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Abstract. Process mining techniques aim to analyze and improve con-
formance and performance of processes using event data. Process dis-
covery is the most prominent process-mining task: A process model is
derived based on an event log. The process model should be able to
capture causalities, choices, concurrency, and loops. Process discovery is
very challenging because of trade-offs between fitness, simplicity, preci-
sion, and generalization. Note that event logs typically only hold example
behavior and cannot be assumed to be complete (to avoid overfitting).
Dozens of process discovery techniques have been proposed. These use a
wide range of approaches, e.g., language- or state-based regions, genetic
mining, heuristics, expectation maximization, iterative log-splitting, etc.
When models or logs become too large for analysis, the event log may be
automatically decomposed or traces may be clustered before discovery.
Clustering and decomposition are done automatically, i.e., no additional
information is used. This paper proposes a different approach where a
localized event log is assumed. Events are localized by assigning a non-
empty set of regions to each event. It is assumed that regions can only
interact through shared events. Consider for example the mining of soft-
ware systems. The events recorded typically explicitly refer to parts of
the system (components, services, etc.). Currently, such information is
ignored during discovery. However, references to system parts may be
used to localize events. Also in other application domains, it is possible
to localize events, e.g., communication events in an organization may
refer to multiple departments (that may be seen as regions). This paper
proposes a generic process discovery approach based on localized event
logs. The approach has been implemented in ProM and experimental
results show that location information indeed helps to improve the qual-
ity of the discovered models.

1 Introduction

Today’s systems record all kinds of events, e.g., social interaction, financial
transactions, user-interface activities, and the use of (mobile) devices. As more
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and more event data become available, the practical relevance of process min-
ing further increases. Process mining techniques aim to discover, monitor and
improve real processes by extracting knowledge from event logs [1]. The three
most prominent process-mining tasks are: (i) process discovery: learning a pro-
cess model from example behavior recorded in an event log, (ii) conformance
checking: diagnosing and quantifying discrepancies between observed behavior
and modeled behavior, and (iii) performance analysis: identifying bottlenecks,
delays, and inefficiencies using the timestamps of events. Starting point for anal-
ysis is often an automatically discovered process model. In this paper, we focus
on this first step, i.e., learning a process model from event data.

Input for process discovery is an event log. Each event in such a log refers to
an activity (i.e., a well-defined step in some process) and is related to a particular
case (i.e., a process instance). The events are partially ordered. Events related
to a case describe one “run” of the process. Such a run is often referred to as a
trace. It is important to note that an event log contains only example behavior.

Process discovery is challenging for a variety of reasons. Typically, only a
fraction of the behavior possible can be observed and there is no explicit infor-
mation on behaviors that are impossible, i.e., a sequence of activities that never
occurred, may still happen in the future, but may also be impossible. Moreover,
mixtures of choice, concurrency, and iteration may be difficult to uncover using
merely an event log.

In this paper we propose to use “location information” present in most data
sources. We assume that each event belongs to one or more regions. A region
may be a software/hardware component, a service, a department, a team, or
a geographic location. Regions can only interact through shared events just
like communication involves multiple parties. We assume that events with non-
overlapping sets of regions cannot influence each other directly. This is compa-
rable to the independence assumption often used in statistical analysis.

Localized event logs combined with the independence assumption allow for
a new decomposition approach. A sublog of the overall event log is created for
every region. Then a submodel is created for each sublog. These submodels are
merged into an overall model. Whereas traces at the global level are often unique
showing only a fraction of the possible behavior, traces in the sublogs may have
more repetitive behavior and easily cover all possible local behaviors. Therefore,
location information may provide valuable information guiding decomposed dis-
covery. This speeds up analysis and, most likely results in models better describ-
ing reality.

The idea to partition event logs is not new, see for example decomposi-
tion approaches [3,4] and trace clustering approaches [9,16,27]. However, unlike
existing approaches we do not try to partition cases or activities through mining.
Instead, we propose to exploit location information explicitly attached to events.
Such information is often available or derivable.

The approach has been implemented in ProM and experiments using syn-
thetic and real-life event logs demonstrate the value of location information.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 introduces preliminaries, including process models. Process
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mining, in particular control-flow discovery, is introduced in Section 4. Local-
ized event logs, i.e., logs where events have one or more associated regions, are
presented in Section 5. Such logs may be used for decomposed process discovery,
as shown in Section 6. The experiments presented in Section 7 (using synthetic
data and data from two real-life software systems) show that localized event logs
allow for significantly better models. Section 8 concludes the paper.

2 Related Work

For an introduction to process mining, we refer to [1].

Process discovery, i.e., discovering a process model from a multiset of exam-
ple traces, is a very challenging problem and various discovery techniques have
been proposed [5-8,10,11,13,15,18,19,21,25,28,29]. Many of these techniques
use Petri nets during the discovery process. It is impossible to provide a complete
overview of all techniques here. Very different approaches are used, e.g., heuris-
tics [13,28], inductive logic programming [15], state-based regions [5,11,25],
language-based regions [8,29], and genetic algorithms [21]. Classical synthesis
techniques based on regions [14] cannot be applied directly because the event
log contains only example behavior. For state-based regions one first needs to cre-
ate an automaton as described in [5]. Moreover, when constructing the regions,
one should avoid overfitting. Language-based regions seem good candidates for
discovering transition-bordered Petri nets for subnets [8,29]. Recently, a family
of inductive mining approaches has been proposed by Leemans et al. [18,19].
These techniques can deal with incompleteness and infrequent behavior, but
still provide formal guarantees (e.g., perfect fitness and rediscoverability for spe-
cific parameter settings). The approach presented in this paper can be used in
conjunction with all existing process discovery approaches.

Also related is the work on decomposed process mining. In [2] two types of
log decomposition are identified: vertical decomposition and horizontal decom-
position. In a vertical partitioning complete cases are assigned to a group and
end-to-end process models are discovered or checked. Traditional trace clustering
techniques may be viewed as vertical decomposition techniques (not for scalabil-
ity but for obtaining simpler models). Several authors have proposed such trace
clustering techniques [9,16,27]. Here traces are grouped and simplified models
are created per group. The approach in this paper is based on a horizontal decom-
position (traces are split into subtraces) rather than a vertical decomposition. In
a horizontal partitioning activities are assigned to (possibly overlapping) groups
[2—4]. Cases are projected on subsets of activities, thus resulting in a sublog per
group. A process fragment is discovered or checked per subgroup. The principles
presented in [3,4] are used to prove the correctness of the approach proposed in
this paper.

Different divide and conquer approaches are possible [3,4,12]. For example,
one may decompose event logs and process models based on the refined process
structure tree identifying Single-Entry Single-Exit (SESE) fragments [22,24].
This can only be done for conformance checking. Here, explicit location infor-
mation is exploited to decompose discovery into relatively independent parts.
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3 Process Models

The results presented in this paper do not depend on a particular representation.
However, we use labeled Petri nets with designated initial and final markings to
illustrate the approach. This section introduces the preliminaries needed in the
remainder.

B(A) is the set of all multisets over some set A. For some multiset b € B(A),
b(a) denotes the number of times element a € A appears in b. b = [23, 2, 2] is a
multiset having 6 elements: three x elements (i.e., b(x) = 3), two y elements (i.e.,
b(y) = 2), and one z element (i.e., b(z) = 1). Operators are defined as usual, e.g.
[22,y] ¥ [x,y, 2] = [23,9?, 2] is the union of two multisets.

o = {ay,as,...,a,) € X* denotes a sequence over X of length n. () is the
empty sequence and oy - 02 is the concatenation of two sequences. o [qg is the
projection of o on Q, e.g., (a,b,¢,a,b,¢){4,c}= (a,¢,a,c).

Definition 1 (Sequence Projection). Let X be a set and Q C X one of its
subsets. g€ X* — Q* is a projection function and is defined recursively: (1)
(Ylo= () and (2) foroc € X* andz € X: ((z) -0)[g=0clg if ¢ &€ Q, and
((x) - o)lg=(z)-olg if x € Q.

Definition 2 (Applying Functions to Sequences). Let f € X /A Y be
a partial function.! f may be applied to sequences of X using the following
recursive definition (1) f(()) = () and (2) foroc € X* and x € X :

R f(o) if x & dom(f)
f({x) o) {<f(x)>f(o') if © € dom(f)

Q

Figure 1 shows a labeled Petri net composed of places P = {pl,p2,...,p21}
and transitions T = {¢1,¢2,...,t18}. The flow relation F' = {(pl,t1), (¢t1,p2),
(t1,p8),...} specifies the connections between places and transitions. A tran-
sition may have a label, e.g., transition t1 has label a. The label refers to the
activity associated with the transition. Two transitions may have the same label,
e.g., t13 and t15 correspond to the same activity. Note that transition ¢4 has no
label, i.e., it does not correspond to a transition and is sometimes called “invis-
ible”.

Definition 3 (Labeled Petri Net). A labeled Petri net is a tuple N =
(P, T,F,l) defining a finite set of places P, a finite set of transitions T (such
that PNT =0), a flow relation F C (P x T)U (T x P), and a labeling function
leT /4 Uy where Uy is some universe of activity names. A marking of N is a
multiset of places M, i.e., M € B(P).

A labeled Petrinet N = (P, T, F, 1) defines a directed graph with nodes PUT
and edges F. A transition t € dom(l) has a label I(¢) that refers to some activity.

L A partial function f € X 4 Y has a domain dom(f) C X and a range rng(f) =
{f(z) |z € dom(f)} CY.
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Fig. 1. Labeled Petri net with initial marking [pl] and final marking [p21]. The dashed
lines refer to regions and will be explained later.

An invisible transition ¢ € T'\ dom(l) has no label and does not correspond to
some observable activity. The state of a Petri net, called marking, is a multiset
of places indicating how many tokens each place contains. The initial marking
shown in Figure 1 is [pl]. Another marking of this Petri net is [p3, p5, p15, p19].

A transition t € T is enabled in marking M of net N, denoted as (N, M)[t),
if each of its input places et contains at least one token. An enabled transition
t may fire, i.e., one token is removed from each of the input places et and one
token is produced for each of the output places te. Transition t1 in Figure 1
is enabled in the initial marking. Firing t1 results in [p2, p8, p16]. In marking
[p3, p5, p15, p19] five transitions are enabled: t3, t4, t5, t14, t17. Firing ¢4 results
in marking [p4, p6, p15, p19].

(N, M)[t)(N, M') denotes that t is enabled in M and firing ¢ results in mark-
ing M’'. Let 0 = (t1,t2,...,t,) € T* be a sequence of transitions. (N, M)[o)
(N, M’) denotes that there is a set of markings My, My,..., M, such that
My =M, M,, = M’ and (N, M;)[ti+1)(N, M;41) for 0 <i < n. A marking M’
is reachable from M if there exists a sequence o such that (N, M)[o)(N, M').

In this paper we consider Petri nets with a designated initial and final mark-
ings. The behavior considered are all complete firing sequences from the initial
marking My to the final marking Mg

Definition 4 (System Net). A system net is a triplet SN = (N, Minit, Mfinar)
where N = (P, T, F,1) is a labeled Petri net, Mn;y € B(P) is the initial marking,
and Mg € B(P) is the final marking. Usy is the universe of system nets.
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Given a system net SN, ¢(SN) is the set of all possible wvisible traces, i.e.,
complete firing sequences starting in Mjy;; and ending in Mgy, projected onto
the set of observable activities using function 1.

Definition 5 (Visible Traces). Let SN = (N, Mini, Mfina) € Usny be a sys-
tem net with N = (P, T, F,l). ¢(SN) = {l(0) | (N, Minit)[0)(N, Mfina)} is the
set of visible traces starting in M;n;; and ending in Mﬁnal.2

Given a universe of activities U4, Ur = U™ is the universe of visible traces.
@(SN) C Ur defines the set of visible traces that can be generated by SN. Note
that transitions may be invisible and that there may be multiple transitions
having the same label. However, ¢(SN) abstracts from such internals.

In this paper, we use Petri nets to illustrate the approach. However, the
results do not depend on the modeling language selected. Therefore, we define
the more neutral notion of a process model. A system net SN defines a process
model PM = ¢(SN) if there is at least one firing sequence from the initial to
the final marking.3

Definition 6 (Process Model). A process model PM is a non-empty set of
visible traces, i.e., PM C Ur and PM # 0. Upys is the universe of process
models.

In the remainder we use the following shorthand to refer to the activities
appearing in a model: a(PM) = {a | I,epm a € 0}.

4 Process Mining

Starting point for any process mining technique is an event log with partially
ordered events referring to cases and activities. To introduce events logs formally,
we need to introduce some notations. Next to the universe of activities /4, the
universe of visible traces Uy, and the universe of process models Upy;, we assume
four additional universes:

— Upg is the set of all possible event identifiers,

— Uc is the set of all possible case identifiers,

— U ay 18 the set of all possible attribute names, and

— Uy s the set of all possible attribute values.

Definition 7 (Event Log). L = (E, C, act, case, attr, <) is an event log if:
- E CUE is a set of events,
- C CUc is a set of cases,
- act € E — Uy maps events onto activities,

2 Note that (o) maps a firing sequence onto a trace of visible activities (see Defini-
tion 2).

3 Note that the labeled Petri net may deadlock or livelock before reaching Mfyq;. Such
traces are not considered because they cannot be related to cases in the event log.
It is up to the discovery approach to ensure some notion of soundness.
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case € E— C maps events onto a set of cases,
- attr € E — (Uawr # Uva) maps each event onto a partial function assign-
ing values to some attributes, and
~ < C E x E defines a partial order on events.*
Uy, is the set of all possible event logs.

Any e € E uniquely identifies an event. act(e) is the activity executed for case
case(e). There may be cases without events, but every event refers to precisely
one case. Event may have any number of attributes, e.g., attr(e)(timestamp) =
2015-01-19T22:51:30.700+01:00 denotes the time event e occurred. Definition 7
assumes a partial order on events. In literature often a total order is assumed
within a case, i.e., a case corresponds to a sequence of events. However, sometimes
one is not sure about the ordering of events, e.g., multiple events have happened
on the same day without an explicit order. Moreover, we may know the actual
causal dependencies based on analyzing dataflow dependencies. In both cases, a
partial order is more appropriate.

In the remainder we use the following shorthand to refer to the activities
appearing in an event log: «(L) = {act(e) | e € E}.

Definition 8 (Process Discovery Technique). A process discovery tech-
nique disc € U, — Uppy maps event logs onto process models such that for
any L € Ur: a(L) = adisc(L)).

A process discovery technique produces a process model for an event log.
Here we only require that the set of activities in the event log «(L) matches
the set of activities in the model «(disc(L)). As discussed in Section 2, many
discovery techniques have been proposed in literature. These may be viewed as
specific instances of disc.

Process discovery is challenging because event logs are often far from com-
plete and there are at least four competing quality dimensions: (1) fitness, (2)
simplicity, (3) precision, and (4) generalization [1]. A model with good fitness
allows for most of the behavior seen in the event log. A model has a perfect
fitness if all traces in the log can be replayed by the model from beginning to
end. The simplest model that may explain the behavior seen in the log is the
best model. This principle is known as Occam’s Razor. Fitness and simplicity
alone are not sufficient to judge the quality of a discovered process model. For
example, it is very easy to construct an extremely simple Petri net that is able
to replay all traces in an event log (but also any other event log referring to
the same set of activities).® Similarly, it is undesirable to have a model that
only allows for the exact behavior seen in the event log. Remember that the log
contains only example behavior and that many traces that are possible may not

* A partial order is a binary relation that is (1) irreflexive, i.e. x 4 x, (2) antisym-
metric, i.e. x < y implies y £ x, and (3) transitive, i.e. if x < y and y < z, then
x <z

5 System net SN = ((P,T, F,1), Minit, Mfina) with P = 0, T = a(L), F = 0, | the
identity function, Mn; =[], and Mfna = [ ] can replay any case in L.
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have been observed yet. A model is precise if it does not allow for “too much”
behavior. A model that is not precise is “underfitting”, i.e., the model allows
for behaviors very different from what was seen in the log. At the same time,
the model should generalize and not restrict behavior to just the examples seen
in the log. A model that does not generalize is “overfitting”. Overfitting means
that an overly specific model is generated whereas it is obvious that the log only
holds example behavior (i.e., the model explains the particular sample log, but
there is a high probability that the model is unable to explain the next batch of
cases).

Here we do not quantify the four quality dimensions and restrict ourselves to
simple fitness notions such as perfect fitness and the fraction of perfectly fitting
cases.

Definition 9 (Fitness). Let L = (E, C, act, case, attr, <) € Uy, be an event log
and PM € Upy; a process model.
— A case c € C is perfectly fitting PM (notation PM ~ ¢) if and only if there
exists a trace o = (a1, as,...,a,) € PM and a bijection f € {1,2,...n} —
{e € E | case(e) = ¢} such that a; = act(f(3)) for 1 <i<n and f(j) A f(i)
Jorany1<i<j<nb
- fit(L, PM) = {c € C | PM ~ c} is the set of perfectly fitting cases.
- nofit(L, PM) = C\ fit(L, PM) is the set of non-fitting cases,
— fitness(L, PM) = w 18 the fraction of traces in the event log perfectly
fitting the model, and
— L is perfectly fitting PM if nofit(L, PM) = 0.

Note that we use interleaving semantics for process models while events are
partially ordered (to capture uncertainty or causalities). Event log L is perfectly
fitting model PM if for any observed case c¢ there is model trace that could
explain the set of events observed for c. When making a trade-off between fit-
ness, simplicity, precision, and generalization, we may end up with a model not
ensuring perfect fitness (e.g., deliberately leaving out exceptional behavior).

5 Localized Event Logs

As mentioned in the introduction, we assume localized event logs, i.e., each event
e has a non-empty set of regions loc(e). If event e occurs exclusively inside
region r (i.e., no interaction between regions), then loc(e) = {r}. If event e
describes some form of interaction between two regions r1 and 2, then loc(e) =
{r1,r2}. Any form of interaction (from communicating humans to function calls
and service invocations) involves multiple entities (e.g., components, services, or
departments), here called regions.

5 A function f € X — Y is bijective if there is a one-to-one correspondence between
the elements of X and Y, i.e., function f is total, surjective and injective.
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Definition 10 (Localized Event Log). A localized event log L1, = (L, R, loc)
is composed of an event log L = (E, C, act, case, attr, <) € Uy, a set of locations
(called regions) R, and a location function loc € E — Pygr(R).

Given an event e, loc(e) defines the set of regions involved. As mentioned before,

regions can only interact through shared events.

' B e L1 R R T
I b I I I I
LT O :/vg\ I | P : |
cl:'a f ki c3:ra—>e—>» fr— j—> ki
le1 ™ C/‘T S R : l e151 ! :
boomo-tooq--l _e6 12 i N 7
s
I ! [ I s, I
c2:la—>d—»f—>i—>k' chdla—>e—>f k!
| e10 o 20y T
S ai r2! Lo . oo r2!

Fig. 2. Localized event log with 4 cases and 23 events

Figure 2 visualizes a small event log with E = {el,e2,...,e23} (23 events),
C ={cl,c2,c3,c4} (4 cases),and R = {rl,r2} (2 regions). Functions act and case
are also depicted in Figure 2: act(el) = a, case(el) = cl, act(e2) = b, case(e2) =
cl, act(e8) = a, case(e8) = ¢2, etc. < is only partially shown in Figure 2. Ordering
relations of events in different cases are not depicted and only the transitive reduc-
tion of the ordering relations within a case is shown. Consider for example case cl.
First activity a is executed (event el) followed by both b (event e2) and ¢ (event
e3), then f (event e4) is executed followed by both g (event e5) and h (event €6).
Case ¢l concludes with the execution of activity k (event e7). We abstract from
attributes here (i.e., attr is not shown), e.g., each event e may have an associated
timestamp attr(e)(timestamp) and resource attr(e)(resource). The location func-
tion loc is depicted using the shaded rectangles: loc(el) = {rl1}, loc(e2) = {rl},
loc(ed) = {rl,r2}, loc(eb) = {r2}, loc(e20) = {rl,r2}, loc(e23) = {r2}, etc.
Note that all f events belong to both regions.

Classical discovery approaches consider all events to be potentially related.
However, based on the regions involved we may conclude that events are unre-
lated thus significantly simplifying process discovery. Consider again the localized
event log of Figure 2. Based on the four cases, one could conclude that d is always
followed by 7 and that j is always preceded by e. However, we have seen only four
cases and the next case may reveal new behavior. Process discovery should be
able to deal with incompleteness. For non-trivial processes, typically most traces
are globally unique, i.e., there is no other case following exactly the same path
from start to finish. If there are many unique traces, one cannot assume global
completeness. However, we may assume events to be unrelated unless they are

" Pyp(X) ={Y C X |Y # 0}, i.e., all non-empty subsets of X.
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Fig. 3. Process model represented by a system net (the initial marking is shown; the
final marking only marks the sink place)

Fig. 4. Overfitting process model not taking into account the regions. Due to incom-
pleteness, dependencies between {b, ¢, d, e} and {g, h, 1, j} are derived that do not exist.

in the same region. Interaction between regions is possible only through shared
events. Using this assumption, we could discover the process shown in Figure 3
using only the four cases of Figure 2. Without using such an assumption, we
may end up with the process model shown in Figure 4. This model allows for
the behavior exhibited by the four cases in Figure 2 and nothing more. In this
overfitting model, e may be followed by g and h, or e may be followed by j, but
e may not be followed by i. However, using the notion of regions in the localized
event log, we know that the choice made in region 71 is unrelated to the choice
made in region r2.

To illustrate the value of localized events consider the system net shown in
Figure 5 (the final marking just marks place end). There are n concurrent parts
each composed of k parallel activities. The model allows for:

n(k+2)! .
pPstay = M( h

possible (sequential) traces.® Note that we only consider sequential traces here.
We may also consider the number of “directly follows” relations:

8 Each of the n concurrent parts allows for k! = k x (k — 1) x ... x 1 sequential traces
of length k + 2 (abstracting from the fixed first activity as and the last activity ae

which are invariable, but including ais and aie)). These n traces of length k + 2
(n(k+2))!
((k+2)H™

can be interleaved in ways and there are (k!)™ unique collections of such n

traces.
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p22s t22

pn2s tn2 pn2e

Fig.5. A process composed of n + 2 subprocesses marked rs,r1,72,...,rn,re. Each
of the n subprocesses in the middle has k parallel activities. For larger values of n and
k this process is difficult to discover due to the many possible interleavings.

dfu=n+nk+)k+n-1Dk+2)+nl+n—-1)(k+2))

where a directly follows relation is a pair of activities such that one activity is
directly followed in a sequential trace.® The directly follows relation is interest-
ing because it is used by many process discovery algorithms to uncover causal
relationships.

Let us now consider one of the concurrent parts (say ri with i € {1,...,n}).
The submodel allows for pst, = k! possible (sequential) traces of length k + 4

9 Activity as can be directly followed by n activities (als...ans). Each ais activity
(with ¢ € {1,...,n}) can be directly followed by k + (n — 1)(k + 2) activities. Each
aij activity (with ¢ € {1,...,n} and j € {1,...,k}) can also be directly followed by
k+ (n —1)(k + 2) activities. Each aie activity (with ¢ € {1,...,n}) can be directly
followed by 1 4+ (n — 1)(k + 2) activities. Activity ae is never followed by another
activity.
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Table 1. Effects of n and k values in Figure 5 on the number of traces or direct
successions that need to be observed for complete coverage

parameters [n [ 11T 5 | 5 | 1 | 10 | 10 |
[F T8 t [ 5 [T 10 ] T [ 10 |
overall pro-|number of unique|| 1 [120 [1.68E+48|7.91E+31|3628800(4.39E+24[4.17TE+177
cess traces
number of directly fol-[| 4 | 32 200 1140 112 850 14080
lows relationships
single frag-|number of unique|| 1 [120 1 120 3628800 1 3628800
ment traces
number of directly fol-|| 4 [ 32 4 32 112 4 112
lows relationships
combined minimal number of|| 1 [120 1 120 3628800 1 3628800

fragments |global traces needed to
cover all locally unique
traces

total number of local|| 4 32 20 160 112 40 1120
directly follows rela-
tionships

(including as, ais, aie and ae). The corresponding number of directly follows
relations is df; = k? + k + 2.1°

Table 1 shows the effects of parameters n and k (there are n concurrent parts
each composed of k parallel activities). If n = 10 and & = 10, then there are
4.17 x 10'"7 unique traces. Clearly, it is highly unlikely (understatement) to see
all of these possibilities. Per concurrent part, there are 3628800 unique traces, still
a lot but nevertheless a spectacular reduction (factor 1.15 x 1017!). Process dis-
covery algorithms do not rely on seeing all possible traces to avoid overfitting. For
example, if there are loops there may be infinitely many possible behaviors (see
for example the lower part of Figure 1). Therefore, many discovery algorithms use
notions such as the directly follows relation. If n = 10 and k£ = 10, then the directly
follows relation has 14080 elements. This reduces to 1120 if it suffices to see only
the local directly follows relationships, i.e., less than 8 percent of the overall direct
successions need to be observed to discover the “correct” model!

Figure 5 is a rather extreme example. However, it nicely shows that the same
model can be discovered using smaller, less complete event logs by exploiting
localization information in event logs. Compare this to statistics where assump-
tions about independence are used in predictions or when computing confidence
intervals.

Definition 10 allows for two events that refer to the same activity but different
regions. For process discovery, we would like to relate activities to a fixed number
of regions. Hence, we aim at event logs that are stable.

Definition 11 (Stable). A localized event log Ly, = (L, R, loc) with L = (E, C,
act, case, attr, <) is stable if for all e1,e2 € E with act(e1) = act(ez): loc(e ) =
loc(eg),

10 Activity as can only be directly followed by ais in the submodel corresponding
to ri. Activity ais can be directly followed by k activities. Each aij activity (with
j € {1,...,k}) can be followed by k activities (aie and aij’ with j' # j). Activity
aie can only be directly followed by ae.
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The localized event log of Figure 2 is stable, e.g., f events always refer to r1
and 72. A localized event log that is not stable can be “stabilized” by refining
function act € E — U 4. For example, function act can be replaced by act’ where
act’(e) = (act(e),loc(e)) for e € E. The new function distinguishes activities
having distinct sets of regions involved.

6 Decomposed Process Discovery

A localized event log can be transformed into a collection of sublogs, i.e., one
event log per region. The sublogs are used to discover submodels. Finally, the
submodels can be merged into a single overall process model. To create sublogs,
we define a projection operator.

Definition 12 (Projection). Let L = (E, C, act, case, attr, <) be an event log
and X C FE a subset of events. L|x= (X,C, act|x, case [x, attr | x,<") with
< =(=NX x X)).1"

Definition 13 (Decomposed Discovery). Let L, = (L, R, loc) be a localized
event log with L = (E, C, act, case, attr, <) and A = «(L), and let disc € Uy, —
Upy be a process discovery technique. For any region r € R, we define the
following shorthands:

- E.={ec€ E|re€loc(e)} are the events of region r,

- L, = L|g, is the sublog of region r,

— A, ={act(e) | e € E,} are the activities of region r, and

— PM, = disc(L,) is the process model discovered for region r.
PMp ={o € A* | V,cr ola, € PM,} is the overall process model constructed
by merging the individual models.

Note that the smaller process models are merged by weaving the region-based
subsequences.

Figure 6 illustrates how

fmr——m—mm e ——— 1 p—me———————————— event logs can be projected

r1 r2 - .
o b\ NS g\ onto the different regions.
cl: a\ /f cl: f\ P k Now a model can be dis-
c h covered for each region and

|

|

|

|

|

| the models can be merged as

| defined next.

| PM i merges the subpro-

i cesses discovered for the |R|

i sublogs. Activity sequence o

! is a visible trace of PMp

Lot o A S A R if and only if o [4.€ PM,
(i.e., the projected sequence

Fig. 6. Two projected event logs based on the over- is a visible trace of the corre-

all event log of Figure 2: one sublog for each region sponding submodel) for each

1 fIx is function f with the domain restricted to X, i.e., dom(f[x) = X N dom(f).
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region r € R. Like the rest of the paper, Definition 13 is not Petri net specific.
However, the merging of the submodels into one overall model corresponds to
the following union operator for system nets.

Definition 14 (Union of Nets). Let SN* = (N*, M}, M}, ) € Usy with
N' = (P, T F',1') and SN? = (N?, M2,;,, M2, ,)) € Usy with N* = (P?,T?,
F2.12) be two system nets with P* N P? = ().

— P3 = P U P? is the resulting set of places,

— As = rng(I*) N rng(1?) is the set of shared activities (appearing in both
regions),

~ Ts = {t € dom(I*) | 1'(t) € As} and T2 = {t € dom(I*) | I*(t) € Ag} are
the transitions corresponding to shared activities,

= T3 ={(t1,t2) € TE X TZ | 1M(t1) = P(t2)} U{(t1,>) | th e T'\TE} U {(>
Jt2) | ta € T2\ T2} is the resulting set of transitions,'?

- dom(l3) = {(tl,tg) eT? | t € dom(l ) V to € dom(lQ)}, ls((tl,tg)) = ll(tl)
if t1 € dom (1Y) and 13((t1,t2)) = [%(t2) if t2 € dom(I?),

- 3 ={(p, (t1,2)) € P xT? | (p,t1) € F1}U{((t1,2),p) € T>x Pl | (t1,p) €
FYYU{(p, (z,t2)) € P2x T3 | (p,t2) € F?}U{((x,t2),p) € T>x P? | (t2,p) €
F2}7

- NYUN? = (P3,T3 F3,13) is the union of N* and N?, and

~ SN'USN? = (NlLJN2 M, @M, Mg, WMG, ) is the union of system
nets SN' and SN2.

The above definition takes the union of two system nets, but this can be
extended to any number of system nets. The following lemma shows that such
union based on merging transitions indeed implements the composition used in
Definition 13.

Lemma 1. Let SN, SNQ, ..., SN™ be n system nets with non-overlapping sets
of places. ¢(Uy<;<,, SN*) = {0 € A" | Vici<n 0 mgai)€ ¢(SN')} with A =
Ui<icn mg(I") as the set of activities.

Proof. Assume n = 2, SN' U SN? = (N' U N2, M}, & M2, M} & M2 ),
N = (PYL,TY FY 1Y), N2 = (P2, 7% F2,1%), and N' UN? = (P3, T3, F3,1).
The proof can be generalized for any number of system nets n > 1.

Let o € ¢(SN'USN?), we need to show that of,,y1)€ ¢(SN') and 07,502 €
¢(SN2). SN' can be seen as a projection of SN U SN2, i.e., places in P? are
removed, places in P! are kept, transitions of the type (>>,t5) are removed,
and transitions of the type (¢1,t2) or (¢1,>>) renamed to ¢;. The firing sequence
corresponding to o in SN' U SN? corresponds to a firing sequence in SN after
renaming and removing transitions of the type (>>,t2) from the sequence. This
firing sequence is indeed possible because removing places from P? can never lead
to blocking transitions. Hence, o pnq¢1)€ #(SN*'). Similarly: Ol rng(12) € H(SN?).

12 Next to synchronizing transitions of the form (t1,t2), there are transitions of the
form (t1,>>) or (>>,t2) that do no synchronize as these are local to one of the nets.
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Let o0 € A* be such that o[,,41)€ #(SN') and 0l rng(2) € $(SN?), we need
to show that o € ¢(SN' U SN?). Ol gy € $(SN') defines a full firing sequence
o1 € (TY)* with 1! (0y) = 0l rng(1), i-€., a sequence of transitions starting in M},
and ending in Mfliml. Similarly, o[ ,ng(2)€ ¢(SN2) defines a full firing sequence
o2 € (T?)* with 13(02) = 0],mg(2)- Note that I'(o1)[as=1*(02)[as= 0l as-

There exists a o3 € (T°)* such that [3(c3) = o, fi(03) = 01 and fa(o3) =
oo with dom(f1) = {(tl,tz) e 713 | t1 7’é>>}7 fl(tl,tg) = t1, and dom(fz) =
{(t1,t2) € T3 | ta #>}, fa(t1,t2) = ta. Such a sequence exists because in o both
system nets agree on shared activities Ag and for any ¢; and to with I*(t;) =
12(t2) € Ag: (t1,t2) € T? (i.e., all combinations have been included). Now, it is
easy to see that o3 is indeed a firing sequence possible in SN* U SN?: it starts in
M}, ¥ M2, and ends in M}, ;& M2 . Since I3(03) = 0, 0 € $(SN' U SN?).

init ne
(]

The lemma is related to classical results on net composition [20]. Also see [3,4]
for other properties preserved by the union of two system nets in relation to an
event log.

Theorem 1 (Decomposed Discovery). Let Ly, = (L, R, loc) be a stable local-
1zed event log and let disc € Uy, — Upp be a process discovery technique. Let
PMp, PM,, and L, be as defined in Definition 13.

- fit(L,PMR) € (N,cp fit(Ly, PM,),

— fitness(L, PM ) < [Oren ﬁ|tc(~‘LmPMr)|;

- fit(L, PMRr) = (\,cp fit(Lr, PM,) if < defines a strict total order,

 fitness(L, PM ) = Des Fi(Le.P2,)

Proof. The second and fourth statement follow directly from the first and third
statement respectively. To prove the first statement we need to show that for
any ¢ € fit(L, PMg) and r € R: ¢ € fit(L,, PM,). Because PM ~~ ¢ there is a
trace og = (a1,as9,...,a,) € PM g and a bijection f € {1,2,...n} - {e € E |
case(e) = ¢} such that a; = act(f(i)) for 1 < i < n and f(j) A f(i) for any
1 <i<j<n. Let o, = ogrla,. Clearly, o, € PM, due to the construction
of PM i (see Definition 13). ¢ is not just an case in L but also a case in L,
(see Definition 12). Due to stability, the set of ¢ events projected away matches
the elements projected away in o, = orla,.. Hence, a smaller bijection can be
created relating o, to the A, events in c¢. Therefore, ¢ € fit(L,, PM,).

The reverse does not necessarily hold if < is just a partial order and not a
total order. The partial order could be linearized differently in the region-based
submodels. To prove the third statement we additionally need to show that for
any ¢ € L such that ¢ € fit(L,., PM,) for all r € R: ¢ € fit(L, PM r). Since < is
now a strict total order, there is one o0 = (a1, as, ..., a,) describing the sequence
of activities (not events) in case c. Let 0, = o [4,. For all r € R: 0, € PM,
because ¢ € fit(L,, PM,) and Ly, is stable. Since PM g = {0 € A* | V,cr 04, €
PM,}, we conclude that o € PM g and ¢ € fit(L, PMg). O

if < defines a strict total order.

13 A strict order is a partial order that is also trichotomous (exactly one of z < y,
y < x or x = y holds).
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Fig. 7. Five discovered system nets: one for each region. The initial markings are
indicated. The final markings are the states with all sink places marked with one token
(not indicated explicitly).

Figure 7 shows the basic idea. Suppose that we take an event log created by
simulating Figure 1 such that the event log is locally complete with respect to the
directly follows relation. Now project the overall event log onto the five regions
and discover a process model per region. In this case, discovery techniques may
discover the five system nets shown in Figure 7. It is easy to see that these
submodels indeed describe the corresponding sublogs well. The five system nets
in Figure 7 may be merged using Definition 14. In this case we do not get
Figure 7 immediately. However, after removing some of the redundant places
(i.e., hanging places whose removal does not change the behavior), we get the
original system net (modulo renaming of places).

The composition of an overall model from submodels used in Definition 13
(and the specific Petri-net realization in Definition 14), assumes synchronous
communication. Asynchronous communication can be supported by introducing
special “channel regions”, these are regions with a send and receive activity. This
corresponds to the system net SN, = (({Pvuger }» {tsends treceive 1 { (tsend, Pouffer)s
(pbuﬁemtreceive)};l)a [ ]7[ ]) with l(tsend) = Qgenq and l(treceive) = Qpeceive- Lhe
corresponding process PM, = ¢(SN,) is a simple buffer and may be viewed as
a region. Hence, results like the property expressed in Theorem 1 can also be
applied in the asynchronous setting.

7 Experimental Results

The decomposition discovery approach was implemented as a plugin for ProM
(www.processmining.org) — an open source framework aimed to develop and
test process mining algorithms. The plugin takes a localized event log as input
(in localized event logs regions are specified as additional event attributes) and


www.processmining.org
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produces a system net as a result. This plugin was added to the package called
LocalizedLogs available in the Nightly Build of ProM. The DivideAndConguer
package [26] is used to handle the sublogs and to merge the resulting models.

7.1 Synthetic Event Data

Consider the reference model of a booking process depicted in Figure 8. Figure 9
shows an event log, generated by this model. This event log is not complete with
respect to the directly follows relation, e.g., in the small event log the select hotel
activity never directly followed the register activity.

select book
flight flight
t2

p3 t3 p5 6 p7

Fig. 8. A system net of a booking process with the initial and final markings [p1] and
[ps] respectively

e M

| r2 select hotel : : r2 select hotel\  book hotel :
e N I U - AN |
| :register cancel : : | :register pay : :
cliy-ehng -/ el | B e Pt - &lo
' select flight ! ! select fight ~ book flight |
Ul el2____etd___ j
P o T, |
| r2 select hotel —p»book hotel :
: T e | R | 1!
I :register pay : :
1 select fiight  book flight |
Jr______els el __ ]

Fig. 9. A localized event log generated by the system net presented in Figure 8. There
are two regions: one concerned with flights (r1) and one concerned with hotels (72).

All the known discovery methods, including those that deal with incomplete
logs, will not rediscover the initial model, because they cannot exploit localiza-
tion information and demand some form of global completeness. The inductive
mining approach [19], which is able to mine models from incomplete event logs,
will discover the process model presented in Figure 10. The model is overfitting
the event log with respect to the accidental ordering of two selection activities.
Moreover, two loops are created. However, if we apply the approach proposed in
this paper, we discover the initial system net (Figure 8) using the same discov-
ery technique (after removing redundant hanging places, as described). This is
possible because the event log in Figure 9 is complete per region.
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book
flight

[ O

select
flight

pay
S
[ conce

cancel

Fig. 10. The process model discovered by the inductive miner without exploiting local-
ization information. Note that causalities between unrelated parts are inferred due to
the incomplete event log.

7.2 Real-Life Event Data from Software

Using the approach proposed we have analyzed event logs of two real-life software
systems: a booking flight system and a banking system.

The user of a booking flight system fills three different web forms to insert per-
sonal, insurance and payment information. The user may complete the web forms
in any order. Thus, due to the event log complexity and incompleteness the direct
application of the well-known discovery algorithms quickly results incomprehensi-
ble process models that contain misleading cycles and non-existing dependencies
between activities. The overall event log was enriched with three regions corre-
sponding to the web forms, i.e., an attribute was added for this purpose. These
regions naturally follow from the system design. Hence, it was easy to produce a
localized event log. Shared activity labels correspond to common window opera-
tions, such as load and unload, and data verification. By applying the approach
presented in this paper, we could obtain the model depicted in Figure 11.
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Fig. 11. A model of a booking flight system. Shared activities are highlighted in white,
although it is not explicitly shown, they belong to all the regions.

The inductive mining approach was utilized as an underlying algorithm. The
model obtained by directly applying the inductive miner contains 1809 connec-
tions between transitions, because of a global cycle, connecting almost all the tran-
sitions with each other, while the model constructed using regions contains only
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177 connections.** Relations derived between different regions other than through
overlapping activities are artifacts of the incompleteness of the event log.

The other software system under consideration is a banking system. This bank-
ing system handles requests and provides the user with the information about cus-
tomer services. The banking system has a hierarchical structure and is represented
by different program layers. Namely, it includes facade, services, data and com-
mon data access layers. Each request is received on the facade layer and then redi-
rected to the next layer of the hierarchy. To treat layers as regions the event log
was enriched with additional events, denoting request/response communications
between layers and belonging to both communicating regions. The localized event
log can be used to create the model. Again, the resulting model is simpler and our
approach succeeds in handling incompleteness better than traditional approaches:
the model contains 1986 connections between transitions instead of 19115, pre-
sented in the model obtained by applying the inductive miner directly on the event
log. This multilayer model was represented as a model of interacting processes (or
layers). A plugin for ProM, which constructs a BPMN [23] model of interacting
processes from a set of system nets and a corresponding event log, was developed
as well. This plugin is based on the BPMN-supporting plugins, described in [17].
It converts each system net to a BPMN process within a pool, each request or
response activity is converted to a message event, and each pair of correspond-
ing message events is connected by a message flow. Note that for this plugin each
shared event should have an additional attribute to determine its type (send or
receive event). The automatically generated BPMN model of the multilayer bank-
ing system is presented in Figure 12.

Thus, the decomposi-

tion discovery approach

: allows not only to improve
£ the quality of the mod-
) , els discovered, but also

| g | bSeSaiaean Ao assists in creating hierar-
’ e — . chical models exploiting

, T A= == R higher-level process nota-

| Se=all tions like BPMN.

N A For models constructed
from the real-life event

~ . logs using various discov-

ery approaches: heuris-
tic [13,28], inductive [18,
19], and ILP (language-
based regions) [8,29] min-
ers, quality metrics, such
as fitness, precision and

Fig.12. A BPMN model discovered for a multilayer
banking system

14 A pair (t1,t2) is a “connection” between visible transitions ¢1 and t2 (i.e., t1,t2 €
dom(1)) if and only if there exists a non-trivial path from ¢; to t2, which does not go
through other visible transitions.
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generalization were obtained. Table 2 contains quality characteristics'® of pro-
cess models constructed directly from the event log, using the discovery approach
specified, and the characteristics of corresponding process models constructed
using localization information. Table 2 shows that the models constructed from
the localized logs allow for more traces to fit and are more general, while the
models constructed directly from the event logs tend to be more precise, but less
fitting.

Table 2. Quality of process models discovered from the real-life event logs

[Event logs [Discovery algorithms || Fitness [ Trace fitness [ Precision [ Generalization |

Booking system Heuristic miner 0.00 / 0.13] 0.64 / 0.75 0.55 / 0.32 0.89 / 0.90
Inductive miner 0.23 / 1.00 0.85/ 1.00 0.22 / 0.16 0.98 / 1.00
ILP miner 1.00 / 1.00 1.00/ 1.00 0.36 / 0.25 1.00 / 1.00

Banking system!® [Inductive miner 0.25 / 1.00| 0.84 / 1.00 0.14/ 0.06 0.97 / 1.00
ILP miner 0.54 / 1.00 0.64 / 1.00 0.44 / 0.16 0.68 / 1.00

8 Conclusion

In this paper we presented a novel process discovery approach exploiting local-
ization information, i.e., events refer to one or more regions. Such information
is available in most application domains. In this paper, we illustrated this using
event data from software systems. Such systems have an explicit architecture and
events may be related to this architecture. Hence, it is easy to create localized
event logs. Experiments show that such reasonably chosen information can be
used to produce much better process models. Whereas conventional approaches
require some global form of completeness, our approach only needs local com-
pleteness (within a region). Therefore, the resulting models are simpler, more
general and allow more cases to fit. Moreover, localization information may be
exploited to create hierarchical models.
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