
Social-Network-Based Personal Processes

Seyed Alireza Hajimirsadeghi(B), Hye-Young Paik, and John Shepherd

University of New South Wales, Sydney, NSW 2052, Australia
{seyedh,hpaik,jas}@cse.unsw.edu.au

Abstract. In this paper, we propose Processbook, a social-network-
based management system for personal processes (ad hoc processes car-
ried out to achieve a personal goal). A simple modelling interface is
introduced based on ToDoLists to help users plan towards their goals.
We describe how the system can capture a user’s experience in managing
their ToDoList and the associated personal process, how this information
can be shared with other users, and how the system can use this infor-
mation to recommend process strategies. We exemplify the approach by
a sample administrative process inside University of New South Wales
and report some preliminary evaluations of the proposed recommenda-
tion algorithms.

Keywords: Personal process management · Task management sys-
tems · Process knowledge · Process recommendation · Social networks

1 Introduction

In modern society, we are frequently required to perform administrative or busi-
ness processes in order to achieve our goals. Examples could be simple processes
such as booking a theatre ticket, or more complicated and long lasting ones such
as planning for immigration.

While the last decade has seen many of these individual processes codified via
online services, there remain significant problems in discovering and integrating
the very many tasks that have not yet been codified. An important aspect of the
problem is that processes frequently span organisational boundaries and there
are few mechanisms to carry information and outcomes from processes in one
organisation to those in the next organisation. Another major factor is that it is
sometimes difficult to identify precisely which organisations and which processes
within those organisations are required to accomplish a stated goal.

A personal process is made up of a number of tasks which needs to be carried
out in order to achieve a goal; a task may be as simple as one individual activity
or may be as complex as a complete business process. Personal processes often
require an integration of so-called “long tail” business processes from one or
more organisations. The knowledge of such integration and consequently the
knowledge of achieving a goal is referred to as process knowledge in this paper.

Our goal is to provide support for individuals to manage their personal
processes. One possible approach for this would be to convert all personal
c© Springer International Publishing Switzerland 2015
J. Bae et al. (Eds.): AP-BPM 2015, LNBIP 219, pp. 155–169, 2015.
DOI: 10.1007/978-3-319-19509-4 12



156 S.A. Hajimirsadeghi et al.

processes into codified business processes, but this is neither plausible nor cost-
effective [7]. Instead, we aim to assist users in discovering the tasks they have to
do to reach their goals, the order they need to do the tasks and the sets of con-
straints and rules they should follow in doing those tasks. This is accomplished
in a context where other users have already successfully carried out the processes
and have recorded the method by which they did so. Our system to support this
(Processbook) adopts a social-based approach, aimed at non-expert users, who
describe their personal processes via ToDoLists. Processbook collects, manages,
merges and shares process descriptions and allows users to follow other users
who are carrying out similar tasks and can recommend future steps in a given
process based on how others users previously achieved the same goal.

In Sect. 2, we elaborate the problem area with examples. Section 3 describes
related work in the space of personal processes and using social software in
business process management. Section 4 presents the details of Processbook and
explains how process knowledge is captured and then recommended to users.
In Sect. 5 we investigate the implemented tool with an example in academic
domain. Finally we conclude the paper in Sect. 6 with future work.

2 Personal Process Management: A Motivating Scenario

In this section, we consider the problem of carrying out personal processes via
an example: Ali, a student from a non English-speaking country, wishes to study
for a PhD in one of the top 8 Australian universities (known as Go8). Ali has
two primary objectives: find a university that would accept him and maximise
the amount of funding to assist his study. Additional constraints and prefer-
ences might include: a PhD topic in the service oriented computing area, a PhD
program commencing after July 2013, etc.

Figure 1a illustrates how Ali plans to reach his goals and what sources he
utilises for his purpose. He tries to identify universities that satisfy his constraints
by asking friends or by searching on the Web, collects and collates information
about the entry requirements and scholarship availability for each university
from its official web site. He might also join relevant communities on popular
social networks such as facebook and twitter to keep up with the latest news
and updates about the institutions he is dealing with.

In carrying out the above, questions would arise at each stage for Ali. For
example, the web site at some university might specify that a student needs to
provide an undergraduate transcript and English proficiency test results, but
might not mention the kind of visa that the student requires or how to obtain
such a visa. Other typical questions that might arise are: what step should
I take next, what do I do at each step, which organisation should I deal with, etc.
To find the answers to such questions, Ali would seek answers from his friends,
experts, social networks or other data available in online forums, blogs, etc. Ali
uses a to-do list approach to organise his findings and to write down the tasks he
has to do. He may do so by simply writing on paper, using computer-aided task
management tools or registering in an online task management website where
he is offered more gadgets to organise his tasks.



Social-Network-Based Personal Processes 157

(a) Example of a Personal Process Management

(b) Personal Process Management in Processbook

Fig. 1. From personal involvement to active social participation

Getting advice from someone experienced with the specific process would be
extremely useful, but finding such an expert might be difficult. A more effec-
tive approach might be to have the process information available online, and
have a system that understands both the process information and your personal
situation (in terms of progress through the process), and can offer sufficient
information to enable you to determine how to proceed. In practice, a number
of difficult issues need to be dealt with before such a system can be realised:

Invalid, Incomplete or Inconsistent Data: We may be faced with untrusted
sources of information, or conflicting items of information, or may be given
out-of-date information. Sometimes, we simply do not know certain parts
of the process. In other cases, there may be hidden (or ignored) pieces of
information. For example, Middle Eastern students may face a wait of up to
three months in applying for a Australian student visa.

Individuals as Process Integrators: Individuals are responsible to collect all the
relevant data and integrate it effectively while planning their goals. This is



158 S.A. Hajimirsadeghi et al.

a challenging task as the process domain is usually new to individuals and
they do not have an overview of the process when progressing step by step.
Heterogeneous data sources and data formats, numerous data dependencies
over multiple organisations and constantly changing policies and workflows
makes it even more difficult to play the role of process integrator.

Inability to Predict Task Effects: Sometimes it is difficult to know what kind of
effect accomplishing a specific task will have on the process as a whole. For
example, while either of the IELTS and TOEFL English competency tests
are accepted world wide, it is better to have IELTS scores if applying for
Australian universities because they are better regarded.

Isolated Individuals: Although people join communities on social networks and
discuss issues with peers in forums and e-how sites, they are ultimately
progressing in an isolated manner. In Fig. 1a, Igor is a member of Go8 com-
munities on facebook and is also contributing on an IELTS message board,
while reflecting his experiences in his own blog. There is no established way
for Ali to be aware of all Igor’s contributions on the process, to contact him
or to learn from his progress. People with similar goals and interests may
not be able to find each other easily and each individual’s progress is not
necessarily recorded for future reuse.

In Processbook, we consider merging social networks principles with process man-
agement basics to overcome the above issues. As Fig. 1b illustrates:

– A goal-based community is established to remove the isolation barrier and
help individuals find peers with similar interests/goals more easily.

– Users’ knowledge and experience is captured unobtrusively while they are
planning for their goal via a simple modelling interface that requires no prior
process modelling knowledge.

– Individuals’ process knowledge is merged to produce a general view of the
process.

– Users’ votes and comments are added to the socially produced process knowl-
edge to minimize the adverse effect of invalid, inconsistent and incomplete data.

3 Related Work

Personal process management has so far received limited attention from the aca-
demic research community. A vision statement can be found on the blog posted
by Michael Rosemann1. Two possible implementations of personal process man-
agement are discussed in [7] and [1].Reference [7] mainly focuses on sequential
and conditional constraints by introducing a formal personal process modelling
language. The proposal in [1] is based on parallel executions, tries to simplify
BPM techniques and pays attention to the role of social aspects of the process
management such as sharing and assigning tasks. Both works remain at pre-
liminary level and are yet to realise any significant improvement over personal
process management.
1 http://www.michaelrosemann.com/uncategorized/113/.

http://www.michaelrosemann.com/uncategorized/113/


Social-Network-Based Personal Processes 159

On the other side, a large number of commercial online tools exist for personal
task management. These tools are end-user oriented and provide a plethora of
features including task creation, sharing, social network integration, notification,
etc. However, as [1] notes, none of them is concerned about the “process”concept;
they do not embrace the practices of BPM, thus losing many beneficial aspects
of structuring dependencies and constraints between tasks.

In terms of requiring flexibility and agility, personal process management
is closely related to agile BPM. The most notable defect of classical BPM is
the “model-reality divide”, the distance between abstract process models and
the processes executed in practice. To overcome this defect, [2] states that agile
BPM not only requires changes to the BPM life cycle, but also a paradigmatic
change. This paradigmatic change can be obtained by applying social software
features into business process management.

There have been some attempts in recent years to accommodate social fea-
tures in the BPM environment. Most notably a recommendation-based process
modelling support system with social features in [4], a modelling and execution
tool for business processes with collaboration and wiki-like features embedded
in [6], and an ad hoc workflow system focusing on non-intrusive capturing of
human interactions in [5].

While most of the existing works in the social BPM area focus on adding
social features to an existing BPM framework, our architectural framework [3],
Processbook, gives principles and guidelines for managing personal processes
within a social network. It embeds four key capabilities in its underlying social
network: collaborative process modelling, knowledge capturing and sharing,
social-network-based recommendation and notification-based management of the
dynamic environment. This paper is an attempt to realise the conceptual frame-
work introduced in [3] focusing on the process knowledge discovery and recom-
mendation in personal process domain.

4 Process Aware Personal Process Management System

Processbook aims (i) to make personal process management as effortless as pos-
sible for individuals and (ii) to utilise user participation to produce meaning-
ful social collective data. The first step is to engage people to manage their
processes through Processbook. Given that Processbook users are ordinary people
rather than trained BPM designers or knowledge workers, they posses little or no
knowledge or prior experience in process modelling and management. Therefore
one of the main issues Processbook deals with is to find a way to provide support
for individuals in managing their tasks while simultaneously taking advantage of
their social participation to enrich its support. In Sect. 4.1 we propose a simple
modelling interface based on the idea of ToDoLists to facilitate the modelling
experience for non-technical users. The second step is to expedite the transfer of
knowledge about processes among users. For this purpose, in Sect. 4.2 we pro-
pose a method to capture users process knowledge. Then in Sect. 4.3 we show
how to share the process knowledge in form of process recommendation.



160 S.A. Hajimirsadeghi et al.

4.1 Modelling Interface

Traditional business process modelling lacks the required flexibility and agility
when it comes to unstructured or ad-hoc processes. To break the rigidity of tra-
ditional modelling methods and to simplify their syntax for novice users, we pro-
pose a simple modelling approach that resembles the natural planning model our
brain follows. There are five steps that our minds go through to accomplish any
task: defining purpose and principles, outcome visioning, brainstorming, organ-
ising, and identifying next actions2. Similarly our proposed planning approach
consists of five steps:

– Defining a goal; A goal is any desired result that requires one or more action
steps. It is described in natural language and is mandatory for each plan e.g.
“Gain admission to a PhD degree in computer science at UNSW”.

– Defining a set of constraints; Constraints are sets of parameters and criteria
that further elaborate goals. They can be global to describe the general para-
meters e.g. “Application deadline for PhD admission is 1 Dec 2013” or local
to reflect personal visions on the goal e.g. “field of study: BPM”.

– Gathering all required tasks; Determining the set of required tasks is the first
step towards the desired outcome. A task is a single unit of work in the
boundaries of a particular goal. A goal is achieved when enough of the right
tasks have been performed successfully and some outcomes have been created
that closely enough match the initial vision.

– Elaborating tasks; A short-list of tasks are specified and elaborated by linking
them to local constraints or by adding annotations to them.

– Identifying next task to do; The order in which users want to carry out their
listed tasks is the final planning step and is repeated until all tasks are carried
out or the desired outcome has been achieved.

Formally we define a simple modelling interface called ToDoList to realise the
idea of natural planning.

Definition 1. A ToDoList is a quadruple (I,G, T,C), where

– I is a unique identifier for the ToDoList
– G is a statement of the goal in natural language
– T is a set of tasks to be done to achieve the goal
– C is a set of constraints on the tasks and the overall planning.

Each task gives a natural language statement of one activity to be completed in
achieving the goal. A task is a pair (I,D), where I is a unique identifier for the
task and D is a description which can be either a natural language description
of an atomic task or a reference to another ToDoList.

Tasks are first class entities in our proposed ToDoList modelling approach. They
are entered by individuals or given to them through a recommendation mech-
anism (Sect. 4.3). Figure 2 illustrates a task state diagram in Processbook. Each
task, at any given time, could be in one of the “planning”, “carrying out”, “car-
ried out” and “captured”states.
2 Allen, D.: Getting things done. penguin books (2001).



Social-Network-Based Personal Processes 161

Fig. 2. Task State Diagram

– Planning. Once a task is defined or recommended to a user it will be put in
the planning state. The planning state is similar to drafting a ToDoList and
resembles the brainstorming step.

– Carrying out. Tasks are brought to “carrying out” mode on a user’s decision
to perform them. When a user identifies the next action she wants to take, she
can simply pick the task from her ToDoList and bring it to the carrying out
list. The task is then removed from the ToDoList, but can be reverted back
when the user pauses or stops the execution of the task (to make changes to
the task). When the user obtains the desired result from the running task, the
task is considered finalised and will be moved to the “carried out” mode.

– Carried out. The carried out state consists of a set of completed tasks,
ordered by their completion timestamp. Hence it could be regarded as a trace
log for each ToDoList. It is expected that by the end of the personal plan-
ning, no tasks remain in the ToDoList or in the carrying out list. Instead the
required tasks for an achieved goal are found in the carried out mode or more
specifically in TraceLists that we will later define in Sec.4.2.

– Captured. If the user cancels her plan or does not achieve her specified
goal, her traces will be deleted. Otherwise the trace is aggregated with other
users’ traces for the same goal. The aggregation produces a graph called GTG
Goal-Task Graph, where users’ successful experiences for a particular goal are
captured. The GTG is described in 4.2, and captures the social production
for a community of users who share the same goal.

4.2 Capturing Process Knowledge

Associated with each ToDoList, there exists a TraceList that is opened after the
first task in ToDoList has been carried out and is closed after the corresponding
ToDoList terminates. A TraceList captures the execution of tasks in a ToDoList.

Definition 2. A TraceList is a quadruple (I,G,CG,H) where

– I is a unique identifier for the TraceList



162 S.A. Hajimirsadeghi et al.

– G is a statement of the goal in natural language
– CG is a set of constraints on the goal
– H is a set of history records of tasks and their properties.

Each history record H consists of four elements:

– T is a unique identifier for the task
– CT is a set of constraints on the task
– ST is the time when task has been started
– ET is the time when task has been completed.

A ToDoList terminates successfully if all its tasks have been carried out and
the owner of ToDoList confirms that a desired outcome has been reached by
performing those tasks. The TraceList of such a ToDoList execution is called a
complete TraceList. Intuitively a set of complete TraceLists for a certain goal
will give a useful insight on how to achieve that particular goal. We argue that
each TraceList resembles a blog post describing a personal solution to reach the
goal, while the aggregation of TraceLists builds a wiki that describes the general
solution to reach that goal in different contexts and from different perspectives.
Processbook realizes the concept of social production by merging all complete
TraceLists of a goal into a graph structure called GTG(Goal-Task Graph).

Definition 3. A GTG is a weighted directed graph GTG(I,G, V,E,W,A)
where

– I is a unique identifier for the GTG.
– G is the goal for which complete TraceLists are aggregated.
– V is the union of tasks in the complete TraceLists with goal G; the result set

forms the vertices of GTG.
– E is the edges of GTG; each edge indicates the order of execution between

two tasks.
– W is a weight associated with the edges of GTG indicating the number of

times a particular edge has been followed over all TraceLists of goal G.
– C is a set of constraints associated with the edges of GTG indicating the

circumstances under which a flow of tasks has occurred over all TraceLists of
goal G.

For example, Ti
3,{c1∨c2}−−−−−−→ Tj means task Tj preceded task Ti, three times in

all complete TraceLists with either c1 or c2 mentioned as constraints of Tj in
those complete TraceLists. Procedure 1 demonstrates the procedure of merging
TraceLists into a GTG for goal G. The input of the procedure is a set of com-
plete TraceLists that have G as their goal. PrepareTraceList orders tasks in
each TraceList by their ET attribute. More complicated metrics could also be
applied to include the ST and C attributes of history records as well, though it
is out of the scope of this paper.

Each precedence relationship between two tasks is then added to the graph
as follows: FindTask(Ti, Tj , GTG) searches the graph for tasks Ti and Tj .



Social-Network-Based Personal Processes 163

If both tasks and their precedence relationship already exist in the GTG, we
only need to increase the weight and update the constraint attributes of prece-
dence. Otherwise if both tasks exist but they have not been connected, a new
precedence should be added by (AddPrecedence) with its weight and constraints
set. If only one of the tasks exists in GTG, we have to first add the missing task to
the graph (AddTask), then add the corresponding precedence and finally set its
weight and constraint attributes. This is similar to the case where both tasks are
new to the GTG, with the minor difference that we have to add both tasks first.

4.3 Sharing Process Knowledge

Knowledge of achieving a goal, which we refer to as process knowledge, is cap-
tured when individuals carry out ToDoLists; this information is aggregated in
the GTG. Process knowledge is the main artefact that is shared among users
In Processbook. Process knowledge sharing happens via recommendations to tar-
geted communities.

Figure 3 shows how such a sharing mechanism is realised in Processbook. For
each goal, a community is created. Users are considered members of a com-
munity once they start towards a goal. These goal based communities, forming
weak ties among users, are then used as a target group for recommendations.
Users start planning their goals in the ToDoList manager. The executions of
their plans are logged by trace logger in TraceList database. Secondary data from
their involvements that includes votes and comments on recommended items are
also recorded by the event logger. The TraceList merger performs aggregation
of TraceLists (peer products) of a goal into the GTG to produce social produc-
tion. Collective decisions are realised by applying users’ votes on TraceLists and
providing recommendations.

The recommender system consists of two different modules separated by the
data sources they utilise: (i) TraceList ranked retrieval module that makes use of
TraceList database and (ii) process recommender that utilises the GTG. Ranked
retrieval of complete TraceLists could be based on several different metrics:

– Number of tasks in a TraceList; those with less tasks will be ranked higher
implying they need less effort to achieve the goal

– Execution time of a TraceList calculated by Max(ET )−Min(ST ); those with
shorter execution time will be ranked higher implying they reach the desired
outcome sooner

– Popularity of a TraceList indicated by users‘votes which reflects users’ opin-
ions on the usefulness and effectiveness of a TraceList.

The Process Recommender uses two slightly different approaches: recommending
the next best task or recommending a process path. Both approaches use the GTG
as their data source. The next best task recommender gives users a task at a
time while being dynamically modified as the GTG grows. The Process Path
Recommender, on the contrary, provides the whole set of tasks needed to reach
the goal in the form of a path. It does not reflect GTG changes unless the user



164 S.A. Hajimirsadeghi et al.

Procedure 1. Merging TraceLists to GTG

Input: TRL: A set of complete TraceLists having goal G
Output: GTG for goal G

PrepareTraceList(TRL)
for all tracelists trl in TRL do

for all Ti → Tj in trl do
Let wij = trl weightTi→Tj

Let cij = trl constraintsTi→Tj

found = FindTask(Ti, Tj , GTG)

switch found
case both Ti and Tj were found in GTG

if Ti → Tj exist in GTG then
WeightTi→Tj+ = wij

ConstraintsTi→Tj = ConstraintsTi→Tj ∨ cij
else

AddPrecedence(Ti → Tj)

WeightTi→Tj = wij

ConstraintsTi→Tj = cij
end if

case Ti was found in GTG
AddTask(Tj , G)

AddPrecedence(Ti → Tj)

WeightTi→Tj = wij

ConstraintsTi→Tj = cij

case Tj was found in GTG
AddTask(Ti, G)

AddPrecedence(Ti → Tj)

WeightTi→Tj = wij

ConstraintsTi→Tj = cij

case neither Ti nor Tj were found in GTG
AddTask(Ti, G)

AddTask(Tj , G)

AddPrecedence(Ti → Tj)

WeightTi→Tj = wij

ConstraintsTi→Tj = cij

end for
end for

explicitly asks for an updated recommendation. One advantage of the next best
task recommender appears when a user wants to select a task manually, which
is not necessarily the next best one. In this case the recommender will consider
calculating the best remaining path, taking into account what user has chosen
so far. In both cases, the user may fully or partially accept the recommendation
or may completely reject it and continue making her own plans.

The major advantage of the process recommender over the TraceLists ranked
retrieval module is that it better reflects the knowledge of the crowd. It is because



Social-Network-Based Personal Processes 165

Fig. 3. Realisation of social software principles in Processbook

the next task or the process path given by the process recommender comes from
merging different TraceLists and is considered to give the best possible solution
from the crowd experience, while in the ranked retrieval system we are limited
to the number of single TraceLists. The advantage of using a retrieval system
based on single TraceLists is that what is finally recommended is already used
by one or more users in real world, whereas in process recommender, the final
recommended path might have not been carried out before by any user. In other
words, it is a system generated path that is composed of different best practices
found in the most successful attempts.

The basis of the process recommender is to find the minimum weighted path
in the GTG. Weights in the GTG represent the popularity of a task flow but
they have to be normalised so that Dijkstra’s algorithm could be applied and
the minimum weighted path from the starting task to the end task found. We
also elaborate the weights of the GTG by taking into account users’ votes in
addition to the popularity measure. Therefore the final weight for an edge in
GTG between tasks Ti and Tj is calculated as follows:

α × (10 − wij

N
× 10) + β × (10 − vote)

where wij is the initial popularity weight of the edge between Ti and Tj , N is the
number of complete TraceLists merged into the GTG, vote indicates the average
votes for the task flow, ranging from 0 to 10 with 10 meaning the best and α
and β are coefficients for popularity metrics and users’ votes respectively.

It is probable that tasks that have been repeatedly used in complete
TraceLists be excluded from the final recommendation due to existence of some
unrealistic short paths in the graph. To avoid ignoring such tasks and thus
improving the recommendation results, we define the concepts of required tasks
and required ratio. The required ratio for task Ti is calculated by w∗i/N where



166 S.A. Hajimirsadeghi et al.

w∗i is the sum of the weights of ingoing edges to task Ti and N is the number of
complete TraceLists merged into the GTG. A threshold for required ratio is set
to force the inclusion of task Ti. Tasks whose required ratio is above the threshold
are called required tasks, implying they are the necessary steps if the process is
to achieve the goal. Considering required tasks, the recommendation mechanism
should also be modified. To this purpose, the GTG analyser shown in Fig. 3 is
responsible for marking required tasks in each GTG. The final recommended
paths will be filtered to avoid ignoring required tasks.

Towards Context-Aware Process Recommendation. A further step in
sharing the process knowledge is to enable context-aware process recommenda-
tion by taking into account user profiles and task constraints. The pre-requisite
is to have a logical mapping between user profile attributes and task constraints.
For instance, in a personal process which is about applying for a PhD scholar-
ship, users should fill out the required fields about their educational background
such as degrees they hold, universities and schools they have attended, etc.

Having a set of constraints associated with each edge in GTG in Procedure 1,
first challenge would be to find the most relevant constraint(s) for each edge.
A simple approach is to rank those constraints based on the frequency of their
appearance in the trace logs. This way, in its simplest form, we would have a GTG
with each of its edges labelled with the most frequent constraint. Subsequently
any of the recommendation algorithms introduced in Sec.4.3 can be modified to
include constraint labels in their internal logic.

An alternative approach is to first cluster trace logs based on the user pro-
files and then run Procedure 1 to build GTGs for each cluster. An agglomerative
hierarchical clustering algorithm can be used to find the proper number of clus-
ters. Prior to using any recommendation algorithm, we should first assign each
user a cluster of which its center is nearest to her user profile. The input of the
recommendation algorithm would be the GTG which is built over that particular
cluster.

5 Implementation and Pilot Study

A prototype of the proposed system is implemented as a Java-based Web appli-
cation. In this section, we demonstrate our solution by presenting a simplified
version of test cases we have run with Processbook. We have asked five students in
our school to plan for the case “Applying for UNSW PhD scholarship” through
ToDoList modelling interface of Processbook. Based on this input we show how
the system generates recommendations for Ali, who also wants to apply for a
PhD scholarship.

Users’ knowledge and experience in planning the scholarship case has been
captured in TraceList database. Task descriptions, complete TraceLists and votes
statistics are provided in Fig. 4. Processbook aggregates TraceLists and build the
GTG shown in Fig. 4. Without loss of generality, we assume that user votes for
each edge is equal (e.g. 5 out of 10). Moreover since the effect of constraints



Social-Network-Based Personal Processes 167

Fig. 4. “Applying for UNSW PhD scholarship” TraceLists and GTG

has not yet implemented in the recommender system of Processbook, we ignore
constrains labels of GTG edges.

In terms of number of tasks, John’s TraceList stands higher while in terms
of execution time, Anthony’s TraceList would be recommended to Ali. How-
ever, if Ali decides to use a process path recommender, he will be offered a
new path which does not exist in any of those TraceLists. The recommended
path excludes T9 which as we detected is a common misunderstanding between
applicants. However the path shown in Fig. 4 also excludes T3, T4 and T10, all
seems mandatory tasks according to UNSW policies. To avoid this undesirable
elimination, we have to tune the required threshold to 50 %, to enforce inclusion
of such required tasks. Therefore Processbook filters out the path illustrated in
Fig. 4 and returns the optimal path as can be seen in an screenshot of the system
in Fig. 5.

5.1 Preliminary Evaluation of Process Recommendation Algorithms

A main part of our proposed personal process management system is the recom-
mendation module which plays a significant role in process knowledge sharing.
A preliminary experiment was conducted to measure the effectiveness of the
core recommendation algorithms introduced in Sec.4.3. For a proper evalua-
tion we needed a fairly large amount of traces which was impossible to acquire
from prototype logs in the limited time we had. Moreover, to the best of our
knowledge there is no dataset available online to test process recommendation
systems (or any path-based recommendation systems). As a result, we developed
a TraceList simulator to produce TraceLists based on user profiles and expertise.
Users’ expertise parameter was added to enable generation of traces of different
qualities: from nearly perfect traces to complete random task selection.

Two different algorithms were implemented for the purpose of this experi-
ment: (i) GTG: created by Procedure 1 labelled with the most frequent con-
straint, and (ii) clustered GTG: in which trace logs were clustered based on
user profiles and Procedure 1 was executed for each cluster afterwards. We used



168 S.A. Hajimirsadeghi et al.

Fig. 5. Screenshot of optimal path generated by Processbook

TraceList simulator to produces 50, 200, 500 and 1000 successful traces for Schol-
arship application process. Accuracy of each recommendation algorithm was
measured by calculating the similarity between the recommended path and the
ground truth (i.e. the optimised path to apply for scholarships at UNSW). The
similarity is formally calculated as follows:

1 − editDistance(r, g)
max(length(r), length(g))

where r and g are recommended path and ground truth respectively and length
indicates the number of tasks in a path. Table 1 summarizes the accuracy results
obtained for both GTG and clustered GTG algorithms.

Table 1. Accuracy of recommendation algorithms

Size of log GTG clustered GTG

50 0.715 0.823

200 0.718 0.914

500 0.723 0.920

1000 0.731 0.917

The experiment shows that process paths recommended by clustered GTG is
significantly more accurate than those recommended by GTG. However, we wish
to emphasise that the experiment reported above is at an early stage and can
be improved by (i) acquiring the real world traces and (ii) adding social network
aspects such as users’ votes and communities. It should also be extended to test
variations of recommendation algorithms against various personal processes that
differs in terms of size and complexity.



Social-Network-Based Personal Processes 169

6 Conclusion and Future Work

Our proposed solution for personal process management is to create a flexible
process management environment within a social network structure. We main-
tain the process awareness of traditional BPM to be able to handle dependencies
and constraints between tasks, but at the same time we follow the principles of
social software by establishing goal-based communities, enabling social produc-
tion and utilising collective decisions. To realise all these, we have proposed a
novel method for modelling personal processes based on the idea of ToDoLists
and have implemented a mechanism to unobtrusively capture users’ experience
separately and then aggregate them in a graph structure that can be used as a
source for process recommendation.

Our future work includes: (i) improving context-aware process recommenda-
tion, (ii) enforcing trustworthy recommendation by utilising more social software
features and (iii) enriching our capturing mechanism by enabling parallelism in
task flows. As well, we intend to evaluate Processbook in real world scenarios
by conducting comprehensive user studies. We believe that Processbook can be
employed in many knowledge intensive domains in addition to personal process
management.

References

1. Brambilla, M.: Application and simplification of BPM techniques for personal
process management. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012.
LNBIP, vol. 132, pp. 227–233. Springer, Heidelberg (2013)

2. Bruno, G., Dengler, F., Jennings, B., Khalaf, R., Nurcan, S., Prilla, M., Sarini, M.,
Schmidt, R., Silva, R.: Key challenges for enabling agile bpm with social software.
J. Softw. Maint. 23(4), 297–326 (2011)

3. Hajimirsadeghi, S.A., Paik, H.-Y., Shepherd, J.: Processbook: towards social
network-based personal process management. In: La Rosa, M., Soffer, P. (eds.) BPM
Workshops 2012. LNBIP, vol. 132, pp. 268–279. Springer, Heidelberg (2013)

4. Koschmider, A., Song, M., Reijers, H.A.: Social software for modeling business
processes. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Man-
agement Workshops. LNBIP, vol. 17, pp. 666–677. Springer, Heidelberg (2009)

5. Martinho, D., Silva, A.R.: Non-intrusive capture of business processes using social
software - capturing the end users’ tacit knowledge. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 207–218.
Springer, Heidelberg (2012)

6. Silva, A.R., Meziani, R., Magalhães, R., Martinho, D., Aguiar, A., Flores, N.:
AGILIPO: embedding social software features into business process tools. In:
Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp.
219–230. Springer, Heidelberg (2010)

7. Weber, I., Boualem Benatallah, H.P.: Form-based web service composition for
domain experts. ACM Trans. Web 8(1), Article 2, pp. 1–40 (2013)


	Social-Network-Based Personal Processes
	1 Introduction
	2 Personal Process Management: A Motivating Scenario
	3 Related Work
	4 Process Aware Personal Process Management System
	4.1 Modelling Interface
	4.2 Capturing Process Knowledge
	4.3 Sharing Process Knowledge

	5 Implementation and Pilot Study
	5.1 Preliminary Evaluation of Process Recommendation Algorithms

	6 Conclusion and Future Work
	References


