
Chapter 2
Caspases – Key Players in Apoptosis

Christine E. Cade and A. Clay Clark

Abstract Caspases are the terminal proteases involved in apoptosis, as well as
being involved in inflammation. The apoptotic caspases can be classified as either
initiator or effector caspases based on both their position in the caspase cascade and
their activation mechanism. Initiator caspases require dimerization to be activated,
and cleavage of a loop called the intersubunit linker stabilizes the active enzyme.
Effector caspases, on the other hand, are found as dimers in the cell and cleavage of
the intersubunit linker is the key step in their activation.

The name caspase is short for cysteinyl aspartate-specific protease. As their name
suggests, these enzymes hydrolyze peptide bonds after certain aspartate residues
using a catalytic cysteine (with the aid of an active-site histidine residue). Caspases
can be inhibited by endogenous inhibitors such as XIAP, by synthetic inhibitors
which target either the active site or an allosteric site, or by post-translational
modification. Further research is needed to find novel activators and inhibitors of
caspases to treat diseases which involve misregulation of apoptosis.
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Abbreviations

ASC Apoptosis-associated speck-like protein containing a CARD
CARD Caspase activation and recruitment domain
Caspase Cysteinal aspartate-specific protease
DAMPs Danger-associated molecular patterns
DD Death domain
DISC Death inducing signaling complex
FADD Fas-associated death domain
FasL Fas ligand
FLICE FADD-like interleukin 1“-converting enzyme
FLIP FLICE-like inhibitory protein
FLIPL Long splice variant of FLIP which forms a heterodimer with caspase-8
FLIPS Short splice variant of FLIP which blocks caspase-8 from binding death

receptor
ICE Interleukin 1“-converting enzyme
IL-1“ Interleukin 1“
IL-18 Interleukin 18
PS Phosphatidylserine
Smac Second mitochondrial activator of caspases
TNFR Tumor necrosis factor receptor
XIAP X-linked inhibitor of apoptosis protein

Caspases
Caspases (cysteinalaspartate-specific proteases) [1] are enzymes which utilize a
catalytic cysteine to cleave their peptide substrates after specific aspartate residues.
The first caspase was discovered in 1992 and because of its function was named
interleukin-1-“ converting enzyme (ICE) [2, 3] but was later renamed to caspase-
1. In 1993, Ced-3 from C. elegans was found to be homologous to ICE [4] and
the corresponding human protein CPP32 (later named caspase-3) was found in
1994 [5]. The official caspase nomenclature was decided on in 1996 to alleviate
the confusion that went along with discovery of ten different caspases, some with
multiple names [1].

1 Structure

Caspases are expressed as proenzymes (zymogens) called procaspases, which then
become activated to the mature caspase form. Procaspase structure can be divided
into three domains: an N-terminal prodomain, a large subunit, and a small subunit.
The first step in maturation is dimerization. Then, proteolytic processing removes
the prodomain and cleaves a loop called the intersubunit linker between the large
and small subunits.
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Fig. 2.1 Procaspase-3 model and crystal structure of caspase-3. Active site loop coloring:
yellowDL1, red DL2, cyanDL20, blueDL3, tanDL4

The secondary structure of mature caspases consists of six core “-strands in a
slightly twisted sheet in each monomer, with two main helices on one face (the
“front”) of the protein and three helices on the other face (the “back”) of the protein
(Fig. 2.1). The first four core “-strands and helices 1–3 form the large subunit,
whereas the last two core “-strands and helices 4–5 form the small subunit.

The dimer interface consists of the final “-strand from each monomer, side-
by-side in an antiparallel manner. The two monomers are related through a C2
axis of symmetry such that one monomer is “upside-down” compared to the other
monomer.

Five loops are important for the formation of the active site. Once the intersubunit
linker is cleaved, the two halves of the cleaved linker are called L2 and L20. Active
site loops L1, L2, L3, and L4 come from one monomer, and loop L20 comes from
the other. The catalytic cysteine is part of loop L2, and the catalytic histidine is part
of a loop extending from the C terminal end of “3.

2 Classification

Caspases are divided into two main categories based on their function: apoptotic
caspases and inflammatory caspases. The apoptotic caspases are further divided into
two categories based on time of entry into the apoptotic cascade: initiator caspases
and effector caspases.
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Fig. 2.2 Domain arrangement of mammalian caspases

2.1 Apoptotic Caspases

2.1.1 Initiator Caspases

Initiator caspases are stable monomers in the cell until they are activated by dimer-
ization. Once dimerized, initiator caspases have sufficient activity to autoprocess,
cleaving their prodomain and intersubunit linker. An induced proximity model
for dimerization was first invoked for caspases-8 and -10 but now seems to be
generalizable to initiator caspases as a whole. This model says that activation
complexes increase the local concentration of the initiator caspases, enabling them
to dimerize [6]. The prodomains of initiator caspases contain either a CARD
(caspase activation and recruitment domain) or DED (death effector domain), which
allow initiator caspases to bind to activation complexes (Fig. 2.2).

The initiator caspases-2 and -9 are involved in the intrinsic pathway, which
is activated by mitochondrial damage, cytotoxic stress, chemotherapeutic drugs
or certain developmental cues [7]. Activation of caspase-2 leads to release of
cytochrome c from the mitochondria, which then binds to Apaf-1 and forms
the heptameric apoptosome. The apoptosome binds procaspase-9 to dimerize and
therefore activate it. Once active, caspase-9 activates downstream effector caspases.

The initiator caspases-8 and -10 are activated by the extrinsic pathway: in order to
eliminate excess cells created during development or remove cells with tumorigenic
properties, a molecule binds to a death receptor at the membrane which is part of the
tumor necrosis factor receptor (TNFR) superfamily [8, 9]. One such ligand/receptor
pair is FasL (Fas ligand) and CD95(APO-1/Fas). The cytosolic death domains (DD)
of the receptor recruit an adaptor molecule such as FADD (Fas-associated death
domain), allowing the complex to bind initiator procaspases-8 or -10 to forma death-
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inducing signaling complex (DISC). Once the procaspases are part of the DISC, they
are able to dimerize and therefore become active. The active caspase-8 or -10 then
activates downstream effector caspases such as caspase-3.

2.1.2 Effector Caspases

The effector caspases-3, -6, and -7, are found as inactive dimers in the cell. They
are activated once an initiator caspase cleaves their intersubunit linkers. Because
they do not require death scaffolds for dimer formation [10, 11], their prodomains
are short and lack the CARD and DED domains typical of initiator caspases. Their
prodomains are, however, likely to be involved in targeting within the cell [12–15].

2.2 Inflammatory Caspases

Similarly to the initiator caspases, the inflammatory caspases-1, -4, -5, -11, -12,
and -13 are activated by dimerization. Their prodomains contain a CARD which
allows them to bind to activation complexes. Similarly to apoptosome formation,
a multiprotein complex called the inflammasome consists of a NOD-like receptor
such as NLRP1, an adaptor protein such as ASC (apoptosis-associated speck-
like protein containing a CARD), and the inflammatory procaspase, particularly
procaspase-1 [16]. In some cases, the procaspase can also be recruited to CARD
domains in the receptor directly, without the aid of an adaptor molecule [17].

Once the inflammatory caspases become active, they are activators of cytokines
through cleavage of their preforms. In monocytes and macrophages, caspase-1
activates interleukin-1“ (IL-1“) [3] and interleukin-18 (IL-18). These cytokines
mediate innate immunity and inflammation [18].

The mouse caspase-11 is a homolog of human caspase-4 [19]. In humans,
caspase-12 is generally truncated due to a premature stop codon, but in some
people of African descent, a read-through mutation causes expression of the full-
length protein, causing increased risk of sepsis due to decreased inflammatory and
immune response to endotoxins [20]. Caspase-13 is a bovine ortholog of human
caspase-4 [21].

2.3 Other or Unclassified Caspases

Caspase-14 expression is restricted to epidermal keratinocytes and is involved in
differentiation [22]. Like the effector caspases, it has a short prodomain with no
adaptor regions. Several caspases are not yet classified: 15, 16, and 17 [23]. Caspase-
15 is expressed in several mammalian species including pigs, dogs, and cattle [24].
It contains a pyrin-like region in its prodomain similar to that found in zebrafish
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caspases caspy and caspy2 [25]. Caspase-16 is found in marsupials and placental
mammals and contains a short prodomain with no adaptor regions [23]. Caspase-17
is found in vertebrates except for marsupials and placental mammals and also does
not contain adaptor regions in its prodomain. Caspase-18 is found in opossums and
chickens and, like caspases-8 and -10, contains two DED regions in its prodomain,
so it is likely also an initiator apoptotic caspase [23].

3 Mechanisms

3.1 Activation

Activation of caspases generally requires two events: they must be a dimer and the
intersubunit linker must be cleaved. Removal of the prodomain is not necessary for
activation; in fact, the prodomain may serve to stabilize the active enzyme [26].

After dimerization, cleavage of the intersubunit linker occurs first, followed by
cleavage of the prodomain. Prior to cleavage, the intersubunit linker from one
monomer occupies the dimer interface. Upon cleavage of the intersubunit linker,
the C-terminal portion of the linker, L20, vacates the central cavity and rotates
about 180 degrees toward the active site, forming contacts with L2, L3, and L4
from the opposite monomer. These loop bundle contacts stabilize the active site.
The movement of L20 out of the dimer interface allows L3 to slide in towards the
interface and form the substrate binding pocket. Rotation of a key arginine on L2
from a solvent-exposed position into the interface allows its neighboring residue,
the catalytic cysteine, to assume its proper position for catalysis.

For effector caspases, equilibrium favors the inactive dimer. For initiator cas-
pases, however, dimerization is the main challenge to be overcome for activation.
Addition of kosmotropes such as sodium citrate causes caspase-8 to dimerize and
become activated [27]. At least partly because the initiator caspases have longer
intersubunit linkers than effector caspases, cleavage of the intersubunit linker is not
necessary for activation, but rather, stabilizes the active conformation.

Effector caspase mutants, particularly procaspase-3 V266E, can also be activated
without cleavage of the intersubunit linker [28]. This mutant is even more effective
at inducing apoptosis than the wild-type (WT) enzyme [29]. The enhancement of
activation caused by the mutation is predicted to occur because the mutation keeps
the intersubunit linker from binding to the dimer interface. In general, when the
intersubunit linker is in the dimer interface, the protein is inactive, whereas when it
is out of the interface it can become active.

The conformational ensemble of effector procaspases includes both active and
inactive conformers. Although the inactive ensemble is favored, binding of allosteric
activators could shift the equilibrium to the active ensemble. On the other hand,
binding of allosteric inhibitors to the active caspase could inactivate it. Manipulating
the position of the intersubunit linker could lead to allosteric activation or inhibition.
A drug which binds at the dimer interface and holds the intersubunit linker in place
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could inactivate the enzyme. Conversely, a drug which binds at the dimer interface
and keeps the intersubunit linker from binding could activate the procaspase.
In fact, a small molecule has been suggested to activate procaspase-3 by this
mechanism [30].

Additionally, Wells and coworkers have found a small molecule termed 1541
which forms nanofibrils that act as a scaffold for (pro)caspase-3 binding and
increase activation of the procaspase [31]. They suggest that the procaspase is
activated through induced proximity, similar to the activation of initiator caspases.
In vitro, amyloid-“ (residues 1–40) fibrils were also shown to activate procaspase-
3. The activation of caspases by fibrils may play a role in neurodegenerative
diseases [32].

3.2 Catalysis

Proteases all have some mechanistic features in common. The trigonal planar
peptide bond of the substrate is forced into a tetrahedral intermediate [33]. As
this tetrahedral intermediate forms, a nucleophile attacks the carbonyl carbon of
the peptide bond. Then, the amino nitrogen of the leaving group is protonated.

Caspases contain a catalytic dyad consisting of a cysteine and a histidine [33].
Based on the catalytic mechanism accepted for cysteine proteases, the mechanism
for caspases has been thought to be as follows (See Fig. 2.3a): First, the catalytic
histidine abstracts a proton from the catalytic cysteine. The catalytic cysteine acts

Fig. 2.3 Two proposed mechanisms of caspase catalysis (Adapted from Miscione et al. [34])
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Fig. 2.3 (continued)

as the nucleophile to form a covalent tetrahedral intermediate with the peptide
substrate. Once the cysteine has bound, the histidine donates the proton to the
amino moiety of the peptide leaving group. The peptide bond is cleaved, with the
N-terminal part of the peptide remaining covalently attached to the cysteine while



2 Caspases – Key Players in Apoptosis 39

the C-terminal part of the peptide leaves. Finally, hydrolysis frees the N-terminal
part of the peptide and re-protonates the catalytic histidine.

An oxyanion hole, a pocket in the enzyme that hydrogen bonds to the carbonyl
oxygen of the substrate, is also thought to be key for catalysis [33]. It is formed by
the backbone nitrogens of a conserved glycine (238 in caspase-1) and the catalytic
cysteine (285 in caspase-1). The oxyanion hole is thought to be important for
polarizing and stabilizing the scissile carbonyl group [34].

However, there are some problems with the proposed mechanism. The 6–7 Å
distance between the two catalytic residues is larger than found in most proteases,
and makes direct hydrogen transfer unlikely [33]. Molecular dynamics simulations
have shown that the catalytic residues cannot exist as a charged pair prior to catalysis
[35]. Therefore, the deprotonation of the cysteine likely occurs during catalysis.
Also, the histidine residue is not in an optimal location for protonating the amino
leaving group [36].

A DFT study of the first part of the catalytic process (Fig. 2.3b, part 1) has been
carried out for caspase-7 [34]. Miscione and coworkers found that first, a proton is
transferred from the backbone nitrogen of the P1 aspartate to the carboxylate group
of the P1 aspartate. In the second step, a proton is transferred from the aspartate to
a water molecule, and from that water to the catalytic histidine. In the third step,
a proton is transferred from the catalytic cysteine to the backbone nitrogen of the
P1 aspartate. The overall result of these first three steps is the protonation of the
catalytic histidine and the deprotonation of the catalytic cysteine. In a fourth step, the
catalytic cysteine nucleophile attacks the carbonyl carbon of the substrate to form
a tetrahedral intermediate, the peptide bond is cleaved, and a proton is transferred
from the catalytic histidine to a second water, which transfers a proton to the amino
nitrogen of the leaving group.

A QM/MM simulation focused on the hydrolysis of the covalent adduct
(Fig. 2.3b, part 2) [37]. In the reaction scheme proposed by Sulpizi and coworkers,
the catalytic histidine deprotonates a water molecule, which attacks the scissile
carbonyl carbon (as in the original proposed mechanism). Then the proton from
the catalytic histidine is abstracted by the now negatively-charged carbonyl oxygen,
such that a diol is formed. A second water molecule interacts with the catalytic
histidine and one of the diolhydroxy groups. Finally, a proton is transferred from
that diol hydroxyl group to the P1 aspartate residue, causing cleavage of the covalent
adduct. If this is true, it could more cogently explain the specificity for a P1 aspartate
residue.

4 Functions

4.1 Apoptosis

The activation of caspases commits the cell to apoptosis. The main hallmarks
of apoptosis include rounding of cells and retraction from neighbors, membrane
blebbing to form vesicles called apoptotic bodies, nuclear fragmentation, chromatin
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condensation, hydrolysis of genomic DNA to approximately 200 bp fragments, and
translocation of phosphatidylserine (PS) to the external surface of cells as an “eat
me” signal to phagocytes. The apoptotic caspases are necessary for conferring all of
these phenotypes.

In addition to the systematic dismantling of the cell, caspases are also involved
in producing “find-me” signals to cause chemotaxis of phagocytes to apoptotic cells
[38–40]. The recruitment of phagocytes keeps cells from releasing their contents
into extracellular space and activating an immune response which could be harmful
to the tissue.

When the number of apoptotic cells is too great for consumption by phagocytes,
secondary necrosis can occur. When this happens, the cell releases its contents into
extracellular space. However, immune cells are somehow able to recognize the cells
undergoing apoptosis (and secondary necrosis) differently from necrotic cells. This
is likely due to the actions of caspases. Caspases keep danger-associated molecular
patterns (DAMPs) and alarmins from being activated [41]. This can be thought of
as a “tolerate me” signal.

Caspases are also involved in turning off transcription and translation [42]. This
keeps any infecting viral particles from replicating using the host’s machinery. They
also fragment the Golgi, ER, and mitochondria [43, 44].

4.2 Inflammatory Response

In contrast to the actions of apoptotic caspases, which systematically dismantle the
cell to avoid an immune response, the actions of inflammatory caspases lead to cell
lysis and activation of the immune response in a process called pyroptosis [45]. In
order to activate an immune response, caspases cleave cytokine IL-1“ and IL-18 to
produce the mature form [46].

In addition to activation of cytokines, procaspase-1 is also able to activate the
pro-inflammatory transcription factor NF-›B [47]. Rather than using its catalytic
activity, the CARD domain of procaspase-1 binds to a CARD domain in the kinase
RIP2, which is involved in NF-›B activation.

4.3 Other Functions

Caspase expression is kept below a certain threshold required for apoptosis by IAPs
(inhibitor of apoptosis proteins). At these subthresholdlevels they are able to play
roles that are neither apoptotic nor inflammatory. Caspase-3 activity was found to
be important for differentiation of erythroblasts, [48] skeletal muscle, [49] bone
marrow stromal stem cells, [50] and neural stem cells [51].
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Caspase-3 has several other non-apoptotic functions in nerve cells. In addition to
neural cell differentiation, caspase-3 has also been implicated in neuronal migration
and plasticity, [52] axon pruning, and synapse elimination [53].

Caspases have been shown to play a role in cell migration and invasion under
certain circumstances [54]. They can also induce neighboring cells to proliferate to
replace dying cells in a process called apoptosis-induced proliferation [55]. These
roles for caspases have implications for cancer: moderate activation of caspases
could, in fact, cause cancer to progress rather than regress [54, 55].

In addition to its apoptotic function, caspase-8 has an anti-apoptotic function
when it forms a heterodimer with FLIPL (a protein similar to caspase-8 but lacking
a catalytic site) [56]. This protein complex is able to activate the NF-›B signaling
pathway leading to proliferation [57]. In another pro-survival capacity, the caspase-
8/FLIPL complex is also able to inhibit RIPK3-dependent necrosis [56].

5 Substrates and Inhibitors

5.1 Synthetic Substrates and Substrate Specificity

Caspase substrate specificity is determined by a series of 4–5 substrate residues
which bind to the active site of the caspase. These residues are named P1-P4 or P5,
with P1 always being an aspartate residue (Fig. 2.4). The P4 residue is especially
important in determining specificity for a given caspase [58].

Because of this 4–5 residue contribution to specificity, substrates used for
measuring caspase activity typically have a tetrapeptide preceded by an acetyl
group (Ac) on the N terminus and followed by a fluorophore on the C terminus:
for example, Ac-DEVD-AFC. When the peptide is cleaved by the caspase, the
fluorophore is released and activity can be determined by fluorescence. Some typical
fluorophores include AMC (7-amino-4-methylcoumarin) and AFC (7-amino-4-
trifluoromethylcoumarin). Addition of p-nitroanilide (pNA) instead of a fluorophore
to the C-terminus allows caspase activity to be determined colorimetrically.

Fig. 2.4 Caspase substrate
binding site (Adapted from
Stennicke and Salvesen [33])
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A positional scanning combinatorial library approach has been used with these
synthetic substrates to determine the substrate specificity for most of the mammalian
caspases [58, 59]. Caspases-3 and -7 share the same substrate specificity: DEVD.
The optimal sequence for caspase-1 is WEHD, and the optimal sequence for both
caspase-4 and caspase-5 is (W/L) EHD. The optimal sequence for caspase-2 is
DEHD, for caspase-6 is VEHD, for caspase-9 is LEHD, for caspase-8 is LETD,
and for caspase-10 is LE(Nle)D (NleD norleucine).

The P1-P4 residues fit into the S1-S4 pockets in the active site of the caspase.
The S1 pocket, consisting of R179, R341, and Q283 (caspase-1 numbering), is
nearly 100 % conserved; its basicity and its size make it ideally suited for binding
an aspartate residue [60].

The S2 pocket of caspases-3 and -7 is formed by aromatic residues and
accommodates small aliphatic amino acids [61]. A substitution of a valine or alanine
in place of a tyrosine opens up the S2 subsite to larger residues in the initiator and
inflammatory caspases.

The S3 pocket consists of main-chain interactions with R341 (caspase-1 num-
bering) [61]. In caspases-8, and -9, nearby basic residues enhance the binding of
glutamic acid residues to the S3 subsite [27, 62, 63].

The S4 subsite of inflammatory caspases is long, shallow, and hydrophobic,
accommodating bulky aromatic side chains such as a tryptophan [59]. On the other
hand, in apoptotic caspases, a tryptophan (214 in caspase-3) reduces the size of
the subsite, causing a preference for an aspartate or a small aliphatic residue in the
S4 pocket [60]. An asparagine in caspases-2 and -3 or a glutamine in caspase-7
enhances interaction with a P4 aspartate [60].

Caspase-2 requires a P5 residue to occupy a S5 subsite [60]. The reason for this
specificity may be that binding of a small hydrophobic residue to this subsite may
enhance the burial of a P4 aspartate [64].

5.1.1 Endogenous Substrates

To date more than 700 substrates of caspases have been catalogued [65]. A search-
able database can be found at http://bioinf.gen.tcd.ie/casbah/. Caspase substrates
are involved in conferring an apoptotic phenotype to cells. They are also involved
in producing “find-me” and “tolerate-me” signals during apoptosis.

5.1.1.1 Substrates Involved in the Apoptotic Phenotype

The following are some of the substrates of caspases which are involved in
producing the apoptotic phenotype. The rounding of cells is likely in part due to
caspase cleavage of components of actin microfilaments and microtubular proteins
[42]. Retraction of cells from their neighbors likely facilitates phagocytosis and
is caused in part by caspase cleavage of components of focal adhesion sites,
components of cell-cell adherens junctions, cadherins, and desmosome-associated

http://bioinf.gen.tcd.ie/casbah/
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proteins [42]. Caspase cleavage of Rho effector ROCK1 which regulates movement
of the actin cytoskeleton is a factor in blebbing and nuclear fragmentation [42].
Nuclear fragmentation also involves caspase cleavage of lamins A, B, and C
[66]. Chromatin condensation is caused by caspase cleavage of Mst1 kinase [67].
Hydrolyisis of genomic DNA to small fragments is carried out by caspase-activated
DNAse (CAD/DFF) [68]. Translocation of PS to the external surface of the cell is
also caspase-dependent, but not fully understood [69].

5.1.1.2 Substrates Involved in Other Aspects of Apoptosis

Caspases are also involved in producing “find-me” signals to cause chemotaxis of
phagocytes to apoptotic cells. Caspase-3 cleaves calcium-independent phospholi-
pase A2, causing phosphatidylcholine in the membrane to become hydrolyzed to
produce lysophatidylcholine (LPC) [38]. The C-terminal fragment of endothelial
monocyte-activating polypeptide II (EMAPII) is produced by caspase-dependent
proteolysis and acts as a “find-me” signal to attract monocytes [39]. Caspase-
dependent cleavage of the membrane channel pannexin-1 causes release of modest
amounts of ATP, which may also act as a “find-me” signal [40].

Caspases also function to keep danger-associated molecular patterns (DAMPs)
and alarmins from being activated. This function can be thought of as a “tolerate-
me” signal, and is important for avoiding autoimmunity [41]. As mentioned above,
caspase activation leads to hydrolysis of genomic DNA (which acts as a DAMP)
into short fragments [68]. Additionally, the alarmin IL-33 is inactivated by caspase-
3/-7-dependent proteolysis [70].

5.1.2 Synthetic Inhibitors

5.1.2.1 Active Site Inhibitors

Active-site inhibitors bind in the place of substrate and are therefore competitive
inhibitors. These inhibitors can be peptidic or nonpeptidic and can bind reversibly
or irreversibly.

Peptidic inhibitors can have as few as one amino acid (for example, Boc-Asp-
FMK), but typically have four (for example, Ac-DEVD-FMK) [71]. Peptides linked
to leaving groups such as halomethylketones [for example, chloromethylketone
(CMK) and fluoromethylketone (FMK)], acylomethylketones, and (phosphinyloxy)
methyl ketones bind irreversibly, whereas peptides linked to non-leaving groups
such as aldehyde (CHO) bind reversibly. The electrophilic carbonyl of the aldehyde
or ketone binds to the catalytic cysteine, inhibiting it.

Several different peptidomimetics have been designed as inhibitors for
caspases. These include urazolopyrazine-based “-strand peptidomimeticsdesigned
as inhibitors for caspase-3 and caspase-8, [72] hydantoin-based peptidomimetics as
inhibitors of caspase-3 [73], dipeptidylaspartylfluormethylketones with unnatural
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amino acids [74], 1-(2-acylhydrazinocarbonyl)-cycloalkyl carboxamides, [75]
8,5-fused bicyclic compounds, [76] and peptidomimetics containing a caprolactam
ring [77].

Non-peptide inhibitors have also been discovered. These include isatins, [78,
79] indole aspartyl ketones, fuchsone derivatives, and pyrrolo[3,4-c]quinolone-1,3-
diones [80].

5.1.2.2 Allosteric Inhibitors

Caspases-3 and -7 were found to contain an allosteric site at the dimer interface
[81]. The drugs FICA and DICA form disulfide bonds with cysteines in the dimer
interface of those caspases and inactivate the protein. The structural changes brought
about by binding of these drugs involves massive loop rearrangements to a structure
very similar to that of the proenzyme.

Mutation of valine 266 to a histidine at the dimer interface of caspase-3 also
caused allosteric inactivation of the protein [28]; however, the structural changes
brought about by the mutation were much more subtle than those that occurred
upon binding of FICA or DICA [82]. Instead of conversion to a structure like that of
the proenzyme, inactivation may be caused by a series of steric clashes, disordering
of loop L1, and/or destabilization of helix 3.

A drug called compound 34 was found to bind to cysteines near the dimer
interface of caspase-1 [83]. Similarly to the binding of FICA and DICA, the inactive
structure was like that of the proenzyme.

Another set of allosteric inhibitors was found to inhibit caspases-3, -7, -8, and
-9 [84]. A crystal structure with caspase-7 indicates that one and likely all of these
compounds binds to the dimer interface. One of the compounds, Comp-A, inhibits
dimerization of caspase-8; however, caspase-7 remained a dimer upon binding of
the drug. As with FICA and DICA inhibition, the inhibited form was similar to that
of the zymogen. However, these new compounds are reversible inhibitors, unlike
FICA and DICA.

One of the urazolering peptomimetic inhibitors which bind at the active site was
also found to bind near the dimer interface of caspase-8 [72]. Some of the interacting
residues of caspase-8 are Tyr334, Thr337, Glu396, and Phe399.

Caspase-2 was allosterically inhibited through binding of a designed ankyrin
repeat protein (DARPin) [85]. Binding causes the caspase to be fixed in an inactive
conformation different from that of the proenzyme.

A novel allosteric site was found on caspase-6 [86]. Phage display produced a
peptide pep419 which binds near helix 2 and causes tetramerization and therefore
inactivation of caspase-6. Interestingly, it was found that at pH 8, the zymogen of
caspase-6 is a tetramer in solution, whereas at pH 5.5, the zymogen is a dimer, but
can be induced to form a tetramer through the binding of pep419 or a related peptide
pep420. The pH changes in the cell brought about by apoptosis could potentially
lead to dissociation of caspase-6 tetramers to the dimeric form, leading to activation
of the protein.



2 Caspases – Key Players in Apoptosis 45

5.1.3 Endogenous Inhibitors

Both viral and endogenous inhibitors can block caspase activity by competing for
binding to activation complexes. Viral inhibitors target caspase activity of their
host cells in order to counter an immune response. Several ”-herpesviruses and
molluscipoxvirus use v-FLIPs to block caspase access to the DISC. Similarly,
endogenous FLIPs blocks procaspase-8 recruitment to DISC, [87] and ICEBERG
blocks caspase-1 recruitment to form the inflammasome [88].

Most protease inhibitors bind to the protease and block substrate access [60].
Suicide inhibitors are cleaved and cause a conformational change to occur in either
the inhibitor or the protease. Although it is typically a serine protease inhibitor, the
serpinCrmA is also able to inhibit caspases-1, [89] -8, [90] and -9, [91] likely by
forming a covalent attachment with the caspase and undergoing a conformational
change upon cleavage of the scissile P1–P10 bond to place the caspase on the
“bottom” of the inhibitor [92]. Similarly, the baculovirus protein p35 becomes
covalently attached to the catalytic cysteine, the scissile bond is cleaved, but the
protein is not liberated because it blocks the hydrolytic water from gaining access
to the active site [93, 94].

Anothercategory of inhibitors are IAPs (inhibitor of apoptosis proteins). They
were first discovered using baculovirus lacking a functional p35 gene [95]. They
contain a 70–80 residue Zn2C binding module named BIR. The most well-studied
is X-linked inhibitor of apoptosis protein (XIAP) [96].

XIAP targets caspases in two different ways. A linker to the BIR1 domain and
The BIR2 domain of XIAP target effector caspases-3 and -7 [97]. Residues in the
active site, particularly in loop L1 make critical contacts with the inhibitor. Loop
L20 also makes contacts with XIAP. The necessity of ordered active site loops and
cleaved intersubunit linker to form L20 mean that XIAP only binds the active caspase
rather than the inactive procaspase.

Unlike XIAP binding to the effector caspases, BIR3 and RING of XIAP target
initiator caspase-9 [97, 98]. Also, instead of binding to the active site, it binds
to the dimer interface of the monomer and blocks dimer formation. Loop L20 of
caspase-9 binds BIR3 in a similar manner to how loop L20 of caspase-3 binds BIR2.
The pocket where loop L20 of caspase-9 binds BIR3 is called the Smac (second
mitochondrial activator of caspases) pocket because Smac can also bind there to
derepress caspase activation.

Caspase activity is also controlled endogenously through the use of post-
translational modifications. The RING domain of XIAP acts as an E3 ubiquitin
ligase toubiquitylate effector caspases-3 and -7, leading to proteasomal degradation
[99, 100]. Sumoylation of procaspase-2 [101] and caspase-8 [102] likely leads to
localization of the protein in the nucleus.

Phosphorylation is a third post-translational modification which affects caspase
activity. p38-MAPK phosphorylates S150 of caspase-3, inhibiting it [103].
Phosphorylation by PKC-• at an as yet unknown site, on the other hand,
enhances caspase-3 activity [104]. PAK2 phosphorylates caspase-7 at three sites,
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decreasing its activity [105]. For caspase-9, ERK phosphorylates T125, [106] c-
Abl phosphorylates Y153, [107] and Akt phosphorylates S196, [108] leading to
decreased activity of the protein.
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