
Chapter 1
Bayesian Nonparametric Models

Peter Müller and Riten Mitra

Abstract We briefly review some of the nonparametric Bayesians models that are
most widely used in biostatistics and bioinformatics. We define the Dirichlet pro-
cess, Dirichlet process mixtures, the Polya tree, the dependent Dirichlet process and
the Gaussian process prior. These few models and variations cover a major part
of the models that are used in the literature. The discussion includes references to
variations of the basic models that are defined in the chapters of this volume.

1.1 Nonparametric Bayesian Inference in Biostatistics
and Bioinformatics

The increased complexity of biomedical inference problems requires ever more
sophisticated and flexible approaches to statistical inference. The challenges include
in particular massive data, high-dimensional sets of potential covariates, highly
structured stochastic systems, and complicated decision problems. Some of these
challenges can be naturally addressed with a class of inference approaches known
as nonparametric Bayesian (BNP) methods. A technical definition of BNP models
is that they are probability models on infinite dimensional probability spaces. This
includes priors on random probability measures, random mean functions, and more.

BNP methods relax the sometimes restrictive assumptions of traditional para-
metric methods. A parametric model is indexed by an unknown finite dimensional
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parameter vector θ . Bayesian inference proceeds by assuming a prior probability
model p(θ) which is updated with the relevant sampling model p(y | θ) for the
observed data y.

For example, consider a density estimation problem, with observed data yi ∼ G,
i = 1, . . . ,n. Inference under the Bayesian paradigm requires a completion of the
model with a prior for the unknown distribution G. If G is restricted to be in a
family {Gθ , θ ∈ ℜd}, then the prior is specified as a prior probability model p(θ)
for the d-dimensional parameter vector θ . In contrast, if G is not restricted to a finite
dimensional parametric family, then the prior model p(G) becomes a probability
model for the infinite dimensional G.

A very common related use of BNP priors on random probability measures is for
random effects distributions in mixed effects models. Such generalizations of para-
metric models are important when the default choice of multivariate normal random
effects might understate uncertainties and miss some important structures. Another
important class of BNP priors are priors on unknown functions, for example as prior
p( f ) for the unknown mean function f (x) in a regression model yi = f (xi)+ εi.

The chapters in this volume discuss important research problems in biostatistics
and bioinformatics that are naturally addressed by BNP methods. Each chapter int-
roduces and defines the BNP methods and models that are used to address the spe-
cific problem. In this introductory chapter we briefly introduce and review some of
the most commonly used BNP priors. Posterior inference in many of these mod-
els gives rise to challenging computational problems. We review some of most
commonly used computational methods and include some references. The brief
review in this introduction includes the ubiquitous Dirichlet process (DP) model,
the DP mixture model (DPM), the dependent DP (DDP) model, the Polya tree (PT)
prior, and the Gaussian process (GP) prior. These models and their variations are
the workhorses of BNP inference in biostatistics. The next chapter in this volume
discusses some typical examples by reviewing BNP methods in some important
applications.

For a more exhaustive discussion of BNP models, see, for example, recent dis-
cussions in Hjort et al. (2010), Müller and Rodrı́guez (2013), Walker et al. (1999),
Müller and Quintana (2004), Walker (2013) and Müller et al. (2015).

1.2 Dirichlet Process

Let δx(·) denote a point mass at x. The DP prior (Ferguson 1973) is a probability
model for a random distribution G,

G =
∞

∑
h=1

whδmh , (1.1)



1 Bayesian Nonparametric Models 5

with independent locations mh ∼ G0, i.i.d., and weights that are constructed as
wh = vh ∏�<h(1− v�) with independent beta fractions vh ∼ Be(1,M), i.i.d. (Sethur-
man 1994). The prior on wh is known as the stick-breaking process. It can be des-
cribed as breaking off fractions vh of a stick of initially unit length. The DP prior
is characterized by the base measure G0 that generates the locations of the atoms
mh and the total mass parameter M that determines the distribution of the beta frac-
tions vh. We write G ∼ DP(M,G0). Implied in the constructive definition of the
stick breaking construction is an important property of DP random measures. A DP
random measure G ∼ DP(M,G0) is discrete with probability one.

The DP is a conjugate prior under i.i.d. sampling. That is, assume xi | G ∼ G,
i.i.d., i = 1, . . . ,n and G ∼ DP(M,G0). Let Fn =

1
n ∑n

i=1 δxi denote the empirical dis-
tribution. Then p(G | xxx) = DP(M + n,G1) with G1 ∝ MG0 + nFn. An interesting
limiting case occurs for M → 0, when the posterior on G is entirely determined
by the empirical distribution. This leads to a construction known as the Bayesian
bootstrap, which is discussed in Chap. 16 (Inácio de Carvalho et al. 2015).

One of the reasons for the wide use of the DP prior is ease of computation for
posterior inference in models based on the DP. In particular, the DP prior imp-
lies a particularly simple predictive probability function p(xn | x1, . . . ,xn−1). Under
i.i.d. sampling from a DP random measure the marginal distribution p(x1, . . . ,xn) =∫

∏n
i=1 G(xi) d p(G) reduces to a simple expression which is easiest characterized as

p(x1, . . . ,xn) = ∏n
i=1 p(xi | x1, . . . ,xi−1) with increasing conditionals

p(xi | x1, . . . ,xi−1) ∝ MG0(xi)+
i−1

∑
�=1

δx� . (1.2)

With probability π0 = M/(i− 1+M) the sample xi is a new draw from G0, and
with probability 1/(i− 1+M) the new sample is tied with a previous sample x�.
The conditional distribution (1.2) is also known as the Polya urn. We will return
to it below. Let xxx−i = xxx \ {xi}. For later reference we note that by symmetry the
conditional distribution p(xi | xxx−i) takes the same form.

1.2.1 DP Mixture

The discrete nature of a DP random measure is awkward in many applications and
is therefore often avoided by using an additional convolution with a continuous ker-
nel. Let k(xi | θ) denote a continuous kernel, for example a Gaussian kernel. With-
out loss of generality we assume in the remaining discussion k(xi | θ) = N(xi | θ ,s)
(with fixed s). The DP mixture (DPM) model assumes G =

∫
N(xi | θ ,s)dF(θ),

with F ∼ DP(M,F0). We write G ∼ DPM(M,G0,k). It is often convenient to
rewrite the mixture as an equivalent hierarchical model. Instead of yi ∼ G and
G ∼ DPM(M,G0,k) we write

yi | θi ∼ N(θi,s) and θi ∼ F (1.3)
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with F ∼DP(M,G0). The DPM model is one of the most widely used BNP priors for
random distributions. In this volume we find it, for example, in Chap. 11 (Zhou and
Hanson 2015) to construct a semiparametric version of an accelerated failure time
model; in Chap. 16 (Inácio de Carvalho et al. 2015) as a prior for the distribution
of test outcomes to develop inference on ROC curves; in Chap. 21 (Daniels and
Linero 2015) for longitudinal outcomes under different missingness patterns; and
many more.

Consider again the θi in (1.3). As a sample from the discrete random measure F ,
the newly introduced latent variables θi include many ties. Let θθθ � = {θ �

1 , . . . ,θ �
k }

denote the k ≤ n unique values and let S j = {i : θi = θ �
j } denote the indices [n] ≡

{1, . . . ,n} arranged by the configuration of ties. Then ρn ≡ {S1, . . . ,Sk} defines a
partition of [n]. Since the θi were random, as a consequence the partition is random.
That is, the DP mixture model (1.3) induces a random partition p(ρn). At first glance
this seems like a coincidental detail of the model. However, many applications of the
DPM model exploit exactly this feature. It features in many chapters in this volume.
The implied prior p(ρn) on the random partition is also known as Chinese restaurant
process (CRP). It is used, for example, in Chap. 3 (Zhang et al. 2015).

Sometimes it is convenient to index the partition ρn alternatively by an equivalent
set of cluster membership indicators. Let si denote indicators with si = j if i ∈ S j,
that is when θi = θ �

j . Let n j = |S j| denote the size of the jth cluster, n−j = |S j \{i}|
and let k− denote the number of unique values θ� in θθθ−i. Then we can rewrite
(1.2) as

si | sss−i =

{
j with prob

n−j
n−1+M , j = 1, . . . ,k−

k−+1 with prob M
n−1+M

(1.4)

The attraction of model (1.3) is the ease of posterior simulation. Consider a generic
model yi ∼ G with DPM prior (1.3) and similar to k− and n−j let θ �−

j denote the jth
unique value among θθθ−i. Then (1.4) implies

θi | yyy,θθθ−i =

{
θ �−

j with prob. ∝ n−j p(yi | θ �−
j )

∼ H1 with prob. ∝ M
∫

p(yi | θ) dG0(θ)
(1.5)

with H1(θ) ∝ p(yi | θ)G0(θ). If p(yi | θ) and G0(θ) are chosen as a conjugate
pair of sampling model and prior, then generating from (1.5) is straightforward. In
the general case, the evaluation of h0 ≡

∫
p(yi | θ) dG0(θ) can be computationally

challenging. Several MCMC algorithms have been proposed to circumvent the eval-
uation of an analytically intractable integral h0 (Neal 2000). For a recent review of
the DP and related models, see, for example, Ghosal (2010).

1.2.2 Generalizations of the DP

Many generalizations of the DP prior have been proposed in the literature. One
example is the Poisson-Dirichlet (PD) process that is used in Chap. 9 (Guha et al.
2015). The PD arises by replacing the Be(1,M) prior on the fractions vh in the



1 Bayesian Nonparametric Models 7

stick breaking construction by Be(1− a,b+ ha) priors. Other generalizations are
specifically focused on the implied random partition model, like the generalized
Ottawa sequence introduced in Chap. 5 (Bassetti et al. 2015) or the hierarchical DP
(HDP) model in Chap. 7 (Iorio et al. 2015). The latter defines a prior on a family of
random probability measures {G j; j = 1, . . . , j}.

1.3 Dependent Dirichlet Process

Many problems involve a family of unknown random probability measures F =
{Fx;x ∈ X}. For example, in a mixed effects model that includes data from several
related studies, Fj might be the random effects distribution for patients in study j.
More generally, a formalization of non-parametric regression could assume

yi | xxxi = x,F ∼ Fx (1.6)

i = 1, . . . ,n. That is, we denote by Fx the sampling model for the response of a
subject with covariates xxxi = x. If we are willing to assume Fx = N(xxx′iβββ ,σ2), then the
problem reduces to parametric inference on the finite dimensional parameter vector
θθθ =(βββ ,σ2). In other words, we restrict F to the family of probability measures ind-
exed by θθθ . In the absence of such restrictions Bayesian inference in (1.6) requires a
prior probability model p(F ) that allows for dependence and borrowing of strength
across x, short of the strict parametric assumption, but still more than in a model
with independent, separate priors on each Fx.

One of the most popular models in the recent literature for a family of random
probability measures F is the dependent DP (DDP) and variations of it. The model
was first introduced in MacEachern (1999). The idea is simple. We continue to use

Fx =
∞

∑
h=1

whδmxh , (1.7)

with independent locations mxh, i.i.d. across h and weights that are constructed with
independent beta fractions as before, in (1.7). The only addition is that we now
introduce dependence on the point masses mxh across x. For example, we could
assume that (mxh, x ∈ X) is a realization of a Gaussian process indexed by x. In the
simplest implementation the weights wh are shared across all x, as implied in the
notation wh without a subindex for x.

Similar to the DP mixture model, the DDP model (1.7) is often combined with a
continuous kernel, for example a normal kernel to define

Gx(y) =
∫

N(y | θ ,σ2) dFx(θ) =
∞

∑
h=1

whN(y | mxh,σ2). (1.8)
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with a DDP prior on {Fx, x ∈ X}. Here N(y | m,s2) denotes a normal kernel in y.
We refer to (1.8) as a DDP mixture of normals. For categorical covariates x ∈ X the
dependent probability model for (mxh, x ∈ X) could be defined, for example, as an
ANOVA model. This defines the ANOVA DDP proposed in DeIorio et al. (2002).
A version of the same, with a general linear model in place of the ANOVA model is
the linear dependent DP (LDDP) (Jara et al. 2010).

1.3.1 Variations of the DDP

The DDP prior and variations of it are used in several chapters in this volume. Chap-
ter 12 (Jara et al. 2015) uses an LDDP to implement survival regression. Chapter 20
(Karabatsos and Walker 2015) constructs a variation of a DDP by introducing the
dependence on covariates in (1.7) by a probit regression in the weights wh, rather
than the atoms mh.

1.4 Polya Tree

The Polya tree (PT) prior (Lavine 1992, 1994) is an attractive alternative BNP prior
for a random probability measure. The PT prior is essentially a random histogram.
Without loss of generality, assume that we wish to define a random probability mea-
sure G on the unit interval [0,1]. We could start with a random histogram with
two bins {B0,B1}, say over B0 = [0,0.5) and B1 = [0.5,1]. Let Y0 = G(B0) and
Y1 = 1 −Y0 denote the (random) probabilities of B0 and B1. Next we refine the
histogram by splitting the bins into B0 = B00 ∪B01 with B00 = [0,0.25), etc. Let
Y00 = G(B00 | B0), Y10 = G(B10 | B1), Y01 = 1−Y00, and Y11 = 1−Y10. We continue
refining the histogram to 2m bins, m = 1,2, . . . by repeating similar binary splits.
The process creates a sequence Π = {Πm, m = 1,2, . . .} of nested binary partitions
Πm = {Be1···em} with e j ∈ {0,1}. The PT defines a prior on G by assuming

Yε0 ∼ Be(αε0,αε1),

independently across ε and Yε1 = 1−Yε0. The nested partitions Π together with the
beta parameters A = {αε} characterize the PT prior. We write G ∼ PT(Π ,A ).

One of the attractions of the PT prior is the ease of centering the model. Let
0.e1 · · ·em = ∑ j e j2− j denote the number with binary digits ε = e1, . . . ,em and let
qε denote the corresponding quantile of a fixed probability measure G0. That is, for
example, q1,q01,q10 are the median and the first and third quartile of G0. Next define
Bε to denote the corresponding partitioning subsets and let ∏ denote the nested
partition sequence with partitioning subsets Bε . If G ∼ PT(Π ,A ) with αε0 = αε1,
then E(G) = G0. We write

G ∼ PT(G0,A ).
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A particularly attractive choice is αe1···em = c2m which can be shown to imply a
continuous random probability measure G. We write G ∼ PT(G0,c). Alternatively,
for an arbitrary nested partitioning sequence Π , define A by αεem = cG0(Bεem | Bε)
and assume G ∼ PT(Π ,A ). Then again E(G) = G0. We write

G ∼ PT(Π ,G0).

For a recent review of the PT prior, see, for example, Müller et al. (2015 Chapter 3).
PT priors are used, for example, in Chap. 11 (Zhou and Hanson 2015) to construct
a semi-parametric accelerated failure time model.

1.5 Gaussian Process

Gaussian Process (GP) priors are widely used in machine learning, medical imaging,
ecology, and various disease risk models. A GP is a stochastic process {Y (s);s ∈ S}
that extends (finite dimensional) multivariate Gaussians to infinite dimensions. Here
Y(.) is a function-valued random variable while S denotes the domain (typically ℜe)
of the function. The domain S and thus Y (.) can have very different interpretation
and meaning depending upon specific applications. For example, in Chap. 17 (Reich
and Fuentes 2015), and typically in the context of spatial models, S refers to all
location points in a given region. For machine learning applications, it can be the set
of all possible input stimuli. It could even represent the time domain for recording
neuronal activity as in the case study provided in Chap. 13 (Shahbaba et al. 2015). S
is usually endowed with its own specific metric, e.g. the Euclidean distance in spatial
applications. The problem of analyzing the random function Y (.) or predicting its
value Y(s) at a specific point s can be formulated within the framework of non-
parametric regression, where the values in S play the role of covariates and Y (.) is
the regression function to be estimated. A prior on the random function Y () would
simply refer to the probability law of the stochastic process.

We formally characterize a GP as a stochastic process with mean function
m(.) and covariance function k(·, ·) if every finite sub-collection of this process,
[Y (s1),Y (s2) . . .Y (sn)] is multivariate Gaussian

[Y (s1), . . . ,Y (sn)]∼ N(μ ,Σ) with μ = [m(s1), . . . ,m(sn)] and Σi j = k(si,s j).

We write Y ∼ GP(m,k). The covariance function is sometimes also referred to as
the kernel of the GP. The prior on the random Y (.), thus defined, is called a GP
prior. Simply put, a GP extends finite multivariate Gaussian models to infinite di-
mensions. It can be shown that such an extension is possible using Kolmogorov’s
consistency theorem. Naturally, the infinite process inherits many attractive prop-
erties of its finite version. For example, no restrictions are required for the mean
function m. However, since all finite dimensional subsets are required to be Gaus-
sian, a condition of positive semi-definiteness is implied on V for any finite subset
of S.
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A variety of different families of valid kernels are in common use. Some popular
choices include squared exponential (SE), polynomial, neural network, Ornstein-
Uhlenbeck (OU), Matern, etc. Each of these families typically has a number of free
hyper-parameters. Choosing a covariance function for a particular application thus
comprises both, the setting of hyper-parameters within a family, and sometimes the
comparison across different families through model-selection techniques. Alterna-
tively, flexible and non-parametric covariance functions can be built by exploiting
the spectral representation of a GP. Chapter 17 (Reich and Fuentes 2015) introduces
such general priors for spatial covariances by applying the DP and the DPM priors
to the coefficients of the spectral density.

In general, all covariance functions formally encode some notion of similar-
ity between a pair of random observations based on the distance between corre-
sponding elements of S. Consider, for example, the SE kernel given by k(s, t) =
exp(−||s− t||2/2τ2). The functional form suggests that observations corresponding
to proximal points are highly correlated, with the correlation dropping off exponen-
tially with the distance between the points.

Posterior inference and prediction with GP priors is made immensely easy by
using the analytical results for multivariate Gaussians. For this, it is enough to
observe that the collection of new and observed variables is a finite subset of the
GP and their joint density is a multivariate Gaussian. Hence, the posterior predic-
tive distribution, obtained by conditioning on the observed data, appears as another
multivariate normal. The infinite dimension of the prior, while providing substantial
modeling flexibility, poses no concern for inference and computation. These prop-
erties turn out to be critical for several analytical manipulations with the GP prior.

However a known computational bottleneck is the inversion of (n× n) matri-
ces that appear in the analytical results, thus making the computational complexity
cubic in the number of data points. For large datasets (n > 10,000) this is prohibitive
(in both time and space) for any inference, Bayesian or otherwise. So a number of
computational methods [e.g., reduced rank matrix approximations (Fine et al. 2001;
Smola and Schökopf 2000)] have been developed. Another approach is to exploit
structures of special classes of covariance functions for exact computation. These
methods are iterative and the computation scales linearly with the size of the data
(Johannesson and Cressie 2004). Cressie and Johannesson (2008) extended this ap-
proach to a flexible class of covariance functions. The computational complexity
also increases drastically in multivariate settings with several spatially dependent
response variables. Banerjee et al. (2008) used induced predictive process models
as a clever strategy for dimension reduction and to reduce computational cost in this
context. An alternative solution to the computational problem is the treed Gaussian
process of Gramacy and Lee (2008). The approach proceeds by first partitioning
the covariate space into a number of smaller regions, similar to a classification and
regression tree (CART). Next, independent GP’s are fit to each subregion. The over-
all inversion of a large matrix is replaced by a number of smaller, computationally
feasible inversions. Posterior inference is efficiently handled in the tgp package
for R.

An excellent reference on Gaussian process models for regression is Rasmussen
and Williams (2005).
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1.6 Conclusion

In this brief review we only introduced some of the most popular BNP models
and variations. Some of the chapters use models beyond this selection. Chapter 4
(Ji et al. 2015) uses an Indian buffet process as a prior probability model for a
feature allocation problem. Feature allocation generalizes random clusters, that is,
non-overlapping subsets, to families of possibly overlapping subsets. Chapter 10
(Nieto-Barajas 2015) introduces several alternative models, including, for example,
the normalized generalized gamma (NGG) process. The same NGG process appears
in Chap. 6. Some chapters define random functions based on spline bases, including
Chap. 14 (Telesca 2015) and Chap. 11 (Zhou and Hanson 2015). Finally, Chap. 8
(Ni et al. 2015) discusses prior probability models for random networks.

The next chapter, Chap. 2 continues this review by discussing some typical ap-
plications of basic BNP models.
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