing history Ht , define λ A(t|HA
t ),

λ B(t|HB
t ), and λ AB(t|HAB

t ) to be the conditional firing intensities of neuron A, neu-
ron B, and their synchronous spikes respectively. Independence between the two
point processes may be examined by testing the null hypothesis H0 : ζ (t) = 1, where

ζ (t) = λ AB(t|HAB
t )

λ A(t|HA
t )λ B(t|HB

t )
. where ζ represents the excess firing rate (ζ > 1) or the sup-

pression of firing rate (ζ < 1) due to dependence between two neurons (Ventura
et al. 2005; Kelly and Kass 2012). That is, ζ accounts for the excess joint spiking
beyond what is explained by independence.

In this chapter we discuss alternative approaches that place a Gaussian process
(GP) prior over the latent function in order to model the time-varying and history-
dependent firing rate for each neuron. The joint distribution of spikes for multiple
neurons is connected to their marginals using a parametric copula model. We first
provide a brief overview of univariate GP models in Sect. 13.2. Then, in Sect. 13.3
we discuss the application of GP for single neuron analysis. The copula model for
simultaneously recorded neurons is presented in Sect. 13.4. In Sect. 13.5, we discuss
some future directions.

13.2 Gaussian Process Models

A Gaussian process (GP) on the real line is a random real-valued function x(t), with
statistics determined by its mean function Ex(s) and kernel κ(s, t) =Cov(x(s),x(t)).
More precisely, all finite-dimensional distributions (x(t1), . . . ,x(tn)) are multivariate
Gaussian with mean (Ex(t1), . . . ,Ex(tn)), and with covariance matrix (κ(tk, t�))n

k,�=1.
Since the latter must be positive semi-definite for every finite collection of inputs
t1, . . . , tn, only certain kernels κ are valid. Thus when using Gaussian processes,
a practitioner often chooses from among the few popular classes of kernels, such
as the Squared Exponential (SE), Ornstein–Uhlenbeck (OU), Matérn, Polynomial,
and linear combinations of these. For example, we can use the following covariance
form, which combines a random constant with the SE kernel and iid observation
noise (Rasmussen and Williams 2006; Neal 1998):

Ci j = Cov[x(ti),x(t j)]

= λ 2 +η2 exp[−ρ2(ti − t j)
2]+δi jσ2

ε . (13.2)

Here, λ ,η ,ρ , and σε are hyperparameters with their own hyperpriors. In general, the
choice of kernel encodes our qualitative beliefs about the underlying signal. For in-
stance, samples from a GP with OU kernel are always non-differentiable functions
x(t), and the SE kernel generates only infinitely differentiable functions. Despite
such differences, both kernels have the inverse length-scale ρ as a hyperparameter:
smaller values of ρ result in more slowly varying functions. In practice we only
observe GPs at a finite number of points, hence local properties of GPs such as
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differentiability are irrelevant—in Cunningham et al. (2007), for example, it was
observed that using the Matérn instead of SE kernel resulted in negligible differ-
ences when modeling spike trains.

It should be remarked that many dynamical models such as autoregressive pro-
cesses with Gaussian noise are also multivariate Gaussian and hence can be situated
within the GP framework, albeit with a usually less interpretable kernel.

13.3 Gaussian Process Model of Firing Rates

With the model (13.1), note that the latent firing rates f (ti) need to be non-negative,
hence a Gaussian process cannot be directly used as a prior distribution for f . In
the case of Poisson observations one can use an exponential link function, letting
f (t) = exp(x(t)), where x(t) is a GP. In Cunningham et al. (2007) it was instead
proposed to set the constant mean function μ(t) = μ > 0 as an additional hyper-
parameter for a GP, and then to let the latent rate f be this GP conditioned to be
non-negative.1 In a recent work, Shahbaba et al. (2014) also use the model (13.1)
to estimate the underlying firing rate of neurons, but after discretizing time so that
there is at most one spike within each time interval, resulting in a binary time se-
ries Y1, . . . ,Yn comprised of 1 s (spike) and 0 s (silence). To model the latent firing
probabilities f (ti) = P(Yi = 1), they apply the sigmoidal transformation

f (ti) =
1

1+ exp[−u(ti)]
,

where u(t) has a GP prior. Note that as u(t) increases, so does f (ti). The prior
autocorrelation imposed by this model allows the firing rate to change smoothly
over time. When there are R trials (i.e., R spike trains) for each neuron, we can
model the corresponding spike trains as conditionally independent given the latent
variable u(t). Figure 13.2 shows the posterior expectation of firing rate (blue curve)
overlaid on the PSTH plot of a single neuron with 5 ms bin intervals.

13.4 Detecting Synchrony Among Multiple Spike Trains

For multiple neurons, Shahbaba et al. (2014) propose to use a generalization of the
method by Kelly and Kass (2012) (see Sect. 13.1) to model the joint distribution as a
function of marginals. In general, models that couple the joint distribution of two (or
more) variables to their individual marginal distributions are called copula models.
See Nelsen (1998) for detailed discussion of copula models. Onken et al. (2009) and
Berkes et al. (2009) also use copula models for capturing neural dependencies.

1 Their data model is somewhat different from (13.1), as the spike times are assumed to follow a
conditionally inhomogeneous gamma-interval process instead of a Poisson process.
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Fig. 13.2 Using the Gaussian process model of Shahbaba et al. (2014) to capture the underlying
firing rate of a single neuron from prefrontal cortical areas in rat’s brain. There are 51 spike trains
recorded over 10 s. The PSTH plot is generated by creating 5 ms intervals. The curve shows the
estimated firing rate (posterior expectation)

Let H be n-dimensional distribution functions with marginals F1, . . . ,Fn. Then,
an n-dimensional copula is a function of the following form:

H(y1, . . . ,yn) =H (F1(y1), . . . ,Fn(yn)), for all y1, . . . ,yn.

Here, H defines the dependence structure between the marginals. For example,
the Farlie–Gumbel–Morgenstern (FGM) copula family (Farlie 1960; Gumbel 1960;
Morgenstern 1956; Nelsen 1998) is defined as follows:

H =
[
1+

n

∑
k=2

∑
1≤ j1<···< jk≤n

β j1 j2... jk

k

∏
l=1

(1−Fjl )
] n

∏
i=1

Fi, (13.3)

where Fi = Fi(yi). As shown by Wilson and Ghahramani (2012), this idea can be
generalized to multivariate processes. Restricting the above model to second-order
interactions, we have

H(y1, . . . ,yn) =
[
1+ ∑

1≤ j1< j2≤n

β j1 j2

2

∏
l=1

(1−Fjl )
] n

∏
i=1

Fi, (13.4)

where Fi = P(Yi ≤ yi). Here, we use y1, . . . ,yn to denote the firing status of n neurons
at time t; β j1 j2 captures the relationship between the jth

1 and jth
2 neurons.

For a pair of neurons with firing probabilities p and q respectively, we can show
that β = ζ−1

(1−p)(1−q) . As discussed in Sect. 13.1, ζ represents the excess firing rate

(ζ > 1) or the suppression of firing rate (ζ < 1) due to dependence between two
neurons (Ventura et al. 2005; Kelly and Kass 2012). In our model, β = 0 indicates
that the two neurons are independent; the excess firing rate and the suppression of
firing rate between two dependent neurons are represented by β > 0 and β < 0
respectively.
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To ensure that probability distribution functions remain within [0,1], the following
constraints on all

(n
2

)
parameters β j1 j2 are imposed:

1+ ∑
1≤ j1< j2≤n

β j1 j2

2

∏
l=1

ε jl ≥ 0, ε1, · · · ,εn ∈ {−1,1}.

Considering all possible combinations of ε j1 and ε j2 in the above condition, there are
n(n−1) linear inequalities, which can be combined into the following inequality:

∑
1≤ j1< j2≤n

|β j1 j2 | ≤ 1.

13.4.1 Computation

Sampling from the posterior distribution of β ’s in the above copula model is
quite challenging because of the imposed constraints. Lan et al. (2014) devel-
oped a novel Markov Chain Monte Carlo algorithm for constrained target dis-
tributions of this type based on Hamiltonian Monte Carlo (HMC) (Duane et al.
1987; Neal 2011). They show that in many cases, bounded connected constrained
D-dimensional parameter spaces can be bijectively mapped on to the D-dimensional
unit ball. Their method then augments the original D-dimensional parameter θ with
an extra auxiliary variable θD+1 to form an extended (D+ 1)-dimensional param-

eter θ̃ = (θ ,θD+1) such that ‖θ̃‖2 = 1 so θD+1 = ±
√

1−‖θ‖2
2. This way, the do-

main of the target distribution is changed from the unit ball to the D-dimensional
sphere. Using the above transformation, they define the Hamiltonian dynamics on
the sphere. This way, the resulting HMC sampler can move freely on the sphere, SD,
while implicitly handling the constraints imposed on the original parameters. As il-
lustrated in Fig. 13.3, the boundary of the constraint, i.e., ‖θ‖2 = 1, corresponds
to the equator on the sphere SD. Therefore, as the sampler moves on the sphere,
passing across the equator from one hemisphere to the other translates to “bouncing
back” off the boundary in the original parameter space.

Lan et al. (2014) show that by defining HMC on the sphere, besides handling the
constraints implicitly, the computational efficiency of the sampling algorithm could
be improved since the resulting dynamics has a partial analytical solution (geodesic
flow on the sphere). They used this approach, called Spherical HMC, for sampling
from the posterior distribution of β ’s in the above copula model and showed that the
resulting sampler is substantially more efficient than alternative methods.

13.4.2 Results for Experimental Data

We now consider an experiment designed to investigate the role of the prefrontal
cortex in rats in conjunction with reward-seeking behaviors and inhibition of
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Fig. 13.3 Transforming unit ball BD
0 (1) to sphere SD

reward-seeking in the absence of a rewarded outcome. The neural activity (spike
trains) of several prefrontal neurons were recorded simultaneously. There are two
conditions during the experiment: rewarded and non-rewarded. During the record-
ing/test sessions, two different stimuli were presented: tone 1 (10 KHz) or tone 2
(5 KHz) individually and in pseudorandom order. At the same time, one of two
levers was presented: an active-lever, paired with tone 1 (Rewarded-Stimulus—RS)
and an inactive-lever paired with tone 2 (Non-rewarded Stimulus—NS). Pressing
the active lever resulted in the offset of tone 1, retraction of the lever, and illumi-
nation of the reward receptacle. If the rat then went to the reward receptacle, 0.1 ml
of 15 % sucrose solution was delivered as a reward. Pressing the inactive lever pro-
duced no effect. See Moorman and Aston-Jones (2014) for more details.

Here, we focus on five simultaneously recorded neurons. There are 51 trials per
neuron under each scenario. We set the time intervals to 5 ms. Tables 13.1 and 13.2
show the estimates of βi, j, which capture the association between the ith and jth
neurons, under the two scenarios. Figure 13.4 shows the schematic representation
of these results under the two experimental conditions. The solid line indicates
significant association.

These results show that neurons recorded simultaneously in the same brain
area are correlated in some conditions and not others. This strongly supports the
hypothesis that population coding among neurons (here though correlated activity)
is a meaningful way of signaling differences in the environment (rewarded or non-
rewarded stimulus) or behavior (going to press the rewarded lever or not pressing)
(Buzsáki 2010). It also shows that neurons in the same brain region are differen-
tially involved in different tasks, an intuitive perspective but one that is neglected by
much of behavioral neuroscience. Finally, these results indicate that network cor-
relation is dynamic and that functional pairs—again, even within the same brain
area—can appear and disappear depending on the environment or behavior. This
suggests (but does not confirm) that correlated activity across separate populations
within a single brain region can encode multiple aspects of the task. For example,
the pairs that are correlated in reward and not in non-reward could be related to
reward-seeking whereas pairs that are correlated in non-reward could be related to
response inhibition. Characterizing neural populations within a single brain region
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Table 13.1 Estimates of β ’s along with their 95 % probability intervals for the first scenario
(Rewarded) based on the copula model. Statistically significant values are shown in bold

β 2 3 4 5

1 0.22(0.07,0.39) 0.00(−0.07,0.04) 0.03(−0.02,0.15) 0.01(−0.04,0.08)
2 0.03(−0.02,0.18) 0.06(−0.02,0.22) 0.07(0.00,0.25)
3 0.08(−0.01,0.26) 0.21(0.04,0.38)
4 0.23(0.09,0.40)

Table 13.2 Estimates of β ’s along with their 95 % probability intervals for the second scenario
(Non-rewarded) based on the copula model. Statistically significant values are shown in bold

β 2 3 4 5

1 0.05(−0.02,0.25) −0.01(−0.09,0.04) 0.15(−0.01,0.37) 0.05(−0.03,0.22)
2 0.21(0.03,0.41) 0.18(0.00,0.37) 0.03(−0.02,0.19)
3 0.17(0.00,0.34) 0.03(−0.02,0.19)
4 0.07(-0.01,0.24)

Fig. 13.4 A schematic representation of connections between five neurons under two experimental
conditions. The solid line indicates significant association

based on task-dependent differences in correlated firing is a less-frequently stud-
ied phenomenon compared to the frequently pursued goal of identifying the overall
function of the brain region based on individual neural firing (Stokes et al. 2013).

13.5 Future Directions

The methods discussed here can be generalized in several ways as discussed below.
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13.5.1 Multivariate GPs

The multivariate model presented in the previous section uses univariate Gaus-
sian processes for the marginal distributions and a copula model for the joint
distribution of multiple neurons in terms of these marginals. Alternatively, we can
use a multivariate GP for modeling the joint distribution of multiple neurons di-
rectly. A multivariate Gaussian process can be defined in a similar way as a uni-
variate GP, but this time the kernel function depends on two pairs of inputs. For
simplicity we can assume that the mean of each process is the zero function. The
kernel κ is now defined for i, j = 1, . . . , p and s, t ∈ R as

κ([i,s], [ j, t]) = Exi(s)x j(t). (13.5)

The initial challenge within the Gaussian process context is to produce a valid and
interpretable kernel. A common technique for generating multivariate GP kernels is
known as co-kriging, borrowed from the geostatistical literature (Cressie 1993).

One variant of co-kriging describes (x1(t), . . . ,xp(t)) as linear combinations of
latent factors. We suppose u1(t), . . . ,uq(t) are independent mean zero Gaussian pro-
cesses, and let

xi(t) =
q

∑
k=1

ai,kuk(t), for i = 1,2, . . . p. (13.6)

Let κi(s, t) = Eui(s)ui(t) be the kernel for the ith latent process. Then the observed
processes x(t) = (x1(t), . . . ,xp(t)) are jointly mean-zero Gaussian with covariances

Exi(s)x j(t) =
q

∑
k=1

ai,ka j,kκk(s, t). (13.7)

This is the semi-parametric latent factor model of Teh et al. (2005), so-called be-
cause the linear combination of latent GPs is parameterized by the matrix of coeffi-
cients A = (ai,k), while each Gaussian process is of course a non-parametric model.
See Alvarez et al. (2011) for a survey of co-kriging and other multivariate GPs seen
in the literature.

Recently, Vandenberg-Rodes and Shahbaba (2015) proposed a multivariate Gaus-
sian processes model for multiple time series X(t) = (x1(t), . . . ,xp(t)) such that each
marginal process x j(t) is a stationary mean-zero Gaussian process with Matérn ker-
nel. Crucially, the marginal processes are not required to share the same hyperpa-
rameter values. This approach can be used to model the joint distribution of the
firing rates of multiple neurons directly, and allows for significant heterogeneity
among neurons while also providing a high degree of interpretability.
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13.5.2 Dynamic Networks

The static (stationary) model discussed here aggregates cross-neuronal spike-train
interactions over time. This can lead to misleading results. Although there exist
many dynamic methods developed for modeling brain functional and effective con-
nectivity (Friston et al. 1997; Cribben et al. 2013; Ombao et al. 2005; Ombao and
Van Bellegem 2008; Motta and Ombao 2012; Park et al. 2014; Lindquist et al. 2014),
these approaches are primarily designed for continuous-valued signals such as func-
tional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) data.
The GP-based method discussed here can be extended to model neuronal connec-
tions dynamically.

13.5.3 Community Detection

Besides allowing for time-varying firing rates and interactions among neurons, the
GP-based method can also be extended to cluster neurons based on their cross-
dependencies in order to detect subnetworks (communities). To this end, stochastic
block models could be used to identify network partitions (Holland et al. 1983).
For example, Rodriguez (2012) recently proposed a stochastic block model for net-
work analysis where interactions among factors are observed at multiple time points.
This method uses a Bayesian hierarchical stochastic block model to detect possible
structural changes in a network. Alternatively, one can use a method similar to the
product partition model (PPM) of Müller and Quintana (2010). In general, these
methods assume a prior probability on all possible partitions. The assumed prior
probability could be influenced by some covariates. This approach can be used to
partition neurons into subnetworks.
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