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Preface

This volume constitutes the proceedings of the 36th International Conference on Ap-
plication and Theory of Petri Nets and Concurrency (Petri Nets 2015). This series of
conferences serves as an annual meeting place to discuss progress in the field of Petri
nets and related models of concurrency. These conferences provide a forum for re-
searchers to present and discuss both applications and theoretical developments in this
area. Novel tools and substantial enhancements to existing tools can also be presented.
This year, the satellite program of the conference comprised four workshops, two Petri
net courses, two advanced tutorials, and a model checking contest.

Petri Nets 2015 was co-located with the Application of Concurrency to Sys-
tem Design Conference (ACSD 2015). Both were organized by the Département
d’Informatique (Science Faculty) of the Université Libre de Bruxelles (ULB) and took
place in Brussels, Belgium, June 21–26, 2015. We would like to express our deepest
thanks to the Organizing Committee chaired by Gilles Geeraerts for the time and effort
invested in the local organization of the conference.

This year, 30 regular papers and four tool papers were submitted to Petri Nets 2015.
The authors of the submitted papers represented 21 different countries. We thank all the
authors. Each paper was reviewed by at least three reviewers. The Program Committee
(PC) meeting took place electronically, using the EasyChair conference system for the
paper selection process. The PC selected 12 regular papers and two tool papers for
presentation. After the conference, some authors were invited to submit an extended
version of their contribution for consideration in a special issue of the Fundamenta
Informaticae journal.

We thank the PC members and other reviewers for their careful and timely eval-
uation of the submissions before the meeting, and the fruitful discussions during the
electronic meeting. The Springer LNCS team and the EasyChair system provided ex-
cellent support in the preparation of this volume.

We are also grateful to the invited speakers for their contribution:
Robert Lorenz (Modeling Quantitative Aspects of Concurrent Systems using

Weighted Petri Net Transducers)
Marlon Dumas (Process Mining Reloaded: Event Structures as a Unified Represen-

tation of Process Models and Event Logs)
Marta Kwiatkowska (On Quantitative Modelling and Verification of DNA Walker

Circuits Using Stochastic Petri nets)

June 2015 Raymond Devillers
Antti Valmari
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On Quantitative Modelling and Verification
of DNA Walker Circuits Using

Stochastic Petri Nets

Benôıt Barbot(B) and Marta Kwiatkowska(B)

Department of Computer Science, University of Oxford,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
{benoit.barbot,marta.kwiatkowska}@cs.ox.ac.uk

Abstract. Molecular programming is an emerging field concerned with
building synthetic biomolecular computing devices at the nanoscale, for
example from DNA or RNA molecules. Many promising applications
have been proposed, ranging from diagnostic biosensors and nanorobots
to synthetic biology, but prohibitive complexity and imprecision of exper-
imental observations makes reliability of molecular programs difficult to
achieve. This paper advocates the development of design automation
methodologies for molecular programming, highlighting the role of quan-
titative verification in this context. We focus on DNA ‘walker’ circuits, in
which molecules can be programmed to traverse tracks placed on a DNA
origami tile, taking appropriate decisions at junctions and reporting the
outcome when reaching the end of the track. The behaviour of molecular
walkers is inherently probabilistic and thus probabilistic model check-
ing methods are needed for their analysis. We demonstrate how DNA
walkers can be modelled using stochastic Petri nets, and apply statisti-
cal model checking using the tool Cosmos to analyse the reliability and
performance characteristics of the designs. The results are compared and
contrasted with those obtained for the PRISM model checker. The paper
ends by summarising future research challenges in the field.

1 Introduction

Molecular programming is an emerging field concerned with building synthetic
biomolecular computing devices at the nanoscale, for example from DNA or
RNA molecules. Several nanotechnologies have been developed, of which DNA
strand displacement (DSD) [55,56] is particularly popular, since it uses only
DNA molecules, is enzyme-free, and easy to synthesize chemically. DSD has
ben used to implement logic circuits [41,44], diagnostic biosensors [29] and con-
trollers programmed in DNA [11]. Further, DNA self-assembly technologies such
as origami folding [43] have enabled novel designs, including DNA walker systems
that can traverse tracks ‘printed’ on origami tiles and deliver cargo [51,54].

Molecular computing devices built from DNA are autonomous – they can
interact with the biochemical environment, process information, make deci-
sions and act on them – and programmable, that is, they can be systematically
c© Springer International Publishing Switzerland 2015
R. Devillers and A. Valmari (Eds.): PETRI NETS 2015, LNCS 9115, pp. 1–32, 2015.
DOI: 10.1007/978-3-319-19488-2 1



2 B. Barbot and M. Kwiatkowska

configured to perform specific computational or mechanical tasks. The com-
putational power of such systems has been shown to be equivalent to Turing
computability [45]. The future potential of these developments is tremendous,
particularly for smart therapeutics, point-of-care diagnostics and synthetic biol-
ogy. For example, biosensing involves a decision process that aims to detect
various input biomarkers in an environment, such as strands of messenger RNA
within a cell, and take action based on the detected input.

Since such systems can perform information processing within living cells,
their use is envisaged in healthcare applications, where safety is paramount.
As argued in [32], this paper advocates the development of design automa-
tion methodologies for molecular programming. There are similarities to existing
work in design automation for silicon circuits and hardware verification, but we
must consider inherent stochasticity of the underlying molecular interactions, the
need to state requirements in quantitative form, and the importance to consider
control of molecular systems. Therefore, probabilistic modelling and automated,
quantitative verification and synthesis techniques are needed [31,33,34].

In this paper, we focus on DNA walker circuits introduced in [8,50,51]. The
behaviour of molecular walkers is inherently probabilistic and we have studied
their performance and reliability in [14–16]. In [38], we have developed tech-
niques to automatically synthesise rates so that a given quantitative require-
ment is guaranteed to be satisfied. The models of DNA walkers were developed
in PRISM’s modelling language, a notation based on reactive modules [34].
DNA walkers, however, perform spatially localised computation by following
programmable tracks. Therefore, graphical notations such as Petri nets are par-
ticularly well suited to their modelling and analysis. We demonstrate how DNA
walker circuits can be modelled using stochastic Petri nets, matching the lay-
out of the original circuit designs, and analyse the reliability and performance
characteristics of the designs. In view of state-space explosion observed in the
original study [15,16], we focus on evaluating the potential of statistical model
checking using the tool Cosmos. We develop a family of models, some designed
by biochemist and some artificial schemes aimed to exhibit design challenges,
and a range of quantitative requirements. The results are compared and con-
trasted with those obtained for the PRISM model checker using state-of-the-art
numerical techniques (uniformisation and fast adaptive uniformisation [14,21])
and PRISM’s statistical model checking implementation known as approximate
model checking [34]. We conclude that statistical model checking significantly
benefits from parallelisation and enables efficient analysis of much larger models
at no great loss of accuracy compared to numerical methods. The paper ends by
summarising future research challenges in the field.

2 Background on Molecular Walkers

DNA computing has so far mainly focused on designing logic circuits that per-
form computation in vitro, by transforming DNA strands using strand displace-
ment systems as e.g. demonstrated experimentally in [41,44]. However, this



On Quantitative Modelling and Verification 3

approach has limitations, in that the strands are cascaded through a series of
logic gates in solution, which may lead to unintended interference [36] and conse-
quently incorrect outcomes. An alternative approach is to design localised com-
putation by ‘printing’ circuits on origami tiles as proposed in [9,41]. In this paper
we focus on DNA walker systems [8,50,51], and particularly the programmable
walkers of [48].

A DNA walker system consists of a track of strands, called anchorages, that
are tethered to a DNA origami tile and traversed by a walker strand [48]. Origami
tiles [43] are long circular single-stranded DNA scaffolds that can be folded into
the tile shape with complementary short DNA strands that hybridize with the
scaffold. The tracks can fork at junctions, and the walkers can be programmed
to take a left or the right branch by selectively unblocking the anchorages that
the walker can follow. Fig. 1 shows an example of a double-junction circuit that
we will study later, where the two directions at the first junction are respectively
labelled X and ¬X.

The stepping process is shown in Fig. 2. The walker, which carries a quencher
(Q), is initially bound (hybridized) to the initial anchorage. The target anchor-
ages at the end of the tracks have fluorophores (F) attached to them. After some
initial preparation, the walker is able to autonomously step from one anchorage
to another, eventually reaching the target anchorages and quenching the fluo-
rophores. The programming of the tracks is achieved as follows. Initially, the
anchorages are hybridized to the tile, and are either unblocked, meaning that the
walker can bind to them, or blocking, that is, initially bound to a blocking strand
that will prevent the walker from binding to them. Sections of the track can be
reprogrammed by selectively unblocking them through the addition of strands
that are complementary to the blocking strand; see Fig. 2 (Pane 2), where ¬X
is unblocked but X remains blocked.

After the walker is placed at the initial anchorage, a nicking enzyme is added
to the solution. It binds to the walker-anchorage complex, melting the top of
the anchorage away, which frees the top of the walker. This enables the walker
strand to bind to the next anchorage through a displacement reaction (Panes 3
and 4 of Fig. 2). The process repeats, and the walker thus continues along the
unblocked section of the track, through junctions, towards the final anchorage,
where it reports the outcome by quenching the fluorophore.

Formally, the system can be viewed as a planar graph, composed from undi-
rected tracks (consecutive anchorages) and gates (track junction points) that
connect at most three tracks. [48] experimentally demonstrated that a walker
can be directed to any leaf in a complete two-level binary tree by selectively
unblocking the anchorages. In [15,16], we have studied the expressive power of
DNA walker circuits implemented by this technology and showed that the cir-
cuits can compute any Boolean function through reduction to 3-CNF. Compared
to DNA strand displacement systems in solution, an advantage of this technol-
ogy is its spatial locality, but we have found that the undirected nature of the
tracks imposes limitations on the use of parallelism. Other walker technologies
that work with directed tracks have been demonstrated, so this limitation does
not apply to all walker systems.
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Fig. 1. A double-junction DNA walker circuit ([16])

Fig. 2. The stepping action of the walker ([16])

Computing Boolean functions using nanotechnologies such as the DNA
walker systems has application in biosensing, for example to detect the presence
of certain molecules. However, experiments have shown that the computation is
quite unreliable, in the sense that walkers may release from a track, jump over
two anchorages, or a blockade can fail to block an anchorage, delaying or divert-
ing the walker to a different anchorage, thus returning wrong result. To study
the reliability and performance of such systems, in [15,16] we also developed a
stochastic model of DNA walker systems based on [8,48,50]. Note that, since
we are considering localised computation, standard mass action kinetics which
applies to well-mixed solution cannot be used, and we instead derive a model
from experimental observations.

The model can be configured to a specific circuit layout, where we can vary
the topology of the circuit, the number of anchorages in each section, and their
physical spacing. We also model the different modes of anchorages, such as
blocked, unblocked, empty or bound to the walker. The stepping process of Fig. 2
has been abstracted into a single walker step transition, taking the walker from
one anchorage to the next. The rate of the stepping transition is dependent on
the distance between anchorages, and was derived using rate constants estimated
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in [50]. Maximum interaction distance was observed to be dM = 24 nm. Taking
into account the average distance between anchorages in the experiment of 6.2
nm, we have defined the walker stepping rate k to be a function of the distance
da and the base rate ks given by:

k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ks = 0.009s−1 when d ≤ 1.5da

ks/50 when 1.5da < d ≤ 2.5da

ks/100 when 2.5da < d ≤ dM

0 otherwise

(1)

This determines a sphere of reach of up to dM around the walker-anchorage
complex, within which the walker may step onto an uncut anchorage. We note
that this abstraction of the stepping rate makes certain simplifying assumptions,
such as we do not consider walker moving between intact anchorages or stepping
backwards; these aspects have been experimentally observed and the model can
be refined further in future.

One aspect that we do consider, however, and which also has been observed
experimentally, is the failure of the blocking mechanism. We can allow the
anchorages to spontaneously unblock and assume that the unblocking is uniform.
If this happens, the walker may step onto such an unblocked anchorage and fol-
low an incorrect track. The failure rate of 30% was estimated based on [48]. We
have not modelled the failure of other mechanisms, such as missing anchorages
or the failure of the reporting mechanisms, but these could again be added to
the model.

In [15,16], we have constructed a family of models for a variety of circuits,
fitting the rates from the single-junction circuit experiments [48], and then eval-
uating the quality of the model on the double-junction circuits. We found good
alignment of model predictions with the experimental data, in particular also
observing the effect of leakage transitions, that is, when the walker unintention-
ally transfers to the neighbouring track because of its proximity. In addition, we
have considered a range of circuit designs and analysed their performance and
reliability using the probabilistic model checker PRISM [34].

3 Stochastic Models and Analysis Techniques

As discussed in the previous section, stochasticity is an important aspect that we
need to consider when designing molecular circuits, particularly localised compu-
tation such as DNA walkers placed on origami tiles. In this section we introduce
the background notation and briefly overview existing stochastic models and
analysis methods applicable to molecular systems.

3.1 Continuous-Time Markov Chains (CTMC)

The evolution of molecular systems is naturally modelled as a stochastic pro-
cess tracking the probability of molecular populations over time. This process,
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under the assumption of constant volume and temperature, is a (homogeneous)
continuous-time Markov chain (CTMC).

Formally, a CTMC C is a tuple (S, s0,R), where S is a set of states, s0 ∈ [0, 1]S

is the initial distribution over states, and R is the rate transition matrix with
∀s, s′ ∈ S, R(s, s′) ≥ 0, R(s, s) = 0.

Each CTMC can be unfolded into execution paths from the start state as
follows. The residence time in state s is exponentially distributed with exit rate
λs =

∑
s′∈S R(s, s′). Once the residence time expires, the probability to move

to state s′ from s is R(s,s′)
λs

. We refer to the discrete-time Markov chain encoding
the discrete transition probabilities for each state as the embedded DTMC.

Alternatively, for a CTMC the probability over time (transient probability
distribution) is given by the Chemical Master Equation (CME) [23] d

dtπt = πt ·Q,
where Q is the infinitesimal generator matrix, defined as Q(s, s′) = R(s, s′) if
s �= s′, and 1 − ∑

s′′ �=s R(s, s′′) otherwise, and π0 = s0.
A CTMC can be extended with a reward structure (ρ, ι), where ρ and ι are

respectively a vector and matrix of non-negative reals. ρ(s) is a state reward,
and defines the rate at which the reward is acquired when C remains in state
s for t time units. The function ι(s, s′), s, s′ ∈ S, defines the transition reward
acquired each time the transition (s, s′) occurs.

All Markov processes with countable state spaces and continuous distribu-
tions of time may be described as CTMCs, since the exponential distribution
is the only continuous distribution with the Markov property. We usually work
with finite state CTMCs, though some of the analysis techniques generalise to
countable CTMCs.

In the context of verification CTMCs are enriched with atomic propositions
that label states. Formally, a labelled CTMC is a tuple (AP,L, S, s0,R) such
that (S, s0,R) is a CTMC, AP is a set of atomic propositions and L : S → 2AP

is a labelling function that assigns atomic propositions to the states. When
considering molecular systems, the set of atomic propositions usually includes
inequalities over the number of each molecule type, for example, “there are at
least 5 molecules x” (written x ≥ 5).

3.2 Quantitative Verification for CTMCs

To specify quantitative properties of CTMCs, a number of formalisms can be
used. These are divided into two families, linear time and branching time. Linear
time formalisms specify accepting paths, and contain a single outer probabilistic
operator. They include:

– temporal logics LTL (linear-time temporal logic) [40] and BLTL (bounded
linear-time temporal logic) [28];

– deterministic timed automata specifications [6,19], where timed paths are
accepted only if they are in the language of the automaton;

– deterministic linear hybrid automata specifications [5], an extension of timed
automata with clocks evolving at different speed;
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– temporal logic MTL (metric temporal logic) [10]which is an extension of
BLTL with real-time constraints on the until operator.

Branching-time formalisms, on the other hand, contain nested probabilistic oper-
ators, and include:

– temporal logics PCTL [24] and PCTL* (probabilistic computation tree
logic) [1], based on CTL/CTL* with the probabilistic operator added (for
untimed properties);

– temporal logic CSL (continuous stochastic logic) [2], an extension of PCTL
where temporal operators are equipped with real-time constraints and with
an additional operator to specify steady state distribution.

These formalism can be extends with rewards. In this paper we will work with
linear-time properties that we introduce using random variables. The key prop-
erties of interest are P=?[Xφ], the probability of the path formula φ being sat-
isfied from a given state over time (Xφ is a random variable defined over paths
from s equal to 1 if the path satisfies φ and 0 otherwise); and E=?[X(ρ,ι)], the
expected cumulative reward in a given state over time (X(ρ,ι) is a random vari-
able defined over paths annotated with rewards (ρ, ι) that computes the total
reward cumulated up to t). Path formulas φ include the temporal operators
‘until’ and ‘future’, both unbounded and time-bounded variants; for example,
(x ≥ 1)U(x = 0) denotes a path along which molecules x eventually degrade,
and F

≤100(x ≥ 1) ∧ (y = 0) a path which reaches a state where there is at least
one x molecule and no y molecules within 100 time units.

A number of techniques are available to analyse CTMCs. Since precise solu-
tion of the CME is in general intractable, the prevailing method is stochastic
simulation, e.g. using the Gillespie algorithm [23], which generates forward tra-
jectories from the initial state or distribution. Quantitative verification aims to
compute the probability or expectations of certain events specified using the
above temporal logic or automata formalisms. For CSL formulas, the computa-
tion of probability over time reduces to transient analysis on a modified model.
Given an automaton representation of the property (which can be derived from
LTL formulas or provided directly, e.g. as a timed automaton), it is necessary
first to build the product of the automaton and the model, and then compute
transient probability distributions on the product. Quantitative verification of
expected reward properties is similar.

Transient analysis usually proceeds through numerical methods or
simulation-based analysis known as statistical model checking, which we describe
next.

3.3 Numerical Verification Methods for CTMCs

Numerical methods require that the state space and rate matrix of the CTMC
be constructed. Typically, the numerical computation of transient distribution
proceeds through discretisation of the CTMC, resulting in approximate proba-
bility values. These methods are more efficient on branching-time formalisms,
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in particular for CSL, where they take advantage of the strict alternation of
probabilistic and temporal operators. On linear-time properties one first has to
build an automaton from the specification, and then build the product of the
automaton and the CTMC, which increases the state space. Two methods have
been developed for transient analysis, uniformisation and its variant fast adap-
tive uniformisation that neglects states with insignificant probability mass, thus
improving performance of the computation.

Uniformisation. Uniformisation (see e.g. [35] translates the problem of com-
puting transient distribution of a CTMC to the computation of transient distribu-
tion of its discretisation, called the uniformised DTMC, and can be summarised
as follows.

– For any CTMCs where there exists a bound on the maximal exit rate, the
uniformised DTMC can be computed over the same state space, where each
step in the DTMC corresponds to one exponentially distributed delay in the
CTMC with rate equal to the maximal exit rate.

– Transient probability of the CTMC at time t can be computed as an infi-
nite summation of i jumps in the uniformised DTMC weighted by Poisson
probabilities.

– The Poisson weights of the infinite summation are derived using the Fox &
Glynn algorithm [22], which also determines the upper bound on the number
of summation terms needed to meet a given error bound.

Uniformisation involves operations on the stochastic matrix of the uni-
formised DTMC, and thus can suffer from state-space explosion.

Fast Adaptive Uniformisation (FAU). Fast adaptive uniformisation
(FAU) [18,39] can reduce the size of the explored state space by neglecting states
with insignificant probability mass. It is an approximate method for computing
the transient distribution of a CTMC and can be summarised as follows:

– Transient probability distributions are computed forward from the initial
state in the embedded DTMC. States with low probability of occurrence
(below a threshold δ) are discarded. Therefore, FAU only explores a subset
of the state space.

– The maximal exit rate of the CTMC is approximated and computed on the
fly on the set of states that have not been discarded. The upper bound on
the infinite summation is also computed on the fly.

The FAU method can greatly improve the time and memory consumption
of the transient probability computation when the state space is large and exit
rates of states span several orders of magnitude. It has also been extended to
the computation of rewards [14].

Numerical model checking for CTMCs against CSL probability and reward
formulas has been implemented in PRISM [34] using uniformisation (symbolic,
hybrid, sparse and explicit engine) and FAU (explicit engine).
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3.4 Statistical Model Checking

Instead of constructing the rate matrix of the CTMC, an alternative when deal-
ing with large state spaces is to use statistical methods. The statistical model
checking approach relies on Monte Carlo simulation algorithm to estimate the
probability of interest. These methods are better suited to linear-time proper-
ties due to the difficulty of dealing with nested probabilistic operators. In [53] an
algorithm for nested probabilistic operators is provided, but the simulation time
greatly increases with the depth of the nesting. More precisely, statistical meth-
ods are applied as follows: for a path formula φ, a Bernoulli random variable X
is defined which takes 1 as value on a path that satisfies φ and 0 otherwise. The
probability estimate is thus obtained as the ratio of the number of paths satisfy-
ing φ to the total number of paths, where the Monte Carlo algorithm simulates
a large number, say N , of paths. The random variable Z is defined as the mean
of N independent copies of X:

Z =
1
N

N∑

i=1

Xi

An advantage of statistical model checking is that it can be parallelised very
easily: it suffices to run several simulators of the system on different processors
and take the mean result of paths from all simulators. Particular attention needs
to be paid to the random number generator to ensure that all generated paths
are independent, but otherwise the overhead of parallelisation is low. Statistical
model checking can be naturally extended to computing expected rewards, that
is, the expected value of a random variable whose values depend on rewards
cumulated over simulated paths.

Confidence Intervals. When one computes a probability estimate for some
random variable X, and the exact value cannot be computed, it is important to
know how far this estimate is from the actual value. Statistical methods cannot
guarantee that the numerical value we obtain is at a given distance to the actual
value. This is because using a fixed number of samples the simulation may avoid
certain parts of the system with non-zero probability, thus biasing the estimation.
Nevertheless, probabilistic guarantees on the obtained result can be given in the
form of confidence interval, namely, confidence in the fact that the actual value
is close enough to the realisation, defined as follows.

Let (Xi)N
1 be independent random variables following a common distribution

including a parameter θ. Let 0 < γ < 1 be a confidence level. Then a confidence
interval for θ with level at least γ is given by two random variables l(X1, . . . , XN )
and u(X1, . . . , XN ) such that for all θ:

P [l(X1, . . . , XN ) ≤ θ ≤ u(X1, . . . , XN )] ≥ γ

Classical statistical inequality can be used to derive confidence intervals from
a set of realisations of a random variable. As a general rule, these inequalities
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link together the confidence level, the number of samples and the width of the
confidence interval, such that the user specifies two of them and the third is
derived from the inequality.

The simplest approach is Gaussian analysis, which uses central limit theorem
to approximate the distribution of the mean value of the observations of the ran-
dom variable. When a random variable follows normal distribution, confidence
interval can be computed using Gaussian error function.

A variant of this approach is to approximate the distribution of the random
variable to a normal distribution and use the cumulative distribution function
of the student-t distribution to compute confidence intervals. This confidence
interval is more conservative than the one of the normal distribution when the
number of samples is small, but as the number of samples increases they converge
to each other.

When more conservative results are required and bounds on the value taken
by the random variable are known, then Chernoff-Hoeffding inequality can be
used to produce confidence intervals.

Sequential Estimation. Using additional hypotheses, the required number of
samples can be computed on the fly; the simulation is then stopped as soon as the
number of samples is sufficient. These methods are called sequential estimation.

Given a confidence level and a confidence interval width, the Chow and Rob-
bin algorithm [12] requires the same hypothesis as Gaussian analysis and that
the width of the confidence interval tends to zero. The algorithm provides the
optimal stopping rules for the simulation and returns a confidence interval with
expected width and variance.

When one is not interested in the actual expected value of a random variable
but rather in deciding whether this value is above or below a threshold, then
hypothesis testing can be used. Given a confidence level, a threshold and an open
interval around this threshold called indifference region, the Sequential Proba-
bility Ratio Test (SPRT) [46,53] returns whether the value is above or below
the threshold. If the true expected value is in the indifference region the test
result has no probabilistic guarantee. Otherwise, the test result is correct with
a probability equal to the confidence level. Two different confidence levels may
be used for values above and below the threshold to make the test asymmetric
(type I and type II errors).

Rare Events. One of the main limitations of statistical model checking is the
rare event problem. When the probability that we want to compute is very
small (usually smaller than 10−6, statistical model checking becomes inefficient.
Recently, several methods have addressed this limitation using importance sam-
pling [7,26,42] or splitting [27], summarised below.

– Importance sampling relies on biasing the model such that the satisfaction
of the formula is no longer a rare event. During simulation an the overall
bias is estimated to produce an accurate estimation of the rare event. The
difficulty lies in the choice of bias.
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– Splitting relies on defining a sequence of successive embeddedings of subsets
of the state space. The smallest subset only contains states satisfying the
property of interest, while the largest contains all states. During simulation,
each time a path reaches the next subset it is split into several copies. The
probability that one path reaches the smaller subset is higher than the initial
probability. Appropriately choosing the subsets is crucial to obtain precise
results.

Statistical model checking for CTMCs has been implemented in a number of
tools, to mention PRISM and Cosmos. In particular, PRISM [34] implements
the confidence interval and SPRT methods for time-bounded CSL properties
(also known as approximate probabilistic model checking), whereas Cosmos [3,4]
provides a range of statistical model checking methods, including importance
sampling, for a more expressive specification language.

3.5 Stochastic Petri Nets

CTMC models of molecular systems are complex, and high-level modelling lan-
guages facilitate their construction. Such languages include stochastic extensions
of process algebras (cf PEPA [13]), reactive modules (cf PRISM [34]) or Petri
nets (cf Cosmos [3,4]). We focus here on stochastic Petri nets (SPNs), a graph
of places connected by transitions, where the time for a transition to fire is dis-
tributed according to exponential distributions. SPNs are naturally interpreted
as CTMCs whose state space is the set of reachable marking. They have been
widely studied, for example in [17].

Formally, an SPN is a tuple N = (P, T,W−,W+,m0, Λ), where P is a finite
set of places, T is a finite set of transitions, W− : P ×T → N is the pre incidence
matrix, W+ : P × T → N is the post incidence matrix, m0 ∈ N

P is the initial
marking, and Λ : NP × T → R is the rate function which associates a rate to
each marking and transition.

SPNs can be endowed with CTMC semantics, which for N =
(P, T,W−,W+,m0, Λ) is given as the CTMC C = (S, s0,R) defined by:

– S = Reach(N ,m0), the set of reachable markings
– s0(m0) = 1, ∀s ∈ S\{m0}, s0(s) = 0
– R(m,m′) =

∑

t∈T, s.t. m
t−→m′ Λ(m, t).

A common extension of SPNs are generalized stochastic Petri nets (GSPN),
which additionally use immediate transitions with Dirac distributions. Weights
are added to resolve concurrent firing of immediate transitions. As immediate
transitions are memoryless, the semantics of a GSPN is still Markovian as long
as there is no cycle of immediate transitions [20]. Such cycles can be detected
by an analysis of the structure of the net. Adding such immediate transitions is
convenient for modelling stochastic systems and may reduce the size of the set
of reachable markings [30].

GSPNs are supported by a number of tools, including Cosmos and Marcie [25].
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4 Modelling DNA Walkers

In [15,16], DNA walkers were modelled in the native language of PRISM, which
represents each walker circuit as a synchronised parallel composition of reactive
modules, each specified using guarded commands whose updates are annotated
with rates. Since DNA walker circuits are planar, GSPNs are well suited to their
modelling, with the layout of the GSPN closely corresponding to the layout of
the original circuit: the state of each anchorage is modelled using an indepen-
dent place, while the steps of the walker are modelled with transitions that are
exponentially distributed.

The blocking mechanism used to steer the movement of the walker may fail
with some probability; this failure occurs before the walker is released and thus
before any walker movement. In PRISM, this is modelled with transitions with
very high rates (a billion times larger than walker movement rates), which makes
the computation intractable when uniformisation is used. In GSPN this blocking
mechanism is modelled using instantaneous transitions.

More precisely, each DNA walker circuit comprises several tracks (sequences
of anchorages) and transitions correspond to walker taking a step from one
anchorage to another nearby. The states of each anchorage are modelled as
follows:

– Each anchorage is modelled with a single place, to preserve the layout of the
original circuit placement. The relative placement of each place corresponds
to that of the corresponding anchorage on the origami.

– Intact anchorages are modelled with places containing one token.
– Anchorages where the top has melted away are modelled by empty places.
– The anchorage to which the walker is attached is modelled by a place with

two tokens.
– Blocked anchorages are modelled like anchorages where the top has melted

away, with empty places.

Fig. 3 illustrates a transition encoding a displacement reaction between two
anchorages a and b. Place a encodes the anchorage to which to walker is cur-
rently bound. Place b encodes an intact, unblocked anchorage. The transition
consumes two tokens in the place corresponding to a and one token in the place
corresponding to b, and produces two tokens in the place corresponding to b.
Indeed, after the transition is fired the place corresponding to a is left empty,
which models the anchorage where the top has melted away.

The walker may move between two anchorages that are sufficiently close.
Each such movement is modelled with independent transitions. The rate of each
transition depends on the distance between the two anchorages as specified on
page 5.

Blocked anchorages do not initially contain tokens. In order to model the
possibility of failure of the blocking mechanism, a place with initially one token
and two immediate concurrent transitions are added to each blocked anchorage.
Fig. 4 illustrates this. With failure probability f = 0.3, a token is added to the
place for anchorage a. In this case the anchorage is no longer blocked.
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2
2

1

ba

Fig. 3. Transition modelling movement of the walker from anchorage a to anchorage b

a
f1 − f

Fig. 4. Two transition model of the failure of the blocking mechanism of anchorage a

Our modelling approach ensures modularity of the design and that the layout
of the Petri net closely resembles that of the original walker system. Different
circuits can be composed together easily by merging together initial and final
anchorages and by adding transitions between places encoding nearby transi-
tions. Additional behaviours of the circuit, such as a missing anchorage, may
be added easily by adding or removing tokens. An alternative modelling app-
roach would have been to use colour to model the position of the walker, sim-
ilarly to works in [37], but this would not preserve the layout of the original
walker.

The walker models that we study are complex and have large number of
transitions, but can nevertheless be viewed on screen and zoomed in. As an
example, Fig. 5 shows one of the smallest models. In the following, for the sake
of clarity we will hide most of the transitions when displaying a Petri net.

The state space of the walker systems increases exponentially with the num-
ber of anchorages. Table 1 shows the number of places and transitions, together
with the size of the state space for models of DNA walkers that we studied. For
the larger models it was not possible to build the state space due to memory
limits.

The size of the state space makes the analysis of these models difficult. Qual-
itative analysis is still possible using symbolic representation of the state space
for the smaller examples. For quantitative analysis, numerical computation of
transient probability via uniformisation requires the storage of a vector of prob-
abilities (one floating point number per state). Currently, the maximal amount
of memory in a computer is in the order of 100 GByte using single precision,
namely, at most 100 · 1024 · 1024 · 1024/4 ≈ 27 · 109 states. This neglects the
amount of memory required to store the transition matrix, let alone the time to
compute with such a large vector. Unfortunately, the state space of some of the
models of DNA walkers that we consider exceeds this limit. This problem can
be partially alleviated using FAU. However, when the state space is too large to
be constructed the only viable alternative is to use statistical model checking for
the analysis.
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Fig. 5. A single junction circuit. The walker is initially in the upper anchorage. The
anchorage on the left of the junction is blocked. Gray-scale used for the transitions
indicate the tree possible rates (ks, ks/50, ks/100). Black transitions correspond to
immediate transitions.

5 Experiments and Results

In this paper, we model a variety of DNA walker circuits using stochastic Petri
nets and analyse their reliability and performance. We focus on the application
of statistical model checking, which we compare to numerical solution methods
implemented in PRISM. We first briefly describe the tools used, followed by an
overview of the results and analysis of the advantages of each method and the
corresponding trade offs that can serve as guidelines when selecting software
tools for quantitative modelling and verification of similar systems.

5.1 Tools

We use three modelling and analysis tools to perform computational experi-
ments, namely Marcie [25], PRISM [34] and Cosmos [3,4]. We also use Graphviz
for the visualisation of Petri nets.

Marcie supports qualitative and quantitative analysis of generalised stochas-
tic Petri nets. The tool has been developed for the study of chemical reaction
networks and thus facilitates the modelling of such systems. It employs Inter-
val Decision Diagrams (IDD) to symbolically represent the state space of the
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Table 1. Size of the state space of DNA walker models studied

Model Places Transitions States Model Places Transitions States
control 8 34 172 ringLL 27 260 27,950,678
controlMissing1 7 22 50 ringRL 27 260 27,950,678
controlMissing2 6 13 13 ringLR 27 260 28,209,796
controlMissing7 7 27 82 ringRR 27 260 28,209,796
track12Block1 13 82 3,795 ringLLLarge 33 312 1,885,372,776
track12Block2 14 84 5,459 ringRLLarge 33 312 1,885,372,776
track12BlockBoth 14 84 5,248 ringLRLarge 33 312 1,860,879,029
track28LL 34 250 432,884,827 ringRRLarge 33 312 1,860,879,029
track28LR 34 250 435,340,831 redundantChoiceL 43 490 -
track28RL 34 250 435,340,831 redundantChoiceR 43 490 -
track28RR 34 250 432,884,827

Petri net. The implementation of IDD is mostly parallel, taking advantage of
multicore architectures. The tool has recently been extended with a simulation
engine for model checking of PLTL (propositional linear-time temporal logic)
formulas. Marcie can deal with unbounded until properties as long as the user
guarantees termination. We use Marcie to compute the size of the state space in
our experiments.

PRISM is a probabilistic model checker that supports a variety of probabilis-
tic models and probabilistic temporal logics, including CTMCs and temporal
logic CSL. A CTMC model is provided in the PRISM modelling language as a
synchronised parallel composition of reactive modules, but model imports, e.g.
via SBML, are also supported. Verification of CSL properties can proceed via
numerical methods (uniformisation or fast adaptive uniformisation) or statistical
model checking (confidence interval and SPRT), known as approximate proba-
bilistic model checking. We use PRISM to perform quantitative verification using
numerical methods and approximate model checking.

Cosmos is a statistical model checker for generalised stochastic Petri nets with
general distributions. It takes Hybrid Automata Stochastic Logic (HASL), based
on linear hybrid automata, as a specification language. Efficient simulation is
obtained using code generation that generates lightweight optimised C++ code.
The generated code implements a simulator for the product of the model with
the automaton underlying the specification. We use Cosmos for the evaluation
of the models using statistical model checking.

5.2 The Setting

We perform experiments with Cosmos and PRISM on several circuit designs
that have either been experimentally studied by biochemists or present design
challenges. To ensure that the model given to each tool encodes the same system,
the following workflow is used:

1. Each circuit defines a set of anchorages; for each anchorage, the position is
specified as well as whether it is an initial or final anchorage. Additionally,
the correct final anchorage is specified.
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2. From this description of the circuit a GSPN is built.
3. The GSPN is exported in the GrML (Graph Markup Language) file format

for Cosmos; the ANDL (Abstract Net Description Language) for Marcie;
and the DOT language for Graphviz and the PRISM language. All these
exports are simple except for PRISM, for which the GSPN is transformed
into a single module, where each place is transformed into one variable and
each transition into one guarded command. The property that the GSPN is
2-safe is used to bound variables.

4. From the GSPN and the initial description of the circuit, properties are
provided as logical formulas for PRISM and as automata for Cosmos.

On each model we define atomic propositions of the form Ax = y, with Ax
indicating an anchorage name, x either a place name or a PRISM variable, and
y an integer. Labels and reward structures on states are also added to express
certain properties, as described below.

For each model we perform the following initial analysis. The first four for-
mulas are simple bounded reachability properties that can be expressed in many
logics, for example BLTL or CSL with rewards. For the two remaining ones, we
give the specification. We compute after 200 min the following properties:

1. The probability of reaching a deadlock state, where we assume an atomic
proposition deadlock labelling deadlock states:

Deadlock := P=? F
≤12000 deadlock

2. The probability of reaching a final anchorage, define using a state label
(final):

Finish := P=? F
≤12000 final

3. The average time spent in an anchorage that was supposed to be blocked
but the failure mechanism failed; this is defined using reward structure block
that increases linearly with the time spent in a blocked anchorage:

Blockade := R{block}=? C<=12000

4. The expected number of steps of the walker, defined using reward structure
steps that is increased by one for each firing of a transition:

Steps := R{steps}=? C
<=12000

5. The reliability of the walker computation, written as an algebraic expression
over (quantitative) CSL or BLTL formulas:

Reliability :=
P=? F

≤12000 finalCorrect

P=? F
≤12000 final

6. The probability that a path reaches the correct final anchorage while visiting
a blocked anchorage, defined in BLTL using state label blockAnchorage:

uB := P=? ((F≤12000 blockAnchorage) ∧ (F≤12000 finalCorrect))
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The first five properties were already studied in [15] for some of the models.
The tool Cosmos takes deterministic Linear Hybrid Automata (LHA) as

a specification formalism. Compared to timed automata, in LHA clocks are
replaced by piecewise linear variables. Cosmos implements the synchronisation
of a GSPN with an LHA. The main features of a property automaton are illus-
trated in Fig. 6. The locations of the automaton are labelled with invariants,
which are atomic propositions of the GSPN. Locations are labelled with the rate
of each variable; for clarity only rates different from 0 are labelled in the figure
except for variable t, whose rate is always equal to 1. Accepting locations of the
automaton are labelled with a name (in Fig. 6 names are sl,fc,fnc). The tran-
sitions of the automaton are of two types: synchronized transitions are labelled
with a set of GSPN transition names, or the symbol A for any transition, and
are synchronised with the firing of the GSPN transition. They can be labelled
with a time guard; autonomous transitions, indicated with symbol #, are not
synchronised and occur as soon as the time guard is satisfied. More detail on the
synchronisation of GSPN and LHA can be found in [3].

In addition to the property automata, Cosmos relies on several HASL expres-
sions that specify which value to estimate from the automaton. For our properties
the expressions are as follows:

– The probability of reaching a deadlock state is expressed as follows:

P=? dl

and is interpreted as the probability for an accepting trajectory of the GSPN
to end in location dl;

– The probability of reaching a final anchorage is expressed as follows:

P=? fc ∨ fnc

– The average time spent in an anchorage that was supposed to be blocked,
but the failure mechanism failed, is expressed as follows:

E=? bt

and is interpreted as the average value of variable bt in accepting states;
– The reliability property is expressed as:

P=? fc
P=? fc ∨ fnc

– The probability that a path reaches the correct final anchorage while visiting
a blocked anchorage is defined as:

P=? (ub = 1) ∧ fc
P=? fc
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The sixth property is expressed with a slightly more involved automaton, which is
not reported here for reasons of space. In this automaton a variable s is added to
count the number of steps of the walker; it is increased by 1 on each synchronised
transition except the one that loops over the initial state. The HASL expression
is E=? s. More details and formal specification of HASL expressions can be found
in [3].

t := 0
bt := 0
ub := 0

A, t > 0

A

A, t = 0
A A,ub:=1

A

A

A

A

A

#,t=12000

#,t=12000

A

A

� ¬block
∧¬finish

finish∧
¬finishCorrect

block ∧ ¬finish
ḃt = 1

finishCorrect

�deadlock

dl

fc

fnc

Fig. 6. LHA for the first four of the properties. This LHA contains two variables: t is
a clock which is never reset, and bt is a piecewise linear variable with respect to time
whose derivative is equal to 0 everywhere except in states where block holds. Symbol
A indicates that the automaton reads any action of the model.

In the remainder of this section we describe the models and report on the
results of verifying the above properties using statistical model checking meth-
ods. In Section 6 we compare and contrast the outcomes produced by the differ-
ent tools and methods on each model, as well as the time and memory require-
ments.

5.3 Control Model

We begin by analysing the experimental designs of DNA walker models intro-
duced in [47,52], which were modelled and analysed in [15,16]. These circuits
comprise several anchorages in a straight line, where some anchorages have been
removed. Fig. 7 depicts the control model where, for clarity, the transitions of
the Petri net have been omitted except for the self-loops on final anchorages.
The positioning of places corresponding to each anchorage is consistent with the
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positioning of the anchorage on the circuit layout. The initial position of the
walker is in the upper left corner and is encoded with two tokens. The final posi-
tion is in the lower right corner. There are three variants of this model. In the
first, the anchorage 4 is omitted. In the second, anchorages 4 and 5 are omitted.
In the third anchorage, 7 is omitted.

control controlMissing1 controlMissing2 controlMissing7

Fig. 7. Simplified Petri nets of control models

The results for this control model are reported in Table 2. We compute the
average number of steps (Steps), the probability of deadlock (Deadlock) and the
probability to reach the final anchorage in 200 minutes (Finish).

Table 2. Experimental results for the control model

Model Steps Deadlock Finish

control 6.8756 0.0033 0.9618
controlMissing1 5.5141 0.0002 0.8528
controlMissing2 3.8529 0.0194 0.5909
controlMissing7 5.1453 0.0305 0.1755

We observe that the number of steps is directly proportional to the number
of anchorages, and the probability to reach the final anchorage within the time
bound greatly decreases when an anchorage is missing. From these two obser-
vations, we can deduce that the predominant path in these models is the one
that successively visits each anchorage, which is consistent with wetlab experi-
ments [47] (Fig. 2).
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5.4 Single Junction Circuit

The second set of models is a single junction circuit based on the experimental
setup described in [49]. Blocked anchorages are used to steer the walker in a
specific direction. Fig. 8 shows three model variants. In the first, one anchorage is
blocked. The second model employs two blocked anchorages on the same branch,
while the third blocks both branches.

For each branch, in the initial state all the anchorages are blocked. Unblock-
ing DNA strands are added, which will selectively unblock anchorages on the
designated branch.

track12Block1 track12Block2 track12BlockBoth

Fig. 8. Position and initial state of anchorage for the single junction circuit

Table 3 presents the results of our analysis for single junction models. We
observe that the probability of deadlock (Deadlock) is very small, and with high
probability the walker reaches a final anchorage within the time bound (Finish).

We observe that the model with two blockades is more reliable than that
with only one: 0.84 instead of 0.77. In [16] (Fig. 11), an extensive study of the
impact of blockade length on the reliability is presented.

For the third model, one of the final anchorages is chosen arbitrarily as the
correct one.

Table 3. Experimental results for the single junction circuit

Model uB Blockade Steps Deadlock Finish Reliability

track12Block1 0.1796 46.8615 7.0494 0.0009 0.9715 0.7746
track12Block2 0.2083 315.508 6.9504 0.0016 0.9592 0.8452
track12BlockBoth 0.4794 104.292 6.551 0.0007 0.9227 0.4999

These results are consistent with those experimentally observed. In
[49] (Fig. 2), for a single blockade the dependability of 0.76 is reported and for
a double blockade the dependability of 0.87 is reported. When the two branches
are blocked, no bias is observed between the two branches.



On Quantitative Modelling and Verification 21

track28LL track28LR

track28RL track28RR

Fig. 9. Position and initial state of anchorage for the two level junction circuit

5.5 Two-Level Junction Circuit

These models are an extension of the junction circuit with two levels, which were
also studied in the wetlab in [49] (Fig. 3).

Table 4 shows numerical results. We observe that the reliability varies for
the four different configurations. We note that that final anchorages reached
on the outside of the model show greater reliability: 0.766 versus 0.7326. The
other properties also show that the circuit with final anchorages on the inside
are more likely to deadlock, that the walker performs more steps, spends more
time in blocked anchorages, and that the probability for the walker to bind to
a blocked anchorage before reaching the final location is higher. As expected by
the symmetry, the two circuits with final anchorages on the outside (respectively
on the inside) have very similar results and the difference can be explained by the
statistical error due to simulation. Fig. 10 shows the evolution of the probability
of the presence of the walker on each final anchorage. This can be explained by
the proximity of the two innermost tracks, which allows the walker to jump from
one track to the other.

The plot of Fig. 10 corresponds to the wetlab experiments of [49] (Fig. 3)
with similar qualitative results; the numerical value differs probably due to a
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Table 4. Experimental results for the two-level binary tree

Model uB Blockade Steps Deadlock Finish Reliability

track28LL 0.3707 711.003 11.7339 0.0121 0.8959 0.7658
track28LR 0.3809 740.849 11.7688 0.0183 0.8847 0.7326
track28RL 0.3806 741.85 11.7684 0.0182 0.8853 0.7326
track28RR 0.3701 708.867 11.7363 0.012 0.8964 0.766

different setting. The results in Fig. 10 have been computed statistically using
Cosmos with 200, 000 simulations. The width of confidence intervals around each
point of each graph is bounded by 0.006.

Even if this model can be built by composing three single junction circuits,
the overall reliability cannot be computed as a composition of the reliability
of the single junction, which will be equal for the four configurations. Thus,
quantitative analysis of walker circuit cannot be performed at the level of each
individual gate but has to be done at the global level.

5.6 Improving Reliability

In [16], the reliability of junction circuits is improved by increasing the length
of blockades. We propose a different design based on a two-level junction with
redundant choice and time constraints.
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Fig. 10. Evolution over time of the probability of the presence of the walker on each
final anchorage (Track28)
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Table 5. Experimental results for the two-level choice

Model uB Blockade Steps Deadlock Finish Reliability

redundantChoice10 0.7296 1869.53 17.0304 0.2178 0.5554 0.7219
redundantChoice01 0.7298 1871.98 17.0307 0.2171 0.5559 0.7215

redundantChoiceRight redundantChoiceLeft

Fig. 11. Position and initial state of anchorage

Results in Table 5 demonstrate that the reliability after 200 minutes does not
increase compared to the single junction circuit, and in fact is even worse than
the single junction circuit with two blockades. However, since paths which end
in the incorrect final anchorage had to follow a longer path, in a short amount of
time the reliability is much higher. In Figure 12 we plot the probability to reach
each final anchorage over time T , as well as the reliability. At time T = 1200s the
reliability reaches 0.935, at the cost of fewer paths reaching the final anchorage.
This demonstrates that timing constraints can play an important role in DNA
computation designs, and can be used to produce small circuits with comparable
reliability compared to those obtained by increasing blockade length.

5.7 Exclusive Disjunction

This model implements the exclusive disjunction logical function (XOR) as a
two-level junction circuit, where final anchoraged have been merged together
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Fig. 12. Probability density function of the time required by the correct and incorrect
path to reach final anchorages (redundantChoice)

Table 6. Experimental results for the XOR models

Model uB Blockade Steps Finish Reliability

ringLL 0.4509 607.693 7.8712 0.9273 0.6981
ringRL 0.4511 606.561 7.8714 0.9269 0.6975
ringLR 0.4527 664.121 7.651 0.8982 0.6661
ringRR 0.453 664.188 7.6565 0.8978 0.6665

ringLLLarge 0.429 584.601 9.7267 0.8622 0.6737
ringRLLarge 0.4291 585.6 9.7287 0.8624 0.6745
ringLRLarge 0.428 581.341 9.7391 0.865 0.6719
ringRRLarge 0.4283 579.661 9.7379 0.8651 0.6717

forming a ring with the initial state in the middle (see Fig. 13). It illustrates
the limits of increasing the length of tracks to improve the reliability. Fig. 13
shows two designs of the XOR function with different track length. The reliability
does not always increase, as reported in table 6. First, note that the design is not
symmetrical for the small ring, which explains the different results. The reliability
increases (from 0.666 to 0.672) in two cases (LR) and (RR), but decreases (from
0.698 to 0.674) for (LL) and (RL). This model as been studied in [15] (Fig. 6)
with various track lengths; for conciseness we report here only two different
designs.

6 Comparison of Model Checkers

In this section we compare the performance in time and memory of tools Cosmos
and PRISM. All experiments have been conducted on a computer with “Core
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ring ring large

Fig. 13. Position and initial state of anchorage for XOR for a small and large design

i7-2600” CPU with 4 cores and 8GB of RAM. The maximal execution time for
each experiment is set to 20 hours.

When using PRISM we apply three different methods:

– PRISM Num: Numerical model checking using PRISM’s hybrid engine, uni-
formisation and the default numerical solver for linear equation systems
(Jacobi) with threshold ε = 10−6.

– PRISM FAU: Numerical model checking using fast adaptive uniformisation
(explicit engine) with δ = 10−10 and ε = 10−8.

– PRISM Sim: Simulation-based approximate model checking that involves
simulating 2, 000, 000 paths with confidence level of 0.99.

For Cosmos we also use 2, 000, 000 paths and 0.99 confidence level. This value
allows us to obtain tight confidence intervals for the results we are interested in.
Cosmos simulation times are reported with 1 thread (Cosmos 1T) and 8 threads
(Cosmos 8T)1 to show how statistical methods benefit from parallelisation.

Table 7 reports time and memory2 requirement of the different methods.
Memory is omitted for statistical methods, as it is negligible compared to numeri-
cal methods since there is no need to construct the matrix. All times are reported
in seconds.

1 Experiments are performed on a machine with 4 cores and 2 threads per core. Exper-
imentally, using 8 threads for the simulation is faster by around 30% than using 4
of them, whereas the speed up between 1 and 4 threads is around 370%.

2 The memory consumption for PRISM with the FAU method is measured with the
Unix ‘time’ utility, which includes a large constant overhead due to the Java vir-
tual machine GC. By comparison, the uniformisation method precisely reports the
memory consumption.
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Table 7. Time and memory measurements for statistical and numerical methods

Cosmos 8T Cosmos 1T Prism Sim Prism Num Prism FAU
Time Time Time Time Memory(KB) Time Memory(MB)

control 2.4 11.1 29.4 0.04 40.2 1 127.18
controlMissing1 1.5 6.8 18.9 0.01 7.8 0.9 98.82
controlMissing2 0.8 3.6 11.2 0 7.3 0.09 81.58
controlMissing7 1.9 8.6 22.6 0.02 26 0.92 113.76

track12Block1 4.7 22.4 68 >20H 388.3 3.95 245.11
track12Block2 4.7 22.2 76.4 - 530.8 4.84 296.03
track12BlockBoth 4.4 20.8 71.9 - 509.4 4.76 279.55

track28LL 10.6 51.5 395.5 >8GB 879.35 1,042.62
track28LR 11.1 53.3 393.8 - 927.59 1,061.37
track28RL 11.2 54.4 382 - 929.39 1,076.57
track28RR 10.6 52.2 393.3 - 870.48 1,047.32

ringLL 10.9 53.7 360 >20H 700MB 748.83 1,139.35
ringRL 11.1 55 339.1 - 700MB 755.69 1,131.96
ringLR 11 54.9 348.3 - 700MB 754.01 1,164.21
ringRR 10.9 53.4 346.3 - 700MB 757.72 1,154.43
ringLLLarge 12.7 62.7 423.7 >8GB 1,864.83 2,206.84
ringRLLarge 12.9 63.7 471.7 - 1,802.69 2,201.96
ringLRLarge 13 64.1 442 - 1,994.9 2,206.27
ringRRLarge 12.7 62.2 555.2 - 2,056.98 2,211.3

redundantChoice10 27.1 131.8 1,258.2 >8GB >8GB
redundantChoice01 26.6 128.9 1,239.8 - -

We observe that uniformisation takes a very long time except for the smallest
model. This is due to a large summation bound computed by the Fox & Glynn
algorithm. This is due to the following two factors:

– the time bound of properties (12000 time units) is very large;
– the PRISM language does not support instantaneous transitions, and thus

instantaneous transitions are encoded using stochastic transitions with a
large rate (1000000).

The FAU method, on the other hand, is the fastest on small models. Com-
pared to standard uniformisation, which uses a very large time horizon in the
uniformised DTMC, FAU performs a small number of iterations. This is due to
the algorithm neglecting states that did not fire transitions that encode the fail-
ure of blockade after some time. As these states have transitions with large rates,
neglecting them allows FAU to use smaller uniformisation constants, resulting
in fewer iterations.

For the two-level junction circuits the statistical methods are faster, while
uniformisation fails due to excessive time or memory requirements. Comparing
the two statistical model checking tools, Cosmos achieved better runtimes. The
parallel version of Cosmos, in particular, shows that statistical methods can
take advantage of parallel architecture. The difference of runtime between the
two statistical tools can be explained by two main factors.

– For small models, Cosmos is twice as fast as PRISM, which can be explained
by the programming language of each tool. PRISM’s simulator is written in
Java, while that of Cosmos consists of C++ code generated from the model
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and compiled into a native executable. The choice of the language can be
explained by the history of the two tools. PRISM was designed to perform
numerical model checking, whereas Cosmos was designed from the start as
a statistical model checker.

– Cosmos exploits the structure of Petri nets to generate code, which results in
fast simulation performance. In Petri nets, all the possible events of a system
are the firings of the transitions. In the PRISM language, events are firings
of guarded transitions with possible synchronisations between component.
To avoid checking whether each event is enabled, Cosmos analyses the Petri
net structure to compute how transitions affect each other. This is used to
produce a simulator that checks only a subset of the transitions after each
firing of transitions and explains the difference of runtime of about a tenth
on the larger models.
The analysis of the dependencies between transitions is easier to perform
on Petri nets, as they can be expressed as graph properties. There is no
theoretical limitation to adapt the same ideas in the PRISM simulator by
building a dependency graph between commands, based on the content of
their guard and updates.

Table 8 present comparison of the quality of results for statistical model
checking and FAU. Two properties are used for the comparison: the expected
number of steps before reaching a final anchorage (Steps) and the probability to
reach the correct final anchorage (FinishCorrect). As numerical methods are not
available due to time or memory constraints, only the statistical model checking
methods can be compared with each other.

The results obtained by Cosmos and the approximate model checking proce-
dure of PRISM are indistinguishable. Thanks to the large number of paths, the
confidence intervals of the two tools converge to a very similar value.

For each property, we report the expected value for each method, as well as
a measure of the error. For the statistical methods the error is measured with
the width of the absolute confidence interval, which is reported. For the FAU
method, the total probability lost is reported.

The two error bounds are of rather different nature, and thus only their
order of magnitude can be compared. There are three distinct behaviours in the
results:

– For the control and the single junction models, the FAU method is more
precise by two orders of magnitude. The returned values for this model are
almost indistinguishable, and the result returned by FAU is inside the con-
fidence interval of the statistical methods.

– For the two-level junction models and exclusive disjunction, confidence inter-
val width and lost probability have the same order of magnitude. Most of
the time the value computed with FAU is smaller than the left bound of the
confidence interval.

– For the remaining models, statistical methods are more precise, with sig-
nificantly smaller confidence intervals width than probability lost, 0.0018
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Table 8. Comparison of the quality of result return by statistical and numerical
methods

Steps Finish Correct
Statistical FAU Statistical FAU

Model Value Width Value Lost P Value Width Value Lost P

control 6.876 1.62E-3 6.876 1.94E-7 0.962 6.98E-4 0.9618 1.88E-7
controlMissing1 5.514 3.53E-3 5.514 3.17E-8 0.853 1.29E-3 0.8528 3.17E-8
controlMissing2 3.853 5.20E-3 3.855 1.79E-8 0.591 1.79E-3 0.5918 1.79E-8
controlMissing7 5.145 1.56E-3 5.145 3.18E-8 0.175 1.39E-3 0.1751 2.58E-8

track12Block1 7.049 3.39E-3 7.049 2.19E-5 0.753 1.57E-3 0.7526 1.55E-5
track12Block2 6.95 2.97E-3 6.95 1.96E-5 0.811 1.43E-3 0.811 1.80E-5
track12BlockBoth 6.551 3.67E-3 6.552 2.17E-5 0.461 1.82E-3 0.4613 1.54E-5

track28LL 11.734 5.00E-3 11.707 9.49E-3 0.686 1.69E-3 0.6843 9.42E-3
track28LR 11.769 5.20E-3 11.74 1.00E-2 0.648 1.74E-3 0.6465 9.96E-3
track28RL 11.768 5.20E-3 11.74 1.00E-2 0.649 1.74E-3 0.6465 9.96E-3
track28RR 11.736 5.00E-3 11.707 9.49E-3 0.687 1.69E-3 0.6843 9.42E-3

ringLL 7.871 9.94E-3 7.869 9.40E-3 0.647 1.74E-3 0.643 7.87E-4
ringRL 7.871 9.94E-3 7.869 9.40E-3 0.647 1.74E-3 0.643 7.87E-4
ringLR 7.651 1.06E-2 7.65 1.08E-2 0.598 1.78E-3 0.5948 8.80E-4
ringRR 7.656 1.06E-2 7.65 1.08E-2 0.598 1.78E-3 0.5948 8.80E-4
ringLLLarge 9.727 1.40E-2 9.708 3.10E-2 0.581 1.80E-3 0.5725 4.81E-3
ringRLLarge 9.729 1.40E-2 9.708 3.10E-2 0.582 1.80E-3 0.5725 4.81E-3
ringLRLarge 9.739 1.40E-2 9.723 3.16E-2 0.581 1.80E-3 0.5716 4.89E-3
ringRRLarge 9.738 1.40E-2 9.723 3.16E-2 0.581 1.80E-3 0.5716 4.89E-3

redundantChoiceL 17.03 1.30E-2 15.709 0.205 0.401 1.79E-3 0.3374 0.205
redundantChoiceR 17.031 1.30E-2 15.709 0.205 0.401 1.79E-3 0.3374 0.205

against 0.2. The value computed by FAU is significantly smaller than the
left bound of the confidence interval, which is due to FAU neglecting small
probability values during the computation.

7 Conclusion

We have analysed a range of DNA walker circuits against quantitative properties
using the Cosmos tool, and established its usefulness as part of design automation
technologies for molecular programming. Petri net models closely reflect the
spatial designs of walker systems devised by experimentalists. The efficiency and
accuracy of the analysis, as well its alignment with experimental observations,
has been demonstrated, improving over the numerical techniques implemented
in PRISM for very large models.

However, there are significant challenges ahead for this field. These include
programming languages and abstractions tailored to molecular programming and
nanorobotics, which need to account for not just molecular kinetics, but also
thermodynamics of molecular systems; scalability of the verification, for exam-
ple via modular designs and compositional analysis; and synthesis techniques,
including controller synthesis and circuit synthesis from quantitative specifica-
tions. Finally, integration of the verification and synthesis tools with molecular
programming toolkits such as CADNANO is desirable.
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University of Tartu, Tartu, Estonia
marlon.dumas@ut.ee

Abstract. Process mining is a family of methods to analyze event logs
produced during the execution of business processes in order to extract
insights regarding their performance and conformance with respect to
normative or expected behavior. The landscape of process mining meth-
ods and use cases has expanded considerably in the past decade. How-
ever, the field has evolved in a rather ad hoc manner without a unifying
foundational theory that would allow algorithms and theoretical results
developed for one process mining problem to be reused when address-
ing other related problems. In this paper we advocate a foundational
approach to process mining based on a well-known model of concur-
rency, namely event structures. We outline how event structures can
serve as a unified representation of behavior captured in process models
and behavior captured in event logs. We then sketch how process mining
operations, specifically automated process discovery, conformance check-
ing and deviance mining, can be recast as operations on event structures.

1 Introduction

Process mining [1,2] is a family of methods concerned with the analysis of event
records produced during the execution of business processes. Process mining
methods allow analysts to understand how a given process is executed on a day-
to-day basis and to detect and analyze deviations with respect to performance
objectives or normative pathways. Process mining has gained significant practical
adoption in recent years, as evidenced by a growing number of case studies and
commercial tools. An overview of methods, tools and case studies in this field is
maintained by the IEEE Task Force on Process Mining.1

The main input of a process mining method is a business process event log,
that is, a collection of event records relevant to a given business process. An
event log is generally structured as a set of traces. Each trace consists of the
sequence of events produced by one execution of the process (a.k.a. a case). An
event in a trace denotes the start, end, abortion or other relevant state change
of the process or an activity therein.

1 http://www.win.tue.nl/ieeetfpm
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Most typically, event logs used in the context of process mining consist of
events that signal the start or the end of each activity of the process. As a
minimum, an event record contains an identifier of the case of the process to
which the event refers, a timestamp and an event class, that is, a reference to an
activity in the process under observation. Each event in a trace may additionally
carry a payload consisting of attributes such as the resource(s) involved in the
execution of an activity or other data recorded alongside the event – for exam-
ple if an event represents the creation of a loan application, possible attributes
include the name of the applicant and the amount of the requested loan.

A simplified example of a log of a loan application process is sketched in
Table 1. In this table, CID stands for “Customer Identifier” and constitutes the
primary key that should be used to group the records in the log into traces.

Table 1. Extract of a loan application log

CID Event Type Timestamp . . .

13219 Enter Loan Application 2007-11-09 11:20:10 . . .

13219 Retrieve Applicant Data 2007-11-09 11:22:15 . . .

13220 Enter Loan Application 2007-11-09 11:22:40 . . .

13219 Compute Installments 2007-11-09 11:22:45 . . .

13219 Notify Eligibility 2007-11-09 11:23:00 . . .

13219 Approve Simple Application 2007-11-09 11:24:30 . . .

13220 Compute Installments 2007-11-09 11:24:35 . . .

. . . . . . . . . . . .

The output of process mining can be manifold, ranging from a model of the
process, to a summarized view of the most frequent paths of the process or a
description of the deviations of the process with respect to normative or expected
behavior.

Process mining has been an active field of research for over a decade [1,2].
During this time, a number of process mining operations have been extensively
studied. One widely studied operation is automated process discovery. This oper-
ation takes as input a log L and produces a process model M that is “likely” to
have generated the traces in log L. For example, given the log in Table 1, the
output of an automated process discovery method could be the process model
shown in Figure 1, which uses the standard Business Process Model and Notation
(BPMN) [3].

Another widely researched operation is conformance checking, which given a
model and a log, produces an enumeration of their differences, that is, a descrip-
tion of the behavior observed in the log but not in the model, as well as behavior
allowed by the model but not observed in the log. Related to the latter is model
repair, where instead of simply enumerating the differences between a model M
and a log L, the goal is to produce a process model M ′ that is “similar” to M
and can parse every trace in the log.

Until now, process mining methods have been developed on a case-by-case
basis using disparate approaches and representations. Attempts have been made
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Fig. 1. Process model corresponding to the log extract in Table 1

at identifying a small number of primitive operations from which other opera-
tions can be defined [2] – but each of these primitives has been formally defined
and developed independently, without an underpinning foundational theory.

In this paper we advocate a foundational approach to process mining based
on a well-known model of concurrency, namely event structures [4]. We show
that event structures can be used to represent both models and logs in a unified
manner and that this unified representation can serve to define process mining
operations that have until now been approached using different formalisms.

2 Overview of Process Mining Operations

Following a well-accepted classification in the broader field of data mining, pro-
cess mining methods can be broadly classified into offline methods and online
methods. Offline process mining methods aim at providing insights about the
process as it is or as it has been observed in the logs. Online process mining
methods on the other hand aim at providing insights about currently running
cases of a process, like for example predicting the completion time of an ongoing
case, or predicting whether an ongoing case will lead to a positive or a negative
outcome [5]. For the sake of scoping the discussion, we hereby focus on offline
process mining methods. Online process mining methods come with strong non-
functional requirements, particularly with respect to performance and scalability,
that deserve a separate treatment.

From the literature on process mining, one can distill the following broad
classes of offline process mining operations: (i) automated process discovery
and model enhancement; (ii) conformance checking and model repair; and (iii)
deviance mining. Other classes of process mining operations include concept drift
analysis [6] and variant identification [7], but we shall herein concentrate on the
former three classes of operations for the sake of illustration.

Automated process discovery is a family of methods that given a log L generate
a model M that “approximates” log L. A range of algorithms for automated
process discovery have been proposed over the past decade, based on various
representations of behavior. For example, the α-algorithm [8] starts by inferring



36 M. Dumas and L. Garćıa-Bañuelos

a matrix of behavioral relations between pairs of event classes in the log, specifi-
cally direct follows, causality, conflict and concurrency relations. Given a matrix
capturing all such relations, the algorithm constructs a Petri net by applying
a set of rules. Similarly, the heuristics miner [9] relies on behavioral relations
between all pairs of event classes found in the log, but additionally takes into
account the relative frequency of the direct follows relation between pairs of
tasks. These data are used to construct a graph of events (called a Heuristics
net), where edges are added based on a number of heuristics. The Heuristics net
can then be converted into a Petri net or a BPMN model for example. Van der
Werf et al. [10] propose a process model discovery method where behavioral rela-
tions observed in the logs are translated to an Integer Linear Programming (ILP)
problem, while Carmona et al. [11] approach the problem of automated process
discovery using theory of regions. Finally, the InductiveMiner [12] discovers a
tree where each internal node represents a block-structured control-flow con-
struct (e.g. block-structured parallelism or block-structured choice). Such trees
can then be trivially transformed into a block-structured Petri net for example.

Automated process discovery methods can be evaluated along four dimen-
sions: fitness, precision, generalization and complexity [1,13]. Fitness measures
to what extent the traces in a log can be parsed by a model. Precision measures
the additional behavior allowed by a discovered model not found in the log. A
model with low precision is one that parses a proportionally large number of
traces that are not in the log. Generalization captures how well the discovered
model generalizes the behavior found in the log. For example, if a model dis-
covered using 90% of traces in the log can parse all or most of the remaining
10% of traces in the log, it is said the model generalizes well the log. Finally,
process model complexity is intended as a proxy for understandability. It can
be measured in terms of size (number of nodes and/or edges) or using a num-
ber of structural complexity metrics such as cyclomatic complexity or density
that have been empirically shown to be correlated with understandability and
error-proneness [14].

Related to automated process discovery is a family of methods known as
process model enhancement [15], which given a model M and a log L (such that
L is likely to have been produced by M) generate an annotated process model
M ′. A sub-family of model enhancement methods produce annotations referring
to performance measures such as waiting times and processing times for each
activity and branching probabilities for each branch of a decision point. Another
family of model enhancement methods produce annotations related to resources:
who performs which activity and who hands-over work to whom? In any case,
from an algorithmic perspective, process model enhancement generally does not
bring additional challenges with respect to automated process discovery.

Conformance checking is concerned with describing how and where actual pro-
cess executions (recorded in an event log) deviate with respect to a given process
model. This problem has been approached using replay techniques [15] and trace
alignment techniques [16]. Replay takes as input one trace at a time and deter-
mines what maximal prefix of the trace (if any) can be parsed by the model.
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When it is found that a prefix can no longer be parsed by the model, error-
recovery techniques are used to correct the parsing error and to continue parsing
as much as possible the remaining input trace. Alignment-based techniques on
the other hand seek to find for each trace in the log, the closest corresponding
trace(s) produced by the model and to determine where exactly in these traces
the model and the log diverge.

Closely related to the problem of conformance checking is that of model
repair [17], where instead of simply enumerating the differences between a model
M and a log L, the goal is to generate a process model M ′ that is similar to M
and can parse all the traces in the log. Model repair can be seen as a generative
counter-part of conformance checking.

Deviance mining [18] is a family of process mining methods that aim at detecting
and explaining differences between executions of a business process that lead to
a positive outcome vs. those that lead to a negative outcome – with respect to a
given labeling of cases into positive vs. negative ones. For example, one specific
deviance mining problem is that of explaining the differences between executions
of a process that fulfill a given service-level objective vs. those that do not.

Existing approaches to deviance mining can be classified into two cate-
gories [18]: model delta analysis [19,20] and sequence classification. The idea
of model delta analysis is to apply automated process discovery methods to
the traces of positive cases and to the traces of negative cases separately. The
discovered process models are then visually compared in order to identify dis-
tinguishing patterns. This approach however does not scale up to large and
complex logs. Sequence classification methods [20–22] construct a classifier (e.g.
a decision tree) that can determine with sufficient accuracy whether a given
trace belongs to the positive or the negative class. The crux of these methods
is how sequences are encoded as feature vectors for classifier learning. Several
sequence mining techniques have been explored for feature extraction in this set-
ting. These techniques generally extract patterns of the form activity A occurs
before activity B, which are frequent in (e.g.) positive cases but not in negative
ones or vice-versa. An evaluation of these techniques on real-life logs has shown
however that their explanatory power is rather limited [18], meaning that dozens
or hundreds of rules are required to explain the differences between positive and
negative cases.

Observations The above overview illustrates that various process mining prob-
lems have been approached from different angles and using disparate repre-
sentations and approaches. Automated process discovery for example has been
approached using representations based on binary relations between event classes
as well as tree-based representations of (block-structured) process models. Mean-
while, conformance checking has been approached using replay (parsing) as well
as trace alignment – techniques that are in essence disconnected from those
used for automated process discovery. On the other hand, deviance mining has
been approached using sequence mining techniques, which reason in terms of
sequences and patterns on sequences. Again, these techniques are disconnected
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from the previous ones. As a further case in point, the problem of concept drift
analysis [6] – where the goal is to detect and explain how the behavior of a given
process has evolved over time – has been approached using sequence patterns as
well as abstractions of sets of traces based on polyhedra [23].

Underpinning these observations is the fact that the representations used to
reason about the behavior captured in process models are different from those
used to reason about the behavior captured in event logs. When reasoning on
process models, representations based on behavioral relations or Petri nets tend
to be favored. When reasoning from the perspective of logs, representations based
on sequences are often preferred. Below we advocate for a unified representation
of process models and event logs that provides a unified perspective into existing
process mining problems and methods.

3 Event Structures as a Foundation for Process Mining

We contend that event structures [4] – a well-known model of concurrency – can
serve as a common representation of process models and event logs for the pur-
pose of defining and implementing process mining operations. Below we provide
a brief overview of event structures and their relation with process models and
event logs. We then sketch how conformance checking and deviance mining can
be recast as problems of comparison of event structures, and we briefly discuss
how automated process discovery could be tackled under this framework.

3.1 Event Structures

A Prime Event Structure (PES) [4] is a graph of events, where an event e rep-
resents the occurrence of an action (e.g. a task) in the modeled system (e.g. a
business process). If a task occurs multiple times in a run, each occurrence is
represented by a different event. The order of occurrence of events is defined via
binary relations: i) Causality (e < e′) indicates that event e is a prerequisite for
e′; ii) Conflict (e#e′) implies that e and e′ cannot occur in the same run; iii) Con-
currency (e ‖ e′) indicates that no order can be established between e and e′.

Definition 1 (Labeled Prime Event Structure [4]). A Labeled Prime
Event Structure over the set of event labels L is the tuple E = 〈E,≤,#, λ〉
where
– E is a set of events (e.g. tasks occurrences),
– ≤ ⊆ E × E is a partial order, referred to as causality,
– # ⊆ E × E is an irreflexive, symmetric conflict relation,
– λ : E → L is a labeling function.

We use < to denote the irreflexive causality relation. The concurrency relation of
E is defined as ‖ = E2 \ (< ∪ <−1 ∪ #). Moreover, the conflict relation satisfies
the principle of conflict heredity, i.e. e#e′ ∧ e′ ≤ e′′ ⇒ e#e′′ for e, e′, e′′ ∈ E.

For illustration, Fig. 2 presents side-by-side a BPMN process model and a
corresponding PES E1. Nodes are labelled by an event identifier followed by the
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(a) BPMN

e0:A

e1:B e2:C e3:D

e4:E e5:E e6:E

(b) Prime event structure E1

Fig. 2. Sample BPMN process model and corresponding PES

label of the represented task, e.g. “e2:C” tells us that event e2 represents an
occurrence of task “C”. The causality relation is depicted by solid arcs whereas
the conflict relation is depicted by dotted edges. For the sake of simplicity, tran-
sitive causal and hereditary conflict relations are not depicted. Every pair of
events that are neither directly nor transitively connected are in a concurrency
relation. Note that three different events refer to the task with label “E”. This
duplication is required to distinguish the different states where task “E” occurs.

A state on an event structure (hereby called a configuration) is characterized
by the set of events that have occurred so far. For instance, set {e0:A, e1:B} –
highlighted in Fig. 2(b) – is the configuration where tasks “A” and “B” have
occurred. In this configuration, event {e3:D} can no longer occur because it is
in conflict with {e1:B}. On the other hand, events {e2:C} and {e4:E} can occur,
but the occurrence of one precludes that of the other. Formally:

Definition 2 (Configuration). Let E = 〈E,≤,#, λ〉 be a prime event struc-
ture. A configuration of E is the set of events C ⊆ E such that
– C is causally closed, i.e. ∀e′ ∈ E, e ∈ C : e′ ≤ e ⇒ e′ ∈ C, and
– C is conflict-free, i.e. ∀e, e′ ∈ C ⇒ ¬(e#e′).

The local configuration of an event e ∈ E is the set e� = {e′ | e′ ≤ e}. Similarly,
the (set of) strict causes of an event e ∈ E is defined as e) = e� \ {e}.

We denote by Conf(E) the set of all possible configurations of
E and by MaxConf(E) the subset of maximal configurations with
respect to set inclusion. In the running example, MaxConf(E1) =
{{e0, e1, e2, e5}, {e0, e1, e4}, {e0, e3, e6}}.

Prime event structures can be extracted from Petri nets using well-known
unfolding techniques. In the case of acyclic nets, a full unfolding can be computed
and a PES can be trivially derived therefrom. In the case of bounded Petri nets
with cycles, it is possible to calculate a finite prefix unfolding that captures all
the behavior in the original net. A PES can then be derived from such prefix
unfolding. Several prefix unfoldings have been defined in the literature, such as
the complete prefix unfolding [24]. In [25] we defined a type of unfolding that
additionally captures all the causes of every event – including events inside a
cycle – thus allowing us to pinpoint which events are repeated and which are not.
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This information allows us to do more fine-grained reasoning on the repetitive
behavior of a process compared to a complete prefix unfolding.

3.2 From Logs to Event Structures

In previous work [26], we presented a method to generate a PES from an event
log. The method consists of two steps. First the event log, seen as a set of traces, is
transformed into a set of runs by invoking a concurrency oracle. In essence, each
trace is turned into a run by relaxing the total order induced by the trace into
a partial order such that two events are not causally related if the concurrency
oracle has determined that they occur concurrently. The concurrency oracle is
left open. Existing concurrency oracles such as those proposed in the α process
mining algorithm [8] or in [27] can be used for this purpose.

Second, the set of runs are merged into an event structure in a lossless man-
ner, meaning that the set of maximal configurations of the resulting event struc-
ture is exactly equal to the set of runs. In this way and modulo the accuracy of
the concurrency oracle, we ensure that the resulting event structure is a lossless
representation of the input log.

For example, consider the log given in Figure 3(a). This event log consists
of 10 traces, including 3 instances of distinct trace t1 (as specified in column
“N”), 2 instances of t2, so on and so forth. Using the concurrency oracle of the α
algorithm we conclude that event classes B and C are in a concurrency relation,
thus we construct the set of runs in Figure 3(b). In this latter figure, the notation
e:A indicates that event e represents an occurrence of event class A in the original
log. By merging together events with the same label and the same history (i.e.
same prefix), we obtain the PES in Figure 3(c). In this figure, the notation
{e1, e2 . . . ei}:A indicates that events {e1, e2 . . . ei} represent occurrences of event
class A in different runs.

Trace Ref N
A B C E t1 3
A C B E t2 2
A B E t3 2
A D E t4 3

(a) Event log

e0:A

e1:B e2:C

e3:E

f0:A

f1:B

f2:E

g0:A

g1:D

g2:E

π1 π2 π3

(b) Runs

{e0, f0, g0}:A

{e1, f1}:B {e2}:C {g1}:D

{f2}:E {e3}:E {g2}:E

(c) Induced PES

Fig. 3. Example of construction of a PES from a set of traces



Event Structures as a Unified Representation 41

3.3 Comparison of Event Structures

In previous work [25], we presented a technique for comparing pairs of event
structures. This technique operates by performing a Partially Synchronized Prod-
uct (PSP) of the event structures, which is in essence a synchronized simulation
starting from the empty configurations. At each step, the events that can occur
given the current configuration in each of the two event structures (i.e. the
enabled events) are compared. If they match, the simulation adds those events
to the current configurations and continues. If on the other hand an enabled
event in the current configuration of one event structure does not match with
an enabled event in the current configuration in the other event structure, a
mismatch is declared and this mismatch will be reflected in a difference state-
ment that tells us that there is a pair of matching configurations where an event
can occur or a behavioral relation holds in one event structure, but not in the
other. Having diagnosed the difference, the unmatched event is “hidden” and
the simulation jumps to the next matching configurations.

Figure 5 presents an excerpt of the PSP for E1 and E2, shown in Figure 2 and
Figure 4 respectively. Note that MaxConf(E2) = {{f0, f1, f2, f4}, {f0, f3, f5}}.
Clearly, all maximal configurations of E2 can be matched to configurations of E1.
The right-hand leaf node in the PSP illustrates the matching of configuration
{e0, e1, e2, e5} from E1 and {f0, f1, f2, f4} from E2. There, the set m records the
fact that all the events in both configuration have been matched, lh records
that none of the events from E1 (the one to the left of the “product”) has been
hidden, and rh records that no event from E2 has been hidden. Similarly, the leaf
node at the left-hand side corresponds to the best matching of configurations
{e0, e1, e4} and {f0, f1, f2, f4}, respectively from E1 and E2. The cloud at the
top indicates that some states precedes to the matching of a pair of events
sharing the label “B”. The label on the edge from the cloud to the node just
below records such matching. The configuration {e0, e1} enables the occurrence
of e4:E but that occurrence precludes the occurrence of e2:C. This gives rise to
a behavioral mismatch, that is resolved by hiding f2:C. The red arrow in the
PSP captures this hiding: the event f2:C from E2 (right-hand side model in the
product) is hidden. Note that in the target box, m remains the same, i.e. no
additional matching, whereas rh records now the hiding of f2:C. By aggregating
the information in the states and edges associated to the moves “rhide C” and
“match C” on the PSP, it is possible to diagnose that “Task ‘C’ in model 1 can
be skipped, whereas the same task is always executed in model 2”.

Further details on the event structures comparison method are given in [25].
A tool implementing this method, namely BP-Diff, is described in [28]. BPDiff
takes as input two process models captured in standard BPMN notation and
outputs a number of statements describing their behavioral differences. Each
difference is verbalized in natural language and can also be visually represented
on top of the process model. The tool performs the comparison at the level of
event structures. Prior to the comparison step, BP-Diff converts the input BPMN
process model into a Petri net and unfolds the latter into an event structure.
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f0:A

f1:B f2:C f3:D

f4:E f5:E

Fig. 4. PES E2

lh = ∅, rh = ∅
m = {(e0, f0)A, (e1, f1)B}

lh = ∅, rh = ∅
m = {(e0, f0)A, (e1, f1)B, (e2, f2)C}

lh = ∅, rh = {f2:C}
m = {(e0, f0)A, (e1, f1)B}

lh = ∅, rh = ∅
m = {(e0, f0)A, (e1, f1)B, (e2, f2)C, (e5, f4)E}

lh = ∅, rh = {f2:C}
m = {(e0, f0)A, (e1, f1)B, (e4, f4)E}

match B

match Crhide C

match Ematch E

Fig. 5. Fragment of PSP of the PESs in Figs. 2(b) and 3

3.4 Folding of Event Structures

The PES derived from a given Petri net is generally not a space-efficient repre-
sentation of behavior as it may contain significant amount of duplication (sev-
eral events referring to the same task). A more compact representation can be
obtained by using asymmetric event structures [29], which replace the symmet-
ric conflict relation of PES with an asymmetric one. AES lend themselves to
applying folding techniques. The idea of such folding techniques is to identify
sets of events in the AES that can be merged into a single event while preserv-
ing behavior. This folding of events can be performed when two events with the
same label are future-equivalent, meaning they have the same possible continua-
tions. Under such conditions, such events can be merged into a single one thanks
to the asymmetric conflict relation. The resulting folded AES is more compact
and thus more convenient for the purpose of comparing pairs of process models,
insofar as their comparison produces less statements of differences. In [25] we
discuss how to derive a canonically folded AES from a PES, which can be used
to provide a more compact diagnosis of the differences between two given PES.

We foresee that similar folding techniques can be used more widely to sim-
plify an event structure produced from a given event log, such that the simplified
event structure can be used to synthesize a process model. By allowing events to
be folded even in situations where some behavior is lost or added, we can strike
different tradeoffs between the four quality dimensions of discovered process
models mentioned in Section 2 (precision, recall, generalization and complex-
ity). A similar idea has been applied in [30] in order to simplify process models
generated by existing automated process discovery methods.

To illustrate how folding can be used to simplify event structures at the
expense of precision, consider the event structure E in Figure 6(a). A Petri net
synthesized from this net is shown in Figure 6(b). We note that events e3:D
and e4:D refer to the same task D. Furthermore, the set of possible futures of
e3:D is included in that of e4:D – the latter having an additional possible future
consisting of an occurrence of F . If we define a rule that folds two events under
such conditions, we would fold e5:E and e6:E into {e5, e6}:E (with an empty
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future) and then we would fold e3:D and e4:D into {e3, e4}:D – with {e5, e6}:E
and e7:F as its futures. The resulting event structure then leads to the simpler net
in Figure 6(c), which has more behavior (i.e. generalizes) the net in Figure 6(b).

e0:A

e1:B e2:C

e3:D e4:D

e5:E e6:E e7:F

(a) Event structure E

{e0}:A

{e1}:B {e2}:C

{e3}:D {e4}:D

{e5}:E {e6}:E {e7}:F

(b) Net synthesized from E
without folding

{e0}:A

{e1}:B {e2}:C

{e3, e4}:D

{e5, e6}:E {e7}:F

(c) Net synthesized
from E after folding

Fig. 6. Nets synthesized from an unfolded and a folded event structure with added
behavior

We also foresee that a similar approach can serve to identify opportunities to
introduce cycles when synthesizing a Petri net from an event structure. Consider
for example the event structure in Figure 7(a). Event m1:B and m4:B share a
common future consisting of an occurrence of D – with m1:B having a an addi-
tional future consisting of occurrences of C, B and D. Under these conditions,
one could generalize the behavior by allowing m1 : B and m3 : B to be folded,
so that the net in 7 can be synthesized thereon.

3.5 Process Mining Operations and Event Structures

To recap, we have observed that:

– Event structures can be losslessly derived both business process models via
unfoldings of Petri nets

– Event structured can be losslessly derived from event logs via concurrency
oracles and merging of runs.

– Event structures allow fine-grained comparison of behavior, which can be
materialized as difference statements in natural language or graphical form.
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m0:A

m1:B

m2:C m3:D

m4:B

m5:D

(a) PES with
repeated behav-
ior

{m0}:A

{m1,m4}:B {m2}:C

{m3,m5}:D

(b) Net generalizing the
repeated behavior

Fig. 7. Generalization of repeated behavior as a cycle during net synthesis

– Event structures can be folded (and thus simplified) by merging occurrences
of events with the same label and “equivalent futures” – with or without loss
of behavioral precision depending on the choice of future equivalence. This
folding can be used to trade-off behavioral precision and simplicity.

These operations on event structures can be used to recast the previously
reviewed process mining problems as follows:

– Deviance mining can be achieved by computing an event structure from each
of the sub-logs induced by the labeling function (e.g. the log of “positive”
cases and the log of “negative” cases) and comparing the two logs. In other
words, this is a log-to-log comparison problem. In [26] we have empirically
shown that the difference diagnostics produced in this way is more com-
pact (less and simpler statements) than deviance diagnostics obtained using
sequence classification techniques.

– Conformance checking an event log against a process model can be achieved
by computing an event structure from the model, another from the log and
comparing the resulting event structures to enumerate their differences. In
other words, conformance checking is a model-to-log comparison problem.

– Automated process discovery of a process model from an event log can be
achieved by: (i) computing an event structure from a log; (ii) transforming
the resulting event structure via folding rules that achieve a trade-off between
simplicity and behavioral accuracy (measured by means of fitness and pre-
cision); and (iii) utilizing the information in the resulting event structure in
order to supplement a model synthesis algorithm.

Similarly although not covered in this paper, business process drift analy-
sis can also be recast as a log-to-log comparison problem: comparing the log
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before and after a hypothesized change point. Meanwhile, model repair can be
approached as a problem of repairing an event structure, by adding and deleting
a minimal amount of relations and events in such a way that the new event
structure is an accurate (or more accurate) representation of the runs in the log
than the original model.

The above relations between operations on event structures and process min-
ing operations are summarized in Figure 8.

Fig. 8. Process mining operations recast as operations on Event Structures (ES)

4 Outlook

We have outlined a vision for a principled approach to process mining based on
event structures as a unified representation of process models and event logs.
The realization of this vision however requires a number of challenges to be
addressed.

A key challenge is handling repeated behavior. Complete prefix unfoldings
allow us to fully capture the behavior of a cyclic (bounded) process model. In
turn, the information in this prefix unfolding can be directly encoded in an event
structure. However, comparing event structures obtained from process models
with those obtained from event logs is challenging because in the event structure
derived from a log repeated behavior is not explicitly captured: It exists by
virtue of a sub-event structure appearing multiple times in the event structure.
Similarly, synthesizing a process model from the event structure derived from a
log requires being able to detect and isolate repeated behavior.

Regarding automated process discovery, defining the right folding rules to
simplify the event structure produced from the log is a crucial step. These folding
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rules will have to trade off simplicity versus accuracy – a tradeoff that existing
process mining algorithms try to strike as well. In this respect, event structures
merely provide us a way of studying such tradeoffs from a new perspective.
Also, the use of event structures for process model synthesis would require new
techniques to be developed or existing ones to be heavily adapted, e.g. adapting
existing synthesis techniques based on merging of runs [31].

Finally, scalability might become a challenge, not so much in the log-to-log
comparison case [26], but rather when cycle detection and folding operations
come into play.

In summary, the proposed vision offers numerous opportunities to revisit
long-standing challenges in the field of process mining from an angle that will
hopefully allow algorithms and theoretical results to be reused across different
problems and use cases.
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Abstract. In this paper we present a basic framework for weighted Petri
net transducers (PNTs) for the weighted translation of partial languages
(consisting of partial words) as a natural generalisation of weighted finite
state transducers (FSTs). Weights may represent cost, time consump-
tion, reward, reliability or probability of a transition execution, i.e. PNTs
may serve as a general model to consider such quantitative aspects of pro-
cess calculi represented by arbitrary partial words.

Concerning weights, we use the algebraic structure of concurrent
semirings which is based on bisemirings and induces a natural order
on its elements. Using the operations of this algebra, the weight of gen-
eral partial words can be defined in a natural way and turns out to be
compositional.

As desirable, complex PNTs can be composed from simple PNTs
through composition operations like union, product, closure, parallel
product and also language composition, lifting standard composition
operations on FSTs. Composed PNTs yield a compositional computa-
tion of weights, except for the case of language composition.

For the quick construction of PNTs and evaluation of PNT-algorithms
we developed the tool PNTε

ooL. PNTε
ooL is a python library based on

the framework SNAKES allowing for the modular construction of PNTs
through composition operations, the visualization of PNTs, and the sim-
ulation of constructed PNTs. We present basic simulation algorithms
and use PNTool to show illustrating examples.

Keywords: Petri net · Petri net transducer · Weighted transducer ·
Labelled partial order · Weighted labelled partial order · Partial lan-
guage · Semiring · Bisemiring · Concurrent semiring · Cleanness

1 Introduction

In [25] we presented a basic framework for weighted Petri Net Transducers
(PNTs). A PNT is essentially a place/transition net (PT-net) having transi-
tions equipped with input symbols, output symbols and weights. An labelled
partial order (LPO)1 over the set of input symbols (input-LPO) is translated

1 Also called partial words [14] or pomsets [29].
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into an LPO over the set of output symbols (output-LPO) via weighted LPO-
runs (partially ordered runs) of the net, where weights are coming from an
algebraic bisemiring structure. These weights may represent cost, time consump-
tion, reward, reliability or probability of a transition execution. The underlying
bisemiring structure provides binary operations of addition, sequential multi-
plication and parallel multiplication of weights. The sequential multiplication
is used for determining the weight of transitions occurring sequentially and the
parallel multiplication for determining the weight of transitions occurring in par-
allel. Each translation of an input-LPO into an output-LPO is assigned a weight
which is obtained by the sum of the weights of the LPO-runs of the net relat-
ing the input-LPO to the output-LPO. Thus, PNTs define (in a natural way) a
weighted translation between partial languages, consisting of general LPOs, over
different alphabets and may serve as a general model to consider quantitative
aspects of process calculi represented by such LPOs.

We use a special bisemiring structure called concurrent semirings [16]2 to
represent weights. Concurrent semirings are a bisemiring structure with some
additional laws interrelating its operations. They where already used by Gischer
[13], who showed that the set of all extension closed sets of LPOs can be equipped
with algebraic operations yielding a concurrent semiring. In particular, concur-
rent semirings have an idempotent addition inducing a natural order on the set
of weights. This feature allows to define the weight of a general LPO in a natural
way as the supremum of all weights of its sequential parallel extensions (w.r.t.
this order). As a fundamental result we showed in [25] that concurrent semirings
are the least restrictive idempotent bisemiring structure such that LPOs with
less dependencies have bigger weights. Moreover, this weight definition is com-
positional, i.e. the weight of (sequential or parallel) composed LPOs equals the
corresponding bisemiring composition of the weights of its components.

In practical applications, it is important to be able to create complex trans-
ducers through composition of simple ones. To this end in [25] we introduced
cleanness of PNTs and composition operations of union, product, closure, par-
allel product and language composition on clean PNTs. Cleanness ensures that
runs always terminate properly and is shown to be preserved by the above oper-
ations. Moreover, we showed that the presented composition operations are com-
patible with suitable notions of equivalent PNTs.

The presented framework mainly aims at an application in the field of seman-
tic dialogue modelling as described in [40]. In [22,23] we applied PNTs to small
case studies in this area, in particular we proposed the translation between utter-
ances (represented by words) and meanings (represented by general LPOs) using
PNTs. Other application areas of PNTs are, for example, the specification of
man-machine-dialogues or the coordination of intelligent machines (for more
details see the related work section).

2 In [16] concurrent semirings are applied in a trace model of programme semantics.
Another axiomatic approach to partial order semantics using algebraic structures
extending semirings by an additional operation of concurrent composition is [5] using
the notion of trioids.
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In order to be able to apply PNTs to practical relevant problems, it is nec-
essary to develop efficient algorithms for the composition of PNTs, the analysis
and optimization of PNTs, the computation of weights of weighted LPOs and
the translation of partial words. As a basis for the implementation and evalua-
tion of such algorithms, we are developing the tool PNTε

ooL. PNTε
ooL is a python

library whose basic functionalities were developed in the bachelor thesis [32] and
presented in [18,24]. Actually, it supports the modular construction of PNTs
through composition operations, an export of PNTs in all standard picture for-
mats, in TikZ-format and in an XML-format based on the standard PNML
format. All figures in this paper showing PNTs were generated with PNTε

ooL.
In [31] algorithms for the computation of weights of weighted LPOs and for

the translation of partial words were developed. At present we are integrating
these algorithms in PNTε

ooL in an optimized form.
The paper gives an overview of our research on PNTS. It summarizes and

integrates the main results and developments from [18,24,25] extended by sev-
eral examples and remarks and by central algorithms from [31]. It is organised
as follows: In section 2 we recall basic definitions, including LPOs, Petri nets
and concurrent semirings. In section 3 we introduce weighted LPOs and present
fundamental relationships between the weight of LPOs and the algebraic weight
structure of concurrent semirings. Then (section 4) we give syntax, semantics,
equivalence and composition operations of PNTs. In section 5 we propose algo-
rithms for the computation of LPO weights and the translation of partial word
by PNTs and in section 6 we give a brief descrition of PNTε

ooL. Finally, we sum-
marize related word in section 7 and give an detailed outlook on future work in
section 8.

2 Basic Definitions and Notations

In this section we recall basic definitions and mathematical notations.

2.1 Mathematical Preliminaries

By N0 we denote the set of non-negative integers, by N the set of positive integers.
Given a finite set X, the symbol |X| denotes the cardinality of X.

The set of all multisets over a set X is the set N0
X of all functions m : X →

N0. Addition + on multisets is defined by (m + m′)(x) = m(x) + m′(x). The
relation ≤ between multisets is defined through m ≤ m′ ⇐⇒ ∃m′′(m+m′′ = m′).
We write x ∈ m if m(x) > 0. A set A ⊆ X is identified with the multiset mA

satisfying mA(x) = 1 ⇐⇒ x ∈ A ∧ mA(x) = 0 ⇐⇒ x 
∈ A. A multiset m
satisfying m(a) > 0 for exactly one element a we call singleton multiset and
denote it by m(a)a.

Given a binary relation R ⊆ X × Y and a binary relation S ⊆ Y × Z for
sets X,Y,Z, their composition is defined by R ◦ S = {(x, z) | ∃y ∈ Y ((x, y) ∈
R ∧ (y, z) ∈ S)} ⊆ X × Z. For X ′ ⊆ X and Y ′ ⊆ Y the restriction of R onto
X ′ × Y ′ is denoted by R|X′×Y ′ . For a binary relation R ⊆ X × X over a set X,
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we denote R1 = R and Rn = R ◦ Rn−1 for n ≥ 2. The symbol R+ denotes the
transitive closure

⋃
n∈N

Rn of R.
Let A be a finite set of symbols. A (linear) word over A is a finite sequence

of symbols from A. For a word w its length |w| is defined as the number of its
symbols. The symbol ε denotes the empty word satisfying |ε| = 0. The empty
word is the neutral element w.r.t. concatenation of words: wε = εw = w. By A∗

we denote the set of all words over A, including the empty word. A language
over A is a (possibly infinite) subset of A∗.

A step over A is a multiset over A. A step sequence or step-wise linear word
over A is an element of (NA

0 )∗ and a step language over A is a (possibly infinite)
subset of (NA

0 )∗.
A directed graph is a pair G = (V,→), where V is a finite set of nodes and

→⊆ V × V is a binary relation over V, called the set of edges. The preset of
a node v ∈ V is the set •v = {u | u → v}. The postset of a node v ∈ V is
the set v• = {u | v → u}. A path is a sequence of (not necessarily distinct)
nodes v1 . . . vn (n > 1) such that vi → vi+1 for i = 1, . . . , n − 1. A path v1 . . . vn

is a cycle, if v1 = vn. A directed graph is called acyclic, if it has no cycles.
An acyclic directed graph G′ = (V,→′) is an extension of an acyclic directed
graph G = (V,→) if →⊆→′. In this case we write G′ ≤ G. An acyclic directed
graph (V ′,→) is a prefix of an acyclic directed graph (V,→) if V ′ ⊆ V and
(v′ ∈ V ′) ∧ (v → v′) ⇒ (v ∈ V ′).

An irreflexive partial order over a set V is a binary relation <⊆ V ×V which
satisfies ∀v ∈ V (v 
< v) (irreflexivity) and <=<+ (transitivity). We identify a
finite irreflexive partial order < over V with the directed graph (V,<). Two
nodes v, v′ ∈ V of an irreflexive partial order po = (V,<) are called independent
if v 
< v′ and v′ 
< v. By co< ⊆ V ×V we denote the set of all pairs of independent
nodes of V . The set of minimal nodes of an irreflexive partial order is min(po) =
{v | •v = ∅} and the set of maximal nodes max(po) = {v | v• = ∅}. We denote
by po|W = (W,< |W×W ) the restriction of po to a subset W ⊂ V .

A reflexive partial order over V is a binary relation ≤⊆ V × V which sat-
isfies ∀v ∈ V (v ≤ v) (reflexivity) and ∀v ∈ V (v ≤ w ∧ w ≤ v =⇒ v = w)
(antisymmetry) and which is transitive.

A semiring is a quintuple S = (S,⊕,⊗, 0, 1), where (S,⊕, 0) is a commu-
tative monoid, (S,⊗, 1) is a monoid, ⊗ (the S-multiplication) distributes over
⊕ (the S-addition) from both sides of ⊗ and the zero 0 is absorbing w.r.t. ⊗
(0⊗x = x⊗0 = 0). If ⊗ is commutative, then the semiring is called commutative.

2.2 Labelled Partial Orders

We use irreflexive partial orders labelled by action names to represent single
non-sequential runs of concurrent systems. The nodes of such a labelled partial
order represent events and its arrows an “earlier than”-relation between them in
the sense that one event can be observed earlier than another event. If there are
no arrows between two events, then these events are independent and are called
concurrent. Concurrent events can be observed in arbitrary sequential order and
simultaneously.
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Formally, a labelled partial order (LPO) over a set X is a 3-tuple (V,<, l),
where (V,<) is an irreflexive partial order and l : V → X is a labelling function
on V . In particular, LPOs are directed graphs, thus all notions introduced w.r.t.
directed graphs may also be used for LPOs. LPOs over X are also called partial
words over X.

In most cases, we only consider LPOs up to isomorphism, i.e. only the
labelling of events is of interest, but not the event names. Formally, two LPOs
(V,<, l) and (V ′, <′, l′) are isomorphic, if there is a bijective renaming function
I : V → V ′ satisfying l(v) = l′(I(v)) and v < w ⇔ I(v) <′ I(w). If an LPO
lpo is of the form ({v}, ∅, l), then it is called a singleton LPO and denoted by
lpo = l(v). A set of pairwise non-isomorphic LPOs we call a partial language. If
L is a partial language, then an LPO lpo ∈ L is called minimal (in L), if there
is no extension of lpo in L. In figures, in general we do not show the names of
the nodes of an LPO, but only their labels and we often omit transitive arrows
of LPOs for a clearer presentation.
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r

s

t

u

lpo2

r

s

t

u

lpo3

r
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u

lpo4
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Fig. 1. An N-form (lpo1) together with its minimal sequential parallel extensions
(lpo2, lpo3, lpo4).

A step-wise linear LPO is an LPO (V,<, l) where the relation co< is transi-
tive. The maximal sets of independent events of such an LPO are called steps.
The steps of a step-wise linear LPO are linearly ordered. Thus, step-wise linear
LPOs can be identified with step sequences. A step-linearisation of an LPO lpo
is a step-wise linear LPO which is an extension of lpo.

The set of sequential parallel LPOs (sp-LPOs) is the smallest set of
LPOs containing all singleton LPOs (over a set X) and being closed
under the sequential and parallel product of LPOs. The sequential prod-
uct of two LPOs lpo1 = (V1, <1, l1) and lpo2 = (V2, <2, l2) is defined
by lpo1 ; lpo2 = (V1 ∪ V2, <1 ∪ <2 ∪(V1 × V2), l1 ∪ l2), where V1 and V2 are
assumed to be disjoint. Their parallel product is defined by lpo1 ‖ lpo2 =
(V1 ∪ V2, <1 ∪ <2, l1 ∪ l2), where again V1 and V2 are assumed to be disjoint.

Each sp-LPO (over X) is defined by an sp-term (over X). Such terms are
defined as follows:

– Each x ∈ X is an sp-term.
– If s, t are sp-terms, then also s ; t and s ‖ t are sp-terms.

For an LPO lpo we denote by SP(lpo) the set of all sequential parallel exten-
sions of lpo and by SPmin(lpo) the set of all minimal sequential parallel exten-
sions of lpo in SP(lpo).
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Given an LPO lpo = (V,<, l), an N-form of lpo is a sub-LPO consisting of
four nodes u, v, x, y ∈ V satisfying u < x, u < y, v < y and u co< v, v co< x,
x co< y. An LPO is N-free, if it does not contain an N-form. There is the following
important relationship between sp-LPOs and N-free LPOs:

Theorem 1. An LPO is N-free if and only if it is sequential parallel.

A proof can be found in [13]. This proof is constructive: Given an N-free
LPO, it shows a method to construct an sp-term defining the LPO. We will
describe and use this method later on.

Figure 1 shows four LPOs: LPO lpo1 consists of an N-form and the LPOs
lpo2 = (r ‖ t) ;(s ‖ u), lpo3 = r ;(s ‖ (t ; u)) and lpo4 = ((r ; s) ‖ t);u are its
minimal sequential parallel extensions.

The sequential and parallel product of LPOs is extended to sets of LPOs
A,B in the obvious way: A ‖ B = {a ‖ b | a ∈ A, b ∈ B} and A ; B = {a ; b |
a ∈ A, b ∈ B}. Moreover, we define the closure of a set of LPOs A by A∗ =
{a1 ; . . . ; an | n ∈ N, ai ∈ A} ∪ {ε}, where ε denotes the empty LPO having an
empty set of nodes.

2.3 Continuous Concurrent Semirings

A binary operation ⊕ on a set S defines a binary relation on S via a ≤⊕ b :⇔
a ⊕ b = b. If ⊕ is idempotent, associative and commutative, then this relation is
reflexive, transitive and antisymmetric, hence a reflexive partial order. Moreover,
if S is equipped with the partial order ≤⊕, then ∀a, b ∈ S : a ⊕ b = sup{a, b},
where the supremum is taken w.r.t. ≤⊕.

If (S,⊕, 0) is a monoid, and if T ⊆ S is an arbitrary subset, then
⊕

T :=⊕
t∈T t := sup(T ), where the supremum of the empty set is understood to be

the neutral element of the monoid. A semiring (S,⊕,⊗, 0, 1) is called idempotent,
if ⊕ is idempotent. An idempotent semiring is called continuous [7], if, for any
subset T ⊆ S, the supremum is well-defined in S (that means the semiring
is complete), and ⊗ distributes over the supremum from both sides: ∀s ∈ S :
s ⊗ ⊕

T =
⊕

t∈T s ⊗ t and (
⊕

T ) ⊗ s =
⊕

t∈T t ⊗ s.
A bisemiring is a six-tuple S = (S,⊕,⊗,�, 0, 1), where (S,⊕,⊗, 0, 1) is a

semiring and (S,⊕,�, 0, 1) is a commutative semiring.3 The binary operation �
on the set S is called S-parallel multiplication. If ⊗ distributes over � from both
sides, the bisemiring is called distributive, if ⊕ is idempotent, the bisemiring
is called idempotent, and if both semirings (S,⊕,⊗, 0, 1) and (S,⊕,�, 0, 1) are
continuous, the bisemiring is called continuous.

According to [16], a concurrent semiring is an idempotent bisemiring (S,
⊕,⊗,�, 0, 1) satisfying

∀a, b, c, d ∈ S : (a � b) ⊗ (c � d) ≤⊕ (a ⊗ c) � (b ⊗ d). (CS)
3 In particular, both multiplications share the same unit. A similar algebraic structure

without requiring commutativity of the second semiring is defined in [6], where it is
called Q-Algebra and coined for application in quality management. In [20] a slightly
different notion of bisemirings is used where parallel multiplication may miss a unit.
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Concurrent semirings will be used to define the weight of a run of a Petri net
transducer. ⊗ will be used to model the composition of weights of a sequence of
runs and � models the composition of weights of concurrent runs. Therefore, �
is required to be commutative. The unit 1 can be thought of as the weight of
the empty run (the analogue of the empty word). It is shared by ⊗ and �, since
the sequential or concurrent execution of a run r and the empty run does not
change r. Using ⊗ and �, the weight of a sequential parallel run can be defined
then in the standard way (for details see the next section).

As explained above, idempotence of ⊕ induces a natural order on the set of
weights. We will define the weight of a general run in a natural way as the supre-
mum of all weights of its sequential parallel extensions w.r.t. this order. Condition
(CS) will ensure that runs with fewer dependencies have bigger weights.

Example 1. If S = (S,⊕,⊗, 0, 1) is an idempotent semiring such that ≤⊕
is a total order and 1 is maximal w.r.t. to that order, then we have S =
(S,max,⊗, 0, 1), and (S,max,⊗,min, 0, 1) is a concurrent semiring extending S .

If S = (S,⊕,⊗, 0, 1) is an idempotent and commutative semiring, then the
doubled semiring (S,⊕,⊗,⊗, 0, 1) is a concurrent semiring extending S .

Example 2. Based on the well-known Viterbi semiring ([0, 1],max, ·, 0, 1) repre-
senting probabilities of actions, the structure V := ([0, 1],max, ·,min, 0, 1) yields
a continuous concurrent semiring.

The structure T := ([0,∞],min,+,max,∞, 0) is a continuous concurrent
semiring. It is based on the well-known tropical semiring ([0,∞],min,+,∞, 0)
representing execution times of actions.

Note that V and T are isomorphic, e.g. an isomorphism is given by t =
− log(v). Both concurrent semirings extend a semiring as in the first construction
of example 1.

An example of a concurrent semiring, which is not of the above kind, is
A := ({−∞} ∪ [0,∞[,max,+,�,−∞, 0), where a � b := a + b + min(a, b). It is
based on the arctic semiring or max-plus-algebra.

2.4 Petri Nets

A net is a 3-tuple N = (P, T, F ), where P is a finite set of places, T is a finite
set of transitions disjoint from P and F ⊆ (P ×T )∪ (T ×P ) is the flow relation.
A marking of a net assigns to each place p ∈ P a number m(p) ∈ N0, i.e. a
marking is a multiset over P . A marked net is a net N = (P, T, F ) together with
an initial marking m0.

A place/transition Petri net (PT-net) is a 4-tuple N = (P, T, F,W ), where
(P, T, F ) is a net and W : (P × T ) ∪ (T × P ) → N0 is a flow weight func-
tion satisfying W (x, y) > 0 ⇔ (x, y) ∈ F . For (transition) steps τ over
T we introduce the two multisets of places •τ(p) =

∑
t∈T τ(t)W (p, t) and

τ• (p) =
∑

t∈T τ(t)W (t, p). A transition step τ can occur in m, if m ≥ •τ .
If a transition step τ occurs in m, then the resulting marking m′ is defined by
m′ = m − •τ + τ• . We write m

τ−→ m′ to denote that τ can occur in m and
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that its occurrence leads to m′. A step execution in m of a PT-net is a finite
sequence of multisets of transitions σ = τ1 . . . τn such that there are markings
m1, . . . ,mn satisfying m

τ1−→ m1
τ2−→ . . .

τn−→ mn. The markings which can be
reached from the initial marking m0 via step executions are called reachable.

We use LPOs over T to represent single non-sequential runs of PT-nets, i.e.
the events of an LPO represent transition occurrences. An LPO lpo = (V,<, l)
over T is an LPO-run of a marked PT-net N = (P, T, F,W,m0) if each step-
linearisation of lpo is a step execution of N in m0. If an LPO-run lpo = (V,<, l)
occurs in a marking m, the resulting marking m′ is defined by m′ = m −
Σv∈V

•l(v) + Σv∈V l(v)• . We write m
lpo−→ m′ to denote the occurrence of an

LPO-run lpo. An LPO-run lpo of N is said to be minimal, if there exists no
other LPO-run lpo′ of N such that lpo is an extension of lpo′.

3 Weighted LPOs

For the representation of runs of weighted Petri net transducers (PNTs), we con-
sider weighted LPOs (WLPOs) which are LPOs with additional node weights
[25]. We assume that the set of possible weights is equipped with the algebraic
structure of a concurrent semiring. Then the total weight of a WLPO is com-
puted from the node weights using binary operations of this algebraic structure.
As a central property we showed in [25], that the use of a concurrent semiring
ensures that total weights of runs can be computed in a compositional way and
that runs with fewer dependencies have bigger weights (w.r.t. the order induced
by the idempotent addition operation).

A weighted LPO (WLPO) over an alphabet A and a bisemiring S = (S,
⊕,⊗,�, 0, 1) is a quadruple (V,<, l, ν) such that (V,<, l) is an LPO over A
and ν : V → S is an additional weight function. We use all notions introduced
for LPOs also for WLPOs. Figure 2 shows examples of WLPOs, where labels
l(v) = t and weights s are annotated to a node v in the form t/s.

The total weight of sp-WLPOs can be defined through applying ⊗ to the
sequential product and � to the parallel product of sub-WLPOs.

Definition 1 (Weight of sp-WLPOs [25]). We define the weight ω(wlpo)
of an sp-WLPO wlpo = (V,<, l, ν) over a bisemiring inductively as follows:

– If V = {v}, then ω(wlpo) = ν(v).
– If wlpo = wlpo1 ;wlpo2, then ω(wlpo) = ω(wlpo1) ⊗ ω(wlpo2).
– If wlpo = wlpo1 ‖ wlpo2, then ω(wlpo) = ω(wlpo1) � ω(wlpo2).

This is the standard technique to define weights of sp-LPOs [20] with weights
coming from a bisemiring. In particular, the given weight of sp-WLPOs is well-
defined, since the set of sp-WLPOs as well as the sub-structure (S,⊗,�) of a
bisemiring (S,⊕,⊗,�, 0, 1) form an sp-algebra admitting an sp-algebra homo-
morphism from the set of sp-WLPOs into the bisemiring.

In [25] we proposed the following weight definition for a general WLPO based
on the weigths of its sequential parallel extensions.
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Definition 2 (Sequential-Parallel Weight of WLPOs [25]). Let wlpo =
(V,<, l, ω) be a WLPO. Then its sp-weight is defined by

ωsp(wlpo) =
⊕

wlpo′∈SP (wlpo)

ω(wlpo′).

As the considered bisemiring of weights is idempotent, the sp-weight of a
WLPO-run equals the maximal weight of its sequential parallel extensions.

As a fundamental result we showed in [25] that condition (CS) of concurrent
semirings is the minimal requirement on idempotent bisemirings such that less
restrictive weighted LPOs yield bigger weights.

Theorem 2 ([25]). Let A be an alphabet and S = (S,⊕,⊗,�, 0, 1) be an
idempotent bisemiring. Then the following assertions are equivalent:

(A) If u1, u2 are sp-WLPOs over A and S and if u1 is an extension of u2,
then ω(u1) ≤⊕ ω(u2).

(B) S is a concurrent semiring.

Obviously, one gets a similar result, if inequation CS is reversed.

Corollary 1. Let A be an alphabet and S = (S,⊕,⊗,�, 0, 1) be an idempotent
bisemiring. Then the following assertions are equivalent:

(A) If u1, u2 are sp-WLPOs over A and S and if u1 is an extension of u2,
then ω(u1) ≥⊕ ω(u2).

(B) S satisfies

∀a, b, c, d ∈ S : (a � b) ⊗ (c � d) ≥⊕ (a ⊗ c) � (b ⊗ d). (CS’)

Moreover, the use of concurrent semirings ensures that the sp-weight of
WLPOs can be computed in a modular way using bisemiring-operations [25].

Theorem 3 ([25]). Let A be an alphabet and S = (S,⊕,⊗,�, 0, 1) be a
concurrent semiring. Then the following assertions hold for weighted LPOs
wlpo1,wlpo2 over A and S :

(C) ωsp(wlpo1 ;wlpo2) = ωsp(wlpo1) ⊗ ωsp(wlpo2).
(D) ωsp(wlpo1 ‖ wlpo2) = ωsp(wlpo1) � ωsp(wlpo2).

wlpo1

r/3

s/5

t/2

u/4

wlpo2

r/0.8

s/0.6

t/0.5

u/0.8

Fig. 2. WLPOs over the concurrent semirings T (wlpo1) and V (wlpo2).
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Example 3. Consider the concurrent semiring T defined in subsection 2.3. It can
be used to compute the minimal execution time of a run given by an arbitrary
WLPO wlpo of a concurrent system.

The WLPO wlpo1 shown in figure 2 is a WLPO over T . The weights of its
minimal sp-extensions (see figure 1) are:

– ω((r ‖ t) ;(s ‖ u)) = max(3, 2) + max(5, 4) = 8,
– ω(((r ; s) ‖ t) ; u) = max(3 + 5, 2) + 4 = 12,
– ω(r ;(s ‖ (t ; u))) = 3 + max(5, 2 + 4) = 9.

Thus, the minimal execution time is min(8, 12, 9) = 8. Note, however, that there
is a more efficient method to compute the minimal execution time of a general
LPO computing the maximal weigth of a line of the LPO.

Example 4. Consider the concurrent semiring V defined in subsection 2.3. The
decision for min as parallel multiplication can be interpreted as follows: If wlpo =
wlpo1 ‖ wlpo2, then wlpo1 and wlpo2 are both necessary but independent parts
of the run wlpo of a concurrent system and the probability of wlpo cannot be
better than the probability of one of its parts. In [39] we give a justification for
that choice of min in the context of semantic dialogue modelling.

The WLPO wlpo2 shown in figure 2 is a WLPO over V . The weights of its
minimal sp-extensions (see figure 1) are:

– ω((r ‖ t) ;(s ‖ u)) = min(0.8, 0.5) · min(0.6, 0.8) = 0.3,
– ω(((r ; s) ‖ t) ; u) = min(0.8 · 0.6, 0.5) · 0.8 = 0.384,
– ω(r ;(s ‖ (t ; u))) = 0.8 · min(0.6, 0.8 · 0.5) = 0.32.

Thus, the weight (probability) of wlpo2 is max(0.3, 0.384, 0.32) = 0.384.

Remark 1. Concurrent semirings are probably not the most abstract algebraic
structure yielding the previous results.

There may be abstractions of the underlying structure of idempotent bisemir-
ings in two directions:

– It is possible to define natural partial orders on non-idempotent semirings
via a < b :⇔ ∃c : a ⊕ c = b [7].

– It is possible to consider structures having no shared unit for ⊗ and �. In this
context, in [16] the following axioms are used to define so called concurrent
semigroups:

(i) a ⊗ b ≤ a � b.
(ii) (a � b) ⊗ c ≤ (a ⊗ c) � b.
(iii) c ⊗ (a � b) ≤ (c ⊗ a) � b.
(iv) (a � b) ⊗ (c � d) ≤ (a ⊗ c) � (b ⊗ d) (this condition equals condition

(CS) of concurrent semirings).
It is easy to see that axioms (i) to (iii) follow from axiom (iv), if ⊗ and
� share a unit. If this is not the case, axioms (i) to (iv) are irreducible as
proven in [16]. The axioms (i) to (iv) seem to be suitable to derive similar
results as for concurrent semirings.
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We decided to use concurrent semirings because they appear in a natural
way in the context of sets of extension closed sp-LPOs as shown by Gischer [13].
However, the mentioned more abstract algebraic structures may make accessible
additional practical problems using PNTs. This is a topic of further research.

4 Petri Net Transducers

A PNT is a Petri net which, for every transition occurrence, may read a symbol
x from an input alphabet Σ and may print a symbol y from an output alphabet
Δ. Additionally, a weight s from a bisemiring is assigned to each transition. If no
input symbol should be read or no output symbol should be printed, we use the
empty word symbol ε as annotation. We use the basic Petri net class of PT-nets
to define PNTs. In graphics an input symbol x, an output symbol y and a weight
s of a transition t are annotated to t in the form x:y/s, and annotations of the
form ε:ε/1 are not shown.

Definition 3 (Petri Net Transducer [25]). A Petri net transducer (PNT)
over a bisemiring S = (S,⊕,⊗,�, 0, 1) is a tuple N = (P, T, F,W, pI , pF , Σ, σ,
Δ, δ, ω), where

– (P, T, F,W ) is a marked PT-net (called the underlying PT-net),
– pI ∈ P is the source place satisfying •pI = ∅,
– pF ∈ P is the sink place satisfying p•

F = ∅,
– Σ is a set of input symbols,
– σ : T → Σ ∪ {ε} is the input mapping,
– Δ is a set of output symbols,
– δ : T → Δ ∪ {ε} is the output mapping.
– ω : T → S is the weight function.

We call the marking m0 = pI the initial marking and mF = pF the final mark-
ing. A PNT is called clean, if the final marking is the only reachable marking m
with m(pF ) > 0.

A WLPO wlpo = (V,<, l, ν) over T is a weighted LPO-run of N , if the

underlying LPO lpo = (V,<, l) is an LPO-run of N with m0
lpo−→ mF and if

ν(v) = ω(l(v))) for each v ∈ V . We denote by WLPO(N) the set of all weighted
LPO-runs of N .

The cleanness property is similar to cleanness of Boxes [4] or soundness of
workflow nets [35] and ensures that PNT semantics are closed under (sequential)
product and closure. The final marking can be reached only from a finite set of
reachable markings [15].

Considering non-sequential semantics of Petri nets, a PNT can be used to
translate a partial language into another partial language, where so called input
words are related to so called output words. Input and output words are defined
as LPOs lpoε = (V,<, lε) with a labelling function lε : V → A ∪ {ε} for some
input or output alphabet A . Such LPOs we call ε-LPOs. For each such ε-LPO
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we construct the corresponding ε-free LPO lpo = (W,< |W×W , lε|W ) by delet-
ing ε-labelled nodes together with their adjacent edges via W = V \ l−1

ε (ε).
Since partial orders are transitive, this does not change the order between the
remaining nodes.

Definition 4 (Input and Output Labels of Runs [25]). Let N = (P, T, F,
W, pI , pF , Σ, σ,Δ, δ, ω) be a PNT and let wlpo = (V,<, l, ν) ∈ WLPO(N).

The input of wlpo is the ε-free LPO wlpoΣ corresponding to the ε-LPO
(V,<, σ ◦ l).

The output of wlpo is the ε-free LPO wlpoΔ corresponding to the ε-LPO
(V,<, δ ◦ l).

For LPOs u over Σ and v over Δ, we denote by WLPO(N,u) the subset of
all WLPOs wlpo from WLPO(N) with input wlpoΣ = u, and by WLPO(N,u, v)
the subset of all WLPOs from WLPO(N,u) with output wlpoΔ = v.

The input language LI(N) of N is the set of all inputs of weighted LPO-
runs. Its elements are also called input words. The output language LO(N) of
N is the set of all outputs of weighted LPO-runs. Its elements are also called
output words.

The language L(N) of N is the set of all pairs of LPOs (u, v) over Σ × Δ
with WLPO(N,u, v) 
= ∅.

d:ε/0.8c:x/0.5

ε:v/0.6

1

a:u/0.8

PNT

a

c d

Input

0.8 0.6

0.5 0.8

Run

u v

x

Output

Fig. 3. A PNT together with an LPO-run and associated input and output.

The input and output language of a PNT N are extension closed, since
WLPO(N) is extension closed. The output weight of a PNT assigned to all pairs
of LPOs u over Σ and v over Δ is based on weights of its WLPO-runs.

Definition 5 (Output Weight of PNTs [25]). Let N = (P, T, F,W, pI , pF ,
Σ, σ,Δ, δ, ω) be a PNT over a concurrent semiring S = (S,⊕,⊗,�, 0, 1), u be
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an LPO over Σ and v be an LPO over Δ. The output weight N(u, v) is defined
by

N(u, v) =
⊕

wlpo∈WLPO(N,u,v)

ωsp(wlpo),

when this sum is well-defined in S (note that the sum may be infinite). We set
N(u, v) = 0 if WLPO(N,u, v) = ∅.

The output weight equals the supremum of all weights of corresponding runs,
since ⊕ is idempotent. If the concurrent semiring is continuous, the supremum
always exists in S [7]. From the considerations in the previous section we imme-
diately deduce that it is enough to consider minimal weighted sp-runs in the
defining sum of the output weight using condition (CS) of concurrent semirings.

Corollary 2 ([25]). Let N = (P, T, F,W, pI , pF , Σ, σ,Δ, δ, ω) be a PNT over a
concurrent semiring S = (S,⊕,⊗,�, 0, 1), u be an LPO over Σ and v be an
LPO over Δ. Then

N(u, v) =
⊕

wlpo∈WLPOmin(N,u,v),wlpo′∈SPmin(wlpo)

ω(wlpo′),

when this sum is well-defined in S, where WLPOmin(·) is the subset of all min-
imal WLPOs in WLPO(·).

Figure 3 shows an example of a PNT together with an LPO-run and associ-
ated input and output. The figure illustrates the translation of partial words in
the presence of ε-inputs and -outputs. According to example 4 the output weight
of the shown input-output-pair equals 0.384.

In practical applications, it is important to be able to create complex trans-
ducers through composition of simple ones. For this purpose we introduced in
[25] composition operations of union, product, closure and parallel product for
clean PNTs. Cleanness ensures that runs always terminate properly and is pre-
served by the above operations.

For each operation, there are a functional definition defining the output
weight of the composed PNT based on the output weights its components and
bisemiring-operations and an effective (and more or less straightforward) con-
struction of the composed PNT. In the following, we recall the functional def-
initions and illustrate the constructions (explicitly given in [25]) in figure 4,
where for a compact presentation input symbols, output symbols and weights of
transitions are omitted if possible.

The sum (or union) N1 ⊕N2 of two PNTs N1 and N2 over S with the same
input alphabet Σ and output alphabet Δ is defined as a PNT over S in such a
way that for each pair of LPOs u over Σ and v over Δ:

(N1 ⊕ N2)(u, v) = N1(u, v) ⊕ N2(u, v).

The product (concatenation) N1 ⊗ N2 of two PNTs N1 and N2 over S with
the same input alphabet Σ and output alphabet Δ is defined as a PNT over S
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in such a way that for each pair of LPOs u over Σ and v over Δ:

(N1 ⊗ N2)(u, v) =
⊕

u=u1 ;u2, v=v1 ; v2

N1(u1, v1) ⊗ N2(u2, v2).

The product of n > 0 instances of a PNT N we denote by Nn. By convention
N0 = I , where I is the PNT satisfying I (u, v) = 1 if u and v are both the
empty LPO (∅, ∅, ∅) and I (u, v) = 0 otherwise.

The closure N∗ of a PNT N over S with input alphabet Σ and output
alphabet Δ is defined as a PNT over S in such a way that for each pair of
LPOs u over Σ and v over Δ:

N∗(u, v) =
∞⊕

n=0

Nn(u, v).

The parallel product N1 �N2 of two PNTs N1 and N2 over S with the same
input alphabet Σ and output alphabet Δ is defined as a PNT over S in such a
way that for each pair of LPOs u over Σ and v over Δ:

(N1 � N2)(u, v) =
⊕

u=u1‖u2, v=v1‖v2

N1(u1, v1) � N2(u2, v2).

r

a:x/0.7

s

b:y/0.8

N1 ⊕ N2

s

b:y/0.8

r

a:x/0.7

N1 ⊗ N2

r

a:x/0.7

N∗
1

r

a:x/0.7

s

b:y/0.8

N1 � N2

Fig. 4. Illustration of the union, (sequential) product, closure and parallel product of
PNTs N1 = N(a, x, .7) and N2 = N(b, y, .8) over V .

Moreover, we proposed the following construction of the central transducer
composition operation of language composition [25]:

Let N1 be a PNT over S with input alphabet Σ1 and output alphabet Δ1

and a N2 be a PNT over S with input alphabet Σ2 = Δ1 and output alphabet
Δ2. The composed PNT N1[⊗]N2 is constructed as the parallel product of N1

and N2, where each transition t1 from N1 is merged with each transition t2 from
N2 satisfying δ(t1) = σ(t2) to a transition t with input symbol σ(t) = σ(t1) and
output symbol δ(t) = δ(t2), weight ω(t) = ω(t1) ⊗ ω(t2) and connections •t =
•t1 + •t2 and t• = t•1 + t•2 . Moreover, all transitions of N1 having empty output
symbol, as well as all transitions of N2 having empty input symbol are kept with
unchanged input symbols, output symbols, weights and connections. All other
transitions of N1 and N2 are omitted. Figure 5 illustrates the construction.

We proved in [25] that this construction perserves cleaness and yields the
following properties concerning compositionality w.r.t. weights:
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Theorem 4 ([25]). The PNT N1[⊗]N2 satisfies the following properties:

(i) If S is the doubled semiring, then

(N1[⊗]N2)(u,w) =
⊕

v

N1(u, v) ⊗ N2(v, w),

where the sum runs over all LPOs over Σ2 = Δ1 representing outputs of
weighted LPO-runs of N1 and inputs of weighted LPO-runs of N2.

(ii) If (N1[⊗]N2)(u,w) =
⊕

v N1(u, v) op N2(v, w), where the sum runs over
all LPOs v over Σ2 = Δ1 representing outputs of weighted LPO-runs of
N1 and inputs of weighted LPO-runs of N2 and op is a semiring operation,
then op = ⊗ and S is the doubled semiring.

t

ε:z/0.5

u

a:x/0.6

N3

r

x:b/0.7

N4

t

ε:z/0.5

r,u

a:b/0.42

N3[⊗]N4

Fig. 5. Language composition for N3 = N(x, b, .6) � N(ε, z, .5) and N4 = N(a, x, .7)
over V .

Concerning PNT semantics, only the input output behaviour is relevant.
Since transitions also may have empty input and/or empty output, there are
always (infinitely) many PNTs having the same semantics. For practical appli-
cation, such PNTs are equivalent.

Definition 6. Equivalent PNTs [25]] Let N1, N2 be two PNTs.

(a) N1 and N2 are called structure equivalent, if L(N1) = L(N2).
(b) If N1 and N2 are structure equivalent, then they are called output equivalent,

if N1(u, v) = N2(u, v) for all (u, v) ∈ L(N1) = L(N2).

Two structure equivalent PNTs perform the same translation between input
and output words, but the weights of these translations may be different. Two
output equivalent PNTs perform the same weighted translation between input
and output words, but the distribution of weights within WLPO-runs may be
different.

Example 5. Consider a fixed concurrent semiring serving as the set of weights.
We denote by N(a, b, w) the clean PNT consisting of no other places than the
source and sink place and exactly one transition with input symbol a, output
symbol b and weight w connecting the source with the sink place.
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The following PNTs are structure equivalent: N1 = N(a, b, w), N2 =
N(a, ε, u) ⊗ N(ε, b, v) and N3 = N(a, ε, x) � N(ε, b, y). They are output equiv-
alent if w = u ⊗ v = x � y. Moreover, the following PNTs are output equiv-
alent: N2 = N(a, ε, u) ⊗ N(ε, b, v), N5 = N(a, ε, v) ⊗ N(ε, b, u) and N6 =
N(a, ε, u ⊗ v) ⊗ N(ε, b, 1).

An important application of equivalence in practise is the transformation of a
PNT into an equivalent and simpler PNT allowing for more efficient algorithms.
A central technique to do this is to replace parts of a complex composed PNT
by equivalent parts. This technique requires that equivalence is consistent with
composition operations.

To this end, we showed in [25], that the composition operations of union,
sequential product, closure and parallel product preserve output equivalence of
PNTs and that language composition perserves structure equivalence, but in
general does not preserve output equivalence.

An important topic of further research is the deveopment of techniques and
rules for the transformstion of a PNT into an equivalent PNT, as for example
the removal of ε-transitions, the merging of transitions or the pushing of weights
along paths.

5 Algorithms

In order to be able to apply PNTs to practical relevant problems, it is necessary
to develop efficient algorithms for the composition of PNTs, the analysis and
optimization of PNTs, the computation of weights of weighted LPOs and the
translation of partial words. In [18,24] we presented the tool PNTε

ooL, which
supports the modular construction of PNTs through composition operations
and an export of PNTs in all standard picture formats, in TikZ-format and in
an XML-format based on the standard PNML format (see the following section).

In this section we briefly present algorithms for the computation of the weight
of general WLPOs, of the input and output language and of the output weight of
input-output-pairs of PNTs. Basic versions of these algorithms were developed in
the master thesis [31]. At present we are integrating these algorithms in PNTε

ooL.

5.1 Computing the weight of WLPOs

For the computation of the weight of some WLPO we can distinguish between
WLPOs which are sequential parallel and WLPOs which are not sequential par-
allel.

In the first case of sp-WLPOs, according to definition 1, the weight can
be computed directly from the sp-term defining the underlying LPO using the
binary operations of the concurrent semiring of weights. That means, given a
WLPO wlpo we need to do the following:

1. Decide, whether wlpo is sequential parallel (or, equivalently, N-free).
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2. Compute the sp-term defining the LPO underlying wlpo, if the answer to
the first step is yes.

From the proof of theorem 1 in [13] we can deduce a method, given an N-free
LPO, to construct the sp-term defining the LPO in a top down way. The proof
shows that if this method fails at some point, then the LPO must contain an
N-form. Thus, we can use this method for both steps.

The method is as follows, where we denote the sp-term defining an sp-LPO
lpo = (V,<, l) by sp(lpo):

(I) If V = {v}, then sp(lpo) = l(v).
(II) If the undirected graph underlying lpo is not connected, then it can

be decomposed into its connected components lpo1, . . . , lpon and we get
sp(lpo) = sp(lpo1) ‖ · · · ‖ sp(lpon).
Proceed with step (I) applied to lpo1, . . . , lpon.

(III) If min(lpo) = {v} then sp(lpo) = l(v); sp(lpo|W ) with W = V \ {v}.
Proceed with step (I) applied to lpo|W .

(IV) Denote D = {v | ∀v′ ∈ min(lpo)(v′ < v)}. If lpo is N-free, then D 
= ∅ and
lpo = lpo|V \D; lpo|D, i.e. sp(lpo) = sp(lpo|V \D); sp(lpo|D).
Proceed with step (I) applied to lpo|V \D and lpo|D.

If the construction of step (IV) fails (D = ∅ or lpo 
= lpo|V \D; lpo|D), then
an N-form can be found in linear time.

It is easy to see by symmetrie, that the above construction can be completed
by the following criteria for the N-freeness of an LPO:

(III)’ If max(lpo) = {v} then sp(lpo) = sp(lpo|W ); l(v) with W = V \ {v}.
(IV)’ Denote E = {v | ∀v′ ∈ max(lpo)(v < v′)}. If lpo is N-free, then E 
= ∅ and

lpo = lpo|E ; lpo|V \E .

Using these facts, it is possible to adapt the described method also for the
computation of the weight of WLPOs which are not N-free. In this case, accord-
ing to definition 2, it is necessary to compute the maximum of the weights of
all minimal sequential parallel extensions. That means we need to compute the
sp-terms defining all minimal sequential parallel extensions. This can be done by
extending each N-form, which is found in step (IV), in a minimal way. There are
three possibilities of minimal extensions of N-forms, all shown in figure 1. We
get the following algorithm for the computation of all sp-terms defining minimal
sequential parallel extensions of a general LPO:

(I) If V = {v}, then sp(lpo) = l(v).
(II) If the undirected graph underlying lpo is not connected, then it can

be decomposed into its connected components lpo1, . . . , lpon and we get
sp(lpo) = sp(lpo1) ‖ · · · ‖ sp(lpon).
Proceed with step (I) applied to lpo1, . . . , lpon.

(III) (a) If min(lpo) = {v} then sp(lpo) = l(v); sp(lpo|W ) with W = V \ {v}.
Proceed with step (I) applied to lpo|W .
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(b) If max(lpo) = {v} then sp(lpo) = sp(lpo|W ); l(v) with W = V \ {v}.
Proceed with step (I) applied to lpo|W .

(IV) Denote D = {v | ∀v′ ∈ min(lpo)(v′ < v)} and E = {v | ∀v′ ∈
max(lpo)(v < v′)}.

(a) If D = ∅ or lpo 
= lpo|V \D; lpo|D, and E = ∅ or lpo 
= lpo|E ; lpo|V \E :
Find an N-form and proceed with step (III) for each minimal extension
of lpo w.r.t. this N-form.

(b) If lpo = lpo|V \D; lpo|D: sp(lpo) = sp(lpo|V \D); sp(lpo|D).
Proceed with step (I) applied to lpo|V \D and lpo|D.

(c) If lpo 
= lpo|E ; lpo|V \E : sp(lpo) = sp(lpo|E); sp(lpo|V \E).
Proceed with step (I) applied to lpo|V \E and lpo|E.

This is a recursive procedure splitting into three paths for each found N-
form. That means, its running time is exponential in the number of N-forms
contained in the considered LPO. Moreover, a minimal extension of an LPO
w.r.t. an N-form may produce additional N-forms. As an example, see LPO lpo1

from figure 6: If the N-form defined by {a, b, c, d} is extended by the edge b < d,
then the new N-form defined by {b, x, c, d} is produced.

On the other side, if a PNT is composed using operation for union, sequential
product, closure and/or parallel product, then the above algorithms needs to be
applied only to LPO-runs of its PNT-components, since the computation of
weights is compositional.

Furthermore, there a several possibilities to optimize the step (IV) concerning
the definition of D and E and the choice of the next N-form. For example, we
can use the following constructions in order to find possibilities for a sequential
composition in a more effective way::

If D 
= ∅ and lpo 
= lpo|V \D; lpo|D, then there is an N-form with nodes in
D and in V \ D. If we delete all nodes from D belonging to an N-form which
is not completely contained in D, we may get a non-empty subset D′ ⊂ D
satisfying lpo = lpo|V \D′ ; lpo|D′ . As an example, see LPO lpo2 from figure 6: If
we delete the node d belonging to the N-form defined by {a, b, c, d} from the set
D = {d, x, y}, we get the set D′ = {x, y} satisfying lpo2 = lpo2|V \D′ ; lpo2|D′ . An
analoguous construction holds for E.

If D = ∅ or lpo 
= lpo|V \D; lpo|D, in general many N-forms can be found. If
we minimally extend one of these N-forms, also some other N-forms may be min-
imally extended because of transitivity. In step (IV)(a) we should choose such an
N-form, whose extension also extends a maximal number of other N-forms. As
an example, see LPO lpo3 from figure 6: The N-form defined by {a, b, c, d} causes
many other N-forms due to transitivity, as for example {a, x, c, d}, {a, b, c, y} or
{a, b, x, y} (and so on). If we extend the N-form {a, x, c, d} by the edge x < d,
then also the other mentioned N-forms are extended. In this example, the exten-
sion x < d of the N-form {a, x, c, d} extends a maximal number of other N-forms.
A similar argumentation holds for the extension c < b of the N-form {a, b, c, d}
and the extension a < v of the N-form {a, b, v, d}. Again, an analoguous con-
struction holds for E.
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Fig. 6. Example-LPOs illustrating the computation of minimal series parallel exten-
sions.

An exact and formal definition of such optimizations and their implemen-
tation, as well as experimental results are topics of further research. Moreover,
it is necessary to have a closer look at the language composition of PNTs. On
the one side, the weight of LPO-runs is not compositional w.r.t. to language
composition, but on the other side, the structure of LPO-runs of a composed
PNT can be determined from LPO-runs of its components. This may be used to
construct sp-extensions of LPO-runs of a composed PNT from sp-extensions of
LPO-runs of its components.

5.2 Computing the output weight of input-output-pairs

In order to compute the language of a PNT (the set of input-output-pairs), it
is necessary to compute all of its LPO-runs. The most effective algorithm doing
this for PT-nets is the token flow unfolding algorithm [3].

For PT-nets (underlying a PNT) having a finite set of LPO-runs, the token
flow unfolding is finite and contains all LPO-runs of the net.

If a PT-net has infinitely many LPO-runs, then there are two possibilities.
The first possibility is, that the PT-net is bounded. In this case the set of reach-
able markings is finite and it is possible to compute the so called complete finite
prefix of the token flow unfolding. This prefix contains for each reachable mark-
ing at least one LPO-run leading to this marking. Since it is possible to compute
all these markings, we may restrict the finite prefix to those LPO-runs leading
to the final marking and we may use the algorithm to test, whether the PT-net
is clean.

Note that the behavior of a bounded PNT may contain cycles (leading from a
reachable marking back to the same marking). If all cycles produce empty input
(empty output), then the input language (output language) is finite, otherwise
infinite. It is possible during the computation of the finite prefix, to save addi-
tionally all sub-LPOs of LPO-runs which form a cycle. This information makes
it possible later on to decide, whether a given input (output) belongs to the
input language (output language) of the PNT.
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The second possibility is, that the PT-net is unbounded. Then there is at
least one unbounded place. If an unbounded place contributes to a reachable
marking, from which the final marking can be reached, then the PT-net is not
clean. If an unbounded place does not contribute to a reachable marking, from
which the final marking can be reached, then it belongs to a useless part of the
PNT. Therefore we do not want to consider PNTs having unbounded places.4

The token flow unfolding algorithm can easily be extended in such a way that
unbounded places are recognized.

In concrete applications it may not be of interest to compute the whole
behavior of a PNT, but to test, whether a PNT has a given input and/or output.
Consider the case of a given input. Then it is possible to restrict the computation
of the token flow unfolding to such LPO-runs having the given input. Cycles not
having empty input should not be cut (as it is the case for the computation
of the finite prefix), but unfolded as many times as needed to get or to exceed
the given input. When constructing such a restricted unfolding, special care
need transitions having empty input. In particular, cycles with empty input
must be cut after their first occurrence and stored for the weight computation.
Analoguous considerations hold for the case of a given output and the case of a
given input-output-pair.

Finally, if an input-output-pair belongs to the behavior of a PNT, its weight
is computet as the supremum of the weights of all LPO-runs producing the input-
output-pair. Note that the set of all such LPO-runs may be infinite if there are
cycles with empty input and empty output - in this case the weight computation
needs special care and depends on the used concurrent semiring.

6 Tool Support

For the modular construction of concrete PNTs in case studies and practical
applications and as a basis for the implementation and evaluation of algorithms
for analysis, simulation and optimisation of PNTs we are developing the tool
PNTε

ooL. Its basic functionality was developed in the bachelor thesis [32] and
presented in [18,24].

PNTε
ooL is a python [36] library and implemented within the framework

SNAKES supporting the rapid prototyping of new Petri net formalisms and
providing many basic Petri net components and functionality [27,28]. PNTε

ooL

is mainly targeted at researchers in the area of PNTs. By the use of SNAKES
it is relatively easy to implement and evaluate extensions, variations and new
algorithms, as for example: Composition operations, algebraic weight structures,
simulation algorithms and optimisation algorithms.

Constructed PNTs can be exported in an XML-format which is based on the
standard PNML format developed for basic Petri net variants [33]. Moreover,
PNTs can be visualised and pictures can be exported in all standard formats.
4 Note that this implies that the sequential language of a PNT is regular. In order

to deal with more general languages it would be necessary to use more general net
classes combined with the concept of cleanness, as for example inhibitor nets.
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The support of graphical output serves both as a possibility to check the imple-
mentation and as a handy utility in the process of writing scientific papers.
PNTε

ooL’s functionality supports fast construction of concrete example PNTs for
case studies. PNML export can be used to analyse constructed example PNTs
with other Petri net tools.

In the context of our research activities, PNTε
ooL serves as a scientific proto-

type for the development of an open library openPNT of efficient algorithms for
the construction, composition, simulation and optimisation of PNTs which can
be used in real world examples.

PNTε
ooL can be downloaded from our website [17] as a ZIP-archive. Assumed

you have a working installation of Python, SNAKES, Graphviz, and dot2tex you
only need to copy the py-files into the plugins sub-directory of your SNAKES
installation.

6.1 Functionality

In this subsection we show how PNTε
ooL is used to construct and compose PNTs.

We list the source code of the examples.
To use PNTε

ooL one has to create a text file and put the following code into
it. These lines load the SNAKES library and the transducer-plugin.

1 import snakes . p lug in s
2 snakes . p lug in s . load ( [ ’transducer’ ] , ’snakes.nets’ , ’pnts’)
3 from pnts import ∗

Using the class method N from the class PetriNet a PNT consisting of a
source place with one token, a sink place, and a single transition in between
can be created (line 4). The parameters of this single transition are provided as
named parameters to N.

In lines 5 and 6 graphical output of the PNTs is generated. The format of the
output is controlled by the extension of the file-name given to the method draw
as first argument. The orientation of the generated graphs is controlled by the
parameter leftright of the method draw. This parameter is only effective if
TikZ-output is to be created. For more available export formats one may consult
the documentation of the Graphviz [12] package which is utilised by SNAKES
for the export.

A PNT can be saved in PNML-format using the function savePNML – a
wrapper of SNAKES methods – taking a file-name as second argument (line 7).
For loading we provide loadPNML.

4 n = Petr iNet .N(’N1’ , weight = . 5 , input symbol = eps ,
output symbol = ’b’)

5 n . draw ("N.tikz" , l e f t r i g h t = True )
6 n . draw ("N.png")
7 savePNML(n , "N.pnml")
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It is also possible to construct the same PNT (and also more complex PNTs)
by adding all components (places with markings, transitions, edges with weights)
separately:

8 n = Petr iNet (’N1’)
9 n . add place ( Place (’p_I’ , 1) , i s s o u r c e = True )

10 n . add place ( Place (’p_F’) , i s s i n k = True )
11 n . add t r an s i t i o n ( Trans i t i on (’t_1’ , input symbol=eps ,

output symbol=’b’) , weight =0.5)
12 n . add input (’p_I’ , ’t_1’)
13 n . add output (’p_F’ , ’t_1’)

Finally, PNTs can be composed by several compsition operations. An exam-
ple for the use the operation of parallel composition is shown in line 14.

14 n1 = n | n

The other available operators are: * for concatenation, + for union, ˜ for
closure, and > for language composition.

There are many possibilities to influence the graphical output, like renaming
of transitions, using subscripts in transition names, adjustment of label positions,
and more. Moreover, it is possible to change the marking of a PNT be firing
transitions. For details we refer to [18].

6.2 Architecture

PNTε
ooL is implemented as a bunch of plugins on top of SNAKES and thus as a

Python library. Actually SNAKES implements so-called coloured Petri nets [19]
where Python objects and expressions are used for the annotations. However
PNTε

ooL does not use most of these features.
A plugin for SNAKES is a separate Python library which specialises already

defined classes or adds new classes to SNAKES. Plugins can be loaded and are
stacked onto each other. This way a class hierarchy is established. A function
extend has to be implemented and some rules have to be followed for which the
interested reader should refer to the SNAKES homepage. A plugin can depend
on other plugins and can even mention conflicting plugins.

In the following we briefly describe each of the plugins that comprise PNTε
ooL.

The first and fourth plugin can be used independently from the other plugins
while the remaining three build upon each other.

The d2t-Plugin. This plugin extends the features of the gv-plugin which is
delivered with SNAKES. By the use of that plugin a representation of Petri nets
in the dot-language from Graphviz [12] can be produced which is then processed
by Graphviz to compute a layout and eventually produce a graphical output.
Our d2t-plugin adds several features to the graphical output routine, like the
possibilties to use subscripts in object names, to rename objects for the graphical
output, and to use the export format TikZ.



Modeling Quantitative Aspects of Concurrent Systems 71

The pt-Plugin. As already said, SNAKES implements coloured Petri nets.
Since the underlying net of a PNT is actually a place/transition Petri net we
decided to write a plugin which restricts the nets of SNAKES by only allowing
those constructs which are needed for them.

The terminal-Plugin. By using the pt-plugin and adding a few features to
the class PetriNet, this plugin implements Petri nets that have a single source
place and single sink place. Although SNAKES delivers the label-plugin to add
properties to any node of a net we decided to implement our own mechanism
because we only need a fraction of its functionality.

With these properties it is possible to define several composition operations.
While SNAKES delivers the ops-plugin which implements composition opera-
tions according to [4] we implemented our own mechanism because the definitions
of the operations defer.

Additionally, we provide a notation to create a singleton net consisting of a
source and a sink place and a transition in between. This feature is implemented
as the class method N of the class PetriNet.

The bisemiring-Plugin. We implemented the class Bisemiring and the
association of weights to transitions in a separate plugin. Bisemiring objects
hold definitions of the set of weights, neutral elements and functions for binary
addition, sequential multiplication and parallel multiplication of a bisemiring.

A PNT contains an object of class Bisemiring which is the Viterbi-
bisemiring as default. Every transition has a weight which can be checked against
the bisemiring of the net.

The transducer-Plugin. The last plugin builds on top of the terminal-
and bisemiring-plugin and equips transitions with input- and output-symbols
which can be arbitrary Python objects. An additional class implements the ε-
symbol. The N-method is extended to support weights and input- and output-
symbols for the single transition. This plugin implements the additional composi-
tion operation of language composition. Also the graphical output of transitions
is changed using the functionality of d2t-plugin. The generated TikZ-code uses
definitions from a separate sty-file to provide adaptable graphics.

7 Related Work

There are several less general models using weigths with underlying algebraic
structure.

Weighted finite automata are classical non-deterministic finite automata in
which transitions carry weights [8]. These weights may represent cost, time
consumption or probability of a transition execution. The behaviour of such
automata is defined by a function associating with each word the weight of
its execution. For a uniform definition of the behaviour, the set of weights is
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equipped with the underlying algebraic structure of a semiring. The multipli-
cation operation of the semiring is used for determining the weight of a path,
and the weight of a word is obtained by the sum of the weights of its under-
lying paths. If each transition additionally is equipped with an output symbol,
the resulting automaton is called a transducer. Such transducers are used for
the translation between languages over different alphabets for example in nat-
ural language processing. For weighted finite automata and transducers (also
called finite state transducers or FSTs) there are efficient implementations of
composition and optimisation operations in standard libraries [26,41].

There are generalisations of weighted finite automata to weighted automata
over discrete structures other than finite words, some of them introducing con-
currency into the model through considering LPOs not consisting of a total order
on their symbols but of a partial order.

In [11] an overview is given on weighted finite automata (and transducers)
processing tree structures. They are used to recognise weighted context-free lan-
guages with weights coming from semirings and do not consider concurrency.

In [10] weighted asynchronous cellular automata accepting weighted traces,
a special restricted kind of LPOs, are described. Here also only semirings are
used to describe weights, i.e. no difference is made between the combination of
weights of transitions occurring in sequential order and occurring in parallel.

In [20] weighted branching automata accepting weighted sp-LPOs are intro-
duced. Here, weights come from bisemirings where the algebraic structure of
semirings is extended by a third operation of parallel multiplication (which in
this case needs no unit) used for the combination of weights of concurrent tran-
sition occurrences.

For all these automata models there are widely developed theories concern-
ing equivalent representations as rational expressions or logic formulae, useful
composition operations and closure properties [8].

Another extended automata model are Q-Automata [6] whose computations
are step sequences. Q-Automata are coined for application in quality manage-
ment with weights modelling costs and coming from a bisemiring, whose parallel
multiplication may not be commutative.

PNTs, as introduced in this paper, are a natural generalisation of all these
automata based weighted transducer models working on finite words, traces or
sp-LPOs. If a semiring can be extended to a concurrent semiring, then each
FST over this semiring is output equivalent to a PNT [25]. However, since not
each semiring can be extended to a concurrent semiring, not each FST can be
represented by an equivalent PNT. In [25] we examine several conditions of
semirings, which allow an extension to concurrent semirings.

There are already several publications introducing PNTs and applying them
in different application areas [34,37,38]. However, these are mainly case studies
lacking a common basic formal definition and without any theoretical devel-
opment. Moreover, these publications only make use of sequential semantics of
PNTs and do not consider weights.
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Another Petri net model with transitions having assigned weights are stochas-
tic Petri nets (SPNs). SPNs introduce a temporal specification of probabilistic
nature and are applied to the performance analysis of timed systems. The weights
have no underlying algebraic structure and are used to compute firing probabil-
ities of untimed transitions.

8 Further Work

Up to now, we have developed a basic theoretical framework of PNTs and basic
tool support providing the computation of weights of PNT-runs, the computation
of PNT-languages and several composition operations on PNTs. Moreover, we
applied PNTs in some case studies in the field of semantic dialogue modelling.

In order to apply PNTs to practical relevant problems, there are impor-
tant further research steps in several directions. First, the presented theoretical
framework needs to be completed:

– There are several additional composition operations of FSTs (for example
inversion or reversal) which need to be examined also w.r.t. PNTs.

– In order to get more efficient algorithms, optimisation techniques must be
developed as in the case of FSTs (for example elimination of ε-transitions or
pushing and merging of weights alongs paths).

– For analysis purpose, we need to examine which classical Petri net properties
(as for example boundedness) are consistent with composition operations.

The presented simulation algorithms need to be improved as described in
section 5. Moreover, for practical application in the field of semantic dialogue
modelling and speech recognition the algorithms developed so far need to be
improved and extended:

– We need on-the-fly simulation algorithms computing the N best runs of a
PNT (similar to N -best-paths algorithms for FSTs in the field of natural
language processing).

– It is necessary to develop semi-automatic procedures to construct PNTs for
the translation between the syntactic and semantic level from experimental
audio data (generated in Wizard-of-Oz experiments), for example using Petri
net synthesis methods [21].

– Possibily, algorithms can be fine tuned concerning the concurrent Viterbi
semiring (used in this application field).

As described, we use PNTε
ooL for the quick construction of PNTs for the use in

case studies and as a scientific prototype for the development of an open library
openPNT of efficient algorithms for the construction, composition, simulation
and optimisation of PNTs which can be used in real world examples (similar to
the open library openFST [1] for FST-algorithms).

Finally, the framework can be extended w.r.t. several aspects:
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– It is possible to consider other Petri net classes, either with the aim to
increase the expressiveness of the model (for example using inhibitor nets),
or with the aim to restrict expressiveness in order to get more effective algo-
rithms and improved analysis and compositionality properties (for exapmle
using free choice nets).

– On the other side, more usefull examples of concurrent semirings can be col-
lected and described. Moreover, the algebraic structure of concurrent semir-
ings used as the weight model can be generalized in order to broaden the
field of possible applications.

– Concepts which are more general than cleanness can be considered for ensur-
ing compositionality (for example adapting generlized versions of soundness).
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Abstract. Interval order semantics of Petri nets with inhibitor arc is
discussed. Both the operational semantics and process, i.e. concurrent
history, semantics are defined and their mutual relationship is discussed.
It is shown that if operational semantics is restricted to stratified orders
(i.e. step sequences) the proposed model is equivalent to models based
on step processes and comtraces.

1 Introduction

Standard operational semantics of majority of concurrency models is defined in
terms of either firing sequences or firing step sequences, while standard concur-
rent history semantics is usually defined in terms of partial orders, stratified
order structures (or structures equivalent to them as net processes).

Nevertheless, it is commonly assumed (first argued by N. Wiener in 1914
[26] and analysed in details in [13]) that any system run (execution) that can
be observed by a single observer must be an interval order of event occurrences.
This means that the most precise observational semantics is defined in terms of
interval orders. Moreover, representing observations as interval orders allows to
capture behaviours that neither of the standard semantics can really describe.
However generating interval orders directly is problematic for most models of
concurrency, as the only feasible sequence representation of interval order is by
using Fishburn Theorem [6] and appropriate sequences of beginnings and endings
of events involved. It was shown by Janicki and Koutny [15] that concurrent
histories involving interval orders can be represented by interval order structures
(proposed in [12,19]), but how these interval order structures could be derived
for particular concurrent systems was not clear.

While validity of operational semantics is usually obvious, the validity of
concurrent history/behaviour semantics is often not. It relies on the validity
of the definition of a concurrent history/behaviour, which is often not trivial
and may involve complex reasoning (cf. [3,10,11,22]). On the other hand, the
process semantics (in the sense of [4,18,22,24]), does not usually require much
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validation as intuitively it is just a set of system unfoldings, so it is as natural as
any operational semantics (c.f. [17,22,25]). Hence it can be used as a benchmark
for validity of other types of history/behaviour semantics, they just have to be
equivalent to the process semantics (c.f. [4,17,18]).

In this paper we present an interval process semantic for Petri Nets with
Inhibitor Arcs. Various process semantics for Petri Nets with Inhibitor Arcs that
started from various assumptions have been proposed in the past, the most rep-
resentative and prolific are probably [4,14,16,17,20,25,27], but they all assume
that the operational semantics is defined in terms of sequences [20,25,27] or step
sequences [4,14,16,17]. None of these models is able to deal with observations
(system runs) that are neither step sequences nor semantically equivalent to any
step sequence.

The paper is organized as follows: We start by providing standard mathemat-
ical definitions for different orders and their structures, then we overview Petri
nets with inhibitor arcs and its operational semantics, and then introduce inter-
val representation of Petri nets with inhibitor arcs as well as the interval order
operational semantics. After that we review process semantics of Petri nets with
inhibitor arcs and generalize the concept of net process to represent the set of
equivalent executions modeled by interval orders. Finally we will show that our
interval processes correspond to appropriate interval order structures, and they
can define interval operational, interval process, and interval ‘true concurrency’
semantics of Petri nets with inhibitor arcs.

We will also show that our model covers-and is consistent with-the models
where sequences or step sequences were used to represent system runs. The paper
extends the ideas used for step sequences in [14,17] to interval orders. Figure 3
shows our running example and illustrates the intuition of our approach.

2 Partial, Total, Stratified and Interval Orders

We will start the formal part of our paper with a short introduction to par-
tial orders (c.f. [7]), as they are the principal tool to describe executions and
operational semantics of concurrent systems.

Definition 1. A relation < ⊆ X ×X is a (strict) partial order if it is irreflex-
ive and transitive, i.e. for all a, c, b ∈ X, a �< a and a < b < c =⇒ a < c. We
also define: a �< b

df⇐⇒ ¬(a < b) ∧ ¬(b < a) ∧ a �= b, and

a <� b
df⇐⇒ a < b ∨ a �< b.

Note that a �< b means a and b are incomparable (w.r.t. <) elements of X. 	

Let < be a partial order on a set X. Then:

1. < is total if �< = ∅. In other words, for all a, b ∈ X, a < b ∨ b < a ∨ a = b;
2. < is stratified if a �< b �< c =⇒ a �< c ∨ a = c, i.e., the relation

�< ∪ idX is an equivalence relation on X;
3. < is interval if for all a, b, c, d ∈ X, a < c ∧ b < d =⇒ a < d ∨ b < c.

In other words, < is interval if all its four element restrictions are different
from <4 in Figure 1.
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It is clear from these definitions that every total order is stratified and every
stratified order is interval. Partial orders are usually represented as Hasse dia-
grams1. Figure 1 illustrates the above definitions. Every finite total order is
uniquely represented by a sequence. For example the order <1 of Figure 1 is rep-
resented by a sequence abcd. Similarly, every stratified order is uniquely repre-
sented by a step sequence. For example the order <2 of Figure 1 is represented by
a step sequence {a}{b, c}{d}. The opposite is also true, every sequence uniquely
defines a total order if it is enumerated elements, and every step sequence
uniquely defines a stratified order if it is enumerated elements.

Each sequence of events represents a total order of enumerated events in a
natural way. For precise definitions see for example [14], here we will be using
the following notation.

Notation 1 1. For each set of events Σ, let Σ̂ = {ai | a ∈ Σ, i ≥ 1} denote
the set of enumerated events generated by Σ.

2. For each sequence x ∈ Σ∗ and each step sequence z ∈ (2Σ)∗, let x̂ ∈ Σ̂∗ and
ẑ ∈ (2 ̂Σ)∗ denote their enumerated representations.
For example, if x = abbaa then x̂ = a1b1b2a2a3, and if z = {a, b}{a, b, c}{a}
then ẑ = {a1, b1}{a2, b2, c1}{a3}.

3. For every sequence x ∈ Σ∗, �x is the total order defined by the enumerated
sequence x̂. For example: �abbaa = a1 → b1 → b2 → a2 → a3.

4. For every step sequence z ∈ (2Σ)∗, �z is the stratified order defined by the
enumerated step sequence ẑ.
For example: �{a,b}{a,b,c}{a} = {a1, b1} → {a2, b2, c1} → {a3}. �

The two orders on the far right of Figure 1 illustrate points (3) and (4) of the
notation presented above.

For the interval orders, the name and intuition follows from Fishburn’s The-
orem:

Theorem 1 (Fishburn [6]). A partial order < on X is interval iff there exists
a total order � on some T and two mappings B,E : X → T such that for all
x, y ∈ X,

1. B(x) � E(x),
2. x < y ⇐⇒ E(x) � B(y). �

Usually B(x) is interpreted as the beginning and E(x) as the end of an
interval x. The intuition of Fishburn’s theorem is also illustrated in Figure 1
with <3 and �3. For all x, y ∈ {a, b, c, d}, we have B(x)�3E(x) and x <3 y ⇐⇒
E(x) �3 B(y). For better readability we will skip parentheses in B(x) and E(x)
in the future. Note that the interval order <3 is (not uniquely) represented by
a sequence that represents �3, i.e. BaEaBbBcEbBdEcEd. Fishburn’s Theorem
will be essential in interval semantics of inhibitor nets.
1 A Hasse diagram of a partial order < is the smallest relation R such that the tran-

sitive closure of R, i.e. R+, is equal to < (c.f. [7]).
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Fig. 1. Various types of partial orders (represented as Hasse diagrams), the total order
defined by the sequence aaba, and the stratified order defined by the step sequence
x = {a, b}{a, c}{a}{b, c}

We will say that a total order � on X extends a partial order < on X, if for
all x, y ∈ X x < y ⇒ x � y, and for every partial <, total(<) denotes the set of
all total extensions of <.

3 Stratified and Interval Order Structures

When the system runs are represented by stratified or interval orders, or when
we want to express not only “earlier than” but also “no later than” relationship,
partial orders alone are not enough, we need to use pairs or relations called order
structures (c.f. [10,11,17]).

Definition 2 (Stratified Order Structures [8,12]). A stratified order
structure is a relational structure S = (X,≺,�) such that for all a, b, c ∈ X;

S1. a �� a
S2. a ≺ b ⇒ a � b

S3. a � b � c ∧ a �= c ⇒ a � c
S4. a � b ≺ c ∧ a ≺ b � c ⇒ a ≺ c 	


We will say that a stratified order < on X extends the structure S, if ≺ ⊆ <
and � ⊆ <�. The set of all such extensions of S will be denoted by strat(S).
If < is a stratified order on X, then the triple (X,<,<�) is a stratified order
structure. The axioms S1–S4 can be seen as an abstraction and generalization
of the relationship between < and <� when < is a stratified order (c.f. [13,15]).

The formalism provided by interval order structures is more general than
those provided by partial orders and stratified order structures. Interval order
structures models concurrent behaviour that neither partial orders nor stratified
order structures can model.

Definition 3 (Interval Order Structures [12,19]). An interval order
structure is a relational structure S = (X,≺,�) such that for all a, b, c, d ∈ X:
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I1. a �� a
I2. a ≺ b ⇒ a � b
I3. a ≺ b ≺ c ⇒ a ≺ c

I4. a ≺ b � c ∧ a � b ≺ c ⇒ a � c
I5. a ≺ b � c ≺ d ⇒ a ≺ d
I6. a � b ≺ c � d ⇒ a � d ∨ a = d 	


Note that every stratified order structure is also an interval order structure.
We will say that an interval order < on X extends the structure S, if ≺ ⊆ <

and � ⊆ <�. The set of all such extensions of S will be denoted by interv(S).
If < is an interval order on X, then the triple (X,<,<�) is an interval order
structure. The axioms I1–I4 can be seen as an abstraction and generalization of
the relationship between < and <� when < is an interval order (c.f. [13,15]).

In both order structures the relations ≺ and � are called causality and weak
causality respectively, and in both models ≺ is an abstraction of “earlier than”
relation while � is an abstraction of “no later than” relation. In both models ≺ is
always a partial order, while � does not have to be. The fundamental difference
is that for Stratified Order Structures the system runs/executions are assumed to
be modeled by at most stratified orders, while for Interval Order Structures the
system runs/executions are assumed to be modeled by general interval orders.

For interval order structures we have the following equivalent of Fishburn
Theorem (Theorem 1).

Theorem 2 (Abraham, Ben-David, Magidor [1]).
A triple S = (X,≺, �) is an interval order structure if and only if there exists a
partial order < on some Y and two mappings B,E : X → Y such that B(X) ∩
E(X) = ∅ and for each x, y ∈ X:

1. Bx < Ex,
2. x ≺ y ⇐⇒ Ex < By,
3. x � y ⇐⇒ Bx < Ey 	


The partial order < from Theorem 2 is not unique and does not need to be
interval. For more on the theory of order structures and their applications, the
reader is referenced to [10,11,15].

4 Elementary Nets with Inhibitor Arcs

Inhibitor arcs allow a transition to check for an absence of a token. They have
been introduced in [2] to solve a synchronization problem not expressible in clas-
sical Petri nets. In principle they allow ‘test for zero’, an operator the standard
Petri nets do not have (c.f. [21,23]). Activator arcs (also called ‘read’, or ‘con-
textual’ arcs [3,20]), formally introduced in [14,20], are conceptually orthogonal
to the inhibitor arcs, they allow a transition to check for a presence of a token.

Elementary nets with inhibitor arcs [14] are very simple. They are just clas-
sical elementary nets of [22,24] extended with inhibitor arcs. Nevertheless they
can easily express complex behaviours involving ‘not later than’ cases or non-
transitive simultaneity. The net N in Figure 2 is an example of ENI.
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Fig. 2. Inhibitor nets N and Nio and all their behaviours involving one occurrence of
a, b and c. The net N generates <N

1, <
N
2, <

N
3, <

N
4, and two concurrent histories, while Nio

generates only an interval order <N
4. Partial orders are represented by Hasse diagrams.

All orders except <N
4 are stratified.

Definition 4 ([2,14]). An Elementary Net with Inhibitor Arcs (ENI) is
a tuple N = (P, T, F,Cinit, I) such that

1. P and T are finite and disjoint sets of places and transitions represented,
respectively, as circles and rectangles;

2. F ⊆ (P ×T )∪ (T ×P ) is the flow relation of N - represented as directed arcs
between places and transitions;

3. Cinit ⊆ P is the initial marking of N (generally, any C ⊆ P is a marking);
and

4. I ⊆ P × T is a set of inhibitor arcs - represented as arcs with small circles
as arrowheads. �

For every x ∈ P ∪ T we define its input •x = {y | (y, x) ∈ F} and its out-
put x• = {y | (x, y) ∈ F}. We assume that for every t ∈ T , •t �= ∅ �= t• and
•t ∩ t• = ∅. Moreover, for each t ∈ T , the set ◦t = {p | (p, t) ∈ I} is the set of
places that are connected with transition t by inhibitor arcs. We also define, in
a standard way, for any subset U of T : •U =

⋃

t∈U

•t, U• =
⋃

t∈U

t• and ◦U =
⋃

t∈U

◦t.

The operational semantics of ENI is defined through the “token game”
which simulates the occurrence of transitions and the changes of tokens in places.
ENI differs from ordinary elementary Petri nets only by introducing a require-
ment that a transition cannot be enabled if there is a token in a place to which
it is connected by an inhibitor arc. A transition t is enabled at a configuration C
if •t ⊆ C and (t• ∪ ◦t)∩C = ∅. An enabled transition t can fire leading to a new
configuration C ′ = (C \ •t) ∪ t•. We denote this by C[t〉C ′. We will also write
C[t1 . . . tn〉C ′ if C[t1〉C1 . . . Cn−1[tn〉C ′ for some configurations C1, . . . , Cn−1.

There are two standard operational semantics for ENI, one in terms of firing
sequences and another in terms of firing step sequences (c.f. [5]).

A firing sequence of an ENI is any sequence of transitions t1, . . . , tn for
which there are markings C1, . . . , Cn satisfying:
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Cinit[t1〉C1[t2〉C2 . . . [tn〉Cn.

The definition above can be generalized to sequences of sets of transitions
occurring simultaneously. Let U ⊆ T be a non-empty set such that for all distinct
t1, t2 ∈ U :

(t•1 ∪ •t1) ∩ (t•2 ∪ •t2) = ∅.

Then U is enabled at a marking C if •U ⊆ C and (U• ∪ ◦U) ∩ C = ∅. We also
denote this by C[U〉C ′ where, C ′ = (C \ •U) ∪ U•.

A firing step sequence is a sequence of sets (or steps) U1, . . . , Un for which
there are markings C1, . . . , Cn satisfying:

Cinit[U1〉C1[U2〉C2 . . . [Un〉Cn.

For the ENI system N in Figure 2, there are two firing sequences and three
step sequences that involve an occurrence of a, b and c. The firing sequences
are namely abc and cab and they correspond to the total orders <N

1 and <N
2

respectively. The step firing sequences are {a}{b}{c}, {c}{a}{b} and {a, c}{b},
and they correspond to the total orders <N

1 and <N
2 and the stratified order <N

3,
respectively.

Firing sequence semantics is sometimes called ‘a-posteriori’ while firing step
sequence semantics is sometimes called ‘a-priori’ (see [5,14]). It is often assumed
that if the events (transitions) are interpreted as representations of activities
whose completion takes some time, then ‘a-priori’ model is frequently preferable,
however if the events (transitions) are instantaneous, i.e. their occurrence takes
zero time, then simultaneous executions must be excluded [10,14], so only firing
sequence approach remains.

Assume that when a non-instantaneous transition t begins its firing, the
tokens that it consumes disappear for consumption by other transitions but
continue to inhibit other transitions, if connected to an inhibitor arc. Such inter-
pretation allows possible executions where transitions overlap, so they can be
interpreted as interval orders.

Considering Figure 2, note that intuitively the interval order <N
4 can also be

considered as a possible run/execution that involves occurrences of a, b and c,
for both N and Nio. Intuitively, if the events a, b and c are not instantaneous, one
can imagine a situation where b follows a but c overlaps with both a and b. This
means that for the net N and Nio of Figure 2, one can, intuitively, hold on to a
token taken from s2 until a token taken from s1 is placed in s5. We will provide
a tool that allow us to generate the interval order <N

4 as well. However <N
4 can

be described by neither a standard firing sequence nor a firing step sequence.
Finally we would like to point out that for the net Nio from Figure 2 the

set of all firing sequences that start from the marking {s1, s2} and end at the
marking {s4, s5} is empty and the set of all firing step sequences that start from
the marking {s1, s2} and end at the marking {s4, s5} is also empty, and the only
observation/system run that starts from the marking {s1, s2} and ends at the
marking {s4, s5} is the interval order <N

4 .
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Fig. 3. An example of an inhibitor net, its interval representation, processes and con-
current histories they generate. The process Px generates a concurrent history {<N

2 , <
N
3}

while the process Py generates {<N
2 , <

N
3 , <

N
4}.

5 Interval Elementary Net with Inhibitor Arcs

This section contains the first part of our contribution.
Since every interval order of events can be represented by some total order

(i.e. an appropriate sequence) of event beginnings and ends (Theorem 1 by
Fishburn), if we figure out how a given inhibitor net can generate appropri-
ate sequences of event beginnings and ends, we might be able to describe all
interval orders the net generates.

The basic idea of defining the set of firing interval sequences i.e. sequences of
beginnings and ends (will be formally defined shortly) for a given inhibitor net
N is briefly presented in Figure 3 by the vertical transformation of the net N into
the net N .

In the approach used in this paper, we assume that the events (transitions) in
the ENI systems are not instantaneous. On the contrary, they are interpreted as
representations of activities whose completion takes some time. However, their
beginnings and ends are instantaneous.

If inhibitor arcs are not involved (i.e. the case of elementary nets), to represent
transitions by their beginnings and ends, we might just replace each transition t

by the net Bt Et�� �t as proposed for example by Zuberek in [28] for Timed
Petri nets. However, the inhibitor arcs cause some problems. In Figure 3, while
the inhibitor arc (s3, Bc) in the net N is obvious, the inhibitor arc (b,Bc) is not.
We need it to prevent sequences as BbBcEcEb, which defines a stratified order
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corresponding to the step sequence {a}{b, c}, from being a firing sequence of N
since it is not a firing step sequence of N.

We assume that the net N fully describes the behaviour of the net N and
later provide some justification of this claim.

Below we provide a formal transformation of inhibitor nets into their interval
representations.

Definition 5 (Transforming ENI into its interval representation).
Let N = (P, T, F, I, Cinit) be an ENI system. We define N = (P, T ,F , I, Cinit),
its interval representation as follows:

1. P = P ∪ T
2. T = {Bt | t ∈ T} ∪ {Et | t ∈ T}
3. ∀ p ∈ P. t ∈ T. (p, t) ∈ F ⇐⇒ (p,Bt) ∈ F
4. ∀ p ∈ P. t ∈ T. (t, p) ∈ F ⇐⇒ (Et, p) ∈ F
5. ∀ t ∈ T. (Bt, t), (t, Et) ∈ F
6. ∀ p ∈ P. t ∈ T. (p, t) ∈ I ⇐⇒ (p,Bt) ∈ I ∧ (∀r ∈ p•. (r,Bt) ∈ I). 	


The nets N and N in Figure 3 illustrate the above definition. Note that for
example each of the following sequences BaBcEaBbEbEc, BaBcEaBbEcEb,
BcBaEaBbEbEc, and BcBaEaBbEcEb are firing sequences of N , and each
of them represents the interval order <N

4 from Figure 2 via Fishburn Theorem
(Theorem 1). This means that event b follows event a and event c overlaps both
events a and b in the original net N.

Directly from the above definition we have the following convenient result.

Fact 1 Let N = (P, T, F, I, Cinit) be an ENI system and N =
(P, T ,F , I, Cinit) its interval representation. Then for each t ∈ T we have:
•Bt = •t, Bt• = {t}, •Et = {t}, Et• = t•, ◦Bt = ◦t ∪ (◦t)•, and ◦Et = ∅. 	


Since N is just another inhibitor net, we may use the standard definition of a
firing sequence from Section 4, but with the following caveat: not every sequence
from T ∗ can be interpreted as an interval order, for example BaBcBb represents
no interval order.

Let D ⊆ T and let s ∈ T ∗. We define the projection of s onto D standardly

as: πD(ε)
df
= ε, πD(sα)

df
=

{
πD(s)α if α ∈ D,

πD(s) if α /∈ D.

For example π{Ba,Ea}(BbBaEbBaEaEc) = BaBaEa and
π{Ba,Ea,Bc,Ec}(BbBaEbBaEaEc) = BaBaEaEc. We say that a string x ∈ T ∗

is an interval sequence iff
∀Bt,Et ∈ T ∗. π{Bt,Et}(x) ∈ (BtEt)∗.

We use InSeq(T ∗) to denote the set of all interval sequences of T ∗.

Definition 6. Let N = (P, T ,F , I, Cinit) be an interval representation of ENI.
A sequence x = α1 . . . αn ∈ T ∗ is an interval firing sequence of N if there
are markings C1, . . . , Cn satisfying:

Cinit[[t1〉〉C1[[t2〉〉C2 . . . [[tn〉〉Cn. 	
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To improve readability, we use [[α〉〉 to denote firing transition α in some con-
figuration of the net N .
For example, for N from Figure 3, we have {s1, s2}[[BcBaEaBbEcEb〉〉{s4, s5}.

The following result validates the above definition.

Proposition 1. If x is an interval firing sequence of N , then x ∈ InSeq(T ∗).

Proof. We have to show that for each a ∈ T , π{Ba,Ea}(x) ∈ (BaEa)∗.
Let x = y Ba z and Cinit[[y Ba〉〉C ′. Since Ba• = {a}, a ∈ C ′. We also have:

for any Ca ⊆ P ∪ T , if a ∈ Ca, then Ba is not enabled in Ca, and the only
way to remove a from Ca is to fire Ea (as •Ea = {a}). Hence we must have
x = y Ba w Ea v, where π{Ba,Ea}(w) = ε. 	


Since all transitions of interval representation of ENI are instantaneous,
simultaneous executions of any kind are disallowed 2, so the only operational
semantics for interval representations, is the firing sequences semantics.

The net N from Figure 3 has ten interval firing sequences that involve all
elements of T = {Ba,Ea,Bb,Eb,Bc,Ec}, namely BaEaBbEbBcEc - which
represents a total order <N

1 from Figure 2; BcEcBaEaBbEb - which repre-
sents a total order <N

2; BaBcEcEaBbEb, BaBcEaEcBbEb, BcBaEcEaBbEb,
BcBaEaEcBbEb - all four represent a stratified order <N

3 of Figure 2; and
BaBcEaBbEbEc, BaBcEaBbEcEb, BcBaEaBbEbEc, BcBaEaBbEcEb - all
four represent an interval order <N

4 of Figure 2. It is important to stress that
if observations are not allowed to be recorded as interval firing sequences, then
<N

4 can be generated neither by firing sequence nor by firing step-sequence. This
order is an interval order, but it is not stratified, so step-sequences do not work.

The following proposition shows soundness and completeness of the interval
representation from Definition 5 with respect to firing step sequence operational
semantics3. It shows that firing a step A in the net N is properly simulated by
firing an appropriate sequence from T ∗ in the net N . Moreover, while the net N
defines behaviours that cannot be defined by N (as <N

4 for the net from Figure
2), it does not generate any new behaviour that can be described by firing step
sequences of N.

For every A = {t1, ..., tk} ⊆ T , let ABE ⊆ T ∗ be defined as follows. ABE =
{Bti1 ...BtikEtj1 ...Etjk | i1, ..., ik and j1, ..., jk are permutations of 1, 2, ..., k}.

For example
{a, b}BE = {BaBbEaEb,BaBbEbEa,BbBaEaEb,BbBaEbEa}.

2 Defining interval firing step sequences is mathematically possible but it does not
make much sense as Bt and Et are interpreted as event beginning and end, i.e. they
are instantaneous, so their simultaneous occurrence is not observable (cf. [10]).

3 A separate analysis of firing sequence semantics is not needed as each sequence
a1 . . . an is uniquely represented by a step sequence {a1} . . . {an}.
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Proposition 2. For every two configurations C,C ′ ⊆ P ⊆ P and every A ⊆ T ,

C [A〉 C ′ ⇐⇒ ∀x ∈ ABE. C [[x〉〉 C ′.

Proof. (⇒) Let A = {t1, ..., tk}. This means, if i �= j then (t•i ∪ •ti) ∩ (t•j ∪
•tj) = ∅, •A ⊆ C, (A• ∩ ◦A) ∩ C = ∅, and C ′ = (C \ •A) ∪ A•. Let y =
Bti1 ...Btik and z = Etj1 ...Etjk , where i1, ..., ik and j1, ..., jk are permutations
of 1, 2, ..., k. Since •ti = •Bti and ◦ti = ◦Bti, we have C [[y〉〉 CB , where CB =
(C\(•Bti1∪...•Btik))∪(Bt•i1∪...Bt•ik) = (C\•A)∪(Bt•i1∪...Bt•ik). But Bt•i = {ti},
so CB = (C \• A) ∪ A. However, •Eti = {ti}, so CB [[z〉〉 CE , where CE =
(CB \ (•Etj1 ∪ ... ∪•Etjk)) ∪ (Et•j1 ∪ ...Et•jk). Since •Eti = {ti} and Et•i = t•i ,
CE = (CB \ A) ∪ A• = (((C \•A) ∪ A) \ A) ∪ A• = (C \• A) ∪ A• = C ′.

Hence C [A〉 C ′ =⇒ ∀x ∈ ABE. C [[x〉〉 C ′.
(⇐) Let A = {t1, ..., tk} and C [[yz〉〉 C ′. Hence there are configurations
C0

B , C1
B , ..., Ck

B , C0
E , C1

E , ..., Ck
E in NBE such that C = C0

B , Ck
B = C0

E , Ck
E = C ′,

and C0
B {[[Bti1〉〉 C1

B [[Bti2〉〉 C2
B ...Ck−1

B [[Btik〉〉 Ck
B [[Etj1〉〉 C1

E [[Etj2〉〉 C2
E ...Ck−1

E

[[Etjk〉〉 Ck
E . We have Cl+1

B = (Cl
B \•Btil) ∪ Bt•il , and Cl+1

E = (Cl
E \•Etjl) ∪ Et•jl ,

for l = 0, ..., k − 1. Because •Bti =• ti, and Bt•i = {ti}, then C0
E = Ck

B = (C0
B \•

A)∪A = (C\•A)∪A. However, •Eti = {ti} and Et•i = t•i , so Ck
E = (C0

E \A)∪A•.
Thus, C ′ = Ck

E = (C0
E \ A) ∪ A• = (((C \•A) ∪ A) \ A) ∪ A• = (C \• A) ∪ A•.

But this means C [A〉 C ′. 	

We will end this section with an analysis of the example from Figure 4. The

nets Nio, CNio and ANio are clearly equivalent and none of them can generate a
sequence or step sequence that leads from the marking {s1, s2} to the marking
{s4, s5}.

When our approach is used, the nets Nio, CNio and ANio are assumed to be
equivalently represented by their interval representations Nio, CN io and AN io.
For the latter nets, a firing sequence z = BaBcEaBbEcEb leads from the mark-
ing {s1, s2} to the marking {s4, s5}. Moreover the sequence z is an interval
sequence, and by Theorem 1, the total order �z uniquely represents the interval
order <N

4, as intuitively expected (skip the net Pz at this moment).

6 Process Semantics for Elementary Nets with Inhibitor
Arcs

This section comprises the main results of [14,16,17] as our approach presented
in the next section is partially based on them.

One of the essential parts of concurrent processing is that many different
system runs/executions are equivalent, but this aspect is difficult to capture
when only operational semantics is considered. Abstractions of these equivalent
executions are often called concurrent histories or non-sequential execution his-
tories, and dependent on the assumptions about systems and system runs, are
usually modeled by partial orders [9,22], stratified order structures or interval
order structures [12,14,17].
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Fig. 4. An example of an inhibitor net that generates only interval orders. Our method
results in the process Pz and the interval order �z, which is isomorphic to <N

4 of
Figure 2, while all techniques based on either firing sequences or firing step sequences
(c.f. [4,14,16,17,20,25,27]) produce empty set.

For the net N from Figure 2, the runs <N
2, <

N
3, and <N

4 are equivalent as in all
cases we have event c no later than event a, so N has two concurrent histories
involving all three events a, b, c. In <N

1, a and b occur before c, so <N
1 belongs to

a different concurrent history4 (see [10,11] for details).
In the case of Petri nets, with or without inhibitor arcs, occurrence nets

are usually used to capture non-sequential execution histories. For nets without
inhibitor arcs, an occurrence net generated by a firing sequence or a step sequence
x, is just a net unfolding caused by the execution of x (c.f. [9,17,24]).

However, it was shown in [14,17] that for nets with inhibitor arcs, plain
unfolding does not work, since the absence of a token, unlike the presence of a
token, cannot be tested. Hence we have to replace inhibitor arcs by appropriate
activator arcs. The idea is that an inhibitor arc which tests whether a place is
empty, can be simulated by an activator arc which tests whether its complement
place is not empty. To do such simulation, each inhibitor place must have its
complements, if it does not we can always add it, as it does not change the

4 A concurrent history is a set of runs that agree on causality invariants as “always
earlier than” or “always not later than” (see [10,11] for formal arguments).
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net behaviour (c.f. [9,14,17,22]). This construction is illustrated in Figure 3, the
upper part for a firing step sequence and the lower part for a firing sequence.

Definition 7 ([9]). Places p, q ∈ P are complementary (p is a complement
of q and vice versa) if p �= q, •p = q• and p• = •q, and |Cinit ∩ {p, q}| = 1. 	


If p and q are complementary we will write p = q̃, q = p̃, and clearly p = ˜̃p, q = ˜̃q.
We may now assume that every inhibitor place has its complement, i.e. (p, t) ∈

I =⇒ p̃ ∈ P . We will call the nets with this property complement closed. This
idea is illustrated in Figure 3 where the nets N and N are not complement closed,
so they are extended to CN and CN . Clearly the behaviours of N and CN, and of
N and CN are identical (see [17]) for details.

We will now provide formal definitions of processes for elementary nets with
inhibitor arcs N = (P, T, F, I, Cinit), first generated by a firing sequence y =
t1 . . . tn, ti ∈ T and next generated by a step sequence x = U1 . . . Un, Ui ⊆ T .

We define the processes generated by y = t1 . . . tn as Py = Nn, where Nn

is the last activator occurrence net in the sequence N0, . . . , Nn. Each net Nk =
(Bk, Ek, Rk, Ak), 0 ≤ k ≤ n, is a net with activator arcs that model an unfolding
of the net N by the sequence t1 . . . tk. The first three components of Nk correspond
to places P , transitions T , and flow relation F of the underlying net N, while
Ak ⊆ Bk × Ek is the set of activator arcs derived from inhibitors arcs I.

The elements of Bk ∪ Ek are of the form ri, where r ∈ P ∪ T and i ≥ 1.
We will denote l(ri) = r. Moreover, for every r ∈ P ∪ T and k ≤ n, Δr is the
number of nodes of Nk−1 labelled by r (i.e. the number of α ∈ Bk ∪ Ek such
that l(α) = r.)

Algorithm 1 (Constructing Py, for y = t1 . . . tn, [14,17])

– Step 0. N0 = ({(p1) | p ∈ Cinit}, ∅, ∅, ∅)
– Step k. Given Nk−1, we define Nk in the following way:

• Bk = Bk−1 ∪ {p1+Δp | p ∈ t•k}
• Ek = Ek−1 ∪ {t1+Δtk

k }
• Rk = Rk−1 ∪ {(pΔp, t1+Δtk

k ) | p ∈ •tk} ∪ {(t1+Δtk
k , p1+Δp) | p ∈ t•k}

• Ak = Ak−1 ∪ {(p̃Δp̃, t1+Δtk
k ) | p ∈ ◦tk} 	


The above algorithm is illustrated in Figure 3. When it is applied to the net
N (actually to CN ) with the (standard) firing sequence y = BaBcEaEcBbEb
it results in the process Py. When applied to the net N (actually CN) with the
firing sequence x = cab, it results in the process Px. Intuitively, Py is a stan-
dard unfolding of AN according to BaBcEaEcBbEb, while Px is a standard
unfolding of AN according to cab. The net N is a standard elementary net with
inhibitor arcs, and the only additional assumption is that the transitions are
instantaneous, so Algorithm 1 can be applied.

An extension of Algorithm 1 to the case of firing step sequence x = U1 . . . Un

(first proposed in [14]) is rather straightforward.
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Algorithm 2 (Constructing Px for x = U1 . . . Un, [14,17])

– Step 0. N0 = ({(p1) | p ∈ Cinit}, ∅, ∅, ∅)
– Step k. Given Nk−1, we define Nk in the following way:

• Bk = Bk−1 ∪ {p1+Δp | p ∈ U•
k }

• Ek = Ek−1 ∪ {t1+Δt | t ∈ Uk}
• Rk = Rk−1 ∪ {(pΔp, t1+Δt) | t ∈ Uk ∧ p ∈ •t} ∪

{(t1+Δt, p1+Δp) | t ∈ Uk ∧ p ∈ t•}
• Ak = Ak−1 ∪ {(p̃Δp̃, t1+Δt) | t ∈ Uk ∧ p ∈ ◦t} 	


The upper part of Figure 3 illustrates Algorithm 2. When it is applied to the
net N (actually CN) with the step sequence x = {a, c}{b}, it results in the process
Px. Note that the step sequence {c}{a}{b} also generates the same process Px.

The occurrence nets generated by both algorithms can be viewed as partial
unfoldings of the original net such that each event in the process represents a
transition occurrence of the original net while each condition corresponds to the
presence of a token in a place in the original net. If the original net does not
have any inhibitor arcs, the generated occurrence nets are the same as these for
standard elementary nets (c.f. [14,22]).

We will now show how processes, i.e. occurrence nets, can be interpreted
as concurrent histories. When a process Py is generated from a firing sequence
y = t1 . . . tn using Algorithm 1, Py can be interpreted as some partial order
�y. The partial order �y is obtained by first transforming Py into a directed
acyclic graph �

init
y using the rules described in the upper part of Figure 5 and

then constructing a transitive closure of �
init
y (i.e. �y = (�init

y )+, see [17] and
Definition 8 in the next section for details).

When a process Px is generated from a firing step sequence x = A1 . . . An

using Algorithm 2, the process Px can be interpreted as some stratified order
structure Sx = (En,≺x,�x) (where En is from the last step of Algorithm 2).
The stratified order structure Sx is obtained by first transforming Px into a
tuple (En,≺init

x ,�init
x ) using the rules described also in the upper part of Figure

5 and then constructing ♦-closure (i.e. a transitive closure for stratified relational
structures [14]) of (En,≺init

x ,�init
x ). Due to the lack of space we will not discuss

this construction in detail, the reader is referenced to [11,14,17,18].
Both constructions are illustrated in Figure 5. Note that Pcab = P{c}{a}{b},

but �cab is a partial order, while S{c}{a}{b} is a stratified order structure.
The partial order �y defines a concurrent behaviour comprising all total

extensions of �y (this includes the total order defined by the sequence y). For
the case from Figure 5, �cab is a total order, equal to <N

2 of Figure 2 so its
only total extension is <N

2. Note that concurrent history histN2, when restricted
to total orders, is equal to {<N

2}.
The stratified order structure Sx = (En,≺x,�x) defines a concurrent

behaviour comprising all stratified order extensions of Sx. For the case from
Figure 5, S{a,c}{b} = S{c}{a}{b} and after identifying a1 with a, b1 with b, and
c1 with c, strat(S{a,c}{b}) = {<N

2, <
N
3}, where <N

2 and <N
3 are these from Figure

2. If we restrict the concurrent history histN2 to stratified orders only, it is equal
to {<N

2, <
N
3}.
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Fig. 5. An example of deriving a partial order and a stratified order structure from an
activator occurrence net

However, neither approach from this section can generate the interval order
<N

4 nor any abstract structure that comprises it.

7 Interval Processes and Interval Order Structures

This section contains the second part of our contribution.
We will now introduce interval processes and show how they represent interval

runs/executions as well as how they relate to interval order structures.
Let N = (P, T, F, I, Cinit) be an ENI system, N = (P, T ,F , I, Cinit) be its

interval representation and let x = α1 . . . αn be an interval firing sequence of N .
Since N is just another inhibitor nets, we can use Algorithm 1 (with CN ) and
produce a process (an occurrence net) Px generated by x = α1 . . . αn. Assume
that Px = Nn = (Bn, En,Rn,An), where Nn is the last step of Algorithm 1.
We can formally define a partial order �x derived from the process Px in the
following way.

Definition 8. Let Px = Nn = (Bn, En,Rn,An) be the process generated by x.
We define a directed acyclic graph �

init
x and a partial order �x, both on

En as follows:

1. For all α, β ∈ En,
α �

init
x β ⇐⇒ α(Rn ◦ Rn)β ∨ α(Rn ◦ An)β ∨ α(A−1

n ◦ Rn)β
2. For all α, β ∈ En, α �x β ⇐⇒ α(�init

x )+β 	


The above construction is illustrated in Figure 5 (upper part illustrates (1)
of Definition 8, and Pcab produces �cab) and in Figure 6 (Px produces �

init
x ,

and �
init
x produces �x). In most cases many different x’s can generate the same
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process Px. The idea is that if Px = Py then x and y are different observations
of the same behaviour, so they are equivalent (w.r.t. concurrent behaviour) c.f.
[17,18]. Recall that for every sequence x, �x denotes a total order defined by x
(see Notation 1(3)).

Lemma 1. For each interval firing sequence x, total(�x) = {�y | Px = Py}.
Proof. (sketch) First we show �x ∈ total(�x). Let x = α1 . . . αn. Let P i

x

denote a process defined by the preffix α1 . . . αi of x, and let (�init
x )i denote a

directed acyclic graph generated by P i
x. By Algorithm 1, (�init

x )i+1 is derived
from (�init

x )i by adding αi+1, but we always have ¬(αi+1(�init
x )i+1αk) for all

k ≤ i. Hence �x is an extension of �x, so �x ∈ total(�x). Since Px = Py implies
�x = �y, then {�y | Px = Py} ⊆ total(�x).

Suppose � ∈ total(�x). Let y ∈ (En)∗ such that � = �y. Note that
y = β1 . . . βn, where β1, . . . , βn is a permutation of α1, . . . , αn. We can show
by induction on the length of x that Px = Py. The proof is straightforward but
lengthy and is omitted. Hence total(�x) ⊆ {�y | Px = Py}. 	


Lemma 1 states that total orders defined by all sequences that can generate a
process (occurrence activator net) Px are just total extensions of a partial order
�x that is defined by the process Px.

We will now define formally interval orders and interval order structures
generated by interval firing sequences of N .

Definition 9. Let x ∈ InSeq(T ∗), Px = Nn = (Bn, En,Rn,An) be the process
generated by x, and let Ên = {ti | Bti ∈ En ∧ Eti ∈ En} ⊆ T̂ .
We define the relations �x,≺x,�x on Ên, and the tuple Sx as follows:

1. ai �x bj df⇐⇒ Eai �x Bbj,
2. ai ≺x bj df⇐⇒ Eai

�x Bbj,
3. ai �x bj df⇐⇒ Bai

�x Ebj, and
4. Sx = (Ên,≺x,�x). 	


Corollary 1. 1. The relation �x is an interval order.
2. The tuple Sx is an interval order structure.

Proof. By Theorem 1 we have (1) and by Theorem 2 we have (2). 	

The interval order structure Sx will be called induced by process Px.

Each Px is generated from N by an interval sequence x and each interval
sequence x defines an interval order �x. The set of all interval orders that can
be derived from Px or �x is defined as follows.
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Fig. 6. An example of a process Px, the directed acyclic graph �
init
x , the partial order

�x, the relations ≺x, �x and the interval order structure Sx = ({a1, b1, c1},≺x,�x).
The (interval representation) net here is N from Figure 3, and x = BaBcEaEcBbEb.

Definition 10. For each interval firing sequence x, we define,

1. interv(�x) = {�y| �y ∈ total(�x)}.
2. interv(Px) = {�y| Px = Py}. 	


The main result of this section states that for every interval firing sequence
x, an interval process Px and interval order structure Sx describe the same
concurrent behaviour, so they can be seen as equivalent concepts.

Theorem 3. For each interval firing sequence x,

interv(Sx) = interv(�x) = interv(Px).

Proof. First we prove interv(�x) = interv(Px). By Lemma 1, we have
total(�x) = {�y | Px = Py}. Hence �y∈ interv(�x) ⇐⇒ �y ∈ total(�x) ⇐⇒
Px = Py

⇐⇒ �y ∈ interv(Px). Thus interv(�x) = interv(Px).
We will now show interv(Sx) = interv(�x). First we will prove interv(Sx) ⊆

interv(�x). Let �y∈ interv(�x), i.e. Px = Py. Consider the relation ≺x. We have:

ai ≺ bj Def.9(2)⇐⇒ Eai
�x Bbj Px=Py⇐⇒ Eai

�y Bbj Lem.1=⇒ Eai �y Bbj Def.9(1)⇐⇒ ai �y bi.

Hence �y is an extension of ≺x. For the relation �x we have: ai � bj Def.9(3)⇐⇒
Bai

�x Ebj Px=Py⇐⇒ Bai
�y Ebj Lem.1=⇒ Bai �y Ebj ⇐⇒ ¬(Ebj �y Bai)

Def.9(1)⇐⇒
¬(bj �y ai) ⇐⇒ ai ��

y bj , so �y extends �x too. Hence �y∈ interv(Sx).
Now we show interv(Px) ⊆ interv(�x) (sketch). Let �∈ interv(Sx) and let

�� be a total order representation of � via Theorem 1, i.e. ai � bj ⇐⇒
Eai �� Bbj . Let x� ∈ En be the sequence representation of the total order ��,
i.e. �� = �x� , where �x� is the total order generated by x�. By Definition



94 M. Alqarni and R. Janicki

9, �=�x� . To show that �∈ interv(�x), we have to prove that Px = Px� .
Since �∈ interv(Sx), and Sx = (En,≺x,�x), then ≺x⊆� and �x⊆��. We
will show that �� ∈ total(�x). To prove this we will show that for all α, β ∈
{Bai, Eai, Bbj , Ebj} we have α �x β =⇒ α �� β. First note that by Theorem
2(1) and Theorem 1(1) we already have Bai

�x Eai, Bbj
�x Ebj , Bai �� Eai

and Bbj �� Ebj , so only four cases remain. We will provide the proof to one case
only, as the proofs of other cases are structurally similar. Consider α=Eai and

β =Bbj . We have Eai
�x Bbj Def.9(2)⇐⇒ ai ≺x bj =⇒ ai � bj Th.1⇐⇒ Eai �� Bbj .

Hence �� ∈ total(�x). Similarly for the remaining three cases. 	

This means the relationship between interval processes and interval order

structures is the same as that between stratified processes and stratified order
structures described and analyzed in [11,17,18]. Figures 3 and 6 illustrate
the results presented above. Figure 3 illustrates the entire procedure, but
does not gives the details of the step from Py to Sy for a given sequence
y = BaBcEaEcBbEb. Figure 6 illustrates the relationships between Px, �

init
x ,

�x and Sx = (Ên,≺x,�x), for a given x = BaBcEaEcBbEb and the net
N from Figure 3. Note that the relationship from Figure 6 is valid for any
x ∈ {BaEaBbEbBcEc, BcEcBaEaBbEb, BaBcEcEaBbEb, BaBcEaEcBbEb,
BcBaEcEaBbEb, BcBaEaEcBbEb, BaBcEaBbEbEc, BaBcEaBbEcEb,
BcBaEaBbEbEc, BcBaEaBbEcEb}. Also for each x as above, interv(Px) =
interv(Sx) = {<N

2, <
N
3, <

N
4}, where <N

2, <
N
3, <

N
4 are these of Figure 2 (when

a1, b1, c1 are replaced by a, b, c).
The net Nio from Figure 4 can generate only interval behaviours. It gener-

ates neither sequences nor step sequences that start from the marking {s1, s2}
and end at {s4, s5}. This also means that the nets Nio, CNio, and ANio gen-
erate no appropriate process, if the process derivation is based on a firing
sequence or firing step sequence, and this includes all techniques presented in
[4,14,16,17,20,25,27] and all their modifications. On the other hand, the inter-
val representation of Nio, the net Nio generates interval sequences, for example
z = BaBcEaBbEcEb, that lead from {s1, s2} to {s4, s5}. The interval sequence
z generates the process Pz, which in turn describes the interval order �z which
equals <N

4 (again with a1, b1, c1 replaced by a, b, c). Since <N
4 is the only observa-

tion generated by Nio, we have Sz = ({a1, b1, c1},≺z,�z), where ≺z = <N
4 and

�z = (<N
4)

�, and interv(Pz) = interv(Sz) = {<N
4}.

We will now show that the model based on the concept of step sequences and
stratified processes can be defined in terms of interval processes with identical
results, which could be seen as a validation of our approach.

Let N = (P, T, F, I, Cinit) be an ENI system, N = (P, T ,F , I, Cinit) be its
interval representation, x = A1 . . . An be a firing step sequence of N, and let
ifs(x) be the set of interval firing sequences of N corresponding to x, i.e.

ifs(x) = {z | z = x1 . . . xn, xi ∈ ABE
i , for i = 1 . . . n}.

Let x ∈ ifs(x) and assume that length(x) = k. Let Px = Nn =
(Bk, Ek, Rk, Ak) be a process derived from N by using Algorithm 2 and step
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firing sequence x, and let Px = Nn = (Bk, Ek,Rk,Ak) be a process derived
from N by using Algorithm 1 and interval firing sequence x. We also define
strat(Px) = {<y| Px = Py} (c.f. [17]), and for each set X, let strat(X) denote
the set of all stratified orders on X. The followig result has been proved in [14].

Theorem 4 ([14,17]). For every firing step sequence x,

strat(Px) = strat(Sx),

where Sx is a stratified order structure derived from Px. 	

The last two results of this paper show that for firing step sequences, i.e. when

runs are represented by stratified orders, standard stratified order processes of
[14,17] and our interval processes produce the same results.

Lemma 2. For each firing step sequences x, y and each x ∈ ifs(x), y ∈ ifs(y),
we have

Px = Py ⇐⇒ Px = Py.

Proof. (Sketch) By induction on the number of steps of x, using the specific
properties of Algorithms 1 and 2, and the reasoning similar to the one used in
the proof of Proposition 2. 	

Theorem 5. For every firing step sequence x, we have

strat(Px) = interv(Px) ∩ strat(En).

Proof. (Sketch) Let < ∈ strat(Px). This means there is a step sequence y =
B1 . . . Br such that < = �y, where �y is a stratified order defined by y, and Px =
Py. By Lemma 2, Px = Py, so <x ∈ interv(Px), and by Proposition 2, �x = �y

(where �x is an interval order defined by the sequence x), and �x ∈ strat(En),
so strat(Px) ⊆ interv(Px) ∩ strat(En). Let < ∈ interv(Px) ∩ strat(En). This
means there is an interval sequence z such that �z represents < via Theorem
1 and Pz = Px. Since < is a stratified order, by Proposition 2 there is a set
of steps B1, . . . , Br such that z = z1 . . . zr and zi ∈ BBE

i , i = 1, . . . , r. Define
z′ = B1 . . . Br. By Proposition 2 again, < = <z′ , where �z′ is the stratified order
defined by z′. Clearly z′ = z. By Lemma 2(2), Px = Pz′ , so �z′ ∈ strat(Px).
Hence interv(Px) ∩ strat(En) ⊆ strat(Px). 	


The last two results are partially illustrated by the far right part of Figure
3. For x = {a, c}{b}, we have ifs(x) = {BaBcEaEcBaBb, BaBcEcEaBaBb,
BcBaEaEcBaBb, BcBaEcEaBaBb}, so y = BaBcEaEcBaBb ∈ ifs(x). We
can show by inspection that interv(Py) = {<N

2 , <N
3 , <N

4 } and interv(Py) ∩
strat({a1, b1, c1}) = {<N

2 , <N
3 }. Moreover, using the results of [14,17], we may

show that strat(Px) = {<N
2 , <N

3 }, as required by Theorem 5.
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8 Final Comments

In this paper we have provided both an interval order operational semantics and
an interval process semantics for Petri nets with inhibitor arcs. From this interval
process semantics we then derived an interval ‘true concurrency’ semantics in
terms of interval order structures.

We started with transforming a given net N with inhibitor arcs into another
net N that is called the interval interpretation of N. We assume that all
behavioural properties of N are defined by appropriate behavioural properties
of N . Then we define both operational and process semantics of N , and show
how an interval order structure that characterizes N is derived from a given
interval process of N , i.e. its interval representation. When operational seman-
tics is restricted to step sequences, or stratified orders, our model produces the
same results as that of [14,17]. It is possible to derive interval processes directly
from N, without using N or explicit complementary places, but some intuition
is then lost, so we do not explore this issue here. Last, but not least, we would
like to point out that some nets with inhibitor arcs produce only pure interval
behaviours, i.e. they generate neither firing sequences nor firing step sequences,
only interval firing sequences. The net Nio from Figures 2 and 4 is one of such
nets. If observations are only represented as step sequences, then Nio generates
no behaviour at all. However, if runs are represented as interval orders, then
it generates an observation (system run) that is exactly the interval order <N

4.
This cannot be modeled by standard semantics so behaviours of such nets can
only be analyzed using our model. Concurrent systems are known for generating
extremely complex behaviours, so there is a need for tools that can adequately
model all of them, even if some do not occur often.

While adding activator arcs to our model is almost obvious (we are using
them to represent processes anyway), an extension to general Place/Transition
nets (as [16] did with the model of [14,17]) is a serious future research project.

Acknowledgments. We would like to thank the anonymous referees, Raymond Dev-
illers and Adam Lenarčič for their comments and useful suggestions.
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Abstract. Resiliency is often considered as a synonym for fault-
tolerance and reliability/availability. We start from a different definition
of resiliency as the ability to deliver services when encountering unex-
pected changes. Semantics of change is of extreme importance in order to
accurately capture the real behavior of a system. We propose a resiliency
analysis technique based on stochastic reward nets that allows the mod-
eler: (1) to reuse an already existing dependability or performance model
for a specific system with minimal modifications, and (2) to adapt the
given model for specific change semantics. To automate the model analy-
sis an algorithm is designed and the modeler is provided with a formalism
that corresponds to the semantics. Our algorithm and approach is imple-
mented to demonstrate the proposed resiliency quantification approach.
Finally, we discuss the differences between our approach and an alter-
native technique based on deterministic and stochastic Petri nets and
highlight the advantages of the proposed approach in terms of semantics
specification.

Keywords: Resiliency · Stochastic reward nets · Change semantics ·
Deterministic and stochastic petri nets

1 Introduction

In complex systems, a notion of built-in resiliency allows one to face the uncer-
tainties that can happen beyond the normal behavior of the system originally
envisioned during the design stage. Such uncertainties could be related to unex-
pected situations or sudden events that affect the way the system operates.
Moreover, legacy systems could undergo redesign in order to adapt to new
requirements and to include new functionalities.

Nevertheless, quantifying the resiliency can be a complex task. One of the
main issues is the lack of systematic approach for quantifying resiliency met-
rics. The term resiliency is used in different fields and its definition is diverse
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[1–3]. Many researchers consider resiliency as a synonym for fault-tolerance
and reliability/availability. However, fault tolerance benefits can be captured by
traditional dependability measures, i.e., reliability, availability, maintainability,
safety. Sterbenz et al. [4] defined resiliency as the combination of trustworthi-
ness (dependability, security, and performability) and tolerance (survivability,
disruption tolerance, and traffic tolerance).

In our work, we start from such a definition considering resiliency as the abil-
ity of a system to carry out its work when facing sudden and unexpected changes.
In particular, we propose an approach for the analytical modeling of resiliency
considering changes in the operating conditions of systems. The changes we are
referring to here are beyond the envelope of system configurations already con-
sidered during the design stage and thus beyond fault tolerance. Examples can
be workload variations, (deliberate) changes in the number of available resources,
system functionalities that can be enabled/disabled according to specific condi-
tions or necessities, and so on.

This paper presents a formalism for quantifying the resiliency of a system
via stochastic reward nets (SRNs) [5]. Our contributions are summarized below.

(1) We formally present a resiliency quantification technique based on the
notion of change. A classification of changes is provided and the procedure to
map the changes in the system behavior onto the changes in the corresponding
SRN model is shown.

(2) We highlight the importance of introducing the correct semantics of the
change that the system experiences on the SRN model. A novel approach is
described showing how various semantics can be associated with a given change.
This approach shows that even with the same output measure of interest (e.g.,
the average number of requests in the queue) different numerical results are
obtained based on the change semantics.

(3) We introduce the modeling formalisms namely changing functions and
behavioral rules allowing the modeler to force the correct change semantics on
the SRN model.

(4) We present two algorithms that can be easily used by practitioners in
order to model resiliency-related behaviors. In contrast to the traditional view
of synonymizing resiliency with dependability, we show how resiliency can be
quantified also with respect to performance measures.

(5) We implemented the algorithms in the Stochastic Petri Net Package
(SPNP) [6] and show numerical results obtained by applying them to a sim-
ple running example based on a M/M/1/r queue.

(6) We discuss the differences between our technique and a possible alter-
native based on the use of deterministic and stochastic Petri nets (DSPNs),
showing the advantages of our technique from the modeler point of view.

The rest of the paper is organized as follows. In Section 2, we report the
definition of change on which our notion of resiliency is grounded, formalize
the problem, and propose a running example that will be used throughout the
paper. In Section 3, we address the challenges mentioned in Section 2, and present
our approach for resiliency quantification using SRNs. In Section 4, we formally
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describe the proposed algorithm while in Section 5 we discuss differences between
our approach and a DSPN based approach. Related research is presented in
Section 6. Finally, in Section 7, we provide concluding remarks and discuss future
work.

2 Resiliency Quantification

This section presents our definition of change followed by the problem statement.
We also present a running example that will be used subsequently to demonstrate
the proposed approach.

2.1 Definition of Change

One of the key points of our proposed resiliency analysis strategy is the concept
of change. In fact, different aspects have to be taken into account by the modeler
when modeling the change a system is undergoing. First of all, it is possible to
classify changes into two different sets: unpredictable changes and programmed
changes. Unpredictable changes are the ones that are beyond the system admin-
istrator’s control. They happen in an asynchronous manner and are consequences
of external factors on the considered system. Programmed changes are volun-
tarily applied by the system administrator in order to adapt the system to new
conditions. They are usually planned and thus synchronous. Consider a change
which models the variation in the number of system resources. Then, an example
of unpredictable change could be the failure of a set of system resources caused
by an electrical outage. In contrast, an example of programmed change could be
the planned power outage of a set of computing resources, e.g., for the newly
emerged purpose of energy saving. Note that, from the system’s perspective,
programmed change is still an example of sudden change that is not considered
within the design envelope. This is because the change plan can be made during
the operational time and not during the design time.

In some cases the same change can exhibit different semantics. For example,
if the change is related to the powering-off of a certain number of computing
resources, two different behaviors can be considered, whether each resource can
complete its work before shutdown or not. For this reason, the modeler has to
clearly specify such semantics in order to quantify the resiliency correctly. In fact,
in the powering-off example, if the resources have to wait for the work completion
before shutdown, a certain time is elapsed before the change is completed (i.e., all
the selected resources have been powered-off) while, in the other case, the change
could be considered instantaneous. Thus, we can also classify changes considering
their duration. The changes that can be applied instantaneously will be termed
as immediate changes while we will refer to gradual changes when the change
duration cannot be neglected. As clarified later in more details, associating a
semantics to the considered changes is important so that the model is realistic
and accurate.



An SRN-Based Resiliency Quantification Approach 101

2.2 Problem Formulation

Following the definitions in Section 2.1, we formalize the resiliency analysis app-
roach. Let Tc denote the time at which the change is initiated and d denote the
duration of the change (in case of immediate changes d = 0). We are interested
in the analysis of the system behavior in the time interval [0,∞) starting from
the knowledge of:

– the system configuration before the change, i.e., in the interval [0, Tc);
– the (dynamic) system configuration during the change, i.e., in the interval

(Tc, Td) (that is particularly meaningful only in the case of gradual changes);
– the new system configuration after the change, i.e., in the interval (Td,∞);

where Td = Tc + d.
It is worth noting that, in the case of programmed changes, the time instant

Tc is a deterministic quantity. On the other hand, in the case of unpredictable
changes, given that we are interested in analyzing the system behavior at the
change occurrence, we can force the change to happen without introducing any
stochastic aspect, still considering Tc as a deterministic quantity. In fact, if the
system has already reached a steady state, its evolution in time after the change
does not depend on the actual time instant at which the change occurs. Thus,
the modeler can choose the value of Tc as it is more convenient for the analysis.
Note that this is not true in the case in which the change occurs when the system
has not yet reached a steady state. However, this case is out of the scope of this
paper.

On the contrary, the time instant Td is intrinsically a stochastic quantity
because the completion of the change depends on the system internal behavior
which can not be deterministic. Since no other change is applied to the system
after time instant Tc, the analysis in the intervals (Tc, Td) and (Td,∞) can be
performed as a single step (i.e., as a single analysis in the interval (Tc,∞)). Yet,
it is important to remark that, during the analysis in the interval (Tc, Td), the
change semantics have to be enforced in order to increase the accuracy of the
obtained results with respect to the real behavior of the system.

2.3 Running Example

In order to analyze all the different aspects related to resiliency quantification,
consider a simple system that will be used as a running example. The system
we wish to analyze is an M/M/1/r queue with a finite buffer size of r − 1
(as shown in Fig. 1(a)). When the number of requests present in the system
reaches r (r−1 requests in the queue plus one being served), further requests are
dropped. We are interested in analyzing the system behavior when the buffer size
is reduced. Specifically, we consider the case in which, at a certain time instant,
the maximum number of requests in the system decreases from the value r to
r∗. Two possible change semantics can be easily identified:



Fig. 1. The running example

– dropping semantics - when the change is applied, if there are more than
r∗−1 customers waiting in the queue, all the excess requests are immediately
dropped (see Fig. 1(b));

– conservative semantics - when the change is applied, if there are more than
r∗−1 customers waiting in the queue, the excess requests are still maintained
in the queue waiting for the service. New requests will be enqueued only when
the number of waiting customers becomes lower than r∗ − 1 (see Fig. 1(c)).

Observe that the dropping semantics corresponds to an immediate change. In
fact, at the time the change is applied, the queue length is immediately reduced
and the system starts behaving as the new configuration (an M/M/1/r∗ queue).
On the other hand, the conservative change corresponds to a gradual change
leaving the system in an intermediate configuration until the number of cus-
tomers in excess are served. At the time the change is applied, the queue length
is preserved and the system cannot be represented neither as an M/M/1/r queue
(new requests are rejected when the queue length is less than r − 1 but greater
than r∗ − 1) nor as an M/M/1/r∗ (as the temporary queue length could be
greater than r∗ − 1).

3 Using SRN for Resiliency Quantification

The notion of resiliency discussed in the previous section can be analyzed using
different formalisms that are able to opportunely represent the system as well as
to model its behavior. Here, we focus on SRNs. In this section, we first informally
discuss how SRNs can be used to perform a resiliency analysis. Then, we describe
an SRN model for our running example trying to highlight how the change
semantics can be enforced to the real behavior of the system. Finally, we present
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a formal description of how a resiliency analysis can be conducted through the
use of SRNs.

3.1 Resiliency Analysis though SRNs

SRNs are an extension of generalized stochastic Petri nets (GSPNs), where every
tangible marking of the net can be associated with a reward rate thus facilitating
the computation of a variety of performance measures. Key features of SRNs are:
(1) each transition may have an enabling function (also called a guard) so that a
transition is enabled only if its marking-dependent enabling function is true; (2)
marking dependent arc multiplicities are allowed; (3) marking dependent firing
rates are allowed; (4) transitions can be assigned different priorities; (5) besides
traditional output measures obtained from a GSPN, such as throughput of a
transition and mean number of tokens in a place, more complex measures can
be computed by using reward functions.

From a resiliency point of view, the notion of change in the system operating
conditions has to be mapped onto the corresponding changes in the SRN model.
One of the advantages of our approach is that the modeler is allowed to reuse
an existing SRN model to adapt it to the resiliency analysis and to the specific
change semantics with minimal modifications. The modeler is formally guided
by providing such a semantics without having to extensively modify the SRN
model. We identified the following changes that could be used by the modeler
to represent resiliency-related behaviors:

– Variation in the rate of a transition (e.g., to model a change in the system
workload or in the system service rate).

– Variation in the total number of tokens in a set of places (e.g., to model
resource failure/repair or power-off/power-on).

– Variation in the guard function of a transition (e.g., to model the enforce-
ment/disablement of specific system tasks or functionalities).

– General topological changes in the net (e.g., to model complex changes
involving several system components).

From an SRN model point of view, such changes can be classified as struc-
tural and non-structural changes. Non-structural changes are those that keep
the reachability graph of the SRN unaltered. For example, a variation in the
rate of a transition does not affect either the number of states or the number of
state transitions. Structural changes are those that cause the reachability graph
of the SRN to be significantly modified, in terms of number of states and/or state
transitions. In fact, dropping of states or creation of new states (either transient,
recurrent, or both) can be caused by the enforcement of a change in the SRN
model. For example, an increase in the total number of tokens in a set of places
can definitely cause an increase in the number of states in the corresponding
reachability graph.
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Fig. 2. An SRN model of the finite buffer queue running example

3.2 An SRN Model for the Running Example

For the running example, a corresponding SRN model is provided in Fig. 2
where: i) the exponentially distributed transition Tarr (with rate λ) represents
the arrival process; ii) the exponentially distributed transition Tser (with rate
μ) models the service process; iii) place Pqueue represents the system, each token
in such a place modeling a request being served or waiting in the queue; iv) the
immediate transition tdrop, along with its associated guard function, models the
dropping of new incoming requests in the case the buffer is full.

Assume that the resiliency analysis needs to be conducted by reducing the
maximum number of requests in the system from 4 to 2. In the SRN model, after
setting the parameter r to 4 and 2, we obtain the two (reduced) reachability
graphs1 depicted in Fig. 3 where the label associated with each state represents
the number of tokens in place Pqueue. Such reachability graphs model the system
evolution before and after the change. At the change occurrence, a mapping from
one reachability graph to another has to be carried out. This can be done by
computing the state probabilities after the change as a function of the state
probabilities before the change. We call this operation probability mapping and
we represent it in Fig. 3 with circle-headed arrows connecting the state of the
reachability graph before the change with the state of the reachability graph
after the change. In particular, in Fig. 3 the probability mapping related to the
dropping semantics is reported. In this case, since the requests are immediately
dropped, the probability to have two requests in the system immediately after
the change is given by the sum of the probabilities to have two, three, or four
requests immediately before the change. This is graphically depicted in Fig. 3
through a many-to-one mapping from states S2, S3, and S4 in the reachability
graph before the change and the state S′

2 in the reachability graph after the
change. With respect to the other states, not directly affected by the change, a
one-to-one mapping has to be performed.

The probability mapping is not a straightforward operation as it needs to
label, search, and recognize corresponding states in the two reachability graphs.

1 In rest of the paper, we will use to the term reachability graph to refer to the reduced
reachability graph including tangible markings only.
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GbfGbf GafGaf

Fig. 3. Reachability graphs underlying the SRN model of Fig. 2 in the case of dropping
semantics. Each state is labeled with the number of tokens in place Pqueue ([#Pqueue]).

Hence, an automatic procedure able to perform this operation is of interest.
Moreover, some specific change semantics can not be easily obtained only by
considering the reachability graphs before and after the change and by mapping
the corresponding probabilities. In fact, in order to force the conservative seman-
tics in our running example, the reachability graphs depicted in Fig. 4 should be
obtained, where a set of transient states is present. Such a set implements the
gradual change behavior of the system dealing with the situations in which three
or more requests are already present in the system when the change occurs. In
such situations, according to the conservative semantics, new requests should not
be accepted but the customers already present in the system should be served.
This behavior is implemented in the reachability graphs of Fig. 4 by disabling
event Tarr and enabling event Tser in states S′

3 and S′
4. It is worth noting that

this set of (transient) states would not be generated by simply analyzing the
SRN model of Fig. 2 after the change but they require an ad-hoc procedure
able to discover them. Moreover, such states could have a direct impact on the
probability mapping. In fact, in this case only one-to-one mappings are required
since the two reachability graphs have the same states.

Of course, based on the modeler’s requirements, other ways to implement
the same change semantics in the SRN model of Fig. 2 could be followed. Nev-
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GbfGbf GafGaf

G′
afG′
af

Gt
afGt
af

Fig. 4. Reachability graphs underlying the SRN model of Fig. 2 in the case of con-
servative semantics. Each state is labeled with the number of tokens in place Pqueue

([#Pqueue]).

ertheless, the above discussion highlights the necessity for a formalization of a
resiliency analysis approach based on SRNs.

3.3 A Formalization

We formally describe how the problem formulated in Section 2.2 can be addressed
through the use of SRNs. Suppose that our system is modeled through an SRN
M which can be parameterized by two different sets of parameters Pbf and Paf

modeling the system behavior in the time intervals [0, Tc) and (Tc,∞), respec-
tively. This gives rise to two different underlying reachability graphs, Gbf (before
the change) and Gaf (after the change). While the graph Gbf can be obtained by
parameterizing M with the sets of parameters Pbf and by performing a reach-
ability graph exploration, the graph Gaf can be considered as composed by two
sub-graphs, G′

af and Gt
af . The graph G′

af can be obtained in a way similar to
Gbf by using the set of parameters Paf . The graph Gt

af is composed of transient
states only, representing the (dynamic) system behavior during the change, i.e.,
in the interval (Tc, Td), depending on the semantics associated with the change.
In general, Gt

af can be composed of disjoint sub-graphs but they will eventually
be connected to G′

af .
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The analysis of the system behavior in the interval [0,∞) with a change at
time instant Tc can be conducted by performing a transient analysis of Gbf in the
time interval [0, Tc) followed by a transient analysis of Gaf in the time interval
(Tc,∞). At the change occurrence (time instant Tc), the initial state probability
vector associated with graph Gaf , πaf (Tc), has to be initialized using the state
probabilities obtained at the end of the transient analysis in the previous time
interval, i.e., as a function of the probability vector associated with Gbf , πbf (Tc):

πaf (Tc) = f(πbf (Tc)). (1)

In the analysis thus formalized, we can highlight the following challenges:

– Starting from the change semantics, how do we obtain the reachability graph
Gt
af? Also, how do we link it to G′

af in order to obtain Gaf?
– How do we perform the probability mapping represented by eq. (1)?

In the following section, we propose two algorithms that implement the resiliency
quantification technique formalized above and address these challenges.

4 A Resiliency Quantification Technique

The proposed technique allows us to analyze structural and non-structural
changes that can produce very different state spaces before and after the change
(in terms of dropping of states or creation of new states). Moreover, it allows easy
representation of different change semantics by discovering new transient states
and automating the probability mapping. Our goal is to develop a new SRN-
based formalism that gives modelers a high-level tool to represent resiliency-
related behaviors in a user-friendly way. In rest of this section, we present such a
formalism for the case where states are dropped in SRN model after the change.
Nevertheless, the proposed approach and the algorithms can address the creation
of new states after the change as well.

Our approach takes as input an SRN model M along with two distinct sets
of parameters Pbf and Paf representing the behavior of the system before and
after the change, respectively. The modeler is allowed to specify a set of chang-
ing functions Cf and a set of behavioral rules Br in order to enforce a specific
semantics during the change. Changing functions operate on the markings of the
reachability graph before the change Gbf allowing the modeler to specify how
each state is instantaneously transformed at the change occurrence. In their more
general form, changing functions can be defined in a probabilistic way allowing
the modeler to associate a set of changes with different probabilities. Thus, for
each marking in Gbf more than one state could be obtained. Note that the mod-
eler is allowed to express changing functions in terms of high-level components
of the nets, e.g., places, transitions, tokens. For example, through a changing
function the modeler can force an instantaneous modification in the number of
tokens in a specific place. In fact, from a syntactic point of view, changing func-
tions are similar to guard functions. Thus, the modeler does not need to exactly
know the reachability graph of M, neither before nor after the change.
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Behavioral rules operate during the reachability graph exploration phase
allowing the modeler to inhibit the visit of specific states during the change
completion. Also in this case, such functions can be expressed in terms of high-
level components of the net. Through behavioral rules the modeler can force the
number of tokens in a place to remain constant, increase, or decrease. She can
also enable or disable specific transitions during the change completion.

Algorithm 1 implements the proposed technique starting from the already
generated reachability graphs parameterized by Pbf and Paf (Gbf and G′

af ,
respectively). Algorithm 1 produces the reachability graph after the change Gaf

and the corresponding probability vector at the change occurrence πaf . If neces-
sary, the reachability graph G′

af is integrated with the set of additional transient
states Gt

af on-the-fly and its initial probability vector πaf (Tc) is computed as
a function of the probability vector πbf (Tc). The algorithm scans each state
in Gbf (line 7). On line 9, each state s is modified according to the changing
functions and thus obtaining a set S of modified states with their associated
probabilities (we denote pm as the probability that the state s is modified into
the transformed state sm). Such states are searched in Gaf and if found their
probabilities are mapped (line 12). Note that probabilities are summed up (pres-
ence of the + = operator) because more than one state s ∈ Gbf can be trans-
formed into the same state sm ∈ Gaf . If such states are not found, function
FirstTangibleReachedSet(·) computes the probabilities of tangible set of states
T that are reachable in a single hop. Function FirstTangibleReachedSet(·)
loads the token configuration in M and starts a one-hop state space exploration
considering the set of parameters Paf (line 15)2 (we denote pn as the probabil-
ity that a tangible state sn is reached from a state sm in a single hop). Each
such state is searched in Gaf and if found its probability is set (lines 16-18).
Note that, also in this case the + = operator is used because more than one
state s ∈ Gbf can eventually be mapped to the same state sn ∈ Gaf . Otherwise,
for all the states an additional state space exploration is performed by function
Explore() that stops as soon as a state in Gaf is found (line 20). Then, the
newly generated reachability graph and its corresponding probability vector are
merged with Gaf and its probability vector πaf (lines 22-24). On line 13 and
18, the FirstTangibleReachedSet(·) and Explore(·) functions take the set of
behavioral rules as additional parameter. These behavioral rules force the explo-
ration avoiding the visit of specific states. If new states are found during the
exploration and need to be modified, the set of changing functions can also be
provided to the Explore(·) function as an additional parameter.

Considering the model in Fig. 2, changing functions and behavioral rules can
be used to force the desired behavior. For example, if the behavior represented
by the state space in Figure 3 needs to be forced, the modeler has to exploit the
following changing function:

if(#Pqueue > 2) then #Pqueue = 2

2 Loops of vanishing states are opportunely managed if present.
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Algorithm 1. apply change(·)
input : An SRN M, two sets of parameter Pbf and Paf , two reachability

graph Gbf and G′
af , a vector of probability at change occurrence πbf ,

a set of changing function Cf , a set of behavioral rules Br.
output: A reachability graph Gaf and a corresponding vector of

probability at change occurrence πaf .
1 begin
2 declare πaf ,πT : vector of probability;
3 declare Gaf ,GT : reachability graph;
4 declare S, T : set of couples <state, probability>;
5 πaf ←− 0;
6 Gaf ←− G′

af ;
7 foreach s ∈ Gbf do
8 S ←− ∅;
9 S ←− Modify(s, Cf );

10 foreach < sm, pm > ∈ S do
11 if sm ∈ Gaf then
12 πaf [sm]+ = pm · πbf [s];

13 else
14 T ←− ∅;
15 T ←− FirstTangibleReachedSet(sm,M,Paf ,Br);
16 foreach < sn, pn > ∈ T do
17 if sn ∈ Gaf then
18 πaf [sn]+ = pn · pm · πbf [s];

19 else
20 GT ←− Explore(sn,M,Paf ,Gaf , Cf ,Br);
21 πT ←− 0;
22 πT [sn]+ = pn · pm · πbf [s];
23 Gaf ←− Gaf ∪ GT ;
24 πaf ←− πaf ∪ πT ;

25 return Gaf ,πaf ;

where the notation #P indicates the number of tokens in place P . On the other
hand, if the behavior represented by the state space in Fig. 4 needs to be forced,
the modeler has to use the following behavioral rules that allow to specify that,
during the change, new requests are not accepted until the exceeding requests
are served:

– no immediate changes are allowed in number of tokens in place Pqueue;
– only decreasing variation in the number of tokens in place Pqueue are allowed;

At a net level, such behavioral rules correspond to disabling transitions tdrop and
Tarr and are taken into account by function Explore(·) during the reachability
graph generation. The procedure also forces the algorithm to skip those events
that are not compatible with the required behavior.
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In order to demonstrate the working of the algorithm, we show how the state
S3 is processed in the running example with the changing and behavioral rules
defined above. Consider the dropping semantics shown in Fig. 3. In this case, the
token configuration of state S3 is modified using the changing function. Thus,
we obtain a new token configuration in which #Pqueue = 2. Such a new token
configuration is searched and found in the reachability graph after the change
(state S′

2) and its corresponding probability is mapped into the new one. If the
conservative semantics is adopted (Fig. 4) no changing functions are used. In
that case, the state S3 is not modified and its token configuration is searched in
the reachability graph after the change. If the configuration is not found then
the first tangible reachable set is obtained using the behavioral rules presented
above. Transition tdrop being disabled, state S3 becomes a tangible state even
when the maximum number of requests in the system r is set to 2. At this point,
a new state S′

3 is generated in the reachability graph after the change and the
probability mapping is performed. Subsequently, the new state S′

3 is explored
using the behavioral rules that allow only transition Tser to be enabled. The
firing of such a transition will force the graph to reach a state in which the token
configuration is such that #Pqueue = 2. Once this token configuration is found
in the reachability graph after the change (state S′

2), the exploration process is
stopped.

The resiliency analysis described in Section 3.3 can then be conducted accord-
ing to Algorithm 2. Algorithm 2 computes the value of a metric m in the time
interval [0,∞) for a model M when a change is enforced at time instant Tc.
Also in this case, the change is modeled by considering a set of SRN parameters
Pbf before the change and a set of SRN parameters Paf after the change. More-
over, the change semantics is represented through a set of changing functions
Cf and a set of behavioral rules Br. Algorithm 2 makes use of Algorithm 1 to
enforce the change semantics. First of all, the reachability graph and the initial
probability vector of the model at time instant 0 is obtained through function
generate state space(·) (line 5). Then, the value of measure m in the time inter-
val [0, Tc) is computed through the function solve(·) (line 6). At line 7, function
generate state space(·) is exploited again to obtain the reachability graph and
the initial probability vector of the model after the change. Both the reachabil-
ity graph and the initial probability vector are then modified in order to enforce
the change semantics and to perform the probability mapping at line 8 (calling
function apply change(·) described in Algorithm 1). Finally, the model is solved
again to compute the value of metric m in the time interval (Tc,∞) (line 9) and
the complete vector containing the analysis results is returned (line 10).

Algorithms 1 and 2 have been implemented in the SPNP tool [6] and we
applied them to the SRN of the running example computing the mean number
of requests in the system, i.e., the mean number of tokens in place Pqueue. Fig. 5
shows the value of such a metric when at time Tc = 30s the maximum number
of requests in the system is reduced from 4 to 2. System parameters have been
set as follows: λ = 10.2s−1, μ = 0.1s−1. Results show the importance of enforc-
ing the correct change semantics by the modeler. In fact, while in the case of
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Algorithm 2. resiliency analysis()
input : An SRN M, two sets of parameter Pbf and Paf , a set of changing

function Cf , a set of behavioral rules Br, a time instant Tc when
change is applied, a measure to be computed m.

output: A vector of float containing the value of measure m in the interval
[0,∞).

1 begin
2 declare πbf (0), πaf (Tc): vector of probability;
3 declare Gbf , G′

af , Gaf : reachability graph;
4 declare v[0,Tc), v(Tc,∞): vector of float;
5 Gbf ,πbf (0) ←− generate state space(M,Pbf );
6 v[0,Tc),πbf (Tc) ←− solve(Gbf ,πbf (0),m, Tc);
7 G′

af ,πaf (Tc) ←− generate state space(M,Paf );
8 Gaf ,πaf (Tc) ←− apply change(M,Pbf ,Paf ,Gbf ,G′

af ,πbf (Tc), Cf ,Br);
9 v(Tc,∞) ←− solve(Gaf ,πaf (Tc),m,∞);

10 return v[0,Tc) ∪ v(Tc,∞);

dropping semantics an immediate fall in the metric value can be observed, in the
case of conservative semantics the variation is smoother. Moreover, important
resiliency-based performance indexes can be defined. For example, in the case
of conservative semantics, we can compute the time needed to obtain a value of
the expected number of requests in the system less or equal to the new value
of r∗. This is given by the intersection of the curve representing the expected
number of requests in the system with the straight line at y = r∗. This value
can represent an estimation of the expected time (d) necessary for the change
to complete. In the example shown in Fig. 5, such a value is equal to 19s.

5 An Analogy with the DSPN Approach

It is possible to approach the resiliency quantification problem using determinis-
tic and stochastic Petri nets (DSPNs) similar to what has been done for phased
mission systems (PMSs) [7]. From the modeler point of view, the DSPN app-
roach consists of building a model characterized by two layers. The phase net
(PHN) models the switching between different phases of the system through the
use of deterministic transitions. The system net (SN) represents the behavior of
the system during the different phases and this is performed by forcing a depen-
dency between the parameters of the SN and the state of the PHN. As the state
of the PHN changes, some of the parameters of the SN are changed in order to
model the behavior in the newly reached phase.

Assume that only two phases are present. In this case, from the solution point
of view, the whole state space underlying the DSPN consists of two reachability
sub-graphs compared to the reachability graphs before and after the change in
our SRN approach. These sub-graphs are connected by the transitions derived
from the firing of the deterministic transition of the PHN. Then, the first reacha-
bility graph is solved starting from the initial probability vector. Subsequently, a
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Fig. 5. Expected number of requests in the system when the change is applied at time
Tc = 30s under different change semantics

branching probability matrix is used in order to compute the initial probability
vector of the second reachability graph that is eventually solved. Such branching
probability matrix can be automatically generated by considering the transitions
from the first subset of states to the second one.

Using the DSPN approach it is possible to analyze the resiliency of the finite
buffer queue described in the running example. In Fig. 6, a corresponding DSPN
model is presented. The SN is exactly the same of the SRN model of Fig. 2.
The resiliency analysis can be performed using a PHN where transition Tchange

represents the change arrival modeled through its deterministic firing time (Tc).
The behavior of the system before and after the change is represented through
the parameter r that varies from 5 to 3. This variation influence the guard
function associated with transition tdrop.

Fig. 6(b) represents the DSPN reachability graph in which each state is
labeled with the corresponding token distribution through the 3-vector [#Pqueue,
#Phase1, #Phase2]. Note that the semantics associated with the change is
embedded in the model and it cannot be explicitly expressed. In fact, it is possi-
ble to observe that this model intrinsically implements the dropping semantics.
Starting from states S3 and S4, once the change is applied, the system will reach
state S7. Thus it will instantaneously drop all the exceeding requests and start
behaving as an M/M/1/2 queue.

To highlight such a phenomenon, let us consider a second DSPN model for
the running example (see Fig. 7) in which the finite buffer size is modeled through
the inhibitor arc from place Pqueue to transition Tarr with multiplicity r. Even
though the two DSPNs are identical in modeling the M/M/1/r queue and pro-
duce the same results with respect to all the measures of interest (e.g., mean
number of requests in the system, dropping probability, dropping rate), they
cannot be considered equivalent when performing a resiliency analysis. This is
mainly due to the embedded changing semantics that gives rise to different
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(a) The DSPN model. (b) The reachability graph.

Fig. 6. A first DSPN model for the running example. Each state is labeled
with the number of tokens in places #Pqueue, #Phase1, and #Phase2
([#Pqueue,#Phase1,#Phase2]).

behaviors when the buffer size changes. In the model of Fig. 7(a), at the change
occurrence, the exceeding requests are not dropped and are kept in the queue
until they are served. This gives rise to the presence of the transient states
intrinsically implementing the conservative semantics as shown in Fig. 7(b).

Motivated by this simple example, the following general considerations can
be argued regarding the issues related to resiliency analysis using DSPNs.

(i) Usually, a specific change semantics is embedded in the model and the
modeler would not be completely aware of it while enforcing the change
during a resiliency analysis.

(ii) Equivalent models with the same semantics for a standard analysis could
present different embedded change semantics. Also in this case, the modeler
will not be aware of the differences between the two models during resiliency
analysis. Thus, there could be a mismatch between the desired and the
actual behavior of the system during the change.

(iii) The use of a specific model (with a specific embedded change semantics)
could be mandatory; being part of a more complex system or being already
available and difficult to modify. In this case, it would not be easy for the
modeler to force the desired change behavior.

(iv) In the case of structural changes, significant modifications of the model
could be necessary to implement the change via the addition/removal of
transitions and/or places. This procedure could be time-consuming and
error-prone.

Such issues are due to the fact that the DSPN approach is a purely high-level
technique that completely hides the underlying state space model from the mod-
eler. In our running example, the modeler could not be aware of the fact that,



114 D. Bruneo et al.

(a) The DSPN model. (b) The reachability graph.

Fig. 7. A second DSPN model for the running example. Each state is labeled
with the number of tokens in places #Pqueue, #Phase1, and #Phase2 ([#Pqueue,
#Phase1,#Phase2]).

while in the model depicted in Fig. 6 the whole state space of the DSPN is
obtained by simply juxtaposing the state spaces of the SN before the change
and the SN after the change, in the model of Fig. 7 additional transient states
are generated.

Considering all these aspects, we can summarize the advantages of our tech-
nique w.r.t. the DSPN approach:

(i) the modeler is made explicitly aware of the presence of a specific change
semantics while performing a resiliency analysis of the modeled system;

(ii) the modeler is allowed to force a specific change semantics through the use
of a set of changing functions and behavioral rules even if this semantics is
different from the one embedded in the model;

(iii) when the structural changes are enforced, the use of changing functions
allows to avoid significant modifications of the model making the procedure
faster and less error-prone.

6 Related Research

In [8], Wang et al. describe resiliency analysis of supply chain networks using
Petri nets. Authors describe the states of a supply chain network into three
categories: loss-making, profitable and overloaded. Depending on the demand-
supply of different firms in the supply chain network, the overall status of a
company is determined using Petri nets based models. Authors claim that such
approach can capture the resiliency of the overall network. However, sudden
changes, e.g., failure of one or more firms, which could lead to structural changes
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of the Petri net has not been discussed in their work. In [9], Tavana et al. include
repair time in resiliency quantification and provide a Petri net based model for
resiliency analysis. We strongly disagree with such approach because both redun-
dancy and repair are considered as fault-tolerance of the system. In [10] et al.,
Liu et al. use a Petri net based model to quantify the resiliency of the system as
degraded performance during failure. Such approach is commonly known as per-
formability modeling and we argue that notion of resiliency is much broader than
the performability assessment of the system. In [11], Rodriguez et al. propose
a UML model for resiliency quantification and subsequently translates it into a
DSPN model. However, their notion of resiliency is synonymous with availabil-
ity and do not capture sudden unexpected changes on the system. In summary,
even though past research have used Petri-net based models for resiliency quan-
tification, in all cases, the notion of resiliency was quantified by availability or
fault-tolerance measures.

7 Conclusions and Future Work

The specification of the correct change semantics is an important challenge dur-
ing resiliency analysis of systems. We provided an SRN based approach that
is able to automate the resiliency analysis of a system. Specifically, our app-
roach allows the modeler to describe the change semantics without relying on
the semantics embedded in the original system model. The importance of this
aspect and its impact on the accuracy of the results have been illustrated through
the use of a simple running example based on a M/M/1/r queue.

In future, more complex scenarios will also be investigated where our tech-
nique can be applied. A comparison of the accuracy will be done by validating
the numerical results with respect to the measurements from a real system.
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Abstract. The firing rule for Petri nets assumes instantaneous and
simultaneous consumption and creation of tokens. In the context of ordi-
nary Petri nets, this poses no particular problem because of the system’s
asynchronicity, even if token creation occurs later than token consump-
tion in the firing. With read arcs, the situation changes, and several dif-
ferent choices of semantics are possible. The step semantics introduced by
Janicki and Koutny can be seen as imposing a two-phase firing scheme:
first, the presence of the required tokens is checked, then consumption
and production of tokens happens. Pursuing this approach further, we
develop a more general framework based on explicitly splitting the phases
of firing, allowing to synthesize coherent steps. This turns out to define
a more general non-atomic semantics, which has important potential for
safety as it allows to detect errors that were missed by the previous
semantics. Then we study the characterization of partial-order processes
feasible under one or the other semantics.

1 Introduction

There are some aspects of concurrent behaviour that cannot be modeled by
sequences of actions nor by partial orders alone (c.f. [9,11]). An example is the
‘earlier than or simultaneous’ (that is, ‘not later than’) relationship [11], for
which neither sequences nor partial orders are expressive enough. Consider, for
example, a priority system with three actions: a, b, and c such that c has higher
priority than both a and b. Initially, a and b can be executed simultaneously,
while c is blocked. Moreover, completing a or b permanently enables action c.
Using sequences of actions, we cannot capture the execution where a and b are
executed in the same run of the system, as both (ab) and (ba) would violate the
priority constraint. However, a sequence ({a, b}), representing a step in which
actions a and b are executed simultaneously, faithfully reflects a possible scenario
in which both a and b are executed. Consider now a modified system in which
executing a no longer enables action c. In such a case, two executions involving
the actions a and b are possible, namely ({a, b}) and (ab). Now, this behavior is
not reflected by the partial order in which a and b are concurrent; for in that
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case, sequence (ba) would emerge as a valid system behaviour, which it is not
according to the above specification. To cover such cases, [12] used structures
richer than causal partial orders and, in this particular case, introduced the
notion of a ‘weak causality’ between a and b, meaning that ‘a can be earlier
than or simultaneous with b’, but ‘not later than b’. In the resulting model,
causality (partial order) is augmented with weak causality leading to stratified
order structures [8,10,12], which extend the standard causal partial orders if the
underlying concurrent system does not exhibit features like priorities in the above
example. Stratified order structures have been successfully applied to model,
e.g., inhibitor and priority systems and asynchronous races (see, e.g. [12,14,16]).
Extensions of the standard partial order model of concurrency to cover features
such as priorities as well as inhibitor and read arcs in the elementary net systems
are systematically discussed in [17].

Let us turn now to the more specific model class of Petri nets. Many dis-
tributed systems allow read-only access to some data. These non-destructive
accesses can be done concurrently by several components of the system. In order
to model these read-only accesses with Petri nets, a classical method is to design
a loop in which some transition consumes and rewrites a token on the same
place. Nevertheless this technique is not satisfactory when one is dealing with
causal semantics because the consumption of the token artificially enforces an
order on the events accessing the same data.

In order to solve this problem, read arcs were added to Petri nets [5,22].
This extension is now quite commonly used, and partial order semantics were
proposed for this new model [3,4,28,31]. In the same vein, inhibitor arcs were
also introduced [5,12]. Their expressive power is similar to the one of read arcs
in the case of bounded nets. Finite complete prefixes of Petri nets with read
arcs (also called contextual Petri nets) were first defined in the restricted case of
read-persistent nets [29], and later in the general case [32]. Efficient procedures
exist for the computation and analysis of finite complete prefixes for safe Petri
nets with read arcs [2,25].

In the present paper, we push the analysis of contextual Petri nets further in
the direction of collective, or non-atomic, firing of several transitions jointly, in
one step, where a step is seen here as a set of transitions (or multi-set in the case
of non safe nets). Giving a semantics that allows this is not problematic in ordi-
nary Petri nets; a step is enabled iff the current marking is bigger than the sum of
all presets of its transitions, both seen as vectors whose dimension is the number
of places. With read arcs, the situation changes, and several different choices of
step semantics are possible. The one introduced in [12] can be seen as imposing a
two-phase firing scheme: first, the presence of the required tokens is checked, then
consumption and production of tokens happens. Here, we develop a more general
framework based on explicitly splitting the phases of firing, allowing to synthesize
coherent steps. This turns out to define a more general non-atomic semantics. We
will recall the fundamentals of Contextual Petri nets in Section 2, and develop the
non-atomic sequential semantics in Section 3. In Section 4, we continue with the
study of non-sequential, partial order semantics with non-atomic firing; finally,
Section 5 concludes.
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Fig. 1. A contextual Petri net

2 Contextual Petri Nets

2.1 Definition

We consider only safe contextual Petri nets (PNs), i.e. PNs where there is never
more than one token in a place. We discuss the general case in Section 5.

Definition 1 (Contextual Petri Net (PN)). A contextual Petri net is a
tuple (P, T, pre, cont , post ,M0) where P and T are finite sets of places and tran-
sitions respectively, pre and post map each transition t ∈ T to its (nonempty)
preset denoted •t def= pre(t) ⊆ P , its (possibly empty) context denoted t

def=
cont(t) ⊆ P \ •t and its (possibly empty) postset denoted t• def= post(t) ⊆ P ;
M0 ⊆ P is the initial marking.

We usually denote •t def= •t ∪ t. For simplicity, we assume that for any transition
t, its context is disjoint from its preset and postset.

A contextual Petri net is represented as a graph with two types of nodes:
places (circles) and transitions (rectangles). Presets are represented by arrows
from places to transitions, postsets by arrows from transitions to places, and
contexts by undirected edges between places and transitions. The initial marking
is represented by tokens in places. Figure 1 shows an example of a contextual
Petri net. The transition a, for instance, has p1 in its preset, p2 in its context
and p4 in its postset.

2.2 Atomic Semantics

A marking of a safe contextual Petri net is a set M ⊆ P of marked places. A
Petri net starts in its initial marking M0. A transition t ∈ T is enabled in a
marking M if all the places of its preset and context are marked, i.e. •t∪ t ⊆ M .
Then t can fire from M , leading to the marking M ′ def= (M \ •t) ∪ t•.
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Again, we consider only safe contextual Petri nets, that is we assume that if
a transition t ∈ T is enabled in a marking M , then (M \ •t) ∩ t• = ∅.

Definition 2 (Atomic semantics, a-run). We call firing sequence of N under
the atomic semantics, or a-run, any sequence σ

def= (t1 . . . tn) of transitions for
which there exist markings M1, . . . ,Mn such that for all i ∈ {1, . . . , n}, firing ti
from Mi−1 is possible and leads to Mi.

For instance, the net in Figure 1 has two possible firing sequences: (a) and
(bc). However, it is never possible to fire d because that would require to fire
both a and b first, and firing one of a, b disables the other.

3 Non-atomic Semantics

In this section, we discuss two semantics for concurrent firing of multiple tran-
sitions. One is the well-known step semantics [11], in which multiple transi-
tions can fire simultaneously. This is typically the case of a and b in the net of
Figure 1, which are enabled simultaneously and have disjoint presets, but can-
not fire together according to the atomic semantics. The step semantics can be
interpreted as first checking whether all members of a set of transitions can fire,
and then firing them either simultaneously or one by one, in any order. We then
introduce a new, so-called interval semantics, which allows a more liberal choice
of checking and firing transitions in a set.

We present the semantics under the assumption that the underlying net is
safe even under these two semantics, which allow more possibilities than the
atomic one.

3.1 Step Semantics

We first recall the step semantics [11].

Definition 3 (Step semantics, s-run). Let N be a PN. We call s-run of N

any sequence σ
def= (T1 . . . Tn) of sets of transitions for which there exist markings

M1, . . . ,Mn such that for all i ∈ {1, . . . , n},
– every t ∈ Ti is enabled in Mi−1,
– the presets of the transitions in Ti are disjoint, and
– Mi = (Mi−1 \ ⋃

t∈Ti

•t) ∪ ⋃
t∈Ti

t•.

In the example of Figure 1, the step semantics allows one to fire a and b in one
step since they are both enabled in the initial state and •a ∩ •b = ∅. This gives
the s-run ({a, b}) in addition to the others which were already possible under the
atomic semantics; for instance the a-run involving b followed by c, (denoted (bc)
for the atomic semantics), is simply rewritten as the s-run ({b}{c}) under the
step semantics. However, transition d remains dead since none of these s-runs
contains all of a, b, and c.
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The intuitive model underlying the step semantics is that all the transitions
in the step can first check, in any order, whether they are enabled and not in
conflict with one another. Once the checks have been performed, they can all
fire, again in any order. Put differently, if we denote the checking phase of a
transition t by t− and its firing phase by t+, then every step consists of any
permutation of the actions of type t− (for all transitions t in the step), followed
by any permutation of the actions t+. The notion introduced in Definition 4
formalizes this intuition.

Definition 4 (s±-run). For every s-run (T1 . . . Tn) of a contextual Petri net
N , every concatenation u−

1 .u+
1 . · · · .u−

n .u+
n of sequences u−

i and u+
i , is a s±-run

of N , where every u−
i is a permutation of the set {t− | t ∈ Ti} and every u+

i is
a permutation of the set {t+ | t ∈ Ti} (remember that Ti is a set of transitions
of N).

For example, the s-run ({b}{c}) yields the s±-run (b−b+c−c+) and the s-
run ({a, b}) yields four s±-runs: (a−b−a+b+), (a−b−b+a+), (b−a−a+b+) and
(b−a−b+a+).

3.2 Splitting Transitions for Understanding Steps

Definition 4 formalizes a new semantics of PNs, in which the firing of a transition
does not happen atomically, but in two steps, the checking of the pre-conditions
and the actual execution. In this section, we generalize this idea.

The left-hand side of Figure 2 shows a part of the net in Figure 1, which
consists of transition a with its preset {p1}, context {p2}, and postset {p4}. The
construction on the right-hand side of 2 illustrates the idea of splitting firing
transitions into two phases:

• Every transition t is split into t− and t+.
• Every place p is duplicated to pc (meaning token in p available for consump-

tion) and pr (meaning token in p available for reading).

Similar ideas about splitting transitions can be found in several works, for
instance in [27].

Intuitively, if we apply this construction to all transitions from Figure 1, then
the s±-runs of that net correspond to a-runs of the newly constructed net. The
following Definition 5 provides the precise details of the construction.

Definition 5 (split(N)). For every contextual Petri net N = (P, T, pre, cont ,
post ,M0), we define the contextual Petri net split(N) def= (P ′, T ′, pre ′, cont ′, post ′,
M ′

0) where

– T ′ contains two copies, denoted t− and t+ of every transition t ∈ T .
– P ′ contains two copies, denoted pc and pr of every place p ∈ P , plus one

place pt per transition t ∈ T .
– •t− def= {pc | p ∈ •t}
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Fig. 2. The splitting of transition a (left) into a− and a+ (right)

– t− def= {pr | p ∈ t}
– t−• def= {pt}
– •t+ def= {pr | p ∈ •t} ∪ {pt}
– t+

def= ∅
– t+

• def= {pc | p ∈ t•} ∪ {pr | p ∈ t•}}
– M ′

0
def= {pc | p ∈ M0} ∪ {pr | p ∈ M0}

We now formally prove the intuition mentioned above:

Lemma 1. Every s±-run σ± of N is a a-run of split(N). Moreover σ± reaches
the marking {pc | p ∈ M} ∪ {pr | p ∈ M}, where M is the marking of N reached
after the s-run σ from which σ± is obtained.

Proof. We proceed by induction on the length of σ. The case σ = () is triv-
ial. Now, let σ± = u−

1 .u+
1 . · · · .u−

n .u+
n be a s±-run obtained from a s-run σ =

(T1 . . . Tn), assume the property true for u−
1 .u+

1 . · · · .u−
n−1.u

+
n−1 and denote Mn−1

the marking reached after (T1 . . . Tn−1). By induction hypothesis, u−
1 .u+

1 . · · · .
u−
n−1.u

+
n−1 reaches the marking {pc | p ∈ Mn−1} ∪ {pr | p ∈ Mn−1} of split(N).

The fact that Tn is a valid step from Mn−1 implies that
⋃

t∈Tn

•t ⊆ Mn−1 and
that the presets of the transitions in Tn are disjoint. This allows one to fire all the
t−, t ∈ Tn in any order and reach the marking {pc | p ∈ Mn−1 \⋃

t∈Tn

•t}∪{pr |
p ∈ Mn−1} ∪ {pt | t ∈ Tn} of split(N). Now the t+, t ∈ Tn, are all enabled and
their presets are disjoint. They can in turn be fired in any order, reaching the
desired marking of split(N). ��

Note that the converse of Lemma 1 does not hold. For instance, for the net
N from Figure 1, the net split(N) admits the a-run a−b−b+c−c+a+, which is
not an s±-run of N .
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3.3 Interval Semantics

We have seen that the construction split(N) admits firing sequences that cannot
be mapped back to executions under either the atomic or the step semantics.
In this section, we shall introduce a new, so-called interval semantics, which is
more general than the step semantics, and whose interpretation on a net N does
correspond to the feasible executions in split(N).

Definition 6 (Interval semantics, i-run). Every a-run of split(N) is called
i-run of N , or run of N under the interval semantics.

Coming back to the example of Figure 1, transition d can fire under the inter-
val semantics, for instance after the i-run a−b−b+c−c+a+d−d+ where transitions
b and c complete the firing during the period in which a fires. Under the atomic
semantics, a and b are in conflict, which prevents d from firing. Under the step
semantics, a and b can fire in the same step, but then c cannot fire. Under the
interval semantics, d can also fire.

Recall that we introduced t− and t+ to represent different phases during the
execution of transition t. An obvious question is whether the new semantics can
lead to runs in which a transition ‘gets stuck’ during its execution. The following
Lemma 2 affirms that this is not the case: once t− is fired, nothing can hinder
t+ from firing, too.

Definition 7 (complete i-run). An i-run is complete if every t− is matched
by a t+.

Lemma 2. Every i-run can be completed: for every i-run σ, there exists a suffix
μ which matches all the unmatched t−, and such that σμ is an i-run.

Proof. As long as a t− is unmatched, •t+ remains included in the marking:
no other transition consumes these tokens. Hence it suffices to fire all the t+

corresponding to the unmatched t−, in any order. ��

3.4 Comparison of Sequential Semantics

This section provides a brief summary and comparison of the previously dis-
cussed semantics. To simplify the comparison, we first need a technical defini-
tion that allows to represent atomic runs in a form comparable to i-runs. The
following Definition 8 simply makes explicit the assumption that the firing of a
transition is atomic: in terms of i-runs, every t− is immediately followed by the
corresponding t+.

Definition 8 (a±-run). For every a-run (t1 . . . tn), the sequence t−1 t+1 . . . t−n t+n
is called an a±-run.

We can now turn to comparing the different sequential semantics based on
(complete) i-runs. It is immediate that every a±-run of a contextual Petri net N
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Fig. 3. Example illustrating the effect of read-arcs on partial-order semantics

is an s±-run of N . Also, by Lemma 1, every s±-run is an i-run, and by Lemma 2,
every i-run can be made complete.

Let N be a PN, and denote by AtomicN the set of its a±-runs, by StepN

the set of its s±-runs, and by IntervalN the set of its i-runs. Then we have the
following relation:

AtomicN ⊆ StepN ⊆ IntervalN

Note that, in general, the subset inclusions are strict, as we have seen in
previous examples. The strictness holds even when N does not contain any
read arcs. E.g., if N contains three enabled transitions a, b, c, whose presets are
all disjoint, then a−b−c−a+b+c+ ∈ StepN \ AtomicN and a−b−a+c−b+c+ ∈
IntervalN \ StepN . However, the set of reachable markings remains the same
under all three semantics when no read arcs are present.

4 Non-atomicity and Partial Order Semantics

Consider a PN N with read arcs such as in the left part of Figure 3. It is easy to
see that if one replaces a read arc in a net by a pair of arrows forming a loop (see,
e.g., the net N ′ in the right-hand side of Figure 3), then any a-run of N remains
an a-run of N ′, and vice versa, and that both nets have the same reachable
markings. However, one of the reasons why read arcs have attracted the attention
of the Petri net community is that they change the step semantics of the net. E.g.,
both nets admit the s-runs ({a}{b}) and ({b}{a}), but N additionally admits the
s-run ({a, b}). The splitting operation provided in the previous section preserves
this difference: split(N ′) admits the two s-runs (a−a+b−b+) and (b−b+a−a+),
while split(N) admits additional runs, e.g. (a−b−a+b+).

We first present processes as partial-order semantics for nets under atomic
semantics. These definitions are standard [3,4,28,31]. Then, as well as for the
sequential semantics, we define the partial-order semantics of a net N under the
non-atomic semantics by applying partial-order atomic semantics to split(N).
This gives processes where every transition firing is split into two events e− and
e+. These processes give sufficiently detailed information to understand how a
scenario can or cannot be fired under non-atomic semantics.
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Fig. 4. A process representing the a-run (bc) of the contextual Petri net of Figure 1.
Technically, the condition labeled p1 is coded as (⊥, p1), the event e1 (labeled b) is
coded as ({(⊥, p2)}, {(⊥, p1)}, b) and e2 as ({(⊥, p3)}, {(⊥, p1), (e1, p5)}, c)

Anyway, in the end, we propose an abstract view of the processes where the
e− and e+ are abstracted back to a single event e. These abstract processes
strictly generalize the processes of the original net under atomic semantics. We
characterize the conditions under which an abstract process is feasible under any
of the atomic, step or interval semantics.

4.1 Processes Under Atomic Semantics

Processes are a way to represent an execution of a Petri net so that the actions
(called events) are not totally ordered like in firing sequences, but only par-
tially ordered by weak (or conditional) and strong (or unconditional) causality
relations which indicate the dependencies between events due to creation, con-
sumption and reading of tokens.

An execution of a Petri net N is represented as a labeled Petri net where
every transition, called event and labeled by a transition t of N , stands for an
occurrence of t, and every place, called condition and labeled by a place p of
N , refers to a token produced by an event in place p or to a token of the initial
marking. The arcs represent the creation and consumption of tokens.

Figure 4 shows a process representing the a-run (bc) of the contextual Petri
net of Figure 1.

Because fresh conditions are created for the tokens created by each event,
every condition has either no input arc (if it is an initial condition) or a single
input arc, coming from the event that created the token. Symmetrically, each
place has no more than one output arc since a token can be consumed by only
one event in an execution.

We will define the mapping Π from the a-runs of a safe Petri net to their
partial order representation as processes. We use a canonical coding like in [6].
This coding is illustrated in Figure 4.

Each process will be a set E of events. Every event e is itself a triple
(•e, e, τ(e)) that codes an occurrence of the transition τ(e) in the process. •e
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and e are sets of pairs b
def= (•b, π(b)). Such a pair is called a condition and refers

to the token that has been created by the event •b in the place π(b). We say that
the event e

def= (•e, e, τ(e)) consumes the conditions in •e and reads the conditions
in e. It also creates the set {(e, p) | p ∈ τ(e)•} of conditions, which we denote
e•. A virtual initial event ⊥ is used as •b for initial conditions. By convention
⊥• def= {⊥} × M0.

To summarize the coding of the processes, it is convenient to define a set
DN , such that all the events that appear in the processes of a contextual Petri
net N , are elements of DN .

Definition 9 (DN). We define DN as the smallest set satisfying:
for all B1, B2 ⊆ ⋃

e∈DN∪{⊥} e• such that π|B1∪B2 is injective,
for all t ∈ T ,

π(B1) = •t ∧ π(B2) = t =⇒ (B1, B2, t) ∈ DN .
Notice that this inductive definition is initialized by the fact that ⊥ ∈ DN ∪{⊥}.

We need a last notion before defining the mapping Π from a-runs to pro-
cesses: the set of conditions that remain at the end of a set E of events (meaning
that they have been created by an event of E, and no event of E has consumed
them) is ↑(E) def=

⋃
e∈E∪{⊥} e• \ ⋃

e∈E
•e. Because N is safe, the restriction of π

to ↑(E) will be injective when E is a process and π(↑(E)) will be the marking
reached at the end of E.

Definition 10. The function Π that maps each firing sequence (t1 . . . tn) to a
process is defined as follows:

– Π(ε) def= ∅
– Π((t1 . . . tn+1))

def= E ∪ {e}, where
• E

def= Π((t1 . . . tn)) and
• the event e

def= (π−1
|↑(E)(

•tn+1), π−1
|↑(E)(tn+1), tn+1) represents the last firing

of the sequence.

Causality. We define the relation → on the events as: e → e′ def⇐⇒ e• ∩•e′ �= ∅.
The reflexive transitive closure →∗ of → is called the unconditional or strong
causality relation.

If two events e and f are causally related (e →∗ f), then:

– e occurs in every process where f occurs, and
– if a process contains e and f , then e occurs before f .

Because of the read arcs, two events e and f may satisfy the second item even
without being in strong causal relation. This happens when e reads a condition
that is consumed by f . This phenomenon is captured by the relation � defined
as e � f

def⇐⇒ e∩ •f �= ∅. Combining → and �, we get the conditional or weak
causality, denoted ↗, and defined as e ↗ f

def⇐⇒ (e → f) ∨ (e � f).
For every event e, we denote �e� def= {f ∈ E | f →∗ e}, and for all set E of

events, �E� def=
⋃

e∈E�e�.
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Branching processes, conflicts, unfoldings. Each process represents one
execution of the net. One often uses the partial order representation to represent
also sets of executions. This is done simply by superimposing several processes
and merging their common prefixes; technically, this operation is nothing but
the set union of the processes. The result is called a branching process. The most
obvious difference between branching processes and processes is that branching
processes may contain two distinct events e and e′ which have a common pre-
condition (•e ∩ •e′ �= ∅). This is called a conflict and implies that e and e′ never
occur together in the same process, since, in a process each condition corresponds
to a precise occurrence of a token in a place, created by an event and possibly
consumed by another one.

For branching processes of contextual Petri nets, another source of incompat-
ibilities between events needs to be considered: contrary to the strong causality
relation →, the weak causality relation ↗ may have some cycles. The events
involved in such cycle are incompatible because, when an event is added to a
process, it is never the predecessor by ↗ of an older event. This situation arises
between the events representing an occurrence of a and an occurrence of b from
the initial marking of the net of Figure 1, and corresponds to the fact that the
firing of one disables the other in the atomic semantics.

The maximal branching process, obtained by superimposing all the processes
of a net N , is called the unfolding of N .

4.2 Processes Under Non-atomic Semantics

In Section 3, we have defined non-atomic sequential semantics of a contextual
Petri net N using the construction split(N): every (complete) run σ of split(N)
under atomic semantics is interpreted as a run of N under non-atomic semantics.

We can now move very naturally to partial order non-atomic semantics.

Definition 11 ((Complete) split process). For every (complete) i-run σ of
a contextual Petri net N , Π(σ) is called a (complete) split process of N .

Figure 5 represents a split process of the contextual Petri net N of Figure 1.
Weak and strong causality relations in the split process show precisely what are
the interleavings of the a−, a+, b−, b+, c−, c+ which make possible a scenario
where a, b and c occur.

This representation as split process has the interest of showing a very detailed
view of the execution of a contextual Petri net under non-atomic semantics. We
propose now a more abstract representation with only one event per transition
firing. This representation generalizes the partial order semantics under atomic
semantics, in the sense that every process under the atomic semantics is an
abstraction of a split process.

The intuition behind the abstraction is the following. We remark that in a
complete split process E of N , every event e− ∈ E representing an occurrence
of a transition t− of split(N) creates a unique condition b corresponding to a
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Fig. 5. A process of the splitting of the contextual Petri net N of Figure 1. Transitions
a− and b− are concurrent, as well as a+ and c+. Hence the process represents the
4 i-runs (a−b−b+c−c+a+), (a−b−b+c−a+c+), (b−a−b+c−c+a+) and (b−a−b+c−a+c+).
After this process, transition d (split to d−d+) becomes fireable.

token in pt, and this condition is consumed by a unique event e+ representing
the occurrence of t+.

The abstraction merges e− and e+ and deletes b. It also merges the two copies
of the created tokens (occurrences of pc and pr).

Figure 6 shows the abstraction of the complete split process of Figure 5.

Definition 12 (Abstract processes, abstr , α). We define the abstraction of
a complete split process E as:

abstr(E) def= {α(e+) | e+ ∈ E+}
where E+ is the set of events of E representing the occurrence of a transition
t+ of split(N), and α is defined inductively by:

– α(⊥) def= ⊥ and
– α(e+) def= ({(α(f+), p) | (f+, pc) ∈ •e−},

{(α(f+), p) | (f+, pr) ∈ e−},
t)

where t is the transition of N such that e+ represents an occurrence of t+.
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Fig. 6. The abstraction of the split process of Figure 5. This abstract process is feasible
only under the interval semantics. With the atomic semantics, a and b cannot fire
together. With the step semantics, they can fire ‘simultaneously’. But this consumes
the token in p1 which is required to enable c.

We call abstr(E) an abstract process of N under interval semantics.

Notice that the elements in abstr(E) are members of the set DN (Defini-
tion 9); this means they have the same shape as the events that occur in the
processes of N under atomic semantics.

What is more: abstractions of processes of a±-runs coincide with processes
of a-runs.

Theorem 1. For every a-run (t1 . . . tn), the process of (t1 . . . tn) is also the
abstraction of the split process of the a±-run (t−1 t+1 . . . t−n t+n ):

abstr(Π((t−1 t+1 . . . t−n t+n ))) = Π((t1 . . . tn)) .

Proof. We first remark that the final conditions ↑(abstr(E)) of the abstraction
of a complete split process E are the (α(f+), p) with (f+, pc) ∈ ↑(E) (or equiv-
alently (f+, pr) ∈ ↑(E)): by definition of the abstraction, the conditions in
abstr(E) are the (α(f+), p) with p ∈ t• and t+ = τ(f+); and those that are
final in abstr(E) are those that are not consumed by any other α(e+), which
(by definition of α(e+) and because E is complete) is equivalent to saying that
(f+, pc) is not consumed by any e− of E.

Then we prove the theorem by induction on the size of the a-run, using
the inductive definitions of Π and α. The occurrences of t− and t+ at the
end of the a±-run are represented in Π((t−1 t+1 . . . t−n t+n )) by two events e− and
e+, and α maps precisely e+ to the event e of Π((t1 . . . tn)) which represents
the firing of tn: the conditions in •e− being by definition final conditions of
Π((t−1 t+1 . . . t−n−1t

+
n−1)), the (α(f+), p) which occur in the definition of α(e+) are

the final conditions of Π((t1 . . . tn−1)) which occur in the definition of the event
e in Π((t1 . . . tn)). ��

A direct consequence of this theorem is that every process of N under the
atomic semantics, is also an abstract process of N .
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We can also notice that the map α, and by consequence the abstraction abstr
itself, are injective.

An important thing for the following is how the abstraction preserves the
weak and strong causality relations.

Lemma 3. We have explained when defining the abstraction that every event
representing an occurrence of a t− in a split process of N is followed in the process
by a uniquely defined event representing the occurrence of the corresponding t+.
We use the notation e− and e+ to identify this correspondence. Moreover this
pair of events appears in the abstraction as the event α(e+), which we denote e.
Similarly, for every pair of conditions (e+, pc), (e+, pc), merged in the abstraction
to the condition (α(e+), p), we denote bc and br and b.

Using these notations, we have the following properties:

– for every e, e− → e+

– for every e and f , e → f ⇐⇒ e+ → f−.
– � occurs in a split process only between an e− and an f+. It is preserved

by the abstraction: e � f ⇐⇒ e− � f+.

Proof.

– The causality e− → e+ simply comes from the condition representing the
token created by e− in place pt, and consumed by e+.

– e → f implies that there exists a condition b ∈ e• ∩ •f . If b ∈ e• ∩ •f , then
bc ∈ e+

• ∩ •f−; the other case is b ∈ e• ∩ f and implies br ∈ e+
• ∩ •f−. In

both cases, we have e+
• ∩ •f− �= ∅, and then e+ → f−.

– The only case where a condition is read by an event and consumed by another
in a split process is when the condition (call it br) represents a token in a
pr, and br ∈ e− ∩ •f+ for some e and f . This appears in the abstraction as
a place b ∈ e ∩ •f . ��

4.3 Characterization of Abstract Processes Feasible with the
(Atomic, Step, Interval) Semantics

We propose a direct characterization of the abstract processes without using
split processes. We have already remarked that abstract processes are subsets
of DN ; now we give the conditions under which a subset of DN is an abstract
process for one or the other semantics.

Theorem 2 (Atomic semantics). Every set E ⊆ DN of events is an abstract
process of N under the atomic semantics iff

– �E� ⊆ E (i.e. E is causally closed),
– for every e, e′ ∈ E, e �= e′ =⇒ •e ∩ •e′ = ∅ (i.e. E contains no conflict),

and
– the restriction ↗|E of ↗ to E is acyclic (i.e. its transitive closure ↗|E

+ is
irreflexive).
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Proof. Since abstract processes of N coincide with processes under the atomic
semantics (see Theorem 1), this amounts to expressing the conditions under
which a set E ⊆ DN of events is a process of N under the atomic semantics,
which is a classical result of previous works about partial order semantics of
contextual nets [3,4,28,31].

Briefly, the idea is that, by the inductive definition of the events of a process
(see Definition 10), all the processes are causally closed and contain no conflicts.
Also, when an event e is added to a process (again like in Definition 10), it has
no successor by ↗ in the process. The consequence is that the processes contain
no cycle of ↗.

Conversely, every set E of events that satisfies our three conditions is a
process: it suffices to take the events of E in a sequence (e1 . . . e|E|) compatible
with the weak causality relation (i.e. such that ei ↗ ej implies i < j). This is
possible because ↗ is acyclic. We get that the sequence σ

def= (π(e1) . . . π(e|E|))
is a a-run of N and Π(σ) = E. ��
Theorem 3 (Step semantics). Every set E ⊆ DN of events is an abstract
process of N under the step semantics iff

– �E� ⊆ E,
– for every e, e′ ∈ E, e �= e′ =⇒ •e ∩ •e′ = ∅, and
– the composition ↗|E

+ →|E of relations ↗|E
+ and →|E is irreflexive.

Proof. Here the principle is the one developed for stratified order structures
[8,10,12]. Consider a step to be executed after an s±-run represented by a split
process E′. The events corresponding to all the t− are added first to the split
process (first layer), and then the events corresponding to the t+ (second layer).
In the split process, the (weak and strong) causal dependencies involving the new
events go only from the events of E′ to the new events and from the first layer
to the second layer. After abstraction, the two layers are merged into a single
one, among which only weak causal dependencies may exist and may even have
cycles (like the events labeled a and b in Figure 6). But no causal dependency
exists from the new events to the old ones, which implies that ↗|E

+ →|E is
irreflexive on the abstract process E.

Conversely, every set E of events that satisfies our three conditions is an
abstract process of N under the step semantics: the fact that ↗|E

+ →|E be
irreflexive allows one to partition the events of E into sets Ei such that only
� dependencies are possible between the events of an Ei, and the other causal
dependencies go only from an Ei to an Ej with i < j. The sequence of Ei gives
a sequence of steps whose split process is mapped to E by the abstraction. ��
Theorem 4 (Interval semantics). Every set E ⊆ DN of events is an abstract
process of N under the interval semantics iff

– �E� ⊆ E,
– for every e, e′ ∈ E, e �= e′ =⇒ •e ∩ •e′ = ∅, and
– ↗|E →|E+ is acyclic (i.e. (↗|E →|E+)+ is irreflexive).
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Proof. E is an abstract process of N under the interval semantics iff it is the
abstraction of a process E′ of split(N) under the atomic semantics. The abstrac-
tion mapping abstr being injective, it defines a unique candidate for E′. One
checks easily that E′ ⊆ Dsplit(N). We know that E′ is a process of split(N) iff it
satisfies the conditions recalled in Theorem 2. It remains to show that they are
equivalent to the conditions of the present theorem applied to E = abstr(E′).
The equivalence of the conditions about the causal pasts (�E′� ⊆ E′ iff �E� ⊆ E)
and about absence of conflicts are straightforward. The more interesting point
is the correspondence between the acyclicity conditions: ↗|E →|E+ is acyclic
iff ↗|E′ is acyclic. This point derives from the properties of preservation of
weak and strong causality by abstraction given in Lemma 3: they give immedi-
ately that every cycle for ↗|E →|E+ yields a cycle in ↗|E′ . The converse also
holds because � appears in E only between an e− and an f+, as e− � f+.
Hence, if this weak causality dependency is concatenated with another one, giv-
ing e− � f+ ↗ g, then the causal dependency f+ ↗ g must be strong: f+ → g.
In the end, this implies that every cycle of the ↗|E′ relation provides a cycle of
the ↗|E′ →|E′+ relation. By Lemma 3, this cycle yields a cycle for ↗|E →|E+

in the abstracted process. ��

Summary. As a summary, we just want to confirm, at the level of abstract
processes, our intuition that the interval semantics is more permissive than the
step semantics, which is in turn more permissive than the atomic semantics.
Namely, we compare the conditions about cycles of causality dependencies that
appear in the three theorems above. It is true that if ↗|E →|E+ has a cycle,
the cycle contains at least one strong causality dependency e → f and we have
f↗|E

+ →|E f . It is also true that if f↗|E
+ →|E f , then f↗|E

+f .

When there is no read arc, anyway, they all collapse (at the level of abstract
or split processes).

Theorem 5. For every Petri net N without read arcs (i.e. t = ∅ for all t), the
abstract processes under the three semantics coincide.

Proof. In this case the weak and strong causality relations coincide, and,
because the strong causality relation is acyclic by construction of the events,
the conditions of acyclicity in the three previous theorems are all automatically
verified. ��

4.4 The End

One could now wonder what happens if split(N) be itself interpreted under step
or interval semantics. The answer is: nothing; and this gives an end to our story!
By its structure, split(N) has the property that the three semantics generate
the same abstract processes (and the same split processes too, since abstraction
is injective).
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Theorem 6. For every contextual occurrence net N , every abstract process of
split(N) under the interval semantics is also an abstract process of split(N)
under the step and atomic semantics.

Proof. We show that for every set of events E ⊆ Dsplit(N), if ↗|E has a cycle,
then ↗|E →|E+ has a cycle too. By Lemma 3, � appears in E only between
an e− and an f+, as e− � f+. Hence, if this weak causality dependency is con-
catenated with another one, giving e− � f+ ↗ g, then the causal dependency
f+ ↗ g must be strong: f+ → g. In the end, this implies that every cycle of the
↗|E relation provides a cycle of the ↗|E →|E+ relation. ��

5 Discussion

We have shown, within a general framework obtained by an adequate splitting of
transitions, how a novel non-atomic firing semantics emerges for contextual nets,
and studied the resulting concurrent processes, which provide a deeper insight
into complex dynamics of distributed systems.

A key motivation for the research presented in this paper comes from con-
current behaviours as exhibited by systems with a semantics that cannot be
captured by sequences of actions (i.e., the atomic semantics). While the step
semantics of, e.g., [8,10,15,26] provides an expressive operational semantics, it
still does not represent the most general case. It was argued in [30], and analysed
in detail in [11], that the most general observational semantics can be repre-
sented by the interval semantics. Invariant structures for such a semantics have
been proposed in [10,19], and analysed in detail in [13]. A calculus for temporal
reasoning about interval semantics was introduced in [1] where thirteen basic
relations between time intervals that are qualitative rather than quantitative
(no exact numeric spans are represented) were investigated. These relations and
the operations on them form an interval algebra for which several distinct sub-
algebras of different expressiveness and tractability have since been investigated,
e.g., in [21,23].

An example of recent application of concurrency semantics based on step
sequences was the paper [7] which investigated the behaviour of GALS (Glob-
ally Asynchronous Locally Synchronous) systems in the context of VLSI circuits.
The specification of a system was given in the form of a Petri net N , and the
aim was to re-design the system to optimize signal management, by grouping
together concurrent events. More precisely, by looking at the concurrent reacha-
bility graph of N (i.e., one based on the step semantics), one aims at discovering
events that appear in ‘bundles’, so that they all can be executed in a single
clock tick (in effect, pruning the concurrent reachability graph). The result-
ing bundling is envisaged to reduce signal management, reducing the cost of
scheduling and control, and improving system performance. The paper proposes
a method that derives a combination of bundles that represents the temporal
activities the designer requires. Careful selection of bundles is essential so that
the pruned behaviour of the fully asynchronous model still exhibits some char-
acteristics of its parent and is persistent. Step semantics and step persistence
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are hence important features that will guarantee true persistent behaviour for
mixed synchronous-asynchronous (GALS) models.

An interesting question from a practical point of view is how to construct
abstract processes resp. the abstract unfolding automatically. One possibility
requiring little work would be to translate a net N into split(N), then unfold it
with the tool Cunf, which efficiently generates the unfolding for the atomic
semantics [24]. The resulting unfolding could then be transformed into an
abstract unfolding by merging pairs of conditions labeled pc, pr and pairs of
events labeled t−, t+, respectively; the pairs to merge are identified uniquely by
definition of the abstraction. A more intriguing question is whether the abstract
unfolding can also be generated directly from the net N . A starting point are
the results presented in Section 4.3, which characterize the events that belong
to the unfolding. However, checking those conditions directly would be ineffi-
cient. Existing unfolding tools compute, e.g., a concurrency relation that allows
to identify possible events more quickly, see, e.g., [2]. Transferring these results
does not seem straightforward, and moreover, the issue of how to compute a
finite marking-complete prefix of the unfolding would require attention. These
questions promise to be interesting future work.

We have restricted ourselves to safe nets for technical simplicity and hence
readability. However, there are no major obstacles for extending our work to non
safe contextual nets. Unfoldings can be defined easily for the very large class of
semi-weighted nets [3,20]. Simply, we lose uniqueness of the process representing
a firing sequence, which prevents us from using our function Π (Definition 10).
More importantly, in split processes of safe nets, for every condition (f+, pr)
consumed by an event e+, the corresponding (f+, pc) is consumed by e−. For
non safe nets, an e+ may consume another condition labeled pr, created by
another event, say f ′. This would induce ‘superfluous’ causality between f ′ and
e+. Taking this into account would make Lemma 3 and the following more
tedious.

Future work should also include more general non-atomic semantics, in par-
ticular for boolean nets [18].
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24. Rodŕıguez, C.: Verification Based on Unfoldings of Petri Nets with Read Arcs. PhD

thesis, Laboratoire Spécification et Vérification, ENS Cachan, France, December
2013
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2 École Centrale de Nantes, IRCCyN, Nantes, France
didier.lime@ec-nantes.fr, olivier-h.roux@irccyn.ec-nantes.fr

Abstract. With the aim of significantly increasing the modeling capa-
bility of Petri nets, we suggest that models involve parameters to repre-
sent the weights of arcs, or the number of tokens in places. We consider
the property of coverability of markings. Two general questions arise:
“Is there a parameter value for which the property is satisfied?” and
“Does the property hold for all possible values of the parameters?”. We
show that these issues are undecidable in the general case. Therefore, we
also define subclasses of parameterised networks, depending on whether
the parameters are used on places, input or output arcs of transitions.
For some subclasses, we prove that certain problems become decidable,
making these subclasses more usable in practice.

Keywords: Petri net · Parameters · Coverability

1 Introduction

The introduction of parameters in models aims to improve genericity. It also
allows the designer to leave unspecified aspects, such as those related to the
modeling of the environment. This increase in modeling power usually results in
greater complexity in the analysis and verification of the model. Beyond verifi-
cation of properties, the existence of parameters opens the way to very relevant
issues in design, such as the computation of the parameters values ensuring
satisfaction of the expected properties.

We chose to explore the subject on concurrent models whose archetype is that
of Petri nets. We consider discrete parameterisation of markings (the number of
tokens in the places of the net) or weight of arcs connecting the input or output
places to transitions. We call these Petri nets parameterised nets or PPNs.

We consider the general properties of coverability and, to a lesser extent,
reachability (that are often the basis for the verification of more specific prop-
erties).

First issues are:
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– Is there a value of the parameters such that the property is satisfied?
– Is the property satisfied for all possible values of the parameters?

Given the modeling power offered by PPNs, we first study the decidability
of these issues. Since in the general case, they are undecidable, we then examine
decidable subclasses.

Related work. There is not much work on Petri nets with parameters. One exam-
ple is regular model checking [3] for algorithmic verification of several classes of
infinite-state systems whose configurations can be modeled as words over a finite
alphabet. The main idea is to use regular languages as the representation of sets
of configurations, and finite-state transducers to describe transition relations.
This is only possible for particular examples including parameterised systems
consisting of an arbitrary number of homogeneous finite-state processes con-
nected in a regular topology, and systems that operate on linear data structures.
Parameters are also introduced in models such as predicate Petri nets [8], in the
aim to have more concise models, in particular to take into account symmetries in
the model [4]. Domains of values are generally finite. Parameterised verification
on timed systems has also been studied in several papers since its introduction
by Alur et al. in [1]. Parameterisation of time uses continuous parameters. In
this paper, we focus on discrete parameters on untimed Petri nets.

The remainder of the paper is structured as follows: Section 2 re-visites
the semantics of Petri Nets and introduces discrete parameters in Petri Nets.
Section 3 presents the undecidability results. Section 4 introduces subclasses of
our parameterised models. Section 5 answers decidability results over those sub-
classes and underlines issues encountered with reachability. Section 6 concludes
and points to future work.

2 Definitions

Notations

N is the set of natural numbers. N∗ is the set of positive natural numbers and
Nω is the classic union N ∪ {ω} where for each n ∈ N, n + ω = ω, ω − n = ω,
n < ω and ω ≤ ω. Z is the set of integers. Let X be a finite set. 2X denotes
the powerset of X and |X| the size of X. Let V ⊆ N, a V-valuation for X is
a function from X to V . We therefore denote V Xthe set of V-valuations on X.
Given an alphabet Σ, we denote as Σε the union Σ ∪ {ε} where ε is the silent
action. Given a set X, let k ∈ Z and x ∈ X, we define a linear expression on X
by the following grammar: λ ::= k | k ∗ x | λ + λ. Given a linear expression λ on
X and a N-valuation ν for X, ν(λ) is the integer obtained when replacing each
element x in X from λ, by the corresponding value ν(x).

2.1 Petri Nets and Marked Petri Nets

Definition 1 (Petri Net). A Petri Net is a 4-tuple N = (P, T, Pre, Post)
where P is a finite set of places, T is a finite set of transitions, Pre and Post ∈
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N
|P |×|T | are the backward and forward incidence matrices, such that Pre(p, t) =

n with n > 0 when there is an arc from place p to transition t with weight n and
Post(p, t) = n with n > 0 when there is an arc from transition t to place p with
weight n.

Given a Petri Net N = (P, T, Pre, Post), we denote Pre(•, t) (also written
•t) as the vector (Pre(p1, t), P re(p2, t), ..., P re(p|P |, t)) i.e. the tth column of the
matrix Pre. The same notation is used for Post(•, t) (or t•).

Definition 2 (Marking). A marking of a Petri Net N = (P, T, Pre, Post) is
a vector m ∈ N

|P |.

If m ∈ N
|P | is a marking, m(pi) is the number of tokens in place pi. We can

define a partial order over markings.

Definition 3 (Partial Order). Let N be a Petri Net such that N = (P, T, Pre,
Post), let m and m′ be two markings of N . We define ≤ as a binary relation
such that ≤ is a subset of N|P | × N

|P | defined by:

m ≤ m′ ⇔ ∀p ∈ P,m(p) ≤ m′(p) (1)

Definition 4 (Marked Petri Net). A marked Petri Net (PN) is a couple S =
(N ,m0) where N is a Petri Net and m0 is a marking of N called the initial
marking of the system.

An example of marked Petri Net is given in Figure 1.

p1

p2

p3

t2

2

t1

3

•(.) =

t1 t2⎡
⎣
1 1
0 2
0 0

⎤
⎦

p1

p2

p3

(.)• =

t1 t2⎡
⎣
0 0
3 0
0 1

⎤
⎦

p1

p2

p3

m0 =

⎛
⎝

2
0
0

⎞
⎠

Fig. 1. A Marked Petri Net

2.2 Operational Semantics

Augmenting Petri Nets with markings leads to the notion of enabled-transitions
and firing of transitions. Given a marked Petri Net S, a transition t ∈ T is said
enabled by a marking m when m ≥ Pre(•, t).
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Definition 5 (PN Semantics). The semantics of PN is a transition system
ST = (Q, q0,→) where, Q = N

|P |, q0 = m0, →∈ Q × T × Q such that,

m
ti→ m′ ⇔

{
m ≥ •ti
m′ = m − •ti + t•i

(2)

This relation holds for sequences of transitions:

– m
w→ m′ if w is the empty word and m = m′

– m
wt→ m′ if ∃m′′,m w→ m′′ ∧ m′′ t→ m′ where w ∈ T ∗ and t ∈ T .

Definition 6 (Reachability set). Given a PN, S = (N ,m0), the reachability
set of S, RS(S) is the set of all reachable markings of S i.e. RS(S) = {m | ∃w ∈
T ∗,m0

w→ m}

2.3 Parametric Petri Nets

We would like to use less rigid modeling in order to model systems where some
data are not known a priori. Therefore, in this subsection, we extend the previous
definitions by adding a set of parameters Par. Working with Petri nets and
discrete parameters leads to consider two main situations: the first one involves
parameters on markings, by replacing the number of tokens in some places by
parameters, the second one involves parameters as weights. The same parameter
can be used in both situations. Using parameters on markings can be easily
understood as modeling an unfixed amount of resources that one may want to
optimise. Let us consider a concrete example to illustrate parameterised weights.
In a production line, we consider two operations: first, to supply raw material,
we need to unpack some boxes containing an amount λ1 of resources, as depicted
in Figure 2, and at the end, we need to pack end products in boxes of capacity
λ2, as in Figure 3. This is part of a whole packaging process that one may want
to optimise. The level of abstraction induced by parameters permits to leave
those values unspecified in order to perform an early analysis.

p1 p2t
λ1

Fig. 2. Unpacking raw material

p1 p2t

λ2

Fig. 3. Packing end products

Definition 7 (Parametric Petri Net). A parametric Petri Net, NP is a 5-
tuple NP = (P, T, Pre, Post, Par) such that P is a finite set of places of NP,
T is a finite set of transitions of NP, Par is a finite set of parameters of NP,
Pre and Post ∈ (N ∪ Par)|P |×|T |

Intuitively, a parametric Petri net is a Petri net where the number of tokens
involved in a transition is parameterised as depicted in Figure 4.
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t2
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•(.) =

t1 t2⎡
⎣
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⎤
⎦

p1

p2

p3

(.)• =

t1 t2⎡
⎣

0 0
λ1 0
0 λ3

⎤
⎦

p1

p2

p3

Fig. 4. A Parametric Petri Net

Definition 8 (Parametric marking). Given a parametric Petri Net NP =
(P, T, Pre, Post, Par), a parametric marking is a |P |-dimensional vector μ of
linear expressions on N ∪ Par.

Modeling with parameters means using parameters over weights and mark-
ings rather than setting numeric values everywhere. Therefore we may also use
a parametric initial marking.

Definition 9 (Parametric PN or PPN). A parametric marked Petri Net
(PPN) is a couple, SP = (NP, μ0) where NP is a Parametric Petri Net and
μ0 is the parametric initial marking of NP.

PPNs can be used to design systems where some parts have not been analysed
or where we need to keep flexibility. We now need to define a way to instantiate
classic Petri nets from our parametric marked Petri Nets, in order to define a
semantics.

Definition 10 (Parametric Semantics). Let SP = (P, T, Pre, Post, Par, μ0)
be a PPN, we consider the set of valuations NPar. Let ν ∈ N

Par, we define ν(SP)
as the PN obtained from SP by replacing each parameter λ ∈ Par by ν(λ), its val-
uation by ν, i.e. ν(SP) = (P, T, Pre′, Post′,m0) where ∀i ∈ [[1, |P |]],∀j ∈ [[1, |T |]],

Pre′(i, j) =
{

Pre(i, j) if Pre(i, j) ∈ N

ν(Pre(i, j)) if Pre(i, j) ∈ Par
(3)

Post′(i, j) =
{

Post(i, j) if Post(i, j) ∈ N

ν(Post(i, j)) if Post(i, j) ∈ Par
(4)

m0(i) =
{

μ0(i) if μ0(i) ∈ N

ν(μ0(i)) if μ0(i) is a linear expression on Par
(5)

A marked Petri Net is an instance of a parametric marked Petri net.
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2.4 Parametric Problems

We can define several interesting parametric problems on PPNs. In fact, the
behaviour of a PPN is described by the behaviours of all the PNs obtained by
considering all possible valuations of the parameters. It seems therefore obvi-
ous to ask, in a first time, if there exists valuations for the parameters such
that a property holds for the corresponding instance and its dual, i.e., if every
instance of the parametric marked Petri Net satisfies the property. Given a class
of problem P (coverability, reachability,...), SP a PPN and φ is an instance of
P, parameterised problems are written as follows:

Definition 11 (P-Existence problem). (E -P): Is there a valuation ν ∈ N
Par

s.t. ν(SP) satisfies the property φ ?

Definition 12 (P-Universality problem). (U -P): Does ν(SP) satisfies the
property φ for each ν ∈ N

Par ?

This paper focuses on reachability and coverability issues.

Definition 13 (Reachability). Let S = (N ,m0) = (P, T, Pre, Post,m0) and
m a marking of S, S reaches m iff m ∈ RS(S).

Definition 14 (Coverability). Let S = (N ,m0) = (P, T, Pre, Post,m0) and
m a marking of S, S covers m if there exists a reachable marking m′ of S such
that m′ is greater or equal to m i.e.

∃m′ ∈ RS(S)s.t. ∀p ∈ P,m′(p) ≥ m(p) (6)

We recall that reachability [9] and coverability [7] are decidable on classic
Petri nets. In the context of parametric Petri nets, coverability leads to two
main problems presented previously, that is to say: the existence problem, writ-
ten (E -cov) and the universal problem, written (U -cov). For instance, (U -cov)
asks: “Does each valuation of the parameters implies that the valuation of the
parametric P/T net system covers m ?” i.e.

m is U -coverable in SP ⇔
{∀ν ∈ N

Par, ∃m′ ∈ RS(ν(SP))
s.t. m′ ≥ m

(7)

We can similarly define E -reach and U -reach for parameterised reachability.

3 Undecidability Results for the General Case

In their paper suming-up results of decidability for reset-nets and corresponding
subclasses, Dufourd, Finkel and Schnoebelen noticed that “Reachability is known
to become undecidable as soon as the power of Petri nets is increased” [5], for
instance, adding reset arcs [2] or inhibitor arcs [6] makes reachability undecid-
able. In this section, we focus on showing that adding parameters to PN leads to
undecidability. More specifically, (U -cov) and (E -cov) are undecidable on PPNs.
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As we will proceed by reduction to the halting problem (and counter bound-
edness problem) for counter machines to answer our problem, we first recall some
definitions. A 2-Counters Machine has a pointer and a tape which contains finite
number of instructions in three types: increment, decrement and zero-test. The
pointer reads the tape to execute increment or decrement instructions sequen-
tially. When the pointer reaches a zero-test instruction, then it will jump to a
certain position on the tape and continue. Formally, it consists of two counters
c1, c2, a set of states P = {p0, ...pm}, a terminal state labelled halt and a finite
list of instructions l1, ..., ls among the following list:

– increment: increase ck by one and go to next state, where k ∈ {1, 2}
– decrement: decrease ck by one and go to next state, where k ∈ {1, 2}
– zero-test: if ck = 0 go to state pj else go to state pl, where pj , pl ∈ P ∪{halt}

and k ∈ {1, 2}
We can assume without restriction that the counters are non negative integers

i.e. that the machine is well-formed in the sense that a decrement instruction
is guarded by a zero-test and that the counters are initialised to zero. It is
well known that the halting problem (whether state halt is reachable) and the
counters boundedness problem (whether the counters values stay in a finite set)
are both undecidable as proved by Minksy [10].

Theorem 1 (Undecidability of E -cov on PPN). The E -coverability prob-
lem for PPN is undecidable1.

Proof. We proceed by reduction from a 2-counters machine. Given a Minksy
2-counters machine M, we construct a PPN that simulates it, SPM, as follows.

– Each counter ci is modeled by two places Ci and ¬Ci. The value of the
counter is encoded by the number of tokens in Ci.

– For each state p of P ∪ {halt} a 1-bounded place p is created in the net.
– The instructions of the previous definition are modeled by the transitions

and arcs depicted in Figure 5.
– A unique additional place π with an additional transition θ serves to initialise

the net. The initial marking is composed of one token in π and one token in
the place p corresponding to the initial state p of M.

Initially, only θ can be fired, which leads to the initial configuration of the
machine (state p0 and counters values null), with one token in p0, no tokens in C1

and C2 and a parameterised number of tokens in ¬Ci. The value of this parameter
will therefore represent the upper bound of the counter over the instructions
sequence. We have to verify that each time m(Ci) + m(¬Ci) = λ. First we show
that SPM simulates M by verifying the behaviour of each instruction:

1 We can be more accurate by specifying that we need at least 1 parameter used on 6
distinct arcs. The question remains opened for fewer parameterised arcs.
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Fig. 5. Modeling a counter with PPN

– Increment instruction: As Ci models the counter, the transition Ci + +
adds one token in Ci, removes one token from ¬Ci and changes the current
state by removing the token from pi and adding a token in pj . The error
states is marked iff the incrementation instruction is performed whereas we
have already reached the upper bound over the execution. This state will be
useful for the second proof.

– Decrement instruction: As Ci models the counter, the transition Ci - -
removes one token from Ci, adds one token in ¬Ci and changes the current
state by removing the token from pi and adding a token in pj . We recall the
machine is well-formed.

– Zero Test: As Ci models the counter, and as we know the sum of tokens
available in Ci and ¬Ci, there is no token in Ci iff there are λ tokens in
¬Ci. According to this test the current state is updated by removing the
token from pi and adding a token in pj or pk. The value of the counter is
left unchanged.

E Coverability is undecidable :
We will show that given a 2-counters machine M, (a) M halts (it reaches the
halt state) iff (b) there exists a valuation ν such that ν(SPM) covers the corre-
sponding phalt place.

– (a) ⇒ (b) First, let us assume that M halts. As M halts, the execution
of the machine is finite. On this execution the two counters are bounded
by clim1 and clim2. Let clim be the maximum of those two values. Let ν
be the valuation such that ν(λ) = clim. By the previous explanation, SPM
simulates M. Moreover, the valuation ν ensures that SPM does not reach
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a deadlock state where perror is marked. Therefore, when M reaches halt,
SPM will add 1 token in phalt. So, a marking where there is one token in
phalt is coverable.

– (b) ⇒ (a) We proceed by contrapositive. Let us assume that M does not
halt. We want to show that there is no valuation ν such that ν(SPM) adds
a token in phalt. Let us consider the two following distinct alternatives:

• If the counters are bounded along the execution, either the value of λ is
less than the maximum value of the counters and error will be reached
during some increment resulting in a deadlock, or the value of λ is big
enough so that error is never marked, but, in this case, then, as the
machine does not halt, it means that it does not reach halt. So there
is no instruction that leads to halt in M. Therefore, according to the
previous explanation, there is no transition that adds a token in phalt.

• If at least one counter is not bounded, then for any given valuation ν,
we will reach an instruction inc(ci), where i is 1 or 2, and ci = ν(λ).
Therefore, a token will be added in perror leading to a deadlock. So SPM
will not cover a terminal state.

The undecidability of the halting problem on the 2-counters machine gives the
undecidability of the E -coverability problem.

Theorem 2 (Undecidability of U -cov on PPN). The U -coverability prob-
lem for PPN is undecidable.

Proof. U Coverability is undecidable:

We proceed by reduction from a 2-counters machine. We use the same
construction as in the previous proof. We denote merror the marking were
merror(p) = 0 for each p ∈ P except merror(perror) = 1. We will show that given
a 2-counter machine M, (a) the counters are unbounded along the instructions
sequence of M (counters boundedness problem) iff (b) for each valuation ν,
ν(SPM) covers the merror.

– (a) ⇒ (b) First, let us assume that on a given instruction sequence, one
counter of M is unbounded. By the second alternative considered in the
proof for E -cov we proved that for any valuation, a token will be added in
perror.

– (b) ⇒ (a) Reciprocally, by contrapositive, we want to show that if the
counters are bounded, there exists a valuation ν such that ν(SPM) does not
cover merror. This comes directly from the previous proof. As the counters
are bounded along the instructions sequence, we consider a valuation ν such
that ν(λ) = clim where clim is an upper bound of the values of the counters.
By construction, there is no possibilities to add a token in perror, otherwise,
it means that SPM took an incrementation transition meaning that clim is
not an upper bound.

The undecidability of the counters boundedness problem on the 2-counters
machine gives the undecidability of the U -coverability problem.
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4 Subclasses of Parametric Petri Nets

4.1 Introducing Subclasses

On the one hand, our parametric model increases the modeling power of Petri
nets but on the other hand, using parameters leads to complex models where
properties become undecidable. In order to obtain parameterised models that
are easier to analyse and therefore can be used in practice, we should reduce the
power of modeling. We will therefore introduce some subclasses of the PPN in
which we restrict the use of parameters to only markings, which could be used
to model arbitrary number of identical processes, to only output arcs, which,
we will see, is a bit more general or to only input arcs, which could model
synchronizations among arbitrary numbers of identical process, and finally some
combinations of those.

The following subclasses have therefore a dual interest. From a modeling
point of view, restrict the use of parameters to tokens, output or input can be
used to model concrete examples such as respectively processes or synchroni-
sation of a given number of processes. From a theoretical point of view, it is
interesting to introduce those subclasses of PPN in a concern of completeness of
the study.

Definition 15 (P-parametric PN). A P-parametric marked Petri Net (P-
PPN), SP = (NP, μ0) where NP is a Parametric Petri Net such that Pre
and Post ∈ N

|P |×|T | and μ0 is a parametric marking of NP.

A P-PPN is a classic Petri net with a parametric initial marking.

Definition 16 (T-parametric PN). A T-parametric Petri Net (T-PPN),
SP = (NP,m0) where NP is a Parametric Petri Net and m0 is a marking of
NP
Intuitively, using parameters on outputs means we will create parametric mark-
ings. To complete this study, we can extract a subclass in which parameters
involved in the Pre matrix and parameters involved in the Post matrix corre-
spond to disjoints subsets of parameters. i.e. par(Pre)∩par(Post) = ∅ where par
is the application that maps to the set of parameters involved in a matrix (or a
vector). We call this subclass distinctT-PPN 2. We can even refine the subclass of
distinctT-PPN by considering the two distinct classes of Pre-T-parametric PPN
(preT-PPN), where Post ∈ N

|P | and Post-T-parametric PPN (postT-PPN),
where Pre ∈ N

|P |.
As we introduced several subclasses, it is interesting to study whether one of

this subclass is more expressive than the other. We will show that P-PPN and
postT-PPN are related. Therefore, we introduce here some useful definitions.
Our translations add silent actions that detail the beahviour of the Petri nets.
Therefore, we introduce a labelling function Λ from the set of transitions T to
2 Studying the undecidability proof, it is relevant to think that using different param-

eters for the input and the output would reduce the modeling power.
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PPN

T-PPN P-PPN

distinctT-PPN
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PN

Caption:

: is a syntactical subclass of

: is a weak-bisimulation subclass of

Fig. 6. Subclasses of PPN

Σε, Λ : T → Σε, such that Σε ⊆ T ∪ {ε} and Λ(ti) equals either ti or ε. We

extend the previous definitions by using m
t→ m′ or m

Λ(t)→ m′ depending on the
context3. For instance, m

ε∗
→ m′ means that m leads to m′ by using zero or more

internal ε-transitions. Given two markings m and m′ we write:

m
α→ε m′ ⇔ m

ε∗
→ α→ ε∗

→ m′ with α �= ε (8)

Definition 17 (Weak-Simulation). Given two labelled marked Petri nets,
S1 = (P1, T1, F1, Λ1, Σε,m

0
1) and S2 = (P2, T2, F2, Λ2, Σε,m

0
2), a binary rela-

tion R ⊆ N
|P1| × N

|P2| is a simulation if

∀(m1,m2) ∈ R ⇔
{∀α ∈ Σ and m′

1 s.t. m1
α→ε m′

1,
∃m′

2s.t. m2
α→ε m′

2 and (m′
1,m

′
2) ∈ R (9)

If we can find a weak-simulation R ⊆ N
|P1|×N

|P2| such that (m0
1,m

0
2) ∈ R we say

that S2 weakly simulates S1, which means intuitively that S2 can match all the
moves of S1. Moreover if we can find another weak-simulation R′ ⊆ N

|P1| ×N
|P2|

such that S1 weakly simulates S2, we say that S1 and S2 are weakly co-similar.

Definition 18 (Weak-Bisimulation). Given two labelled PN, S1 = (P1, T1,
F1, Λ1, Σε,m

0
1) and S2 = (P2, T2, F2, Λ2, Σε,m

0
2), a binary relation R ⊆ N

|P1| ×

3 Indeed, if we consider the alphabet A equals to the set of the transition T of the
Petri Net, and L as the identity function, the two definitions are equivalent. Using
labelling is more general and allows to introduce non deterministic behaviours.
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N
|P2| is a weak-bisimulation 4 if

∀(m1,m2) ∈ R ⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ∀α ∈ Σ and m′
1 s.t. m1

α→ε m′
1

there is m′
2s.t. m2

α→ε m′
2 and (m′

1,m
′
2) ∈ R

− ∀α ∈ Σ and m′
2 s.t. m2

α→ε m′
2

there is m′
1s.t. m1

α→ε m′
1 and (m′

1,m
′
2) ∈ R

(10)

Two labelled Petri Nets S1 and S2 are weakly bisimilar if there is a weak
bisimulation relating their initial markings. In the sequel, every transition
called θ is mapped to ε by Λ whereas for a transition called t, Λ(t) = t.
If the original PPN, SP = (P, T, Pre, Post, Par, Λ, μ0), has a set of transi-
tion T and T ′ denotes the set of transition of the constructed PPN, SP ′ =
(P ′, T ′, P re′, Post′, Par, Λ′, μ′

0) then T ′ = T ∪Θ with T ∩Θ = ∅. For each t ∈ T ,
Λ(t) = t and for each θ in Θ, Λ(θ) = ε.

4.2 Translating P-PPN to postT-PPN

In order to simulate the behaviour of parameterised places, we translate those
places in a parameterised initialisation process that needs to be fired before
firing any other transitions in the net. The idea relies on using a new place π
and a new transition θ enabled by this place, such that θ• initializes a P-PPN, as
showed in Figure 7. We define the initial marking m0 = (0, ..., 0, 1) i.e. ∀p ∈ P ,
m0(p) = 0 and m0(π) = 1. We will show that SP ′ and SP are weakly-bisimilar
by showing that each behaviour of SP can be done in SP ′ if we begin by firing
θ and reciprocally.

p1

λ1

p2

λ2

p3

p4

t

p1 p2

π

p3

p4

t

θ

1 λ2

λ1

replacement of the
P parameters by
postT parameters

Fig. 7. From P-PPN to postT-PPN

4 There exists several definitions of bisimulation, for instance preserving deadlocks or
epsilon-branching, but the one we use is sufficient for our purpose.
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Lemma 3. ∀ν ∈ N
Par, ν(SP) and ν(SP ′) are weakly bisimilar.

Note that each path in SP = (P, T, Pre, Post, Par, Λ, μ0) can be done in
SP ′ = (P ′, T ′, P re′, Post′, Par, Λ′,m′

0) by adding θ at the beginning. And recip-
rocally, each path in SP ′ begins by θ so is written θ.w where w is a path in SP.

Proof. Let ν ∈ N
Par a valuation of the parameters. We want to show that ν(SP)

and ν(SP ′) are weakly bisimilar. Let ν(μ0) be the parametric initial marking
of ν(SP) and ν(m′

0) = m′
0 the initial marking of ν(SP ′). The only transition

firable from m′
0 is θ and m′

0
θ→ ν(μ0) as shown in Figure 7. From ν(μ0), SP and

SP ′ are isomorphic. So ν(SP1) and ν(SP2) are weakly-bisimilar.

Those results underline that using parameters on outputs is more powerfull
than using parameters on markings. We can conclude that T-PPN are more
expressive than PPN.

4.3 Translating postT-PPN to P-PPN

We will show that from a postT-PPN, SP1 = (P1, T1, P re1, Post1, Par1, Λ1,m
0
1)

we can construct a P-PPN, SP2 = (P2, T2, P re2, Post2, Par2, Λ2, μ
0
2) that

weakly-simulates the behaviours of the postT-PPN. Reciprocally, the postT-
PPN also weakly-simulates the behaviours of the P-PPN built.

For each transition t and place p such that the arc (t, p) is weighted by a
parameter, we construct the net depicted in Figure 8 which replace this arc 5.
Therefore, T1 ⊆ T2. As previously, we introduce two labelling functions Λ1 and
Λ2 from T1 (resp. T2) to Tε such that, for each t ∈ T1, Λ1(t) = Λ2(t) = t and
Λ2(t) = ε otherwise (i.e. for each t ∈ T2\T1).

Lemma 4. ∀ν ∈ N
Par, ν(SP1) and ν(SP2) are weakly cosimilar.

Proof. We will prove the 2 weak-simulations.

– ∀ν ∈ N
Par, ν(SP2) simulates ν(SP1). Let us consider ν ∈ N

Par, ν(SP1)
has the following behaviour: each time t is fired, ν(λ) tokens are created
in p. In SP2, it is possible to generates ν(λ) tokens in p after firing the
sequence t θ

ν(λ)
t,p,1 θt θ

ν(λ)
t,p,2, labeled tε∗. Moreover, this sequence resets the

sub-net constructed for the weak-simulation. As the other transitions of
the network are not affected, monotony gives directly the weak-simulation.

– ∀ν ∈ N
Par, ν(SP1) simulates ν(SP2). Reciprocally, a marking with ν(λ)

tokens in p allows to simulate the behaviours of every marking such that
m(p) ≤ ν(λ) according to monotony therefore, the reachable markings
induced by creating less than ν(λ) tokens in SP2 are simulated by the one
with ν(λ) tokens, and therefore by SP1. As the other transitions of the
network are not affected, monotony gives directly the weak-simulation.

5 Notice that if several labeled arcs come from the same transition, some places and
transitions of the Figure 8 should be duplicated according to indices.
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Fig. 8. From postT-PPN to P-PPN

Therefore, SP1 and SP2 are weakly co-similar.

Remark 1. This is not a weak bisimulation. Indeed, if SP2 adds 3 tokens in p
(leading to a marking m2) whereas SP1 adds ν(λ) = 4 tokens in p (leading to
a marking m1). Then any transitions needing more than 3 tokens could only be
fired from m1 in SP1 only. Here the two simulations relations are not reciprocal:
m1 would simulates m2 but m2 would not.

5 Decidability Results

We will now consider the parameterised properties defined in Section 2 and the
different subclasses of parameterised models of Section 4. Table 1 sums up the
results that we present in this section.

Table 1. Decidability results for parametric coverability and reachability

U -problem E -problem

Reachability Coverability Reachability Coverability

preT-PPN ? ? ? D
postT-PPN ? D ? D

PPN U U U U
distinctT-PPN ? ? ? D

P-PPN ? D D D

5.1 Study of Parameterised Coverability

The easiest proofs rely on monotony. Indeed, some instances simulate other
instances. We recall that the zero valuation (written 0) is the valuation that
maps every parameter to zero.
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Lemma 5. Decidability of U -coverability on postT-PPN (resp. P-PPN) can be
reduced to a test with the zero valuation.

Proof. For postT-PPN and P-PPN, the zero valuation is the one allowing the
lowest amount of behaviours for coverability i.e. it is the most restrictive valua-
tion for coverability. Indeed, considering a marking m that we try to cover, m is
U -coverable if and only if there is a firing sequence w such that m0

w→ m1 ≥ m
in the 0-instanced postT-PPN (or P-PPN). Formally, given a postT-PPN or a
P-PPN SP and a marking m, we have:

∃ν s.t. m is not coverable in ν(SP) iff m is not coverable in 0(SP)

Indeed, for any valuation ν we can fire w in the ν-instanced PPN, leading to a
marking m2 ≥ m1 by monotony. Moreover, on the instance of a PPN (i.e. on
a PN), the coverability is known decidable, so we can answer to the problem
on the zero instanced postT-PPN (or P-PPN). If the answer is no, then we
have found a counter example. Else, monotony directly implies that using a
greater valuation ν will provide at least behaviours covering the current ones.
The winning behaviour that allowed to answer yes for the zero-instance will still
works on this ν-instance. So every instance will satisfy the coverability.

Therefore we can claim that U -cov is decidable on postT-PPN and P-PPN.
Let us consider E -cov for the same subclasses.

Theorem 6. E -cov is decidable on P-PPN.

Proof. Decidability of E -cov on P-PPN:
We consider a P-PPN, SP1. We will now build a PN S2 with token-canons that
will supply the parameterised places of SP1 as depicted in Figure 9. Each token-
canon consists in two places πp, π′

p and two transitions θp, θ′
p. θp supplies p of

S2. Moreover, each transition of SP1 is added as an input and an output of π′
p,

meaning that the net is blocked as long as every θ′
p has not been fired. This is

repeated for each place initially marked by a parameter. We initialize S2 with 1
token in each πp. So for each valuation ν of SP1, firing the sequence θ

ν(λp)
p θ′

p

for each parameterised place p leads to a marking m2 equals to the valuation of
the initial marking of SP1. Moreover, the θ-transitions added have been fired,
so every π′

p is marked. The two nets have now the same behaviour. This shows
that S2 simulates any valuation of SP1. Therefore, the existence of a valuation
such that a given marking is covered can be reduced to the coverability of the
same marking (completed with 0 for each πp and 1 for each π′

p added) which is
known decidable as a classic coverability problem on an unbounded Petri net.

Corollary 7. E -cov is decidable on postT-PPN.

Proof. Decidability of E -cov on postT-PPN:
We proved in previous section that postT-PPN and P-PPN are weakly-cosimilar.
Therefore, given a postT-PPN we can built a P-PPN which is weakly-co-similar.
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λpp p

πp

π′
p

θp

θ′
p

Fig. 9. From PPN to PN

Moreover, as coverability can be reduced to firing transition (by adding an
observer transition), weak-simulation holds coverability. Theorem 6 gives us the
decidability.

Theorem 8. E -cov is decidable for preT-PPN.

Proof. E -cov for the preT-PPN is decidable:
Let us consider a preT-PPN and a marking m that we try to cover. For an input
transition with a weight of zero, we do not require the input place to be marked.
Therefore, in terms of input parameters, by monotony, the zero valuation is the
most permissive one for firing. Thus, there is at some valuation a firing sequence
w such that m0

w→ m1 ≥ m if and only if we can fire w in the 0-instanced one,
leading to a marking m2 ≥ m1. Formally, given a preT-PPN SP, we have:

m0
w→ m1 ≥ m in ν(SP) iff m0

w→ m2 ≥ m in 0(SP) with m2 ≥ m1

Informally, it means that the zero instance of the preT-PPN has the greatest
amount of behaviours (in terms of coverability). Therefore it is the one which is
necessary and sufficient to satisfy the E -cov of m, meaning that if it does not
satisfy the property, monotony implies that any instance of the preT-PPN will
not satisfy either. If the 0-instanced net covers m, we have a witness for the
E -cov.

Corollary 9. E -cov is decidable for distinctT-PPN.

Proof. E -cov for the distinctT-PPN is decidable:
As we can create a partition over Par between ParPre and ParPost, respectively
sets of parameters involved on inputs and outputs which are disjoint. We can
consider the partial valuation 0|ParPre

, which maps every parameter of ParPre

to 0. We therefore get a postT-PPN on which the problem is decidable. More-
over, the post-PPN built is the one with the greatest amount of behaviours
for coverability as explained previously. Considering that, if we cannot find any
instance of this postT-PPN satisfying the property, we cannot find any instance
of this distinctT-PPN satisfying it either.
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5.2 Study of Parameterised Reachability

In classic Petri nets decidability of reachability certainly implies decidability of
coverability. Indeed, given a marked Petri Net and a coverability problem, we
can construct another marked Petri Net over which the previous coverability
problem is equivalent to a reachability problem.

p pg

tgoal

m

tempty,p

Fig. 10. Reducing Coverability to Reachability

Actually, with notations of Figure 10 covering a marking m is equivalent to
reach the marking with only one token in place pg in the net augmented with this
new place pg, a new transition tgoal such that •tgoal = m, with Post(pg, tgoal) =
1 and, for each place p, a transition tempty,p such that: if p is not equal to
pg, Pre(p, tempty,p) = 1, Pre(pg, tempty,p) = 1 and Post(pg, tempty,p) = 1. It
is clear that the same can be done for PPN , which implies that decidability
of E -reachability implies decidability of E -coverability and decidability of U -
reachability implies decidability of U -coverability. Section 3 provides therefore
the undecidability of (E -reach) and (U -reach) in the general case of PPN .

Theorem 10. E -reach is decidable on P-PPN.

Proof. We can trivially adapt the conclusion of the proof of Theorem 6. We keep
the same construction: the existence of a valuation such that a given marking is
reached can be reduced to the reachability of the same marking (completed with
0 for each πp and 1 for each π′

p added) which is known decidable as a classic
reachability problem on an unbounded Petri net.

Nevertheless, for the other subclasses, the decidability of reachability is more
complex. Intuitively, increasing the valuation used to instanciate a preT-PPN
(resp. a postT-PPN) leads to disable (resp. enable) transitions, i.e. the cover-
ability of a marking, but this is not sufifcient to deduce the exact number of
tokens involved, i.e. reachability.

Figure 11 presents a preT-PPN. It is obvious that using the 0-valuation
leads to enable the firing of t in any case, so it allows to cover any amount of
tokens in p2. In Figure 11(a), the coverability set is CS0 = {m|m ≤ (2, 1, ω)}.
On the other hand, increasing the valuation leads to potentially disable t. We
will therefore reduce the coverability set as we strengthen the pre-condition to
fire t: in Figure 11(b), the coverability set is CS1 = {m|m ≤ (2, 1, 0) ∨ m ≤
(1, 0, 1)} ⊆ CS0, and in Figure 11(c), we have CS2 = {m|m ≤ (2, 1, 0) ∨ m ≤
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p1

p2

p3

t

0

0

(a) 0-instance

p1

p2

p3

t

1

1

(b) 1-instance

p1

p2

p3

t

2

1

(c) ν-instance

Fig. 11. Several instances of a preT-PPN

(0, 0, 1)} ⊆ CS1. Nevertheless, this strengthening of the pre-condition, does not
imply general consequences in terms of reachability sets. Indeed, in Figure 11(a),
the reachability set is {(2, 1, n)|n ∈ N}, whereas in Figure 11(b) we can reach
{(2, 1, 0), (1, 0, 1)} and in Figure 11(c), we can reach {(2, 1, 0), (0, 0, 1)}.

p1 p2t
0

(a) 0-instance

p1 p2t
1

(b) 1-instance

Fig. 12. Several instances of a postT-PPN

Equivalent observations rise from the study of Figure 12. When increasing the
valuation, we may fire at least the same transitions, therefore, the coverability
set is increasing: Figure 12(a) can cover any markings lower or equal to (2, 0) and
can reach the set {(2, 0), (1, 0), (0, 0)} whereas Figure 12(b) can cover markings
lower or equal to (2, 0),(1, 1) or (0, 2) but can reach the set {(2, 0)(1, 1)(0, 2)}.

6 Conclusion

6.1 Main Results

In this paper, we have introduced the use of discrete parameters and suggested
parametric versions of the well known reachability and coverability problems.
The study of the decidability of those problems leads to the results summed up
in Figure 13 for coverability (Classes inside a dashed outline are decidable for
the two corresponding parametric coverability problems).

We recall that the other results are presented in Tab 1.

6.2 Future Work

If we have strong intuitions for several empty cases such as decidability of U -
Coverability on preT-PPN and distinctT-PPN which would join the intuition
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Fig. 13. What is decidable among the subclasses ? (for coverability)

that using the same parameters on inputs and outputs considerably increases
the power of modeling of classic Petri nets, a deeper study should be carried
to answer the decidability of Parametric-Reachability for instance. Being able
to treat these parameterised models constitutes a scientific breakthrough in two
ways:

– It significantly increases the level of abstraction in models. We will therefore
be able to handle a much larger and therefore more realistic class of models.

– The existence of parameters can also address more relevant and realistic
verification issues. Instead of just providing a binary response on the satis-
faction or not of an expected property, we can aim to synthetise constraints
on the parameters ensuring that if these constraints are satisfied, the prop-
erty is satisfied. Such conditions for the proper functioning of the system are
essential information for the designer.

Acknowledgments. We wish to thank the anonymous reviewers, who helped us to
improve the paper by their suggestions.
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Abstract. We introduce a global specification language for distributed
negotiations, a recently introduced concurrent computation model with
atomic negotiations combining synchronization of participants and choice
as primitive. A token game on distributed negotiations determines reach-
able markings which enable possible next atomic negotiations. In a deter-
ministic distributed negotiation, each participant can always be engaged
in at most one next atomic negotiation. In a sound distributed negoti-
ation, every atomic negotiation is enabled at some reachable marking,
and from every reachable marking the final marking of the distributed
negotiation can be reached. We prove that our specification language has
the same expressive power as sound and deterministic negotiations, i.e.,
every program can be implemented by an equivalent sound and deter-
ministic negotiation and every sound and deterministic negotiation can
be specified by an equivalent program, where a program and a negotia-
tion are equivalent if they have the same Mazurkiewicz traces and thus
the same concurrent runs. The translations between negotiations and
programs require only linear time.

1 Introduction

Multi-party negotiation as a concurrent computation model has been recently
introduced in [1,2] as a formalization of the negotiation paradigm given e.g. in
[3,4]. In this model, distributed negotiations are described by combining atomic
negotiations, called atoms. Each atom has a number of parties (the set of agents
involved in it), and a set of possible outcomes. The parties of an atom agree on
an outcome, which transforms the internal state of the parties, and determines
the atoms each party is ready to engage in next. If each agent is always willing
to engage in at most one atom, the negotiation is called deterministic.

For an example, consider the left part of Figure 1, which shows a deterministic
negotiation with agents 1 to 4. Atoms are represented by black bars with white
circles (ports) for the respective participating agents. Initially all agents are ready
to engage in the initial atom n0, where they decide whether to start discussing
a proposal (outcome y(es)) or not (n(o)). If the agents agree on n, then the
negotiation terminates with the final atom nf . If they agree on y, then the
agents build two teams to study and modify the proposal in parallel: agents
c© Springer International Publishing Switzerland 2015
R. Devillers and A. Valmari (Eds.): PETRI NETS 2015, LNCS 9115, pp. 157–178, 2015.
DOI: 10.1007/978-3-319-19488-2 8
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Fig. 1. Two negotiations between four agents

1 and 2 “move” to atom n1, and agents 3 and 4 to n2. After n1 and n2, the
four agents decide in n3 whether to accept (outcome a) or reject (r) the revised
proposal; in case of rejection, the two teams work again on revisions.

Negotiations can deadlock. For instance, if, in our example, the r-arc from
port 2 of atom n3 would lead to nf rather than to n1, then the negotiation reaches
a deadlock after the execution of y p p′ r p′. Loosely speaking, a negotiation is
sound if each atom can be executed in some reachable state and, whatever its
current state, it can always finish, i.e., execute the final atom. In particular,
soundness implies deadlock-freedom.

In this paper we investigate negotiations from a programming language point
of view. Negotiations can be seen as concurrent compositions of flowcharts, one
for each agent. For example, the negotiation on the left of Figure 1 is the com-
position of the four flowcharts shown on the right. So, just as flowcharts (or
if-goto programs) model unstructured sequential programs, negotiations model
unstructured concurrent programs. The Böhm-Jacopini theorem, often called the
Structure Theorem [5]1, states that every flowchart has an equivalent structured
program [5–7]. This raises the question we investigate in the paper: Is there a
“Structure Theorem” for negotiations similar to the Böhm-Jacopini theorem for
sequential computation? We give a positive answer for deterministic negotia-
tions with a surprising twist: We exhibit a programming language with the same
expressive power as sound deterministic negotiations. In other words, every syn-
tactically correct program is guaranteed by construction to be sound, and for
every sound deterministic negotiation there is an equivalent program exhibiting
the same degree of concurrency. A similar question has frequently been studied
for process models given as Petri nets or BPMN-diagrams, relating these mod-
els to programs in some execution language such as BPEL. In this setting, by
now only partial solutions have been obtained. For example, [8] shows how to
find so-called blocks in diagrams, each corresponding to a XOR-split/XOR-join-
couple or to an AND-split/AND-join-couple. Process models with nested blocks
are always sound and can easily be translated in a programming language, but
not all sound process models have nested blocks.

1 See [6], which convincingly argues that it should be considered a folk theorem.
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agent a1, a2, a3, a4

outcome y, n, a, r : {a1, . . . , a4}; p : {a1, a2}; p′ : {a3, a4}
do [] y : (p ‖ p′) ◦

do [] a : end [] r : (p ‖ p′) loop od
end

[] n : end
od

Fig. 2. Program equivalent to the negotiation of Figure 1

An example program of our language is given in Figure 2. This program is
equivalent to the negotiation of Figure 1. The first two lines of the program
specify the agents of the system, and, for each outcome, the set of agents that
have to agree to choose the outcome. The outer do · · ·od block corresponds
to the atom n0. The block offers a choice between outcomes y and n; in the
language, outcomes are prefixed by the [] operator. After outcome y, the two
outcomes p and p′ can be taken concurrently (actually, p is here an abbreviation
of do p : end od, a block with only one possible outcome). The operator ◦ is the
layer composition operator of Zwiers [9]. In every execution of P1 ◦P2, all actions
of P1 in which an agent a participates take place before all actions of P2 in which
a participates. If the sets of agents involved in P1 and P2 are disjoint, then P1

and P2 can be executed concurrently, and in this case we write P1 ‖ P2 (our
language has only layer composition as primitive, and concurrent composition
is just a special case). Finally, the block do [] a : end [] r : (p ‖ p′) loop od
offers a choice between two alternatives, corresponding to the outcomes a and
r. The alternatives are labeled with the keywords end and loop respectively,
which indicate what happens after the chosen alternative has been executed: in
the case of a loop, the block restarts, and for an end it terminates.

While we have presented both negotiations and negotiation programs as data-
less computational models, data can easily be added to both. In fact, in [1,2] each
agent is assumed to have an internal state (which can be given by the valuation
of a set of local variables), and an outcome of an atom with a set X of agents
is assigned a state transformer relation which only applies to the internal states
of the involved agents. For programs, we can assign to each agent a set of local
variables, and to each outcome of an atom a guarded command over (a subset of)
the local variables of the participating agents of the atom. For instance, assume
that the purpose of the negotiation of Figure 1 is to fix a price. Agent ai stores
his current proposal for the price in a local variable xi (1 ≤ i ≤ 4). The outcome
n (no need to negotiate) is assigned the guard x1 = x2 = x3 = x4, while y is
assigned its negation. The outcome p is assigned a command x1, x2 := f(x1, x2),
where f represents a (possibly nondeterministic) function that returns an agreed
price between agents a1 ad a2. We proceed similarly with p′ and a function g. If
the two proposed prices agree, the program terminates. Otherwise, a new price
is negotiated by means of a third function h, and sent to the four agents.
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agent a1 var x1 :int
. . .
agent a4 var x4 :int

1 do [] ¬(x1 = x2 = x3 = x4) :

2 {x1, x2 := f(x1, x2) ‖ x3, x4 := g(x3, x4)} ◦
3 do [] (x2 = x3) : end

4 [] (x2 �= x3) :

5 x2, x3 = h(x2, x3) ◦
6 {x1, x2 := f(x1, x2) ‖ x3, x4 := g(x3, x4)}
7 end
8 od loop
9 [] (x1 = x2 = x3 = x4) : end
10 od

Fig. 3. A concrete program corresponding to the abstract program of Figure 2

Figure 3 shows a concrete negotiation program with data which corresponds
to the abstract program of Figure 2. The i-th agent stores its current price in a
variable xi. If the prices are initially different, then agents 1 and 2 and agents
3 and 4 build two teams and come up with new suggestions for the price, a
process encapsulated in the functions f and g. The new suggestions are stored
in x2 and x3. If x2 and x3 are not equal, then agents 2 and 3 come up with a
new suggestion (function h), which is then sent again to the two teams.

Notice that, according to the above recursive procedure, the set of agents
executing the guards (x2 = x3) and (x2 �= x3) must be equal, and this set must
be a superset of the set of agents executing lines 5 and 6. Since all variables
appear in these lines, all agents must participate in the execution of the guards.
If only agents a2 and a3 execute the guards, then the program may deadlock,
because after line 2, process 1 does not know whether it has to execute line 6 or
finish.

The paper is structured as follows. In the following section, we recall defini-
tions and notations for negotiations. Section 3 introduces negotiation programs
formally. In Section 4, we show how to derive a negotiation from a program.
Section 5 is devoted to the converse direction, which is based on a technical
result given in Section 6. Our result can be viewed as a solution to the realiz-
ability problem, as posed for other models, which will be discussed in Section 7.

2 Negotiations: Syntax and Semantics

We recall the main definitions of [1] for syntax and semantics of negotiations.
However, here we do not consider states of agents and their transformations.
Throughout the paper, we fix a finite set A of agents representing potential
parties of negotiations.
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Definition 1. A negotiation atom, or just an atom, is a pair n = (Pn, Rn),
where Pn is a nonempty set of parties (participants) and Rn is a finite, nonempty
set of results. For each result r, the pair (n, r), also denoted by rn, is the outcome
of n.

A negotiation is a composition of atoms. We add a transition function X that
assigns to each triple (n, a, r) consisting of an atom n, a party a of n, and a result
r of n a set X(n, a, r) of atoms, the set of atomic negotiations agent a is ready
to engage in after the atom n, if the result of n is r.

Definition 2. Given a finite set of atoms N , let T (N) denote the set of triples
(n, a, r) such that n ∈ N , a ∈ Pn, and r ∈ Rn.

A negotiation is a tuple N = (N,n0, nf ,X), where n0, nf ∈ N are the initial
and final atoms, and X : T (N) → 2N is the transition function, such that

(1) every agent of A participates in both n0 and nf ;
(2) for every (n, a, r) ∈ T (N): X(n, a, r) = ∅ iff n = nf .
The negotiation N is deterministic if |X(n, a, r)| = 1 for each (n, a, r) ∈ T (N)

satisfying n �= nf . We write X(n, a, r) = n′ instead of X(n, a, r) = {n′}.
In this paper we consider only deterministic negotiations. In the graphical

representation of a deterministic negotiation, an arc from the port of agent a in
atom n, labeled by r, leads to the port of a in the unique atom of X(n, a, r).
In the negotiation of Figure 1, the atom n0 has possible results y and n while
n1 only has the result p. By definition, the final atom nf has results, too. Since
after each outcome (nf , e) no agent is ready to engage in any atom, these results
are not represented in the figure. Whenever we choose disjoint names for results,
as we did in this example, we do not have to distinguish results and outcomes.

A marking of a negotiation N = (N,n0, nf ,X) is a mapping x : A → 2N .
Intuitively, x(a) is the set of atoms that agent a is currently ready to engage
in next. The initial and final markings, denoted by x0 and xf respectively, are
given by x0(a) = {n0} and xf (a) = ∅ for every a ∈ A.

A marking x enables an atom n if n ∈ x(a) for every a ∈ Pn. If x enables
n, then n can take place and its parties agree on a result r; we say that the
outcome (n, r) occurs. The occurrence of (n, r) produces a next marking x′ given
by x′(a) = X(n, a, r) for every a ∈ Pn, and x′(a) = x(a) for every a ∈ A \ Pn.
We write x

(n,r)−−−−→ x′ to denote this, and call it a small step. By this definition,
always either x(a) = {n0} or x(a) = X(n, a, r) for some atom n and outcome r.
Therefore, for deterministic negotiations, x(a) always contains at most one atom.
We write x1

σ−→ to denote that there is a sequence σ = (n1, r1) . . . (nk, rk) . . .

of small steps such that x1
(n1,r1)−−−−−→ x2

(n2,r2)−−−−−→ · · · (nk,rk)−−−−−→ xk+1 · · · We call σ
occurrence sequence from the marking x1, or enabled by x1. If σ is finite then we
write x1

σ−→ xk+1 and call xk+1 reachable from x1. If x1 is the initial marking,
then we call σ initial occurrence sequence. If moreover xk+1 is the final marking,
then σ is a large step.

The marking xf can only be reached by the occurrence of (nf , e) (e being a
possible result of nf ), and it does not enable any atom. Any other marking that
does not enable any atom is considered a deadlock.
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We represent a marking x of the negotiation of Figure 1 by the vector
(x(1), x(2), x(3), x(4)). With this notation, one of the occurrence sequences is:

(n0, n0, n0, n0)
y−→ (n1, n1, n2, n2)

p−→ (n3, n3, n2, n2)
p′

−−→
(n3, n3, n3, n3)

a−→ (nf , nf , nf , nf )
e−→ (∅, ∅, ∅, ∅)

Following [10,11], we introduce a notion of well-behavedness of negotiations:

Definition 3. A negotiation is sound if (a) every atom is enabled at some reach-
able marking, and (b) every initial occurrence sequence is either a large step or
can be extended to a large step.

Sound negotiations are necessarily deadlock-free. A sound negotiation also
has no livelocks, i.e., it cannot reach a behaviour from which it is impossible to
reach the the final marking. However, sound negotiations may not terminate. In
the rest of this paper, we often consider the set of all sound and deterministic
negotiations. We introduce the abbreviation SDN for the elements of this set.

Two distinct atoms which are both enabled at a reachable marking are con-
currently enabled. Hence two possible next outcomes (n1, r1) and (n2, r2) are
concurrent if n1 �= n2, and they are alternative if n1 = n2 and r1 �= r2. In an
occurrence sequence, concurrently occurring outcomes are ordered arbitrarily.
Conversely, two subsequent outcomes in an occurrence sequence occur concur-
rently if and only if the sets of agents participating in the respective atoms are
disjoint. This fact is utilized by the concurrent semantics of negotiations, the
Mazurkiewicz trace semantics.

A Mazurkiewicz trace language [12] is based on a finite alphabet Σ (of events)
and a dependence relation D ⊆ Σ × Σ which is reflexive and symmetric. The
independence relation I = (Σ × Σ) \ D is symmetric and irreflexive. Two sub-
sequent independent events of a sequential observation of a concurrent run can
be interchanged, and the resulting sequence is an observation of the same run,
whereas the order of two subsequent dependent events matters.

Given any finite sequence σ of events over Σ, [σ] denotes the least set of
sequences which contains σ and is closed under permutation of subsequent inde-
pendent events (i.e., if σ1 a b σ2 ∈ [σ] and (a, b) ∈ I then σ1 b a σ2 ∈ [σ]). Each
such [σ] is called a trace, and each set of traces is a trace language. Formally, a
trace language is defined on a distributed alphabet (Σ, I), where Σ is an alphabet
and I ⊆ Σ × Σ is an independence relation.

Traces can be composed in a natural way: for σ1, σ2 ∈ Σ∗, [σ1] · [σ2] := [σ1σ2]
(it is easy to see that this is well-defined, i.e., for [σ′

1] = [σ1] and [σ′
2] = [σ2] we

have [σ1 σ2] = [σ′
1 σ′

2]). Similarly, we define composition of trace languages: if A
and B are sets of traces, then A · B := {a · b | a ∈ A, b ∈ B}.

The Kleene star applied to a trace, [σ]∗, denotes the languages of all [σ]i, for
i = 0, 1, 2, . . . . Similarly, for a trace language A, A∗ is the union of all Ai.

Definition 4. Let N be a negotiation and let Σ be the set of all outcomes of
N. Define the independence relation I by ((n1, r1), (n2, r2)) ∈ I if Pn1 ∩ Pn2 = ∅
(i.e., n1 and n2 are independent if they have disjoint sets of agents). The set of
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Fig. 4. Boxes

traces of N, denoted by T (N), is the set of traces over (Σ, I) given by T (N) =
{[σ] | σ is a large step of N}.

The outcomes (n1, p) and (n2, p′) of the negotiations of Figure 1 are inde-
pendent. The set of traces is the set {[σ] | σ ∈ (n+ y p p′ (r p p′)∗ a)} (we abbre-
viate an outcome (n, r) to the result r). For instance, we have [y p p′ r p p′ a] =
{y p p′ r p p′ a, y p′ p r p p′ a, y p p′ r p′ p a, y p′ p r p′ p a}.

It is convenient to assume that the initial and final atoms of a negotiation
are distinct and have one single result each, for which we use the symbols st and
end, respectively. We will moreover require that no port of the initial atom has
an ingoing arc. If the initial atom n0 does not satisfy this, then we add a new
initial atom n′

0 with a single result st and set X(n′
0, a, st) = n0 for each agent

a. For the final atom, we can easily replace all the results by a single result end.

Definition 5. A negotiation N = (N,n0, nf ,X) is normed if n0 and nf are
distinct and have one single result, called st for n0 and end for nf , and satisfies
n0 /∈ X(n, a, r) for each atom n, a ∈ Pn and r ∈ Rn. The normed trace semantics
of N is the set of traces [[N]] = {σ | stσ end ∈ T (N)}.

We use the abstract graphical representation of a normed negotiation shown
in Figure 4; we draw a box around its body and give it a name, in this case B.
Due to the convention above, for each agent there is exactly one arc connecting
its port in the initial atom to the body. However, there may be several arcs from
the body to the port of an agent in the final atom, although we represent them
as one arc. Observe that a negotiation is completely determined by its body, the
initial and final atoms just play the rôle of a wrapper.

3 Negotiation Programs

In this section, we provide a language for the specification of negotiations. As we
have abstracted from states and state transformations of negotiations, we also
abstract from data but concentrate on the communication between agents.
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Agents can agree on negotiation outcomes. For the language, we therefore
define a set of outcome names or names R (without stating anything about
atomic negotiations yet). We fix a function � : R → 2A that assigns to each name
a nonempty set of agents, intuitively the set of agents that have to agree on the
outcome to be taken. For every set X ⊆ A, we denote by RX the set of names
r ∈ R such that �(r) = X.

Definition 6. Let NP be the grammar consisting of the following productions
for every X ⊆ A, every X ′ ⊆ X, and every Y,Z ⊆ X such that Y ∪ Z = X:

prog[X] ::= ε

do {[] endalt[X]}+ {[] loopalt[X]}∗ od

prog[Y ] ◦ prog[Z]

endalt[X] ::= name[X] : prog[X′] end

loopalt[X] ::= name[X] : prog[X′] loop

name[X] ::= element of RX

where, as usual, ε is the empty expression, {}+ stands for “one or more instances
of”, and {}∗ for “zero or more instances of”.

For every X ⊆ A, the negotiation programs over X are the expressions
derivable in NP from the nonterminal prog[X].

In the rest of the paper we use PX to denote a program over the set X of
agents. With this syntax, if PX′ is a subprogram of PX , then necessarily X ′ ⊆ X.

Intuitively, the semantics of negotiation programs is as follows:

– ε stands for a terminated negotiation
– do body od describes a negotiation starting with an atomic negotiation

among the agents of X, in which they agree on one of the alternatives in
the body. If they agree on an end-alternative a : PX′ end, then the program
continues with PX′ and terminates when (and if) PX′ terminates. If they
agree on a loop-alternative a : PX′ loop, then, after PX′ terminates (if it
does), the program restarts.

– PY ◦P ′
Z combines sequential and concurrent composition. If Y ∩Z = ∅, then

PY and P ′
Z are executed concurrently, and we may write PY ‖ P ′

Z instead of
PY ◦ P ′

Z .

Formally, the semantics of a negotiation program is a set of traces over a
distributed alphabet. We define the alphabet first.

Definition 7. Given a set of agents A, outcome names R and a labeling function
� as above, the distributed alphabet over A is the pair (Σ, I), where Σ = R and
(a, b) ∈ I iff �(a) ∩ �(b) = ∅. That is, two outcome names are independent if
their corresponding sets of agents are disjoint.

The semantics of a negotiation program PX over a set of agents X ⊆ A is
the set of traces [[PX ]] over the distributed alphabet (Σ, I) inductively defined as
follows, where Ei

X and Lj
X denote end- and loop-alternatives, respectively:
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[[ε]] = {[ε]}

[[do
k

[]
i=0

Ei
X

m

[]
j=1

Lj
X od]] =

( m⋃

j=1

[[Lj
X ]]

)∗
·
( k⋃

i=0

[[Ei
X ]]

)

[[a :PX′ ]] = {[a]} · [[PX′ ]]

[[PY ◦ P ′
Z ]] = [[PY ]] · [[P ′

Z ]]

We use an abbreviation for do · · ·od constructs with only one alternative
(which must be an end-alternative): we shorten do [] a : ε end od to just a.

In our example, the body of the program shown in Figure 2 has the same
semantics as the negotiation of Figure 1. Observe that we need to duplicate the
subprogram (p ‖ p′). This is, however, already necessary in sequential compu-
tations. Consider the degenerate negotiation with only one agent obtained by
“projecting” the negotiation of Figure 1 onto the first agent (shown on the right
of the figure). The language of the program is given by the regular expression
yp(rp)∗a, which also contains two occurrences of p. No regular expression for
this language contains only one occurrence of p.

The main result of this paper, proved in the next sections, shows the equiva-
lence between negotiation programs and sound deterministic negotiations, where
a negotiation program and a SDN are equivalent if they have the same set
of Mazurkiewicz traces. This equivalence not only preserves the occurrence
sequences, but also concurrency. In particular, in the SDN for a program P1 ‖ P2,
the negotiations for P1 and P2 are indeed executed concurrently. So the theo-
rem shows that every specification is deadlock-free and can be implemented, and
every sound implementation can be specified.

Theorem 1. (a) For every negotiation program P there is a normed SDN N

with the same set of agents such that [[P ]] = [[N]]. Moreover, the number
of atoms and outcomes of N is equal to the number of do-blocks of P plus
2, and the total number of outcomes of N is equal to the total number of
alternatives of P plus 1.

(b) For every normed SDN N there is a negotiation program P with the same
set of agents such that [[P ]] = [[N]].

In (b), the size of P can be exponential in the size of N. This is already the
case for negotiations with one single agent, in which N is essentially a deter-
ministic finite automaton, and P corresponds to a regular expression for this
automaton, which can be exponentially larger than the automaton itself.

4 From Programs to Normed SDNs

We show that for every negotiation program P there is a normed SDN N such
that [[P ]] = [[N]], by induction over the structure of P . First we give a SDN for
the empty program, and then we give deterministic negotiations for P1 ◦ P2 and
do []ki=1 ai : Pi end []k+�

j=k+1 aj : Pj loop, assuming we have produced negotiations
for all Pi. In all cases, the proof that the negotiation is sound and has the same
traces as the program follows easily from the definitions, and is omitted.
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Fig. 5. The concatenation and the prefix operation

Definition 8. The empty normed negotiation over a set X of agents is Nε
X =

({n0, nf}, n0, nf ,X) with X(n0, a, st) = nf , X(nf , a, end) = ∅ for each a ∈ X.

Lemma 1. [[ε]] = {[ε]} = [[Nε
X ]] for every ∅ �= X ⊆ A.

Figure 5 illustrates the concatenation (middle) of two negotiations (left) with
bodies B1, B2 over two not disjoint sets of agents.

Definition 9. Let N1 = (N1, n01, nf1,X1), N2 = (N2, n02, nf2,X2) be negotia-
tions over (not necessarily disjoint) sets of agents A1, A2 satisfying N1∩N2 = ∅.
The negotiation N1 ◦ N2 = (N,n0, nf ,X) over agents A1 ∪ A2 is defined by:

– N = (N1 \ {n01, nf1}) ∪ (N2 \ {n02, nf2}) ∪ {n0, nf}

– X(n0, a, st) =
{
X1(n01, a, st) if a ∈ A1

X2(n02, a, st) if a ∈ A2 \ A1

– For every n ∈ N1, for every a ∈ Pn, r ∈ Rn:

X(n, a, r) =

⎧
⎨

⎩

X1(n, a, r) if X1(n, a, r) �= nf1

nf if X1(n, a, r) = nf1, a ∈ A1 \ A2,
X1(n01, a, r) if X1(n, a, r) = nf1, a ∈ A1 ∩ A2,

– For every n ∈ N2, for every a ∈ Pn, r ∈ Rn:

X(n, a, r) =
{
X2(n, a, r) if X2(n, a, r) �= nf2

nf if X1(n, a, r) = nf2

Lemma 2. If [[P1]] = [[N1]] and [[P2]] = [[N2]], then [[P1 ◦ P2]] = [[N1 ◦ N2]].

Prefixing negotiations by an atom that chooses which negotiation to execute
next is illustrated in Figure 5 (right) for the special case of do [] r1 : P1 end []
r2 : P2 loop od, where P1, P2 are programs over agents {a1, a2} and {a2, a3},
respectively. As for concatenation, the textual definition is a bit laborious.
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Definition 10. Let N1, . . .Nk+� be negotiations over (not necessarily disjoint)
sets of agents A1, . . . , Ak+�. Let Ni = (Ni, n0i, nfi,Xi) for every 1 ≤ i ≤ k + �,
where the Ni are pairwise disjoint. The negotiation

choice[N1, . . . ,Nk;Nk+1, . . . ,Nk+�] = (N,n0, nf ,X)

over agents A =
⋃k+�

i=1 Ai is defined as follows:

– N = {n, n0, nf} ∪
k+�⋃

i=1

Ni \ {n0i, nfi}

– X(n0, a, st) = n for every a ∈ A

– For every 1 ≤ i ≤ k: X(n, a, ri) =
{
Xi(n0i, a, ri) if a ∈ Ai

nf if a /∈ Ai

– For every k + 1 ≤ i ≤ k + �: X(n, a, ri) =
{
Xi(n0i, a, ri) if a ∈ Ai

n if a /∈ Ai

– For every 1 ≤ i ≤ k, n ∈ Ni, a ∈ Pn, r ∈ Rn:

X(n, a, r) =
{
Xi(n, a, r) if Xi(n, a, r) �= nfi

nf if Xi(n, a, r) = nfi

– For every k + 1 ≤ i ≤ k + �, n ∈ Ni, a ∈ Pn, r ∈ Rn:

X(n, a, r) =
{
Xi(n, a, r) if Xi(n, a, r) �= nfi

n if Xi(n, a, r) = nfi

Lemma 3. Let P = do []ki=1 ai : Pi end []k+�
j=k+1 aj : Pj loop. If [[Pi]] = [[Ni]] for

every 1 ≤ i ≤ k + �, then [[P ]] = [[choice[N1, . . .Nk;Nk+1, . . . ,Nk+�]]].

5 From Normed SDNs to Programs

We show that for every normed SDN N there is a negotiation program P with
the same agents such that [[P ]] = [[N]]. For this we use the results of [1,2] on
reduction rules. Although we generally abstract from data aspects in this paper,
states and state transformations are helpful to understand the reduction rules.

Each agent a ∈ A has a (possibly infinite) nonempty set Qa of internal
states. We denote by QA the cartesian product

∏
a∈A Qa. For each atom n and

result r ∈ Rn, there is a state transformer δn(r) representing a non-deterministic
state transforming function (this non-determinism is not related to the previ-
ously defined determinism of negotiations). Formally, δn(r) is a left-total rela-
tion δn(r) ⊆ QA × QA satisfying: if ((qa1 , . . . , qa|A|), (q

′
a1

, . . . , q′
a|A|)) ∈ δn(r)

then qai
= q′

ai
for all ai /∈ Pn (only the internal states of parties of n can

be transformed). We assign to each large step σ = (n0, r0) . . . (nf , rf ) a trans-
former δσ = δ(n0, r0) · · · δ(nf , rf ) (concatenation is the usual concatenation of
relations). The summary transformer of negotiation N and result rf of the final
atom nf , δN(rf ), is the union of all δσ for large steps σ ending with (nf , rf ).
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Fig. 6. The reduction rules

Two negotiations N1 and N2 over A are semantically equivalent, denoted
N1 ≡ N2, if either both are not sound or if both are sound, their final atoms
have the same results and δN1(rf ) = δN2(rf ) for every final result rf .

A reduction rule, or just a rule, is a binary relation on the set of negotiations.
Given a rule R, we write N1

R−−→ N2 for (N1,N2) ∈ R. A rule R is correct if
N1

R−−→ N2 implies that N1 ≡ N2) and therefore in particular that N1 is sound
iff N2 is sound.

Given a set of rules R = {R1, . . . , Rk}, we denote by R∗ the reflexive and
transitive closure of R1 ∪ . . . ∪ Rk. We say that R is complete with respect to
a class of negotiations if N

R∗
−−→ Nmin holds for every negotiation N in the

class, where Nmin is a minimal negotiation of that class. In the class of sound
negotiations, each minimal negotiation has a single atom, which is both initial
and final. In the class of normed sound negotiations, each minimal negotiation
has two atoms, an initial and a final one, and the initial one has only one result,
st, which sends all agents to the final atom.

Given a reduction rule R, we say that R−1 is its associated synthesis rule.
By the definition of completeness, for every normed SDN N over the set X of
agents there is a chain Nε

X = N1 ≡ N2 ≡ . . . ≡ Nm = N where each negotiation
is obtained from the previous one through the application of a synthesis rule.

We will prove the existence of a sequence ε = P1 ≡ P2 ≡ . . . ≡ Pm = P of
programs such that [[Pi]] = [[Ni]] for every 1 ≤ i ≤ n. We do so by proving the
following statement for each synthesis rule R−1 in the following complete set of
reduction rules: if (N,N′) ∈ R−1 and there is P such that [[P ]] = [[N]], then there
exists P ′ such that [[P ′]] = [[N′]].

We repeat the correct and complete set of rules for normed SDNs from [2].
Rules are described by a guard and an action; N1

R−−→ N2 holds if N1 satisfies
the guard and N2 is a possible result of applying the action to N1. The rules
introduced in [1,2] are summarized in Figure 6. The transformations of state
transformers (δn) are actually not important in the present context but are
provided for the sake of completeness.
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Merge rule. Intuitively, this rule (Figure 6, left) merges two outcomes with iden-
tical next enabled atoms into one single outcome with a fresh label.

Guard: N contains an atom n with distinct outcomes r1, r2 ∈ Rn

such that X(n, a, r1) = X(n, a, r2) for every a ∈ An.
Action: (1) Rn ← (Rn \ {r1, r2}) ∪ {rf}, with rf being a fresh label.

(2) For all a ∈ Pn: X(n, a, rf ) ← X(n, a, r1).
(3) δ(n, rf ) ← δ(n, r1) ∪ δ(n, r2).

Iteration rule. The rule replaces the iteration of an outcome r followed by some
other outcome by one outcome rf with the same effect (Figure 6, middle).

Guard: N contains an atom n with an outcome r
such that X(n, a, r) = n for every party a of n.

Action: (1) Rn ← {r′
f | r′ ∈ Rn \ {r}}, with r′

f being a fresh label.
(2) For all a ∈ Pn: X(n, a, r′

f ) ← X(n, a, r′) \ {n}.
(3) For every r′

f ∈ Rn: δn(r′
f ) ← δn(r)∗ δn(r′).

Shortcut rule. The shortcut rule merges the outcomes of two atoms that can
occur subsequently into one single outcome with the same effect (Figure 6, right).

Given atoms n, n′, we say that (n, r) unconditionally enables n′ if Pn ⊇ Pn′

and X(n, a, r) = n′ for every a ∈ Pn′ . If (n, r) unconditionally enables n′ then,

for every marking x that enables n, the marking x′ given by x
(n,r)−−−−→ x′ enables

n′. Moreover, n′ can only be disabled by its own occurrence.

Guard: N contains two distinct atoms n, n′ �= n0

such that (n, r) unconditionally enables n′.
Action:
(1) Rn ← (Rn \ {r}) ∪ {r′

f | r′ ∈ Rn′}, with r′
f being fresh labels.

(2) For all a ∈ Pn′ , r′ ∈ Rn′ : X(n, a, r′
f ) ← X(n′, a, r′).

For all a ∈ P \ Pn′ , r′ ∈ Rn′ : X(n, a, r′
f ) ← X(n, a, r).

(3) For all r′ ∈ Rn′ : δn(r′
f ) ← δn(r)δn′(r′).

(4) If X−1(n′) = ∅ after (1)-(3), then remove n′ from N , where
X−1(n′) = {(ñ, ã, r̃) ∈ T (N) | n′ ∈ X(ñ, ã, r̃)}.

Theorem 2. [1,2] The merge, shortcut, and iteration rules are complete and
correct for the class of deterministic negotiations (and thus preserve soundness
as well as unsoundness). Moreover, every SDN with k atoms can be completely
reduced by means of a polynomial number (in k) of applications of the rules.

For defining according program rules, it is convenient to introduce labeled
programs, in which each do. . .od-block carries a label. Two blocks carry the
same label if and only if they are syntactically identical.

A labeled program P over a set of agents A matches a normed negotiation
N = (N,n0, nf ,X), denoted by P ∼A N, if each block P ′ of P is labeled with
an atom n′ ∈ N \ {n0, nf} having the same agents and outcomes as P ′, and for
each atom n′ ∈ N \ {n0, nf} some block of P is labeled by n.
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Fig. 7. Program rule for the (inverse of the) merge rule

For each of the rules above we prove the following statement: if (N,N′) ∈ R−1

and there is a negotiation program P such that [[P ]] = [[N]] and P ∼A N, then
there exists a negotiation program P ′ such that [[P ′]] = [[N′]], and P ′ ∼A N′.
For the merge and iteration rules this is very simple, but the shortcut rule is
nontrivial.

In the rest of the section, kwd (for keyword) stands for either end or loop.

Merge rule.

Lemma 4. Let (N,N′) ∈ M−1, where M is the binary relation of the merge
rule. If there is P such that [[P ]] = [[N]] and P ∼A N, then there exists P ′ such
that [[P ′]] = [[N′]], and P ′ ∼A N′.

Proof. Let (n, r) be the outcome of N to which the synthesis rule is applied.
Since P ∼A N, all blocks of P labeled by n are identical and have the form

n :: do · · · [] r : Pr kwd [] · · ·od (1)

for some program Pr. If P ′ is the result of replacing all blocks labeled by n by

n :: do · · · [] r : Pr kwd [] r′ : Pr kwd [] · · · od

then we clearly have [[P ′]] = [[N′]], and P ′ ∼A N′. ��
Observe that, due to the duplication of Pr, the size of P ′ can be essentially

twice the size of P .

Iteration rule.

Lemma 5. Let (N,N′) ∈ I−1 , where I is the binary relation of the iteration
rule. If there is P such that [[P ]] = [[N]] and P ∼A N, then there exists P ′ such
that [[P ′]] = [[N′]], and P ′ ∼A N′.

Proof. Let n be the atom of N to which the synthesis rule adds one more out-
come, and let X be the set of agents of n. Since P ∼A N, all blocks of P labeled
by n are identical and have the form

n :: do
m

[]
i=1

ri : Pi kwdi od (2)
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Fig. 8. Program rule for the (inverse of the) iteration rule

Let P ′ be the result of replacing all blocks labeled by n by

n :: do
m

[]
i=1

ri : Pi kwdi [] r : loop od

Then we clearly have [[P ′]] = [[N′]], and P ′ ∼A N′. ��
Shortcut rule. The shortcut rule presents a problem, illustrated in Figure 9. The
left part of the figure represents an application of the synthesis rule. Let (N,N′) ∈
S−1 be this application, where S is the binary relation of the shortcut rule. The
program for N must contain a block labeled by n with set of agents {a1, a2, a3}
and two outcomes r1, r2, as shown in the upper-right part of the figure. Assume,
as shown in the figure, that P1 and P2 have {a1, a2} and {a1, a2, a3} as sets of
parties, respectively. Then the program for N′ must still contain a do-block P
for the atom n, but now with a single outcome r leading to a second do-block
P ′ with two outcomes r′

1 and r′
2, leading to the programs P1 and P2. Since the

outcome r only has a1 and a2 as parties, P ′ has to be a program derived from
the nonterminal 〈prog〉{a1,a2}. But then, since P2 has {a1, a2, a3} as parties, it
cannot be a subprogram of P ′.

Fortunately, we can sidestep the problem by having a close look at the com-
pleteness proofs of [1,2]. Those proofs imply the following result: completeness
is retained if the shortcut rule is restricted to two special cases.

Definition 11. The one-outcome shortcut rule is like the shortcut rule, but with
the additional condition in its guard that the atom n′ has only one outcome.
The same-parties shortcut rule is like the shortcut rule, but with the additional
condition in its guard that atoms n and n′ have identical sets of parties.

The proof of this completeness result is non-trivial, and we delay it to
Section 6. Assuming the result holds, we show next that we find program trans-
formations matching the inverses of the one-outcome and same-parties shortcut
rules.

Lemma 6. Let (N,N′) ∈ O−1, where O is the binary relation of the one-
outcome shortcut rule. If there is P such that [[P ]] = [[N]] and P ∼A N, then
there exists P ′ such that [[P ′]] = [[N′]], and P ′ ∼A N′.
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Fig. 9. The näıve program rule for the shortcut rule fails

Fig. 10. Program rule mimicking the (inverse of the) one-outcome shortcut rule

Proof. Let n be the atom of N with an outcome r to which the inverse of
the one-outcome rule is applied. Given a set T of traces, let T [n, r, n′, r′] be
the result of replacing in T each trace of the form [σ1 (n, r)σ2] by the trace
[σ1 (n, r) (n′, r′)σ2]. It follows easily from the definition of N and N′ that
[[N′]] = [[N]][r, r′]. The construction is illustrated in Figure 10.

Since P ∼A N, all blocks of P labeled by n are identical and have the form

B = n :: do · · · [] r : Pr kwd [] . . .od .

Let P [B/B′] be the result of replacing all blocks labeled by n by

B′ = n :: do · · · [] r : (do r′ : end od ◦ Pr) kwd [] . . .od .

By the definition of the program semantics we have [[B′]] = [[B]][n, r, n′, r′]. We
prove [[P [B/B′]]] = [[P ]][n, r, n′, r′] by induction on the structure of P , which,
taking P ′ = P [B/B′], concludes the proof.

– If P = B, then apply P [B/B′] = B′ and [[B′]] = [[B]][n, r, n′, r′].
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Fig. 11. Program rule for the (inverse of the) same-parties shortcut rule

– If P = do []mi=1 ri : Pi kwdi od, where kwdi = end for 1 ≤
i ≤ m′ and kwdi = loop for m′ < i ≤ m, then P [B/B′] =
do []mi=1 ri : Pi[B/B′] kwdi od. By induction hypothesis [[Pi[B/B′]]] =
[[Pi]][n, r, n′, r′], and so we get

[[P [B/B′]]]
=

(⋃m
i=m′+1[[Pi[B/B′]]]

)∗ ⋃m′

j=1[[Pj [B/B′]]]
=

(⋃m
i=m′+1[[Pi]][n, r, n′, r′]

)∗ ⋃m′

j=1[[Pj ]][n, r, n′, r′] (induction hypothesis)
=

⋃m′

j=1

⋃m
i=m′+1 ([[Pi]][n, r, n′, r′])∗ [[Pj ]][n, r, n′, r′]

=
⋃m′

j=1

⋃m
i=m′+1 ([[Pi]]∗[[Pj ]]) [n, r, n′, r′]

=
((⋃m

i=m′+1[[Pi]]
)∗ ⋃m′

j=1[[Pj ]]
)

[n, r, n′, r′]
= [[P ]][n, r, n′, r′]

– If P = P1 ◦ P2, then

[[P [B/B′]]]
= [[P1[B/B′]]] · [[P2[B/B′]]]
= [[P1]][n, r, n′, r′] · [[P2]][n, r, n′, r′] (induction hypothesis)
= ([[P1]] · [[P2]])[n, r, n′, r′]
= [[P1 ◦ P2]][n, r, n′, r′]

��
Lemma 7. Let (N,N′) ∈ O−1, where O is the binary relation of the same parties
shortcut rule. If there is P such that [[P ]] = [[N]] and P ∼A N, then there exists
P ′ such that [[P ′]] = [[N′]], and P ′ ∼A N′.

Proof. Let n be the atom of N with outcome r to which the inverse of the
same-parties rule is applied. Given a set T of traces, let T [n, r, n′, r′

1, . . . , r
′
m]

be the result of replacing in T each trace of the form [σ1(n, ri)σ2] by the trace
[σ1(n, r)(n′, r′

i)σ2]. It follows easily from the definition of N and N′ that [[N′]] =
[[N]][n, r, n′, r′

1, . . . , r
′
m]. Figure 11 illustrates this construction.

Since P ∼A N, all blocks of P labeled by n are identical. Let B be the
syntactic expression of the block. Let B′ = do r : B end od. Then [[B′]] =
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[[B]][n, r, n′, r′
1, . . . , r

′
m]. Let P [B/B′] be the result of replacing all occurrences of

B in P by B′. An induction proof analogous to that of Lemma 6 shows that
[[P [B/B′]]] = [[B]][n, r, n′, r′

1, . . . , r
′
m]. Taking P ′ = P [B/B′] we are done. ��

This concludes the proof of Theorem 1 (modulo the remaining proof obli-
gation discharged to Section 6). It was shown in [2] that every SDN N can be
completely reduced by means of O(a4 ·r) applications of the rules, where a and r
are the number of atoms and the total number of results of N. Since the program
rule for the inverse of the merge rule can at most duplicate the size of the pro-
gram, and the other program rules only increase its size by a constant, we obtain
an upper bound of O(2a4·n) for the size of the program P equivalent to N. A
program of linear size can be obtained by enriching the programming language
with procedures. Instead of duplicating program Pr in the proof of Lemma 4,
we call twice a procedure with body Pr.

6 Completeness of Rules for Normed SDNs

It remains to show that the merge, iteration, one-outcome shortcut and same-
parties shortcut rules are complete for normed SDNs, i.e., that they reduce every
normed SDN to a negotiation with just two atoms.

Definition 12. A cycle of a negotiation N is a sequence of outcomes (n1, r1),
. . . , (nk, rk) such that there are agents a1, . . . , ak and n2 ∈ X(n1, a1, r1),
n3 ∈ X(n2, a2, r2), . . . , n1 ∈ X(nk, ak, rk). The negotiation N is called cyclic
if it contains a cycle, and acyclic otherwise.

We consider the acyclic and cyclic cases separately.
The completeness of the rules (merge, iteration, one-outcome shortcut and

same-parties shortcut) in the acyclic case was proven in [1]:

Lemma 8. The merge rule, iteration rule, one-outcome shortcut rule and same-
parties shortcut rule are complete for sound deterministic acyclic SDNs.

Proof. This claim is an immediate consequence of Lemma 1 in [1] (our one-
outcome shortcut rule is called d-shortcut rule there). Actually, Lemma 1 in
[1] states that whenever the merge rule and the same-parties shortcut rule are
not applicable to a sound deterministic acyclic negotiation then every agent
participates in all atoms with more than one output. If the negotiation under
consideration is not minimal yet, we can apply the shortcut rule to atoms n
and n′. Since the same-parties shortcut rule is not applicable, n′ has less parties
than n, and hence not all agents participate in n′. Therefore n′ can have only one
outcome, and the conditions of the one-outcome shortcut rule are satisfied. ��

For the cyclic case, we have a closer look to the results of [2]:

Definition 13. A loop is an occurrence sequence σ such that x
σ−→ x for some

marking x reachable from the initial marking x0. A minimal loop is a loop σ
satisfying the property that there is no other loop σ′ such that the set of atoms
in σ′ is a proper subset of the set of atoms in σ.
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Lemma 9 (Lemma 1 of [2]).

(1) Every cyclic SDN has a loop.
(2) The set of atoms of a minimal loop generates a strongly connected subgraph

of the graph of the considered negotiation.

Usually, more than one atom is involved in a loop, and these atoms have
different sets of parties. For sound deterministic negotiations, it was proven in [2]
that at least one of these atoms involve all parties that participate in any of these
atoms. These atoms are called synchronizers of the loop. In turn, a synchronizer
of one loop can synchronize other loops as well. For a single atom n we consider
the fragment of the negotiation which is constituted by all atoms and outcomes
appearing in any loop synchronized by the atom n (which is nonempty only if n
is a synchronizer of at least one loop). Each fragment is cyclic by construction.
Now we are looking for a fragment with the property that all its cycles pass
through its generating synchronizer n. It is not difficult to see that this property
is satisfied by minimal fragments, which do not properly include any smaller
ones: if a cycle of a fragment does not pass through the generating synchronizer
n, then there is an according loop for this cycle, which again has a synchronizer
n′, and the fragment generated by n′ is smaller than the one generated by n.

The procedure introduced in [2] shows that a minimal fragment generated
by a synchronizer n can be viewed as an acyclic sound negotiation starting with
n and ending with (a copy of) n, and can thus be reduced by the same rules as
for the acyclic case. This procedure ends with a minimal cycle, which enables
the iteration rule. After applying this rule, the cycle vanishes. The complete
procedure deletes this way cycle by cycle, until the negotiation is acyclic and
can be reduced to a minimal one as above.

Another important point made in [2] is that the atoms of a minimal fragment
enjoy the following property: Each atom is either a synchronizer (and has hence
the same parties as the generating atom) or has no exits, which means that
all outcomes of the atom are also outcomes of the fragment. This implies that
it suffices to apply the restricted same-parties and one-outcome shortcut rules
instead of the general shortcut rule also for the acyclic case, as we will argue
next. We have recalled above that the restricted rules suffice for sound and
deterministic acyclic negotiations, and we reduce the fragment exactly like a
corresponding acyclic negotiation. If a same-parties shortcut rule is applied in
the fragment, then the same rule applies to the entire negotiation. The one-
outcome shortcut rule, however, requires that the reduced negotiation (called n′

in the definition) has only one output. Even if this is the case within the fragment,
additional outputs might exist in the entire negotiation. However, in this case
this atom must be a synchronizer, and thus all parties of the fragment participate
in this atom. In particular, it cannot have less parties than the other atom of
the rule (called n in the definition), which implies that the additional guard of
the same-parties rule is also fulfilled. In other words: For each application of
the one-outcome shortcut rule in the fragment, which is not at the same time an
application of the same-parties shortcut rule, the reduced atom (n′) has only one
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outcome in the negotiation, too, and hence, the same application of the shortcut
rule in the negotiation is also a one-outcome shortcut reduction.

These considerations, all from [2], prove the following lemma:

Lemma 10. The merge rule, iteration rule, one-outcome shortcut rule and
same-parties shortcut rule are complete for sound deterministic cyclic SDNs.

Finally, recall that completeness of a set of rules means that each negotiation
can be reduced to a minimal one. Minimal negotiations have a single atom,
whereas minimal normed negotiations have two. Since we apply the reduction
rules to normed negotiations, we still have to show that we are always able to
end the reduction procedure with a minimal normed negotiation.

Theorem 3. The merge rule, iteration rule, one-outcome shortcut rule and
same-parties shortcut rule are complete for normed SDNs.

Proof. This proof is heavily based on Lemma 8 and Lemma 10. We only have to
show that for every normed SDN N at least one rule can be applied that does
not spoil the normedness property.

By definition of the rules, application of the merge rule or of the iteration
rule transforms a normed SDN into a normed SDN. For the shortcut rule, the
derived negotiation might be not normed, if the rule is applied to the initial
atom n0 and its unique successor. However, it suffices to consider the restricted
variants of the one-outcome shortcut rule and the same-parties shortcut rule. We
moreover rule out the case that the negotiation before transformation is already
a minimal normed one, i.e., we assume that it has more than two atoms. For
the one-outcome shortcut rule, in the resulting negotiation, the initial atom still
has one outcome only, by definition of the shortcut rule. For the same-parties
shortcut rule, however, this is not necessarily the case. So we consider this case
in the sequel and assume that the same-parties shortcut rule can be applied to
the initial atom n0 and its successor n1 of a normed negotiation.

By definition of a normed negotiation, none of the ports of the initial atom
has an ingoing arc. Since the same-parties shortcut rule is applicable, n1 contains
the same parties as n0, and since n0 is the initial atom, all agents participate
in both atoms. So it is obvious that the negotiation obtained after deletion of
n0, taking n1 as initial atom, is also sound (but not normed in general). This
smaller negotiation N′ can be reduced to a minimal negotiation by the merge
rule, the iteration rule and the two restricted variants of the shortcut rule. We
consider two cases: If N′ is already minimal, it consists of a single atom. Then
the considered negotiation with n0 is already a minimal normed SDN. If N′ is
not minimal, then one of the rules can be applied to N′. The same rule can be
applied to N, referring to the same involved atoms. ��

7 Conclusions

We have introduced a specification language for deterministic negotiations. The
language has a very special feature: every program of the language is sound (the



Negotiation Programs 177

program can terminate from every reachable state, meaning in particular that
the program is deadlock-free) and every sound negotiation can be specified in the
language. So the language provides a syntactic characterization of soundness.

Design requirements for distributed systems are often captured with the help
of scenarios, specifying the interactions that take place between sequential pro-
cesses. There exist different formal notations for scenarios, depending on the
underlying communication mechanism between processes. Formal notations also
permit to specify multiple scenarios by means of operations like choice, concate-
nation, and repetition. A set of scenarios specified using such operations can be
viewed as an early model of the system analyzable using formal techniques.

A key feature of scenario-based notations is that they present a global view
of the system as a set of concurrent executions representing use cases. While
this view is usually more intuitive for developers, implementations require a
concurrent composition of sequential models, i.e., of state machines. A specifi-
cation is realizable if there exists a set of state machines, one for each sequential
component, whose set of concurrent behaviours coincides with the set globally
specified. The realizablity problem consists of deciding if a given specification is
realizable and, if so, computing a realization, i.e., a set of state machines. The
problem has been studied for various formalisms.

For negotiations, the realizability problem reads as follows: given a syntacti-
cally correct negotiation program, is there a sound deterministic negotiation with
the same behaviour? The results of this paper show that, for deterministic nego-
tiations, the realizability problem is far more tractable than in other languages,
because the answer to the above question is always positive. In turn, negotiation
programs are expressively complete: every sound deterministic negotiation dia-
gram has an equivalent negotiation program. Finally, negotiation programs can
be distributed in linear time. We provided an algorithm to derive a deterministic
negotiation from a program that generalizes classical constructions to derive an
automaton from a regular expression. The negotiation is then projected onto its
components.
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Abstract. Petri nets can express concurrency and nondeterminism but
not hierarchy. This article presents an extension of Petri nets, in which
places can be grouped into so-called “units” expressing sequential com-
ponents. Units can be recursively nested to reflect the hierarchical nature
of complex systems. This model called NUPN (Nested-Unit Petri nets)
was originally developed for translating process calculi to Petri nets, but
later found also useful beyond this setting. It allows significant savings in
the memory representation of markings for both explicit-state and sym-
bolic verification. Five tools already implement the NUPN model, which
is also part of the next edition of the Model Checking Contest.

1 Introduction

Process calculi and Petri nets are two major branches of concurrency theory
and have been extensively compared from many different viewpoints. Regarding
the ways in which the hierarchical structure of complex systems can be formally
described, process calculi have features that low-level Petri nets are lacking. This
is precisely the issue adressed in the present article, which proposes to extend
Petri nets with hierarchical structuring features inspired from process calculi.

Our proposal is rooted in a longstanding effort to develop the comprehen-
sive CADP toolbox [22] for the design and verification of concurrent systems.
The toolbox includes an efficient compiler [21,23,24] for LOTOS, a value-passing
process calculus standardized by ISO [40]. This compiler translates LOTOS to
labelled transition systems using, as an intermediate step, interpreted Petri nets
that possess a hierarchical structure reflecting the concurrent structure of the
source LOTOS specifications. Actually, the suggestion that the Petri nets gen-
erated by the compiler could retain structural information from the LOTOS
source was formulated in 1988 by Eric Madelaine during a meeting; following
this remark, the concept of “nested units” described in this article was pro-
gressively identified and refined as the most useful kind of information to be
preserved.
c© Springer International Publishing Switzerland 2015
R. Devillers and A. Valmari (Eds.): PETRI NETS 2015, LNCS 9115, pp. 179–199, 2015.
DOI: 10.1007/978-3-319-19488-2 9
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For twenty-five years, this concept has been in use, but internally to the
CADP toolbox only. Specifically, the LOTOS compiler uses two different types
of hierarchically-structured nets: an interpreted Petri net (which comprises vari-
ables, expressions, assignments, guards, etc.) and an elementary net (which is a
data-less abstraction of the former by removing all value-passing information).
The present article is about this latter model, initially called BPN (Basic Petri
Net) until we realized that this acronym was heavily overloaded1; for this reason,
the acronym was changed to NUPN2 (Nested-Unit Petri Net) in 2013.

Recently, this model found a new application field in the framework of the
Model Checking Contest. For the 2014 edition of the contest, the software tools
built around the NUPN model helped to correct and complete the descriptions
(structural and behavioural properties) of the P/T nets proposed as challenges
to the competitors; additionally, six new challenges were automatically derived
from realistic process-calculus specifications using the NUPN tools. For the 2015
edition of the contest, NUPN will move from the back- to the front-office and
become visible to competitors, as certain challenges will be provided as P/T nets
enriched with NUPN information.

The present article is organised as follows. Sec. 2 defines the NUPN model
and states its main properties. Sec. 3 does an extensive review of the state
of the art to position the NUPN model with respect to related work. Sec. 4
indicates how the representation of markings can be optimized for NUPNs in
both explicit-state and symbolic verification settings. Sec. 5 provides an overview
of implementation efforts to equip the NUPN model with file formats, software
tools, and collections of benchmarks. Finally, Sec. 6 gives concluding remarks
and draws open perspectives for future work.

2 Nested-Unit Petri Nets

2.1 Structure

This subsection defines the “structural” aspects of the NUPN model; these corre-
spond to the description of syntax and static semantics for a computer language.

Definition 1. A (marked) Nested-Unit Petri Net (acronym: NUPN) is a 8-tuple
(P, T, F,M0, U, u0,�, unit ) where:

1. P is a finite, non-empty set; the elements of P are called places.
2. T is a finite set such that P ∩T = ∅; the elements of T are called transitions.
3. F is a subset of (P × T ) ∪ (T × P ); the elements of F are called arcs.
4. M0 is a subset of P ; M0 is called the initial marking.
5. U is a finite, non-empty set such that U ∩ T = U ∩ P = ∅; the elements of

U are called units.
1 BPN is used elsewhere as an acronym for Backward Petri Net, Basic Petri Net (as

opposed to Colored Petri Net), Batch Petri Net, Behavioural Petri Net, Biochemical
Petri Net, Bounded Petri Net, Business Process Net, B(PN)2, etc.

2 To be pronounced: “new PN ”.
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6. u0 is an element of U ; u0 is called the root unit.
7. � is a binary relation over U such that (U,�) is a tree with a single root u0,

where (∀u1, u2 ∈ U) u1 � u2
def= u2 � u1; thus, � is reflexive, antisymmetric,

transitive, and u0 is the greatest element of U for this relation; intuitively,
u1 � u2 espresses that unit u1 is transitively nested in or equal to unit u2.

8. unit is a function P → U such that (∀u ∈ U \ {u0}) (∃p ∈ P ) unit (p) = u;
intuitively, unit (p) = u expresses that unit u directly contains place p.

We have chosen to base our definitions on elementary nets rather than P/T nets,
the main difference being that elementary nets are ordinary (i.e., all arc weights
are equal to one) and usually expected to be safe (i.e., each place can contain
at most one token). We however use the terms “places” and “transitions” rather
than their counterparts “conditions” and “events” in elementary nets. Notice
that, despite the fact that NUPNs have been originally designed for process
calculi, no particular assumption is made about place or transition labelling.
The next definition provides useful notations derived from Def. 1.

Definition 2. Let (P, T, F,M0, U, u0,�, unit ) be a NUPN, and let u, u1, and
u2 be any three units of U :

– u1 � u2
def= (u1 � u2) ∧ (u1 �= u2) is the strict nesting partial order.

– disjoint (u1, u2)
def= (u1 �� u2) ∧ (u2 �� u1) characterizes pairs of units neither

equal nor nested one in the other.
– subunits∗(u) def= {u′ ∈ U | (u′ � u)} gives all units transitively nested in u.
– subunits (u) def= {u′ ∈ U | (u′ � u) ∧ (�u′′ ∈ U) (u′ � u′′) ∧ (u′′ � u)} gives

all units directly nested in u.
– leaf (u) def= (subunits (u) = ∅) characterises the minimal elements of (U,�).
– places (u) def= {p ∈ P | unit (p) = u} gives all places directly contained in u;

these are called the local places (or proper places) of u.
– places∗(u) def= {p ∈ P | (∃u′ ∈ U) (u′ � u) ∧ (unit (p) = u′)} gives all places

transitively contained in u or its sub-units.
– Ũ

def= {u ∈ U | places (u) �= ∅} is the set of all units but u0 if the root unit
has no local place.

Proposition 1. Let (P, T, F,M0, U, u0,�, unit ) be a NUPN. The family of sets
places (u), where u ∈ Ũ , is a partition of P .

Proof. It follows from item 8 of Def. 1 that all sets in the family are not empty.
It follows from the definitions of places and unit that all sets in the family are
pairwise disjoint. From these same definitions and the fact that unit is totally
defined, it follows that the union of all sets in the family is equal to P .

2.2 Execution

This subsection defines the dynamic semantics of the NUPN model, namely the
“token game” rules for computing markings and firing transitions. In a nutshell,
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the rules for a NUPN (P, T, F,M0, U, u0,�, unit ) are exactly the same as those
for an elementary net (P, T, F,M0); that is, the unit-related part (U, u0, �, unit )
does not influence the execution of the NUPN.

Definition 3. Let (P, T, F,M0, U, u0,�, unit ) be a NUPN. Let t be a transition:

– The pre-set of t is the set of places defined as •t def= {p ∈ P | (p, t) ∈ F}.
– The post-set of t is the set of places defined as t• def= {p ∈ P | (t, p) ∈ F}.
– A marking M is defined as a set of places (M ⊆ P ).
– A transition t is enabled in some marking M iff it satisfies the predicate

enabled (M, t) def= (•t ⊆ M).
– A transition t can safely fire from some marking M iff it satisfies the predi-

cate safe-fire (M, t) def= enabled (M, t) ∧ ((M \ •t) ∩ t• = ∅)
– A transition t can weakly fire from some marking M1 to another marking

M2 iff enabled (M1, t) ∧ (M2 = (M1 \ •t) ∪ t•), which we note M1
t−→ M2.

– A transition t can strictly fire from some marking M1 to another marking
M2 iff safe-fire (M1, t) ∧ (M2 = (M1 \ •t) ∪ t•).

– A marking M is reachable from the initial marking M0 iff M = M0 or there
exist n ≥ 1 transitions t1, t2, ..., tn and n markings M1,M2, ...,Mn such that
M0

t1−→ M1
t2−→ M2 ...

tn−→ Mn.
– The NUPN is safe (or one-safe) iff for each reachable marking M and tran-

sition t, enabled (M, t) ⇒ safe-fire (M, t). In such case, the weak-firing and
strict-firing rules coincide.

Definition 4. Let (P, T, F,M0, U, u0,�, unit ) be a NUPN. Given a marking M

and a unit u, let the projection of M on u be defined as M �u
def= M ∩places (u).

Proposition 2. Let (P, T, F,M0, U, u0,�, unit ) be a NUPN. Any marking M
can be expressed as M = (M �u1)� ...� (M �un), where u1, ..., un are the units
of Ũ , and where � denotes the disjoint set union.

Proof. This directly follows from Prop. 1, given that the family places (u1), ...,
places (un) is a partition of P .

2.3 Unit Safeness

This subsection introduces the so-called unit-safeness property, which does not
exist in “classical” Petri nets and plays a central role in the NUPN model.

Definition 5. Let (P, T, F,M0, U, u0,�, unit ) be a NUPN. A marking M ⊆ P is
said to be unit safe iff it satisfies the predicate defined as follows: unit-safe (M) def=
(∀p1, p2 ∈ M) (p1 �= p2) ⇒ disjoint (unit (p1), unit (p2)); that is, all places of a
unit-safe marking are contained in disjoint units.

Proposition 3. Let (P, T, F,M0, U, u0,�, unit ) be a NUPN. For each marking
M and unit u, unit-safe (M) ⇒ card (M � u) ≤ 1; that is, a unit-safe marking
cannot contain two different local places of the same unit.
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Proof. By contradiction. If card (M � u) > 1, there exist at least two different
places p1 and p2 in M ∩ places (u). Because p1 and p2 both belong to places (u),
it follows that unit (p1) = unit (p2), then ¬disjoint (unit (p1), unit (p2)), and finally
¬unit-safe (M).

Proposition 4. Let (P, T, F,M0, U, u0,�, unit ) be a NUPN. For each marking
M and units (u, u′), one has: unit-safe (M)∧ (M �u �= ∅)∧ (u′ � u∨u � u′) ⇒
(M �u′ = ∅); that is, if a unit-safe marking contains a local place of some unit
u, it contains no local place of any ancestor or descendent unit u′ of u.

Proof. By contradiction. If M � u′ �= ∅ then M contains at least one place
p ∈ unit (u) and at least one place p′ ∈ unit (u′). If u′ � u or u � u′ then
¬disjoint (u, u′), hence ¬unit-safe (M). Notice, still assuming that unit-safe (M)∧
(u′ � u ∨ u � u′), that the reverse implication (M � u = ∅) ⇒ (M � u′ �= ∅)
does not hold, as tokens can be absent from both u and u′.

Prop. 4 can be given an intuitive explanation in a process calculus setting.

Consider a process term of the form B1 ; ( B2 || B3 ) ; B4 where B1, B2,

B3, and B4 are sequential process terms, and where square boxes denotes the
units enclosing the places corresponding to these terms. The above proposition
states that: (i) while B1 or B4 execute, neither B2 nor B3 can execute, because
they are in descendent units of the unit containing B1 and B4; and (ii) while
B2 and/or B3 execute, neither B1 nor B4 can execute, because they are in an
ascendent unit of the units containing B2 and B3. Reasoning on “forks” and
“joins” is another way to grasp the intuitive meaning of nested units.

Definition 6. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. N is said to be
unit safe iff it is safe and all its reachable markings are unit safe.

Thus, a unit-safe NUPN is also safe. The converse implication does not hold;
consider e.g., a safe NUPN with a single unit u0 and two places p1 and p2
contained in u0; let M0 be {p1, p2}: this initial marking is safe but not unit safe.

Notice that, if NUPN definitions would be based on (ordinary) P/T nets
rather than elementary nets, with markings defined as place multisets (i.e., func-
tions P → N) rather than place subsets, unit safeness could be simply defined
as the condition that all reachable markings are unit safe, which would imply
safeness as a particular case of not having more than one token in the same unit.

An important issue is an efficient decision procedure to determine whether
a “syntactically well-formed” NUPN (according to Def. 1) is unit safe or not.
This issue will be further discussed in Sec. 6. The following conditions give
preliminary, yet useful checks that can be easily performed.

Proposition 5. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. Let t be a
transition.
1. If ¬unit-safe (M0) then N is not unit safe.
2. If ¬unit-safe (•t) then either N is not unit safe or t is not quasi-live.
3. If ¬unit-safe (t•) then either N is not unit safe or t is not quasi-live.
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Proof. Item 1 directly follows from Def. 6 given that M0 is a reachable marking.
Items 2 and 3: by contradiction. Assuming both that N is unit safe and t is quasi-
live, it follows from the latter condition that there exist two reachable markings
M1 and M2 such that M1

t−→ M2; consequently, •t ⊆ M1 and t• ⊆ M2. If either
¬unit-safe (•t) or ¬unit-safe (t•) then either ¬unit-safe (M1) or ¬unit-safe (M2);
thus, N is not unit safe.

The unit-safeness property can be reformulated as a system of linear inequal-
ities over the tokens present in reachable markings. Notice that such constraints
differ from the traditional S-invariants, which are linear equations.

Proposition 6. Let (P, T, F,M0, U, u0,�, unit ) be a safe NUPN. N is unit safe
iff any reachable marking M satisfies the following system of inequalities:

(∀u ∈ Ũ) (∀u′ ∈ Ũ | u � u′)
∑

p∈places (u)∪places (u′) xp ≤ 1 (Iu,u′)
where each variable xp is equal to 1 if place p belongs to M , or 0 otherwise.

Proof. Direct implication: If N is unit safe, then unit-safe (M) is true. Prop. 3
ensures all inequalities (Iu,u′) with u = u′, since

∑
p∈places (u) xp = card (M �u).

Prop. 4 ensures all inequalities (Iu,u′) with u � u′, taking into account that
u �= u′ ⇒ ∑

p∈places (u)∪places (u′) xp = card (M �u) + card (M �u′) and that,
from Prop. 4, (M �u �= ∅) ⇒ (M �u′ = ∅) and (M �u′ �= ∅) ⇒ (M �u = ∅),
i.e., (M �u = ∅)∨(M �u′ = ∅), which leads to card (M �u)+card (M �u′) ≤ 1
after applying Prop. 3 twice. Reverse implication: If N is not unit safe, but
safe, there exists some reachable marking M such that ¬unit-safe (M). Thus,
there exist two distinct places p1 and p2, and two units u1 = unit (p1) and
u2 = unit (p2) such that ¬disjoint (u1, u2), i.e., u1 � u2 or u2 � u1. In both cases,∑

p∈places (u1)∪places (u2)
xp ≥ xp1 + xp2 = 2, so that M violates inequality

(Iu1,u2) if u1 � u2, and/or violates inequality (Iu2,u1) if u2 � u1.

We now study the preservation of NUPN properties under the abstraction
(somehow related to the concept of “place fusion” in Coloured Petri Nets [42])
given in [23] to determine which pairs of units can execute concurrently.

Definition 7. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. Let Nα denote
the 8-tuple (P ′, T, F ′,M ′

0, U, u0,�, unit ′) derived from N by merging, in each
unit u, all the local places of u into a single place local to u. Formally:

– Let P ′ ⊆ P denote the places of Nα after merging: card (P ′) = card (Ũ).
– Let α be the abstraction function P → P ′ that maps each place of N to its

corresponding place in Nα.
– Let F ′ ⊆ (P ′ × T ) ∪ (T × P ′) be the finest arc relation that satisfies

(∀p ∈ P ) (∀t ∈ T ) (F (p, t) ⇒ F ′(α(p), t)) ∧ (F (t, p) ⇒ F ′(t, α(p))).
– Let M ′

0 ⊆ P ′ be equal to {α(p) | p ∈ M0}.
– Let unit ′ be the function P ′ → U defined by (∀p ∈ P ) unit ′(α(p)) = unit (p).

Proposition 7. Let N be a NUPN and let Nα be defined as in Def. 7. Then:
1. Nα is also a NUPN.
2. If N is safe, Nα is not necessarily safe.
3. If N is unit safe, Nα is not necessarily unit safe.
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Proof. For item 1, it easily follows that, because N satisfies all the conditions
of Def. 1, Nα also satisfies these conditions. For item 2, consider the following
NUPN N = (P, T, F,M0, U, u0,�, unit ) given by P = {p0, p1, p2}, T = {t},
F = {(p0, t), (t, p1), (t, p2)}, M0 = {p0}, U = {u0, u}, u � u0, unit (p0) = u0,
unit (p1) = u0, and unit (p2) = u; N is safe (but not unit-safe). In Nα, places
p0 and p1 are merged together (e.g., into p0), and F ′ = {(p0, t), (t, p0), (t, p2)},
meaning that transition t is turned into a self-loop on p0 and can accumulate
infinitely many tokens in p2; hence, Nα is not safe. For item 3, consider the same
NUPN N as for item 2 but with a different initial marking M0 = {p1}; M0 is
the only reachable marking, so that N is unit safe; for the same reason as with
item 2, Nα is not safe, and thus not unit safe (notice that t is not quasi-live,
which suggests that preservation could hold under stronger assumptions).

2.4 Expressiveness

This subsection discusses the expressiveness of the NUPN model by showing its
ability to encode mainstream forms of Petri nets.

As mentioned above, a unit-safe NUPN is safe, which implies that its underly-
ing elementary net is also safe. The following proposition establishes the converse
implication.

Proposition 8. Let (P, T, F,M0) be any ordinary, safe P/T net (i.e., a safe
elementary net). There exists at least one 4-tuple (U, u0, �, unit ) such that
(P, T, F,M0, U, u0,�, unit ) is a unit-safe NUPN.

Proof. Let p1, ..., pn be the places of P , where n = card (P ) ≥ 1. Let u0, u1, ..., un

be (n + 1) units and let U = {u0, u1, ..., un}. Let � be the relation defined by
(∀u ∈ U) (u � u) ∧ (u � u0); (U,�) is clearly a tree with a single root u0.
Let unit be the function P → U such that (∀i ∈ {1, ..., n}) unit (pi) = ui,
meaning that only the root unit u0 has no local place. Therefore, the NUPN
(P, T, F,M0, U, u0,�, unit ) satisfies all the structural conditions of Def. 1. This
NUPN is safe because (P, T, F,M0) is safe. This NUPN is also unit safe, as any
marking M ⊆ P (reachable or not) satisfies unit-safe (M) because, for any two
distinct places (pi, pj) in M , disjoint (unit (pi), unit (pj)) = disjoint (ui, uj) = false
since i > 0, j > 0, and i �= j.

Notice that this simple encoding (each place in a distinct unit) is not nec-
essarily the only one: there may exist better encodings with fewer units having
more local places each; this issue will be discussed in Sec. 6. Also, this encoding
justifies why Def. 1 allows the root unit to have no local place, whereas all other
units must have at least one — this latter condition preventing the existence of
useless “empty” units in a NUPN.

The next proposition establishes that NUPNs subsume communicating
automata, i.e., sequential state machines that execute in parallel and possibly
synchronize on (some of) their transitions. In the Petri net framework, commu-
nicating automata are easily expressed using so-called state-machine components
(see, e.g., [52, p. 557], and [3] for a survey).
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Proposition 9. Let (P, T, F,M0) be any ordinary P/T net possessing a state-
machine decomposition. There exists at least one 4-tuple (U, u0, �, unit ) such
that (P, T, F,M0, U, u0,�, unit ) is a unit-safe NUPN.

Proof. The existence of a state machine decomposition implies that: (i) there
exists a collection of place sets P1, ..., Pn that is a partition3 of P , and (ii) for
each i ∈ {1, ..., n}, the subnet Ni = (Pi, Ti, Fi,M0 ∩ Pi) restricted to Pi is a
state machine, i.e., card (M0 ∩ Pi) = 1 and (∀t ∈ Ti) card (•t) = card (t•) = 1.
Let u0, u1, ..., un be (n + 1) units and let U = {u0, u1, ..., un}. Let � be the
relation defined by (∀u ∈ U) (u � u) ∧ (u � u0); (U,�) is clearly a tree with
a single root u0. Let unit be the function P → U totally defined as follows:
(∀i ∈ {1, ..., n}) (∀p ∈ Pi) unit (p) = ui, meaning that only the root unit u0 has
no local place. The NUPN (P, T, F,M0, U, u0,�, unit ) satisfies all the structural
conditions of Def. 1. This NUPN is safe because (P, T, F,M0) is state-machine
decomposable, thus safe. Due to the state-machine decomposition, each reachable
marking M has the form {p1, ..., pn} where each pi belongs to Pi; thus, for any
two distinct places (pi, pj) in M , disjoint (unit (pi), unit (pj)) = disjoint (ui, uj) =
false since i > 0, j > 0, and i �= j; the NUPN is therefore unit safe.

Nested units have the same theoretical expressiveness as communicating
automata/state machines, but are more convenient for at least two reasons:

1. They add the notion of hierarchy to the concepts of concurrency and nonde-
terminism already present in elementary nets. This is similar to the escala-
tion from communicating state machines to Statecharts [34] and hierarchical
communicating state machines [1].

2. For each state machine Pi, these exists a S-invariant, which states that∑
p∈places (Pi)

xp = 1, where M is any reachable marking and xp the num-
ber of tokens M has in place p. This S-invariant is a consequence of the
constraint that each transition of the subnet Ni must have exactly one input
place and one output place in Pi. On the contrary, each unit ui is not ruled by
a S-invariant but a boundedness inequality of the form

∑
p∈places (ui)

xp ≤ 1
(cf. Prop. 6). The possibility of having no token in a unit has proven useful
when encoding safe nets as NUPNs (cf. proof of Prop. 8); in practice, it also
provides greater modelling flexibility:

– It enables a unit not to have a token in the initial marking and to get a
token later (e.g., when the unit is launched by a “fork” transition).

– It enables a unit to lose its token (either when the unit normally com-
pletes with a “join” transition, or when it is abruptly terminated by a
transition implementing, e.g., the LOTOS “disable” operator [40] or the
raise of an exception [25]).

– It allows a transition to have an input place in a given unit but no output
place in this unit, or even no output place at all. The latter case is useful
to model process terms ending with deadlock, such as “a; stop”, for
which the transition implementing action a needs no output place (the
smaller the net, the more efficient the verification).

3 Notice that some authors do not require P1, ..., Pn to be pairwise disjoint.
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3 Comparison with Related Work

Although the concept of units for encapsulating Petri-net places belonging to the
same sequential process was briefly mentioned, from a process-calculus point of
view, in prior publications by the author [21,23,24], the present article is the first
to specifically cover this topic and provide a broad synthesis from a Petri-net
perspective.

One classically distinguishes between three different Petri-net classes ranked
by increasing conciseness and expressiveness of the models they can describe:
elementary nets (the most fundamental class), P/T nets, and high-level nets. In
such a classification, NUPNs are above elementary nets because of the concept of
hierarchy brought by units, and below high-level nets, the tokens of which may
carry data. NUPNs are incomparable to P/T nets, as the latter allow multiple
tokens per place but lack hierarchical structure; however, as mentioned above,
one can easily convert P/T nets to NUPNs and vice versa.

The literature on Petri nets is so abundant, and so many extensions of Petri
nets have already been proposed, that it would be no surprise if the ideas under-
lying the NUPN model had already been also published elsewhere. However, to
the best of our knowledge, it is not the case. Specifically, the following compar-
isons can be drawn between NUPNs and the various approaches proposed in the
literature:

1. High-level Petri Nets: According to [37], there have been three generations of
high-level extensions to Petri nets, successively introducing data, hierarchy,
and object orientation. The generation that brought hierarchical extensions
to Petri nets [18] [39,42] [19] [35,36] was developed independently from our
concept of nested units [21,24], at the same time or slightly later; actually,
the need for hierarchy in Petri nets had been recognized long before, together
with early extension proposals, e.g., [54,55] [58] [63] [46,47] [59,60]. All these
hierarchical extensions differ from nested units in several respects:

– The motivation is not the same. The stated objectives of hierarchical
extensions are: (i) to remedy a distinct weakness of traditional “flat”
Petri nets, which provide no means to represent the structure of real-
world systems and tend to become large, complex, and thus difficult to
review and maintain, even for small-size systems; (ii) to equip nets with
means for abstraction, encapsulation, and information hiding based on
hierarchical structuring; (iii) to support top-down development method-
ologies (“divide and conquer”), which ease the modelling of involved
systems by recursively decomposing them into modules of smaller, more
manageable complexity; and (iv) to support bottom-up development
methodologies (“reuse”), which enable systems to be designed by assem-
bling components. Such hierarchical extensions are primarily intended
to human specifiers who model systems using Petri nets, often with the
help of diagram editors. On the contrary, NUPNs are not supposed to be
produced or read by humans, but automatically generated and analyzed
by computer tools, as NUPN was designed as a “machine-to-machine”
formalism for increasing the efficiency of verification algorithms.
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– The technical details are different. The common concept to all hierarchi-
cal Petri net extensions is the notion of subnet (also called component,
module, page, submodel, or subsystem). A subnet usually aggregates com-
mon (also: elementary, normal, or ordinary) nodes, which are places
or transitions, and macro (also: abstract, substitution, or super) nodes,
which are special places or transitions, each of which represents a subnet.
A hierarchical Petri net can be translated to a “flat” Petri net by substi-
tuting each macro node with its corresponding subnet, in the same way
as macro-expansion is performed by text preprocessors. There is usually
some notion of interface, often achieved by dedicated places or transi-
tions. The NUPN model does not fit at all into this framework. Units
are not subnets, as they only contain places (but neither transitions nor
arcs), do not provide abstraction, and have no interfaces. Units are not
macro-places either, because the sets of units and places are disjoint,
and because no unit can be used where a place can (arcs and transi-
tions are totally unrelated to units); moreover, replacing a unit by a
single place does not always preserve the crucial unit-safeness property
(cf. Prop. 7 above). Translating a NUPN to a “flat” Petri net does not
require any kind of substitution (only the information about units has to
be dropped). Finally, some hierarchical Petri net extensions allow certain
places (especially, interface places) to be shared between several subnets,
whereas such sharing is forbidden by the tree-like hierarchy of the NUPN
model, in which each place (directly) belongs to a single unit.

– The intended behavioural semantics is also different. It is often stated
that subnets are the Petri-net equivalent for subroutines (i.e., procedures
and functions) and modules of programming languages; this is not the
case with units, which focus on the concurrent structure of sequential
processes running in parallel. In particular, when NUPNs are generated
from process calculi, all of which have a built-in construct to define
procedures (i.e., by associating an identifier to a given behavioural term
so that it can be called multiple times), unit creation does not arise
from the procedure calls themselves but from the occurrences of parallel
composition operators; said differently, a call to a procedure that is fully
sequential will create no unit of its own, unless it occurs as an operand
of some parallel composition operator.

– Moreover, NUPN units have to satisfy the unit-safeness property, which
has no counterpart in subnets. Even if certain properties are some-
times defined for subnets (e.g., uniformness, conservativeness, and state-
machine property in [42, Sec. 4.1]), such properties are merely optional.

2. Nested Petri Nets [49,50] and Object Petri Nets [48,64,65]: Such models
describe Petri nets whose tokens are also Petri nets, thus inducing a multi-
level hierarchy of “nets within nets”; in comparison, NUPNs are much sim-
pler, as they only have data-less tokens.

3. Translation from process calculi to nets: The concept of nested units is a
distinctive trait of the CÆSAR compiler for LOTOS [21,24]. The same idea
was implicitly present in a later LOTOS compiler, IBM’s LOEWE software
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[43,44] that translated LOTOS to Extended Finite State Machines, a for-
malism that inherently represents the concurrent structure that Petri nets
without hierarchical extensions cannot express. Noticeably, for other process
calculi than LOTOS, nested units have not been used by the translation
approaches generating Petri nets from CCS [12] [26–28] [53] [13,20,51] [9,10]
[30,31], CSP [29], CCS+CSP [56,57] [61,62], ACP [66], and OCCAM [32,38].
We believe, however, that many of these approaches could be easily adapted
to produce NUPN-like structured models rather than “flat” nets.

4. Petri Box Calculus [4], Box Algebra [5,8], Petri Net Algebra [6,7], and Asyn-
chronous Box Calculus [16,17]: These are process calculi specifically designed
so that all process terms of these calculi can be compositionally translated to
equivalent Petri-net fragments called boxes. At first sight, these boxes may
bear some similarity to NUPN units, but there are enough radical differences
between both models to sustain the claim that units are not boxes:

– Units enclose places only, whereas boxes are nets and thus contain places
as well as transitions.

– Units are just based upon elementary nets, whereas boxes are based
upon labelled Petri nets, meaning that additional information must be
attached to box places (namely, a three-value attribute: entry, exit, or
internal) and to box transitions (namely, actions or multisets of actions
belonging to some communication alphabet).

– Regarding structural properties, units only require a proper partitioning
of places, whereas boxes lay totally different kinds of constraints, such
as: each transition must have at least one input and one output place; a
box must have at least one entry and one exit place; entry places have
no incoming arcs and exit places have no outgoing arcs; etc.

– Regarding behavioural properties, both units and boxes usually assume
that each place has at most one token (with the notable exception of the
Asynchronous Box Calculus [16,17], which extends the box approach to
nets that are not one-safe, thus going beyond the capabilities of NUPNs).
But units also require the aforementioned, stronger unit-safeness prop-
erty (which is not mandatory for boxes), whereas boxes require a clean-
ness property, which expresses that tokens should progress from entry
to exit places without staying in any of the nonexit places (this property
is irrelevant for units, the places of which are not labelled and which
can lose their tokens). Also, unit safeness leads to inequality relations
(see Prop. 6), whereas box properties are naturally expressed in terms
of equality relations (S-invariants) [4,14,15].

– Any Petri net generated by the translation of a process term containing
parallel composition has several units but only one box. Indeed, when
translating a parallel composition p1|| p2, the two units corresponding to
p1 and p2 are kept side by side and enclosed into a third unit, whereas
the two boxes corresponding to p1 and p2 are merged into one single box.
Said differently, units remain after the translation is complete, whereas
boxes only exist during the translation.
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4 Efficient Marking Encodings for Unit-Safe NUPNs

It is well known that the safeness property of Petri nets allows to optimize the
encoding of reachable markings by keeping, for each place, a single bit rather
than an integer number. Therefore, each marking of a safe Petri net with N
places is usually represented, in explicit-state verification, by a bit string with
N bits, and in symbolic verification, by a BDD (Binary Decision Diagram) with
N Boolean variables. In the sequel, this linear encoding will be called scheme (a)
and used as a reference point in future comparisons.

The unit-safeness property of NUPNs allows to further optimize marking
representation by taking into account all linear inequalities (cf. Prop. 6) that con-
strain the space of reachable markings. Let (P, T, F,M0, U, u0, �, unit ) be a unit-
safe NUPN. Let n

def= card (Ũ) be the number of units having local places, and
let u1, ..., un denote these units of Ũ . For each ui ∈ Ũ , let Ni

def= card (places (ui))
be the number of local places in ui.

From Prop. 2, we know that any marking M can be represented by its pro-
jections M � u1, ...,M � un. The result of Prop. 3 (at most one local place in
each unit has a token) can be exploited to optimize the representation of these
projections. Indeed, each M �ui is either empty or reduced to a singleton con-
taining one of the Ni local places of ui, leading to (Ni + 1) different options.
It is thus possible [21, Sec. 8.3.1] to store M � ui using only �log2(Ni + 1)�
bits (in explicit-state verification) or Boolean variables (in symbolic BDD-based
verification), where �x� denotes the smallest integer greater than or equal to x.
This optimized representation will be called scheme (b).

A slightly different encoding is proposed in [45, Sec. 4.1], which suggests to
use one bit or Boolean variable to express whether ui has a token or not4, and
�log2(Ni)� more bits to store M �ui when ui has a token. This encoding will be
called scheme (c). It is less compact than scheme (b), as it costs (�log2(Ni)�+1)
bits or Boolean variables, but is claimed to favour global reduction of BDD size.

For nested units, further optimization is possible, based on the result of
Prop. 4 (when a unit has a token, none of its ascendent or descendent units has
a token). In particular, if a unit u has sub-units (i.e., subunits (u) �= ∅), its local
places and the local places of its sub-units can never have tokens simultaneously
[45]; this suggests to use one bit or Boolean variable to encode whether there
is or not a token in places (u), and to perform overlapping by using the same
bits or Boolean variables to encode the presence of tokens either in places (u)
or in places∗(u) \ places (u). Following this approach, the number ν(ui) of bits
or Boolean variables needed for a non-leaf unit ui is given by the recursive
definition ν(ui)

def= 1 + max
(
�log2(Ni)�,

∑
u∈subunits (ui)

ν(u)
)
. For a leaf unit

uj , one can opt either for ν(uj)
def= �log2(Nj + 1)� if scheme (b) is chosen, or for

ν(uj)
def= (�log2(Nj)� + 1) if scheme (c) is preferred.

4 [45] only introduces this bit when ¬leaf (ui); however, this bit is required for both
leaf and non-leaf units, as any unit can lose its token for the reasons given in Sec. 2.4,
unless the unit satisfies stronger assumptions (i.e., is a state machine).
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Scheme (b) without overlapping is the approach implemented in the CADP
toolbox [22], in both explicit-state setting (CÆSAR tool for LOTOS, when
invoked with option “-e7old”) and symbolic setting (CÆSAR.BDD tool for
NUPNs). We observed that BDD-based verification clearly outperforms the
explicit-state approach on data-less models such as NUPNs. We assessed these
five encoding/overlapping combinations on a collection of 3524 “non-trivial”
NUPNs (i.e., such that card (U) < card (P )), with the following results:

scheme overlapping number of bits or Boolean variables average size
(a) no

∑
i∈{1,...,n} Ni (i.e., N) 100.00%

(b) no
∑

i∈{1,...,n}�log2(Ni + 1)� 40.52%
(c) no

∑
i∈{1,...,n}(�log2(Ni)� + 1) 46.44%

(b) yes ν(u0)withleaf (uj) ⇒ ν(uj)=�log2(Nj + 1)� 39.35%
(c) yes ν(u0)withleaf (uj) ⇒ ν(uj)=�log2(Nj)� + 1 44.94%

It appears that schemes (b) or (c) alone provide a marking-size reduction
greater than 50%. Overlapping seems to have a much lower impact (less than
2%) but this may be an artefact on our current NUPN collection, in which
communicating automata largely predominate over hierarchical models.

These experimental results could be expanded in at least three directions: (i)
besides the number of Boolean variables, the number of BDD nodes allocated
could be considered; (ii) overlapping is perhaps not the only reduction possible
and better approaches could be investigated, e.g., by precomputing information
about units that can execute concurrently [23]; and (iii) the potential impact
of nested units for optimizing the transition relation (and not only marking
representation) should also be studied.

Beyond the case of BDDs, it is likely that unit safeness could also permit
savings when exploring the state space of NUPNs with other kinds of decision
diagrams than BDDs. Of particular interest would be the investigation of MDDs
(Multi-valued Decision Diagrams) and MTBDDs (Multi-Terminal BDDs), which
are often deemed superior to BDDs for reachability analysis of Petri nets [2] [11].
Regarding SDDs (Hierarchical Symbolic Set Diagrams) [33], discussions with
Alexandre Hamez led to the finding that unit safeness permits to keep only one
SDD variable per unit, with satisfactory results (see Sec. 5.3).

5 Implementation of NUPN

The NUPN model is actually used for concrete applications. This section reviews
the file formats and software tools that implement this model.

5.1 The “.nupn” File Format

The CADP toolbox [22] provides a textual format5 for storing NUPNs in files
that are assumed to have the “.nupn” extension. This format was designed to
5 The definition is available from http://cadp.inria.fr/man/caesar.bdd.html

http://cadp.inria.fr/man/caesar.bdd.html
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be concise, easy to produce and to parse by programs, and also readable by
humans. Here is a small commented example:

!creator caesar The NUPN was created by the CÆSAR tool.
!unit safe The creator tool warrants that unit-safeness holds.
places #5 0...4 There are 5 places numbered from 0 to 4.
initial place 0 The initial marking contains only place 0.
units #3 0...2 There are 3 units numbered from 0 to 2.
root unit 0 The root unit is unit 0.
U0 #1 0...0 #2 1 2 Unit 0 contains 1 place (0) and 2 sub-units (1, 2).
U1 #2 1...2 #0 Unit 1 contains 2 places (1, 2) and no sub-unit.
U2 #2 3...4 #0 Unit 2 contains 2 places (3, 4) and no sub-unit.
transitions #3 0...2 There are 3 transitions numbered from 0 to 2.
T0 #1 0 #2 1 3 Trans. 0 has 1 input place (0) and 2 output places (1, 3).
T1 #1 1 #1 2 Trans. 1 has 1 input place (1) and 1 output place (2).
T2 #1 3 #1 4 Trans. 2 has 1 input place (3) and 1 output place (4).

Non-ordinary and/or non-safe P/T nets can be encoded in this format by
erasing information about arc multiplicity and token counts in the initial mark-
ing. To this aim, the “.nupn” format provides pragmas (namely, !multiple arcs
and !multiple initial tokens) to retain part of the erased information, so as
to preserve a few behavioural properties — in addition to the structural ones.

5.2 The “.pnml” File Format

The NUPN model is not supported by the PNML standard [41] but there is
a simple way to enrich a PNML file with NUPN-related information. This can
be done without leaving the PNML framework, by inserting into a “.pnml”
file, which describes an ordinary, safe P/T net (P, T, F,M0), a “toolspecific”
section that adds the description of (U, u0,�, unit ). This is the approach fol-
lowed for the Model Checking Contest, which has specified the format of such
“toolspecific” section in natural language, XSD (XML Schema Definition),
DTD (Document Type Definition), RNC (RELAX NG Compact Syntax), and
RMG (RELAX NG XML Syntax)6. Here is the “toolspecific” section corre-
sponding to the NUPN example of Sec. 5.1:

<toolspecific tool="nupn" version="1.1">
<size places="5" transitions="3" arcs="7"/>
<structure units="3" root="u0" safe="true">

<unit id="u0">
<places>p0</places>
<subunits>u1 u2</subunits>

</unit>
<unit id="u1">

<places>p1 p2</places>
<subunits/>

</unit>
<unit id="u2">

<places>p3 p4</places>
<subunits/>

</unit>
</structure>

</toolspecific>

6 These definitions are available from http://mcc.lip6.fr/nupn.php

http://mcc.lip6.fr/nupn.php
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5.3 Tools for NUPN

At present, the NUPN model is implemented in six tools developed at three
different academic institutions:

1. CÆSAR7 translates a (value-passing) LOTOS specification into a hierar-
chical interpreted Petri net. When invoked with option “-nupn”, CÆSAR
stores in a “.nupn” file the (unit-safe by construction) NUPN model
corresponding to this interpreted Petri net. CÆSAR relies on options
“-concurrent-units” and “-dead-transitions” of the CÆSAR.BDD tool
(see below) to detect units that execute simultaneously (this information is
useful to data-flow analysis [23]) and transitions that are not quasi-live in
the NUPN (such transitions are neither quasi-live in the interpreted Petri
net, and thus can be removed).

2. PNML2NUPN8 is a tool developed by Lom-Messan Hillah. It translates a
“.pnml” file containing an ordinary, safe P/T net into a “.nupn” file using
the encoding scheme given for the proof of Prop. 8 (i.e., each place in a
separate unit). If the P/T net is not ordinary or not safe, the “.nupn” file
is still generated, but tagged with the special pragmas mentioned in Sec. 8.

3. EXP.OPEN9 is a tool developed by Frédéric Lang. Its latest version can con-
vert a set of finite-state automata that execute concurrently and synchronize
as specified by process-calculi operators and/or synchronization vectors into
a “.nupn” file using the encoding scheme given for the proof of Prop. 9.

4. CÆSAR.BDD10 is a tool developed by Damien Bergamini in 2004 and
progressively extended since then. It reads a “.nupn” file, checks that
the NUPN is well-formed, and performs various actions depending on
the command-line options. Option “-pnml” implements the inverse func-
tionality of PNML2NUPN by translating the NUPN into a “.pnml” file,
which embeds a “toolspecific” section (see Sec. 5.2). Option “-mcc”
computes usual structural and behavioural properties and automatically
generates a Petri-net description form in LATEX according to the con-
ventions of the Model Checking Contest; in 2014, the combined use of
PNML2NUPN and CÆSAR.BDD enabled the author to detect and correct
fourty erroneous properties in the contest’s database of models. Options
“-concurrent-units”, “-dead-transitions”, and “-exclusive-places”
perform forward reachability analysis to obtain accurate information about
places, transitions, and units. CÆSAR.BDD relies on BDDs, as implemented
by Fabio Somenzi’s CUDD software library11.

5. CÆSAR.SDD is an emulation of CÆSAR.BDD written by Alexandre Hamez.
Rather than BDDs, CÆSAR.SDD uses A. Hamez’s library12 for Hierarchi-
cal Set Decision Diagrams (SDDs) and takes advantage of unit safeness

7 See http://cadp.inria.fr/man/caesar.html
8 See http://pnml.lip6.fr/pnml2nupn
9 See http://cadp.inria.fr/man/exp.open.html

10 See http://cadp.inria.fr/man/caesar.bdd.html
11 See http://vlsi.colorado.edu/∼fabio/CUDD
12 See https://github.com/ahamez/libsdd

http://cadp.inria.fr/man/caesar.html
http://pnml.lip6.fr/pnml2nupn
http://cadp.inria.fr/man/exp.open.html
http://cadp.inria.fr/man/caesar.bdd.html
http://vlsi.colorado.edu/~fabio/CUDD
https://github.com/ahamez/libsdd
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to allocate only one SDD variable per unit (instead of one SDD variable
per place with ordinary P/T nets). Preliminary experiments indicate that
CÆSAR.SDD performs reachability analysis faster and can process large
NUPNs that CÆSAR.BDD fails to handle.

6. PNMC13 is a Petri Net model checker developed by Alexandre Hamez.
PNMC is also built on the aforementioned SDD library, and is able to parse
the “toolspecific” section of PNML files to exploit unit safeness. Although
PNMC is a very recent tool, it ranked second in the “State Space” category
at the 2014 edition of the Model Checking Contest.

5.4 NUPN Benchmarks

To obtain NUPN models, one can use PNML2NUPN, which translates any ordi-
nary, safe P/T net into a NUPN, albeit with one place per unit. To better take
advantage of NUPN-specific properties, one can write higher-level specifications
in LOTOS (or in any language, such as LNT, that automatically translates to
LOTOS) and generate a (structured) NUPN model using CÆSAR.

Such higher-level generated models are already available from the data base
of models for the Model Checking Contest14. A present, six NUPNs are in the
data base, and more will be added for the 2015 edition of the contest.

We will publish in 2015 the VLPN (Very Large Petri Nets) benchmark
suite15, a collection of 350 large-size NUPN models, which will be given in both
“.nupn” and “.pnml” formats, and will provide tool developers with realistic
examples and challenging problems.

6 Conclusion

The NUPN (Nested-Unit Petri Net) model is an extension of Petri nets with
additional information about concurrent structure, i.e., decomposition into hier-
archically nested sequential processes. For twenty-five years, this model has
remained hidden in the internals of the CÆSAR compiler for LOTOS [21,23,24].
With the advent of the Model Checking Contest, it became manifest that NUPN
could be of interest to a broader community, as this model combines three major
advantages:

– It is easy to generate when Petri nets are produced from higher-level, struc-
tured descriptions. This can be seen, e.g., on three main types of such descrip-
tions. First, in the case of communicating automata, each automaton directly
corresponds to a NUPN unit. Second, in the case of process calculi, the par-
allel composition operators determine NUPN units that are unit safe by
construction; straightforward optimizations help to reduce the depth of unit
nesting according to the associativity property of parallel composition; such

13 See https://github.com/ahamez/pnmc
14 See http://mcc.lip6.fr/models.php
15 See http://cadp.inria.fr/resources/vlpn

https://github.com/ahamez/pnmc
http://mcc.lip6.fr/models.php
http://cadp.inria.fr/resources/vlpn
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an approach is implemented in the CÆSAR compiler. Third, in the case of
high-level Petri nets, we believe that existing unfolding algorithms could be
easily modified to retain in NUPN units all hierarchy-related information
that is usually lost when generating “flat” unfolded Petri nets.

– It allows significant improvements in state-space exploration and verification
of behavioural properties. As explained above, the unit-safeness property per-
mits logarithmic savings in the encoding of markings, both in explicit-state
and symbolic settings. Our longstanding observations with the CÆSAR com-
piler, conforted by recent experimental results obtained on certain bench-
marks of the Model Checking Contest, confirm the real benefits of this
approach in terms of performance and scalability.

– It is not a disruptive extension that would require major overhaul in software
tools. Adding support for NUPN in an existing Petri-net tool only requires
limited changes, namely: (i) being able to read NUPN information, which is
easy if the tool already embedds a PNML parser, and (ii) take advantage
of the NUPN information to optimize the representation of markings. The
implementation of transition firings can remain unchanged, unless one wishes
to use NUPN information to perform extra (e.g., partial-order) reductions.

As regards future research directions, we believe that the NUPN model raises a
number of interesting issues:

1. Is there an algorithm to determine if certain NUPNs are unit-safe with-
out building their marking reachability graph? Prop. 5 gives some neces-
sary conditions for unit safeness concerning, e.g., the initial marking or the
input/output places and quasi-liveness of particular transitions, but having
a more general, efficient decision procedure would be desirable.

2. What is the best algorithmic approach to compute behavioural properties of
a NUPN, such as deadlock freeness, quasi-liveness, etc.? At present, there
are merely fragmentary answers to this question. For instance, we imple-
mented and compared two state-space exploration approaches for NUPN,
an explicit-state one and a symbolic one based on BDDs, both with the
scheme (b) reduction made possible by the presence of units; clearly, the
BDD-based implementation outperforms the explicit-state one. Also, recent
results reported by Alexandre Hamez indicate that SDDs often scale better
than BDDs when analyzing NUPN models. The application of other types of
decision diagrams (ADDs, DDDs, MDDs, MTBDDs, etc.) to NUPN models
remains to be investigated. It is also likely that information about the con-
current structure of NUPN models can be profitably exploited to perform
state-space reductions based on partial orders and stubborn sets.

3. How to optimally translate a given ordinary, safe P/T net to a NUPN?
As mentioned above, such a P/T net can be easily converted to a NUPN by
putting each place in a distinct unit, but no algorithmic improvement can be
expected from such a simple approach that makes no attempt at discovering
the concurrent structure of the net. A better translation should target at
reducing the number of units while maximizing the number of places per
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unit. There have been many publications on how to decompose a Petri net
into concurrent state machines; however, the NUPN hierarchy of nested units
is likely to raise new challenges compared to prior approaches that merely
target a flat composition of state machines.

4. How does the concept of nested units extend to high-level nets? The NUPN
model defined in the present article is based on elementary nets; yet, nested
units were originally introduced not for such “data-less” low-level nets, but
for the interpreted Petri nets generated by the CÆSAR compiler as an inter-
mediate model for the translation of LOTOS. It would therefore be inter-
esting to study whether nested units can also be applied to other forms of
high-level Petri nets, such as colored nets and predicate/transition nets.

5. Can nested units support the unbounded creation/destruction of concur-
rent processes? The NUPN model and the unit-safeness property have been
designed to represent algebraic terms in which processes are launched and
terminated dynamically, yet in a finite way, as in, e.g., “B1; (B2||B3) ;B4”
or “process P = B1; (B2||B3) ;B4 ;P”. However, for algebraic terms not
having such a finite-control property, e.g., “process P = B1; (B2||P )”, the
corresponding Petri nets can still be expressed as NUPNs, but the safeness
and unit-safeness properties no longer hold and, ideally, should be replaced
with other, more general flow relations.
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Humboldt foundation. Frédéric Lang provided valuable comments about this article.
Alexander Graf-Brill simplified the counterexample given for item 3 of Prop. 7. The
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Abstract. Charlie is an extensible thread-based Java tool for analysing
Petri nets. Its built-in functionalities apply standard analysis techniques
of Petri net theory (e.g. invariants, siphon/trap property) to determine
structural and behavioural properties of place/transition Petri nets, com-
plemented by explicit CTL and LTL model checking. Charlie comes
with a plugin mechanism, which permits to easily extend its basic func-
tionality as it has been demonstrated for, e.g., structural reduction and
time-dependent Petri nets. Charlie’s primary focus is teaching. For this
purpose, it has a rule system comprising standard theorems of Petri net
theory to possibly decide further properties based on the already deter-
mined ones. All applied rules are reported by default, so the user may keep
track of all analysis steps. The tool is in use for model verification of tech-
nical systems, especially software-based systems, as well as for model val-
idation of natural systems, i.e. biochemical networks, such as metabolic,
signal transduction, and gene regulatory networks. It is publicly available
at http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie.

Keywords: Analysis tool · Place/transition petri nets · Stochastic Petri
nets · Time-dependent petri nets · Place/transition invariants · Siphon/-
trap property · Explicit CTL/LTL model checking · Java · Threads ·
Plugin

1 Introduction

This paper gives an overview of the software tool Charlie which rounds off our
Petri net toolset comprising (so far) Snoopy [21,33] for the construction and
animation/simulation of hierarchically structured qualitative and quantitative
(stochastic, continuous, hybrid) Petri nets, Marcie [23,24] for symbolic and sim-
ulative CTL/CSRL model checking of qualitative and stochastic Petri nets, Patty
[35] for playing the token game within a standard web browser, and S4 [27] -
Snoopy ’s stand-alone steering server for the collaborative simulation of quanti-
tative Petri nets.

Charlie set out as a Java tool to analyse standard place/transition nets, with
primary focus on teaching Petri net theory. Its design builds on the experience
gained over about 20 years while working with the Integrated Net Analyser (INA)
previously developed at the Humboldt University Berlin by Peter H. Starke [40].
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The development of Charlie began in 2006 by Martin Schwarick [37], later
supported by various students. Among those are most notably Andreas Franzke
[13] who reengineered the graphical user interface and the basic architecture of
Charlie’s code, exploiting now also thread-based parallelism; and Ansgar Fischer
[11], who extended the capabilities by the analysis of time-dependent Petri nets.
The redesign made one of the more recent developments possible: the plugin
system [41] contributed by Jan Wegener allows for flexibility and convenient
configurability of the software package. Since then, the ongoing development
takes advantage of Charlie’s regular use for teaching and the feedback from
numerous users worldwide.

Charlie is first of all an analysis tool for standard place/transition Petri
nets capable of performing various static and dynamic analyses of the standard
body of Petri net theory, including methods building on the incidence matrix,
siphons and traps, reachability and coverability graph, which are complemented
by explicit CTL and LTL model checking. However, the analyses building on a
finite reachability graph support also place/transition Petri nets enriched by spe-
cial arcs, the so-called extended Petri nets. Charlie’s plugin mechanism has been
used to enhance its basic functionality, including structural reduction and the
dedicated support of time-dependent Petri nets by reachability graph analysis.

A distinguished feature of Charlie is its rule system, which is crucial for
Charlie’s use in teaching the standard body of Petri net theory. The rule sys-
tem comprises the most important standard theorems to possibly decide further
properties based on the already determined ones. All applied rules are reported
by default, so the user may keep track of all analysis steps.

Outline. The next section gives a summary of the main functionalities, includ-
ing Charlie’s rule system and plugin mechanism. We continue with a sketch of
selected aspects of Charlie’s architecture, some typical application scenarios, and
a brief comparison with related tools. The paper concludes with hints how to
install Charlie.

2 Functionalities

2.1 Basics

Input. Charlie reads standard place/transition Petri nets (defined by three finite
sets: the set of initialised places, the set of transitions, and the set of weighted
arcs), and extended Petri nets which additionally permit four special (weighted)
arcs to conveniently express context conditions: read arcs (often also called test
arcs), inhibitor arcs, reset arcs, and equal arcs, see [24] for definitions. This net
class is strictly more powerful than the class of standard place/transition Petri
nets. The use of special arcs may affect a model’s analysability. However, Charlie
does not check for any incompatibilities, but assumes that users know, what they
are doing!

Charlie accepts Petri nets which have been created with Snoopy, preferably
in the toolset’s proprietary human-readable text file format ANDL (Abstract
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Net Description Language) [21], but also the file formats APNN (Abstract Petri
Net Notation) [7], and INA’s PNT files (plain text file). Charlie understands all
special arcs, but any additional information is ignored, e.g., stochastic/determin-
istic firing rates of stochastic/continuous transitions in quantitative Petri nets,
or the colours of tokens, places, transitions, etc. in coloured Petri nets. With
other words, only the net structure and the initial marking are considered.

The support of the Petri Net Markup Language (PNML), the XML-based
standard exchange format of the Petri net community, is in preparation. Beyond
that, it is rather straightforward to extend Charlie to read any further formats
by help of Charlie’s plugin mechanism, see [41] for details.

Interface. Charlie comes with an intuitive and easy to use Graphical User
Interface (GUI), written in Java. Charlie’s GUI has been inspired by the analysis
tool INA, which is most obvious in the result vector, compare Figure 1, lower
half, left hand side. An overview and explanation of all abbreviations can be

Fig. 1. Screenshot of Charlie’s GUI, here with two separate windows. The window on
the left shows the standard features without any extensions. Starting from top: menu
bar, followed by some buttons for quick access to often used functions, and the entry
bars to the dialogue boxes for the different analysers. Next, the special dialogue “net
properties” (which has been opened) shows all properties Charlie knows of. A property
is marked green, if the Petri net under investigation fulfils this property; it is marked
red, if the property is not fulfilled. Properties not decided yet are shown in grey, while a
yellow colour indicates non-binary information (e.g., the net class, which is here beyond
Extended Simple). The control buttons at the bottom switch through the results of the
individual analysis steps, and trigger the “output” and “help” windows. The window
on the right shows all started analyser threads: three have finished, one is still running,
one was suspended, and one was aborted.



Charlie – An Extensible Petri Net Analysis Tool 203

found in [4,26]. The analysers, each performing one of Charlie’s analysis tasks,
run in parallel by use of Java threads, compare Figure 1, right hand side. Charlie
comes with a simple marking editor for the convenient exploration of different
markings without having to repeatedly edit and re-read the entire Petri net.

Additionally, Charlie has been equipped with a textual user interface to
support the embedding of individual analysis tasks into external tools, see [13]
for details.

Manual. There is no Charlie-specific manual, besides Chapter 8 in [4], but there
are three built-in options to learn more about Charlie’s technical notions and
rules:

• a tool tip window pops up when the curser is above a property in the result
vector;

• the question mark in the lower right corner goes to a help window with all
rules, which are hierarchically structured, i.e., clicking on an underlined rule
opens/closes a subset of rules;

• help/F1 → abbreviations yields full text explanations of all technical notions.

2.2 Main Analysis Features

The ultimate analysis aim is to decide behavioural net properties; first of all
the three orthogonal ones – boundedness, liveness, reversibility, going with more
detailed properties, comprising boundedness degree, dynamic conflict freeness,
number of dead states, and existence of dead transitions. Charlie offers the
following analysers to possibly decide these properties.

Structural analysis. The determined structural properties include pure, ordi-
nary, homogenous, non-blocking multiplicity, conservative, structural conflict
free, existence of boundary nodes (input/output places/transitions), con-
nected, strongly connected, and the net class (state machine, marked graph,
(extended) free choice, extended simple); see [26] for definitions.

IM-based analysis. Analysis techniques building on the incidence matrix (IM)
include the rank theorem [39], structural boundedness test, place/transition
invariants, and (abstract) dependent transition sets (ADT sets) [19]. The
incidence matrix can also be exported; supported formats: Matlab, CSV,
text file.

Siphon/trap computation. Siphons and traps can be separately computed,
or as far as required to determine the Siphon/Trap Property (STP). By
default, the STP computation is aborted when a siphon without a sufficiently
marked trap is found. The flag ’create all’ triggers the computation of all
minimal siphons. There is also a place set analyser which determines for an
arbitrary place set, if it is a siphon, bad/sound siphon [22], or (maximal)
trap.

Reachability/coverability graph. Options for reachability graph construc-
tion include: check boundedness, single/maximal step, and stubborn set
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reduction. By default, the coverability graph is constructed, if bounded-
ness has not been decided yet. If the construction terminates, the number of
nodes (states), edges (state transitions), and strongly connected components
(SCCs) is shown. The graph can be visualised (by use of the JUNG library)
with all SCCs coloured.

Model checking. There are explicit model checkers for Computational Tree
Logic (CTL) and Linear Time Logic (LTL) formulae, which can either be
read from a file or directly written within a Charlie analysis session. In the
face of current standard computing techniques, we recommend the use of
Marcie for state spaces beyond 500 000 states.

Path search. Search options cover shortest/longest paths between a source and
sink specified either by a (sub-) marking, a state identifier from the reach-
ability graph or a predicate (filter file). The path found can be exported as
marking sequence, transition sequence, or Parikh vector.

Upon loading a Petri net, the first analyser (structural analysis) is automat-
ically triggered due to the negligible computational costs. All other analysers
have to be started explicitly. Analysers run in parallel, which permits to start
a competition, e.g. between STP and reachability graph computation when one
wants to decide liveness for extended simple nets.

Several (multi-) sets of nodes (places or transitions) computed with Charlie
can be read by Snoopy for visualisation of the results, e.g., subnets induced by
place/transition invariants, siphons, traps, or Parikh vectors (characterising a
path search result).

2.3 The Rule System

Not every property to be decided has to be computed by an analyser. Charlie
is aware of a number of well-known theorems from the standard body of Petri
net theory, e.g. the fact that a Petri net which is covered by place invariants
(CPI) is structurally bounded (SB). By applying theorems to already computed
results one may save a great deal of computational time. The implementation of
theorems is done with Charlie’s rule system.

A rule consists of a pair of result sets – the pre-conditions and the post-
conditions. When an analyser has finished its analysis, the rule system checks
if a rule can be applied to the results obtained so far, i.e., if there exists a
rule with all pre-conditions fulfilled. If a rule can be applied, all results in the
post-condition are set.

An example for an implemented rule is the well-known theorem from above:
CPI involves SB. In Charlie this means that if the currently loaded Petri net
is covered by place invariants and an analyser sets the property “covered by
place invariants” to “true”, then the rule in question is applied to the results
and the property “structurally bounded” is set to “true” as well. This example
demonstrates a strong point of Charlie’s rule system: especially for larger nets,
the rule system may drastically decrease the analysis costs by avoiding tedious
computations.
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By default, every rule, which Charlie is about to apply needs to be confirmed
by the user; compare Figure 2. This adds an educational value, and supports
debugging as well. But Charlie can also be configured to silently accept all rules,
making it more convenient for research purposes. More detailed information
about Charlie’s rule system can be found in [13].

Fig. 2. Charlie asks the user for applying a rule. Charlie handles each property sep-
arately. Thus, there is a rule for “k-bounded”, and there is a rule for “structurally
bounded” as well, although the property “structurally bounded” implies the property
“k-bounded”.

2.4 The Plugin System

Previously, users had only a few possibilities of configuring Charlie according
to their needs. By help of the more recently added plugin mechanism, a user
can decide which analysers are required. This improves the flexibility and con-
figurability of the tool and thus improves its general usability. For example, the
analysis of time-dependent Petri nets is provided as plugin. Thus, only users who
are interested in analysing time-dependent Petri nets will see a further dialogue
box containing the options for analysing them.

Plugins for Charlie are easy to deploy, for the user and for the software
developer as well. It is rather straightforward to implement new analysers for
Charlie due to the standardisation and abstraction of the basic classes, which
are required for writing new analysers; compare Section 3.

The plugin mechanism permits also to expand the set of supported rules. New
rules can build on the predefined properties like CPI or SB, but developers have
also the possibility to add their own properties which can then be used in the
rule system. The expansion of the rule system is swiftly implemented and thus
helps to save time spent for implementing new analysers which finally increases
the overall productivity. Furthermore, users who want Charlie to be extended
are able to write their own extensions, without having to interact with Charlie’s
core development team.

The required background knowledge and a detailed explanation of the steps
to be taken to develop new plugins for Charlie can be found in [41]. We also
provide on Charlie’s website the source code for one plugin, demonstrating the
overall organisation of plugins as well the addition of new rules and properties.
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2.5 Extended Functionalities

We provide five plugins on Charlie’s website to extend its basic functionality.
These plugins are completely independent, any combination can be chosen.

GUI for command line tools. A flexible plugin for GUI-based communica-
tion with external command line tools. It can be easily configured by means
of an XML description as it has been done for Marcie [36];

Structural reduction. A plugin helping to structurally reduce a Petri net.
There are several reduction rules to choose from, see Chapter 5 in [40] for
details.

Time-dependent Petri nets. A plugin for the analysis of time-dependent
Petri nets under various options, e.g. [31]; see [11] for details.

Conflict graphs. A plugin that computes and displays transition conflict
graphs, which are crucial for the mathematical approach presented in [29] to
solve the problem of reconstructing biochemical networks from wet lab data.

ODEs analysis. A plugin for the structural analysis of continuous Petri nets
[8,14] defining systems of Ordinary Differential Equations (ODEs). Proper-
ties supported include a continuous variation of the Siphon/Trap Property
(the trap is replaced by an initially marked place invariant) [1] and the defi-
ciency criterion of Feinberg graphs [38].

3 Architecture

We confine ourselves to a brief overview of those parts of the class hierar-
chy, a user might be most interested in – the hierarchy of the plugin system.
All classes necessary for writing a basic plugin are located in sub-packages of
charlie.plugin.

• The package charlie.plugin.analyzer contains the classes to write new
analysers and their options. Here, also all classes are stored which are nec-
essary to extend the rule system.

• The classes stored in the package charlie.plugin.gui have to be extended
for amending the GUI.

• The class PluginPlaceTransitionNetReader, which can be found in the
package charlie.plugin.io, is required for providing a reader.

Figure 3 gives the UML diagram with the class hierarchy of the most
important classes of the package charlie.plugin.analyzer and their super
classes, and Figure 4 the UML diagram with the class hierarchy of the pack-
ages charlie.plugin.gui and charlie.plugin.io. Classes that do not have a
super class either extend java.lang.Object or, in the case of JPanel, another
class of the standard Java library. In the diagrams, the abstract methods of the
classes are given, as well as some important methods and constructors.

The plugins are loaded in a non-deterministic order, and so far only during
the start-up phase. Currently there is no way of loading or unloading any of
the plugins at runtime. The classes are loaded in the following order: first all
analysers, then all rule extenders, followed by the computational dialogues, and
finally all readers.
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Fig. 3.Class hierarchy and abstract methods in the package charlie.plugin.analyzer.
Coding conventions: “+“ – public, “#“ – protected, bold italic – abstract methods.

Fig. 4. Class hierarchy and abstract methods in the packages charlie.plugin.gui

(left) and charlie.plugin.io (right); see Figure 3 for coding conventions.

4 Applications

Charlie is in worldwide use for teaching (see, e.g., [4,16,17]) and research (see,
e.g., [10,12,18,30,32,34]). Since 2010, Charlie has been downloaded more than
2 000 times. We describe a couple of application scenarios in more details.

In 2007, a case study in model-driven Synthetic Biology was carried out by
a multi-disciplinary team of undergraduate students from Glasgow University
as part of the international Genetic Engineered Machine competition (iGEM)
[15,17]; Charlie contributed to the design validation of a novel self-powering
electrochemical biosensor.
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A couple of papers explore specific biochemical networks, and apply Charlie’s
computation of transition invariants and ADT sets [19] for model validation;
among them are: hemojuvelin-hepcidin axis involved in maintaining the human
body iron homeostasis [12], cephalostatin 1-induced apoptosis in leukemic cells
[32], bioenergetics of Halobacterium Salinarum [34], and an interaction network
of the Von Hippel-Lindau (VHL) tumour suppressor [30]. Ideally, it can be shown
that Petri net analyses agree with experimental evidence, otherwise they may
trigger new wet lab experiments.

In [3], structural properties and place/transition invariants are computed
with Charlie and used to characterise a molecule-centred module concept for
the systematic construction of biochemical networks by module composition,
which is illustrated by means of the JAK/STAT signalling pathway. In [10],
Charlie helps in exploring general patterns in signalling pathways, specifically
for identifying crosstalks.

In contrast, [25] and [18] bridge two formalisms. They start from the Petri
net representation of an ODE system (i.e., continuous Petri nets) and apply
invariant analysis performed with Charlie to identify the main components of a
signalling network.

A step-wise analysis of signalling and gene regulatory networks applying a
wide spectrum of Petri net theory by help of Charlie is demonstrated in a couple
of textbook chapters, see [5,6,20,26,28].

5 Comparison with Related Tools

There are several Petri net tools for supporting selective methods of static and
dynamic analysis techniques. However, we are not aware of any other tool pro-
viding a comparable collection of techniques, or having an explicit rule system.

Nevertheless, some tools come with their own plugin system. There are two
major approaches in the design of plugin systems. Some tools provide a ready-
to-use framework for the developer, while others let the users call their own
program and thus only work as a front-end for other analysers. Both approaches
have their pros and cons. An advantage of the first approach is that the developer
does not need to implement basic classes, e.g., a representation of the Petri net
to be analysed, and thus saves a lot of time. On the other hand, the developer
is – more or less – bound to the specific framework, and it may take some time
to get used to the framework.

Charlie itself provides a framework for writing analysers. Another tool fol-
lowing this approach is the “Platform Independent Petri net Editor” (PIPE) [9],
dedicated to performance evaluation of stochastic Petri nets. Thus, its analysis
functionality is not comparable with Charlie.

The program “TIme petri Net Analyzer” (Tina) [2] allows users to include
their own programs. These add-on programs can then be called by Tina, while
Petri nets are drawn with Tina’s built-in editor. The analysis functionality of
Tina is not comparable with Charlie as its focus is on analysing various kinds
of time-dependent Petri nets.



Charlie – An Extensible Petri Net Analysis Tool 209

6 Installation

Charlie is a Java application; thus, it is available for Windows, Mac OS and
Linux, and its execution requires a Java Runtime Environment (version 1.6 or
higher). Charlie can be obtained free of charge for academic use from its website
http://www-dssz.informatik.tu-cottbus.de/charlie.html. The installation pack-
age (jar file) contains all dependencies, no other libraries need to be manually
installed; see Charlie’s website for more information, specifically for all deployed
third party libraries.

Installing a plugin is a cakewalk: copy the zipped plugin file to the plugin
folder of Charlie’s installation path. When downloading a plugin from Charlie’s
website, please ensure that it is not automatically unpacked. To uninstall a
plugin, simply remove the file from the plugin folder.

There is no such thing as error-free software. Please submit your bug reports
or comments via Charlie’s bug tracker which you find on its website, or send an
email to charlie@informatik.tu-cottbus.de.
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Abstract. This paper proposes Structured Data Nets (StDN), a Petri
net extension that describes transactional systems with data. In StDNs,
tokens are structured documents. Each transition is attached to a query,
guarded by patterns, (logical assertions on the contents of its preset)
and transforms tokens. We define StDNs and their semantics. We then
consider their formal properties: coverability of a marking, termination
and soundness of transactions. Unrestricted StDNs are Turing complete,
so these properties are undecidable. We thus use an order on documents,
and show that under reasonable restrictions on documents and on the
expressiveness of patterns and queries, StDNs are well-structured tran-
sition systems, for which coverability, termination and soundness are
decidable.

1 Introduction

Web services and business processes are now widely used applications. Many
solutions exist to design such systems, but their formal verification remains dif-
ficult due to the tight connection of workflows with data [14,20,28]. For instance,
in an online shop one faces situations where a workflow depends on data (if the
age of the client is greater than 50, then propose service S), and conversely data
depend on a flow (return an offer with the minimal price proposed among the 5
first values returned by sub-contractors). These systems have to be open: they
must accept user inputs and manage multiple concurrent interactions. Openness
also raises robustness issues: a system must avoid interferences among distinct
transactions, and be robust for all inputs, including erroneous or obfuscated
ones. Last, a transactional system usually manages its own data: catalog, clients
database, stock,... which contents influences the execution of transactions.

Thus, exact descriptions of transaction systems lead naturally to infinite
state models with infinite data and zero tests, that can be captured only by
Turing powerful formalisms for which verification problems are undecidable. As
a consequence, one has to work with abstractions of these systems to apply
automated analysis techniques. Coarse grain approximations can rely on finite
discretizations of data or on bounds on the number of transactions in a system.
These straightforward techniques allow one to get back to the familiar models of
finite state systems or (variants of) Petri nets for which verification techniques
c© Springer International Publishing Switzerland 2015
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are well-studied and decidable (model-checking for automata, coverability and
reachability techniques for Petri nets). However, such bounded discretization
that completely abstracts from data is usually too coarse.

This paper introduces Structured Data nets (StDN), a variant of Petri nets
where tokens are structured documents, and transitions transform data. A token
represents a piece of information that either belongs to a database associated
with the system, or is attached to some ongoing transaction. Each transition of
an StDN is attached a query, that is used to transform data, and is guarded
by patterns expressing constraints on tokens in its input places. When firing
a transition, the corresponding input documents are consumed and new doc-
uments computed as the result of queries applied to the input documents are
produced in its output places. Fresh data are introduced in the system using
an input transition that non-deterministically produces new documents corre-
sponding to new transactions. Termination of a transaction is symbolized by the
consumption of a document by an output transition. We define structured docu-
ments as trees whose nodes carry information given by lists of attributes/values
(à la XML). We show that considering documents of bounded depth labeled
by well-quasi ordered values, one can provide a well-quasi ordering on docu-
ments. We define StDNs and their semantics, and we consider formal properties
of this model, such as coverability of a marking, termination and soundness of
transactions. In their full generality, StDNs are Turing complete, so all these
properties are undecidable. However, we prove that as soon as StDN manip-
ulate well-quasi ordered documents, and meet some reasonable restrictions on
the expressive power of patterns and queries (monotonous with respect to order-
ing), StDNs are well-structured transition systems. If in addition an StDN meets
effectiveness requirements, well-structure yields that coverability of a marking is
decidable. As a consequence, termination and soundness are also decidable. All
these properties hold for a single initial marking of a net, but can be extended
to handle symbolically unbounded sets of initial markings satisfying constraints
defined by a pattern. Even if some information systems can not be represented
by these well-structured StDNs, this decidable setting lays at a reasonable level
of abstraction: it does not fix an a priori bound on the number of transactions,
nor impose finiteness of data values.

Our model borrows elements from Petri nets, but also from data-centric mod-
els such as AXML [2] and business artifacts [25]. It is not the first extension of
Petri nets which handles complex types attached to tokens: Petri nets with token
carrying data have been proposed by [20]. For this extension, coverability of a
configuration is decidable. However, data is not really transformed through the
workflow, and is mainly used to adapt the structure of flows of an affine nets at
runtime. Nested nets, which use low-level Petri nets as tokens have been pro-
posed in [22]. In this model, nets can be moved from one place to another, interact
with the higher level, or with their peers inside a place. We will show that our
model is more expressive than nested nets. In particular, it models a notion of
transaction, while nested nets leave their tokens anonymous. Our nets are close in
spirit to PrT−Nets [15], that modify structured data via manipulations that are
guarded by First Order predicates. However, StDNs use guarding mechanisms
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that can not be encoded in FO. Another variant that manipulates and trans-
forms structured data is defined in [21] (XML nets). Places of an XML net carry
data and are constrained by DTDs, and transitions perform data manipulations
described in a query language. The model presented in this paper is close in
spirit to XML nets, but keeps XML transfomations as abstract as possible, and
emphasizes on semantics, decidability and formal properties of the model. Col-
ored Petri nets [19] can also be considered as Petri nets with data. However, it
is well-known that colors give a huge expressive power to nets, and can be used
to encode arithmetic operations. It is hence hard to find a reasonable syntactic
subclass of colored nets that is amenable to verification. Yet, our model could
be simulated with complex coloring mechanisms.

Several formalisms handling data have also been designed outside the Petri
net community. Programming languages such as BPEL [6] and ORC [23] have
been proposed. BPEL is the de facto standard to design business processes. A
BPEL specification describes a set of independent communicating agents. Coor-
dination is achieved through message-passing. Interactions are grouped into ses-
sions implicitly through correlations, which specify data values that uniquely
identify a session—for instance, a purchase order number. Orc [23] is a program-
ming language for the orchestration of services. It allows algorithmic manipula-
tion of data, with an orchestration overlay to start services and synchronize their
results. Data-centric approaches such as Active XML (AXML) [2] or tree pat-
tern rewriting systems (TPRS) [14] define web services as a set of guarded rules
that transform structured documents described, for instance, in XML. They do
not make workflows explicit, and do not have a native notion of transaction
either. To implement a workflow in an AXML specification, one has to integrate
explicitely control states to AXML documents, guards and rules. Decidability of
coverability has been proved for the subclass of “positive” AXML [3], in which
rules can only append data to a document, and for TPRS manipulating docu-
ments of bounded depth. Artifact-centric approaches such as business arti-
facts [25] describe the logic of transactions for systems equipped with databases.
The workflow of a transaction is defined using automata, or logical rules. A
transaction carries variables, which are instantiated by values collected along
the workflow or entered by the user. Verification of business artifacts has been
proved feasible in a restricted setting [10]. In their original version, business
artifacts only consider sequential processing of cases. They have inspired Guard
Stage Milestones (GSM) [18], that allows parallelism among tasks. Recently we
have introduced a grammar based artifact-centric case management system [7]
which enables transparent distribution of tasks. One can also mention several
initiatives to model web services in the π-calculus community. Session types [17]
have been proposed as a formal model for web services. The expressive power of
the whole π-calculus and session types do not allow for verification of reachability
or coverability properties. [4] uses WSTS to show that a fragment of spatial logic
that can express safety properties is decidable for well-typed π-calculus processes.
An effective forward coverability algorithm for π-calculus with bounded depth
has been proposed in [28]. Last, several formalisms such as μ-se [9], CASPIS [8],
COWS [27], have been proposed to model web services.
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This paper is organized as follows: Section 2 introduces the basic elements of
our model, namely documents and tree patterns. Section 3 shows how documents
can be ordered. Section 4 defines Structured Data Nets, and their semantics. We
then consider formal properties of this model, and in particular coverability of
a marking, termination, and soundness of transactions in Section 5. Section 6
concludes this work and gives future lines of research.

2 Documents and Tree Patterns

Our model of net is a variant of Petri nets manipulating structured data. These
data are encoded as trees, and queried using tree patterns and queries.

A tree T = (V,E, rootT ) consists of a set V of vertices with a distinguished
vertex, rootT ∈ V , called the root of the tree, together with a set of edges
E ⊆ V × (V \ {rootT }), such that for every vertex v ∈ V \ {rootT } there exists
a unique path from the root to v, i.e. a finite sequence v0, . . . , vn such that
v0 = rootT , (vi−1, vi) ∈ E for 1 ≤ i ≤ n and vn = v. In particular, (i) every
vertex but the root v ∈ V \ {rootT } has a unique predecessor, i.e. a vertex v′

such that (v′, v) ∈ E, and the root has no predecessor. A tree is labelled in A if
it comes equipped with a labelling function λ : V → A. The depth of a tree T is
the maximal length of a sequence of consecutive edges in T .

Tokens of Structured Data Nets are documents represented by finite trees
whose nodes are labelled with attribute/value pairs, i.e. by a finite set of equa-
tions of the form a = v where tag a denotes a data field or an attribute and v
its associated value. For that purpose we let a tag system τ = (Σ,D) consist of
a set Σ of tags and a set D indexed by Σ such that for every σ ∈ Σ, the set Dσ

of possible values for attribute σ is non-empty. A valuation ν ∈ Valτ associated
with a tag system τ = (Σ,D) is a partial function ν : Σ → D whose domain of
definition, denoted tag(ν), is finite and such that ∀σ ∈ tag(ν), ν(σ) ∈ Dσ.

Definition 1 (Documents). A document D ∈ Docτ associated with a tag
system τ is a finite tree labelled by valuations in Valτ .

If v is the node of a document, we let tag(v) be a shorthand for tag(λ(v))
and let v · σ denote λ(v)(σ) when σ ∈ tag(v). We use tree patterns to address
boolean properties of trees. A tree pattern is also a labelled finite tree, whose
edges are partitioned into ordinary edges and ancestor edges, and whose nodes
are labelled by constraints. A constraint, denoted by C ∈ Consτ , is defined by
a partial function1 C : Σ → ℘(D) whose domain, denoted tag(C), is finite and
such that ∀σ ∈ tag(C), C(σ) ⊆ Dσ. For instance if Dσ is the set of integers then
5 ≤ σ ≤ 20 constrains the value of σ to lay within the set of integers ranging
between 5 and 20, and σ =? allows σ to take value in the whole set of integers.

Definition 2 (Tree Pattern). A tree pattern, P ∈ Patτ , is a tuple P =
(V,Pred, Anc, λ), where Pred,Anc ⊆ V × V are disjoint set of edges and
(V,Pred ∪ Anc, rootP , λ) is a finite tree labelled by constraints in Consτ .
1 ℘(D) denotes the set of subsets of D
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As for documents, we let tag(v), for v a node of a tree pattern, be an abbre-
viation for tag(λ(v)) and let v · σ denote λ(v)(σ) when σ ∈ tag(v). We further
let v · σ =? as an shorthand for v · σ = Dσ which means that v must carry the
tag σ but the value of this tag is not constrained. This situation should not be
confused with σ �∈ tag(v) which does not constrain node v to carry tag σ (see
Figure 1 for an illustration). Pattern satisfaction is formally defined as follows:

Definition 3 (Pattern Satisfaction). A document D = (VD, ED, rootD, λ)
satisfies a tree pattern P = (VP ,Pred, Anc, λP ), denoted D |= P , when there
exists an injective map h : VP → VD such that:

1. h(rootP ) = rootD,
2. ∀v ∈ VP tag(v) ⊆ tag(h(v)),
3. ∀v ∈ VP ∀σ ∈ tag(v) h(v) · σ ∈ v · σ,
4. ∀(v, v′) ∈ PredP (h(v), h(v′)) ∈ ED,

and
5. ∀(v, v′) ∈ AncP (h(v), h(v′)) ∈ E∗

D

(where E∗
D denotes the reflexive and

transitive closure of ED).

∗

{a =?, b =?}

∗

{a = 10}

{b ≤ 30}

Fig. 1. A tree Pattern

Figure 1 is a tree pattern where the single and double edges denote respec-
tively predecessor (Pred) and ancestor (Anc) relations. Furthermore, ∗ = {}
denotes the empty constraint. It describes the set of trees which have five nodes
v0, v1, v2, v3, and v4 with the following properties. v0 is the root of the tree
v1 is not a leaf node (i.e. it has at least one successor node v2) and it carries
tags a and b (tag(v1) ⊇ {a, b}) with no particular constraints on their values:
λ(v1)(a) = Da, λ(v1)(b) = Db. Node v3 is an immediate successor to the root,
it carries tag a (tag(v2) ⊇ {a}) and the value attached to tag a is 10. Node v4
is some successor node of v3 tagged by b and the value attached to b is lower
than 30. Requiring pattern matching to hold at the root of a document is not a
limitation. Indeed, for a pattern P with root v, one can design a new pattrern P ′

that has an additional node v′ such that (v′, v) ∈ Anc and λP ′(v′) = {}. Then,
P ′ holds at the root of a document D iff P holds at some node of D. On the other
hand, we use a child relation in patterns, and not only an ancestor relation. This
implies that matching is not a simple embedding relation (in the usual sense
used for graphs), but a strict embedding preserving edge types. Though defining
patterns with child relation makes them less frequently monotonous, in allows
to use a reasonnable subset of the XPATH standard [29] as patterns in StDNs.

3 Ordering Trees

We do not distinguish between isomorphic trees, i.e. when there exists a bijection
ϕ : VT → VT ′ between their respective sets of vertices such that (v, v′) ∈ ET ⇐⇒
(ϕ(v), ϕ(v′)) ∈ ET ′ (and thus also ϕ(rootT ) = rootT ′), and λ(v) = λ(ϕ(v)).

If (A,≤) is an ordered set (resp. a quasi ordered set, i.e. ≤ is a reflexive
and transitive relation) then the set of trees labelled in A can be ordered (resp.
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quasi ordered) by setting T1 ≤ T2 for any pair of trees T1 = (V1, E1, root1, λ1),
T2 = (V2, E2, root2, λ2), when there exists an injective map f :V1→V2 such that:

1. f(root1) = root2,
2. (v, v′) ∈ E1 =⇒ (f(v), f(v′)) ∈ E2, and
3. ∀v ∈ V1, λ1(v) ≤ λ(f(v)).

Hence T1 ≤ T2 if T2 can be obtained from T1 by adding new edges and/or
replacing existing labels by greater ones. For instance, given an order relation,
≤σ, on Dσ and a subset of tags, Σ′ ⊆ Σ, one obtains a quasi order on Docτ

associated with the quasi order on valuations Valτ given by:

ν ≤Σ′ ν′ ⇐⇒ tag(ν) ∩ Σ′ ⊆ tag(ν′) ∧ ∀σ ∈ tag(ν) ∩ Σ′ ν(σ) ≤σ ν′(σ)

Thus, restricted to tags in Σ′, valuation ν′ has a larger domain and associates
greater values to tags for which both ν and ν′ are defined (see Figure 2 for an
illustration). Note that Σ′ ⊆ Σ′′ =⇒ ≤Σ′′⊆≤Σ′ .

Definition 4 (Monotony). A pattern P is monotonous if, for any pair of
documents (D1,D2), D1 ≤Σ′ D2 and D1 |= P implies D2 |= P where Σ′ is the
set of tags occurring in P .

{a = 2, g = 3}

{b = 5}

{c = 10} {d = 20}

D1 : {a = 4}

{b = 3}

{c = 15}

{e = 12}

{d = 30}

{f = 4}

D2 : {a =?}

{5 ≤ c ≤ 11}

P1 : {a =?}

{10 < d}

P2 :

Fig. 2. Documents and patterns: Assume all the domains Dσ are given by the set
N of natural numbers with their usual ordering, then D1 ≤{a,c,d} D2. Pattern P1 is not
monotonous since D1 ≤{a,c} D2, D1 |= P1 and D2 �|= P1. Pattern P2 is monotonous.

As illustrated in Figure 2, a pattern that imposes upper bounds on attribute
values is not monotonous. Let us recall that a well quasi order (wqo) is a quasi
order that is well-founded : any infinite sequence x1, . . . , xn, . . . contains two ele-
ments xi and xj such that i < j and xi < xj . Equivalently, a quasi order is a wqo
if it contains no infinite strictly decreasing sequences nor infinite antichains (sets
of pairwise incomparable elements). Let ↑ x = {y | x ≤ y} denote the upward
closure of an element x. A set X is upward closed if ↑ X = X. Any upward closed
set in a wqo has a finite basis (a set B(X) ⊆ X such that

⋃
x∈B(X) ↑ x = X).

This property ensures the existence of a finite representation for infinite upward
closed sets of elements. Finding a wqo on structured data can serve to finitely
represent collections of data of arbitrary sizes, or to allow symbolic manipula-
tions on families of trees. However, in contrast with Kruskal’s theorem, which
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states that tree embedding is a well quasi order on the set of finite trees, the
set (Docτ ,≤Σ′) is in general not a wqo even if the set of tags is finite and their
domains are finite or well quasi ordered. In fact, (Docτ ,≤Σ′) is a strict rooted
inclusion. It is needed to models faithfully differences in databases contents and
documents growth, but allows construction of sets of pairwise incomparable ele-
ments of arbitrary sizes (as shown in Figure 3).

{a = 0}

{b = 0}

{b = 0}

{a = 0}

Fig. 3. Let us consider tag system τ = ({a, b},D), with Da =
Db = {0} and the tree shown next, denoted a.bk.a, whose root
v0, tagged a with λ(v0)(a) = 0, is followed by a sequence
v1, . . . , vk of nodes tagged b with value λ(vi)(b) = 0, and
ends with a node vk+1 tagged a, with λ(vk+1)(a) = 0. The
set of trees {a.bk.a | k ∈ N} consists of pairwise incomparable
elements for ≤{a,b}, hence they form an infinite antichain,
whereas they form a chain for tree embedding.

This problem (existence of sets of pairwise incomparable elements of arbitrary
sizes) can be avoided by restricting to trees of bounded depth. Let us denote
Docτ,≤n the set of documents whose depth is less or equal to n. In order for
(Docτ,≤n,≤Σ) to be a wqo one must also assume that the set of tags, Σ, is
finite. If it is not the case, the family of trees reduced to their root and all
labelled with distinct tag would constitute an infinite antichain.

Proposition 1. Let τ = (Σ,D) a tag system where Σ is a finite set, Σ′ ⊆ Σ,
and n ∈ N. If, for all σ ∈ Σ′, (Dσ,≤σ) is a wqo then (Docτ,≤n,≤Σ′) is a wqo.

Proof. First, note that since two documents that only differ on tags that do not
belong to Σ′ are equivalent for the equivalence relation induced by the quasi
order ≤Σ′ , one can assume without loss of generality that Σ′ = Σ. We know
by [11] that the set of graphs Gn

Σ , of bounded depth labelled by well quasi ordered
tags, and ordered by strict subgraph inclusion ≤ is a well quasi order. Therefore
the same result holds for trees of bounded depth labelled by wqo, ordered by
rooted strict subgraph inclusion ≤r. Indeed one has T ≤r T ′ ⇐⇒ T ≤ T ′ where
T is obtained from T by adding a node labelled with a new symbol and by adding
an edge from this node to the root of T . This additional node is the root of T and
any strict labelled-graph embedding from T to T ′ necessarily relates their roots
(because of their common label which does not appear elsewhere) and therefore
also their unique successor nodes, i.e. the roots of T and T ′. So it remains to
prove that the order relation ν ≤Σ ν′ ⇐⇒ tag(ν) ⊆ tag(ν′) ∧ ∀σ ∈
tag(ν) ν(σ) ≤σ ν′(σ) on valuations Valτ is a wqo. This order relation can be
expressed as: ν ≤Σ ν′ ⇐⇒ ∀σ ∈ Σ′ ν(σ) ≤⊥

σ ν′(σ) where a valuation is
viewed as a function ν : Σ → D ∪ {⊥} where ⊥ is a new element added to
each of the sets Dσ as a least element (x ≤⊥

σ y ⇐⇒ x = ⊥ ∨ x ≤σ y) and by
letting ν(σ) = ⊥ ⇐⇒ σ �∈ tag(ν). Then (Dσ ∪ {⊥} ,≤⊥

σ ) is a wqo for every
σ ∈ Σ′. As, the Cartesian product of a finite family of wqos is a wqo, we have
that (Valτ ,≤Σ) is a wqo. �
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4 Structured Data Nets

StDns are designed to model complex workflows with data, such as transactions.
In StDNs, interactions are handled as follows: a new case (a structured docu-
ment) is created and attached a unique identifier. It then follows a workflow,
collecting data in the system. When the transaction is completed, the computed
values are returned to the caller. During the workflow, several parallel threads
may have been created, and a part of the data of the case (client’s name, ...) can
be stored in the system for later use.

For convenience, we distinguish two particular transitions that are used to
initiate and terminate cases. A transition tin, with no incoming place, which
delivers to the input place pin a token representing a new transaction. A tran-
sition tout, with no outgoing place, which unconditionally consumes any token
from the output place pout.

In addition to case management, transactional systems are often required to
meet properties such as isolation of transactions. Isolation means that two trans-
actions do not influence one another. This is achieved on one hand by allowing
concurrency, which is a native feature of all Petri nets variants, but also by
forbidding undesired side effects of a transaction. In a web store, for instance,
paying a command should not trigger delivery of someone else’s items in another
transaction. Isolation is often implemented by attaching a session number to a
case. Formalisms such as BPEL [26] allow for more elaborated mechanisms called
correlations to filter and group messages sharing commonalities. In general, it
is not useful to remember exactly the identity of a session, nor to order ses-
sion identities. A mechanism allowing to differentiate distinct sessions suffices.
In [5], we have proposed session systems whose configurations are represented
as graphs, and sessions as components of these graphs. In structured data nets
isolation of transactions is handled by assigning an identifier to each individual
token, thus inducing a partition on the set of tokens. More precisely, a token is
a pair T = (D, id) where D is a document, the value of the token, and id ∈ N

indicates when id = 0 that the data D is part of the local database of the system.
Otherwise, id �= 0 provides the identifier of the transaction that D belongs to.
Thus identifiers of transactions are positive integers.

Roughly speaking, each input arc (p, t) for p ∈ •t in a structured data
net is attached a guard given by a tree pattern 〈p, t〉. Transition t is enabled
in a marking M if in every of its input place p ∈ •t one can find a token
Tp = (Dp, idP ) ∈ M(p) such that Dp |= 〈p, t〉 and all non-null identifiers idP

coincide. The latter condition ensures that all the pieces of information, but
those belonging to the local database, are concerned with the same transaction.
These tokens are then removed from the current marking and some new tokens
should be added to each of its output places p ∈ t•. For that purpose, each out-
put arc (t, p) for p ∈ t• is attached a query 〈t, p〉 that describes how to compute
the value of the token(s) to add in place p ∈ t• from the vector of input docu-
ments (Dp)p∈•t which enabled the firing of the transition. Queries can produce
multisets of tokens. We denote by M(A) the multisets with elements in set A.
Every X ∈ M(A) is a map X : A → N, where X(a) gives the multiplicity of
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element a ∈ A in X. We further let Mf (A) define the set of finite multisets, i.e.,
the subset of M(A) which contains the multisets X such that X(a) �= 0 for a
finite number of elements a ∈ A.

Definition 5 (Query). An n-ary query Q : (Docτ )n → ℘(Mf (Docτ )) is a
function that non-deterministically produces a finite multiset of documents from
a vector of documents given as input.

A query is simple when it non-deterministically returns an ordinary set:
Im(Q) ⊆ ℘(Docτ ). A query is deterministic if it returns a singleton: Im(Q) ⊆
Mf (Docτ ). As illustrated in Figure 4, non-deterministic queries can be used to
specify non-deterministic choices of the environment. Non-simple queries can be
used to produce several documents, and design creation of concurrent threads.

pcars pcomp

ppi

t

{id = car}

{type = Fiat} {price = 15K}

{id = companies}

{
name =
AXA

} {
name =
Insure+

}

p

p′

BankDecision

{id = item}

{
type =
screen

} {
price =
300

} {
order =
218

}

{id = item}

{
type =
screen

} {
price =
300

} {
order =
218

}{
granted =
tt

}

Fig. 4. The leftmost example depicts a part of broking system for a car insurance
system. Place pcars contains structured documents depicting cars and their price. A
token in pcomp lists several insurance companies. The place ppi is the starting point to
ask pro-forma invoices to companies. The transition t creates one structured document
per insurance company that appears in the database, by application of query 〈t, ppi〉
attached to flow arc from t to place ppi. The net on the right models a part of an
online shop in which a payment of some bought item needs to be granted by a bank.
Transition BankDecision models this decision. The query 〈BankDecision, p′〉 attaches
a new child to the document’s root indicating bank’s decision with a boolean. Hence,
it non-deterministically returns the input document augmented with either a true or a
false boolean tag.

We leave voluntarily the queries underspecified, as our aim is to define generic
properties of nets depending on properties of their documents, query language,
and flow structure, but abstracting away as much as possible the query language.
Several mechanisms have been proposed to query structured data. Standard
query languages such as XQuery [30] and Xpath [29] use patterns to extract infor-
mation from trees, and are usually described formally as tree pattern queries.
The definition of structured data nets is as follows:

Definition 6 (Structured Data Net). Let τ be a tag system. A structured
data net, or StDN, is a structure N = (P, PDB , T, F, 〈·, ·〉) where P is a set of
places, PDB ⊆ P is a subset of places corresponding to the local database of the
net, T is a set of transitions, F ⊆ P × T ∪ T × P is a set of flow arcs, and
map 〈·, ·〉 : F → Patτ ∪ Qτ associates each input arc (p, t) ∈ F to a pattern
〈p, t〉 ∈ Patτ and each output arc (t, p) ∈ F to a query 〈t, p〉 ∈ Qτ .
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The respective sets of input and output elements of x ∈ P ∪ T , preset and
postset are denoted •x = {y | (y, x) ∈ F } and x• = {y | (x, y) ∈ F }. The map
〈·, ·〉 associates each input arc (p, t) ∈ F to a pattern 〈p, t〉 ∈ Patτ and each
output arc (t, p) ∈ F to an n-ary query 〈t, p〉 ∈ Qτ where n = |•t| is the number
of input places of t with a given enumeration of this set of places. We furthermore
require that StDNs possess two places pin and pout, and two transitions tin and
tout such that •tin = ∅, t•in = {pin}, •tout = {pout}, t•out = ∅, p•

out = {tout},
and 〈pout, tout〉 = tt is the trivial pattern reduced to its root labeled with the
empty constraint ∗ = {}, i.e. tt is the pattern matched by any document. Any
transition such that •t ∩ PDB �= ∅ has also input places in P \ PDB ensuring
that a transition acts on the database only in the context of the processing of a
particular transaction. Finally tin is the unique transition with an empty preset,
tout is the unique transition with an empty postset, and any place in P \ PDB

has non-empty preset and postset.

pin

p1 p2

p3 p4

pout

Data1

Data2

tin

Qin

t1

Pin,1

PD1,1

Q1,D1

Q1,1
Q1,2

t2

P1,2

Q2,3

t3

P2,3
PD2,3

Q3,4

t4

P3,4
P4,4

Q4,out

t5

Pin,5

Q5,out

tout

Qout = tt

Fig. 5. We assume in this example that
all queries are simple and all but Qin

are deterministic. Then input transition tin

creates non deterministically a new transac-
tion by putting a token in place pin contain-
ing a document (e.g. a form) together with
a new identifier. According to the shape of
the token but also to the data contained in
place Data1 transitions t5 and t1 may be
enabled. For instance t1 may correspond to
the nominal behaviour while t5 is used when
the document is incomplete or ill-formed. In
the latter case the document is immediately
transferred to the output place pout. In the
former case the treatment is split by t1 into
two threads (concurrent actions t2 and t3)
and the respective results are aggregated
by transition t4. Then the output transition
tout can withdraw the terminated transac-
tion from the system.

Definition 7 (Behaviour of StDNs). A token T = (D, id) ∈ Tokτ is made
of a document D ∈ Docτ and a non-negative integer id ∈ N. A marking M :
P → Mf (Tokτ ) assigns a finite multiset of tokens to each place such that for
all (D, id) ∈ M(p) one has id = 0 if and only if p ∈ PDB. Transition t �= tin
is enabled in marking M and firing transition t in marking M leads to marking
M ′, denoted as M [t〉M ′, when

1. ∃id,∀p ∈ •t, ∃Tp = (Dp, idp) ∈ M(p) s.t. Dp |= 〈p, t〉, and p �∈ PDB ⇒
idp = id,

2. ∀p ∈ t•, ∃Xp ∈ 〈t, p〉
(
(Dp)p∈•t

)
,

3. Let id and Xp be respectively defined from 1. and 2. ∀p ∈ t• M ′(p) =
M ′′(p) ∪ {(D, idp) | D ∈ Xp } where idp = id if p �∈ PDB and idp = 0 if
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p ∈ PDB, and ∀p �∈ t• M ′(p) = M ′′(p); where M ′′ is the marking given by:

M ′′(p) =
{

M(p) if p �∈ •t
M(p) \ {(Dp, idp)} if p ∈ •t .

The behaviour of transition tin is similar except that since it has no input place it
is always enabled and no identifier results from the enabling condition. It creates
a new identifier associated with the tokens created in input place pin.

When conditions 1 and 2 in Definition 6 are met we say that transition t is
enabled in marking M , denoted M [t〉. Note that the firing relation M [t〉M ′ is
non-deterministic due to the fact that first, one may find several token sets that
satisfy the patterns associated with the input places of t, and second, the queries
associated with the output places may also be non-deterministic. Marking M ′

is reachable from marking M when there exists a sequence of transition firings
leading from M to M ′. We denote R(M) the set of markings reachable from M .

5 Properties of Structured Data Nets

The main motivation for using formal notations and semantics is to derive auto-
mated tools to reason on the corresponding systems. For transactional systems,
one may want to check that a request with correct type is always processed
in a finite amount of time, regardless of current data. Another issue can be to
guarantee that a payment on an online store is always followed by the sending
of the purchased item to the buyer. Last, one may want to check some simple
business rules on transactions, confidentiality of some data, etc. In most cases,
the properties to check do not deal with global states of the modeled system, but
rather on the status of one particular transaction plus a limited environment.
Hence the properties of interest for StDNs are closer to coverability properties
than to reachability properties. In this section we formalize and address decid-
ability of reachability, coverability, termination (whether all transactions termi-
nate), and soundness (the question of whether all transactions terminate without
leaving pending threads in the system). We can formalize reachability, coverabil-
ity, termination and soundness as follows for an StDN with respect to a given
initial marking M0. We will assume w.l.o.g. that M0 contains no transaction:
∀p ∈ P \PDB ,M0(p) = ∅. Indeed, one can always add to an existing net without
transactions in its initial marking another net that initializes some places with
a chosen contents, to obtain a given marking M0 (up to identifiers attached to
documents). Then, all problems can be brought back to similar problems with
transaction-free initial markings.
Reachability: Is a given marking M reachable from the initial marking: M ∈
R(M0) ?
Coverability: Is a given marking M smaller than some reachable marking:
∃M ′ ∈ R(M0) s.t. M ≤ M ′ ? (For a given order relation ≤ on markings)
Termination of a transaction: Given a marking M such that a new trans-
action has just been created (M(pin) contains a token (D, id) which is the only
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token with identifier id in M), can one reach a marking M ′ such that M(pout)
contains a token (D′, id) ? Does one always reach such a marking from M ?
Is termination possible or granted for any initial case given by a marking M
or respectively for all initial cases in which the considered document satisfies a
given pattern P ?
Soundness: Given a marking M such that a new transaction has just been
created, (M(pin) contains a token (D, id) in M(pin) which is the only token
with identity id in M), can one always reach a marking M ′ such that M(pout)
contains a token (D′, id) and at the same time avoid markings in which pout

contains a token (D′, id) and another place contains a token of the form (D′′, id)
(the case is not completely terminated)?

All questions above are undecidable if no restriction is imposed on the nature
of documents or queries. In the rest of the section, we consider a class of StDN
which is proved to be effective well-structured transition systems, a property
that guarantee the decision of coverability.

Theorem 1 (Undecidability). Reachability, coverability, termination and
soundness are undecidable problems for StDNs.

Proof. We encode a Turing machine into an StDN. We recall that a Turing
machine is made of an infinite bi-directional tape divided in both directions into
an infinite number of consecutive cells and a finite state device that can read
and write the cell being examined by a read/write head and that can also move
that head along the tape in both direction. A cell contains a 0 or a 1, initially
every cell has the default value 0. More precisely a Turing machine consists of
a finite set of states Q with some initial state q0 and a finite set of instructions
of the form [q, x, ω, q′] where q and q′ are states, x ∈ {0, 1} is the possible value
of the cell, and ω ∈ {0, 1, L,R} is an operation that corresponds respectively to
writing 0 or 1 in the current cell or moving the r/w-head to the left or to the
right. A configuration is a triple (q, u, v) ∈ Q × {0, 1}ω × {0, 1}ω made of a state
q ∈ Q and two infinite words coding respectively the content of the left part
of the tape, read from right-to-left, and the right part of the tape, read from
left-to-right. The r/w-head is positioned on the first cell of the right-part of the
tape. The transitions of the Turing machine are given as follows:

1. Writingavaluey ∈ {0, 1}onthecurrentcell: (q, u, x · v)
[q,x,y,q′]−−−−−−→ (q′, u, y · v).

2. Right move: (q, u, x · v)
[q,x,R,q′]−−−−−−→ (q′, x · u, v).

3. Left move: (q, y · u, x · v)
[q,x,L,q′]−−−−−−→ (q′, u, y · x · v).

{state = q}

{l = u1}

{l = un}

{l = �}

{r = v1}

{r = vm}

{r = �}

A reachable configuration (q, u, v) contains only
a finite number of non-null elements therefore
one can encode a configuration with a tree as
shown next where ∀i > n, ui = 0 and ∀i >
m, vi = 0. We let [q, u, v] denote this tree (even
though the representation is not unique). In
terms of this representation the moves of the
Turing machine can be simulated with the rules:
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1. Writing a value y ∈ {0, 1} on the current cell: [q, u, x · v]
[q,x,y,q′]−−−−−−→ [q′, u, y · v].

2. [q, u, x · v]
[q,x,R,q′]−−−−−−→ [q′, x · u, v] and [q, u, �]

[q,0,R,q′]−−−−−−→ [q′, 0 · u, �].

3. [q, y · u, x · v]
[q,x,L,q′]−−−−−−→ [q′, u, y · x · v] and (q, �, x · v)

q,x,L,q′
−−−−−→ (q′, �,

0 · x · v).

Each of these rules can straightforwardly be represented by a transition r with
•r = r• = {pin} where pattern 〈pin, r〉 describes those configurations that enable
rule r and query 〈r, pin〉 describes the effect of r on such a configuration. Pat-
tern 〈tin, pin〉 = {[�, q0, �]} produces the initial configuration. We complete the
description of the StDN by adding one transition haltq,x from pin to place pout

for each pair of state q and symbol x for which there is no move of the machine
of the form (q, x,−,−) where pattern 〈pin, haltq,x〉 tests that the state is q and
the symbol read is x and query 〈haltq,x, pout〉 witnesses the halting of the Turing
machine by creating a specific token, e.g. the empty configuration [�, q0, �], in
the output place. For this StDN reachability or coverability of the final marking
with one token in pout are equivalent to termination or soundness thus all these
properties are undecidable. �

This result is not surprising, as reachability or coverability are usually unde-
cidable for Petri nets with extended tokens like colored Petri nets. However, one
may note several important issues from the encoding of a Turing machine. First,
deterministic queries are sufficient for this encoding. Second, three distinct tags
and finite domains of values are sufficient to encode a configuration of a Turing
machine. An immediate question is whether one can rely on the structure of the
data and on simple restrictions to obtain decidability results. A first obvious use-
ful restriction is to bound the depth of documents manipulated by the system.
By Proposition 1 the set of documents manipulated by the StDN is a wqo when
the domains of the data fields, attached to tree nodes, are wqos. This restriction
is reasonable, as it is unlikely that documents grow arbitrarily during their life-
time in a system. Similarly, databases of arbitrary sizes can be represented as
unbounded sets of bounded depth documents in places of PDB.

Definition 8. An StDN is well quasi ordered (is a wqo StDN for short), when

i) the domains of values used by document data fields are well quasi ordered
(finite sets, integers, vectors of integers,...), with effective comparison (one
can can effectively decide if x ≤σ y), and

ii) there exists a bound on the depth of all documents appearing in R(M0).

Let us comment on the restrictions in Definition 8. Assuming wqo values in
documents still allows to work with infinite domains like integers. However, this
restriction forbids to attach structured data such as queues of unbounded sizes to
nodes. Within the context of transactional systems, this is not a severe limitation.
Note also that checking whether R(M0) contains only bounded depth documents
is obviously undecidable. However, this property is frequently met, and is not a
severe limitation either: Most of transactional systems can be seen as protocols
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working with a finite number of data fields or using finite forms, in which a
finite number of entries needs to be filled. Hence, applying a query usually does
not increase too much the size of a document. One shall also note that the
depth of standard structured documents is usually very low: the structure helps
decomposing an entry into data fields, i.e. decomposing a concept into sub-
concepts (a person is described as someone with a first name and last name)
and it is recognized [24] that 99% of XML documents have depth smaller than
8, and that the average depth of XML documents is 4. Note also that the depth
restriction does not mean finiteness of manipulated data: trees of arbitrary width
still comply with this restriction, and data values attached to nodes need not
be chosen from finite domains. This allows for instance for the manipulation of
XML documents containing arbitrary numbers of records. Still, as shown at the
end of this section, considering well quasi ordered StDNs is not enough to obtain
decidability.

Let us define the ordering relation on the set of markings induced by
the ordering of documents, and thus ultimately by the ordering of the data
values appearing in these documents. The powerset of an ordered or quasi
ordered set (A,≤) is equipped with the quasi order ≤ where X ≤ Y when
an injective map h : X → Y exists such that ∀x ∈ X x ≤ h(x). For
multisets X,Y ∈ M(A) we similarly let X ≤ Y ⇐⇒ �X� ≤ �Y � where
�X� = {(x, i) | x ∈ X ∧ 1 ≤ i ≤ X(x)} denotes the set of occurrences of X.
Markings are compared component-wise up to an injective renaming of their
transactions. More precisely, we let M1 ≤ M2 when there exists an injective
map h : N → N such that h(0) = 0, and for every place p and every i ∈ N one
has πi(M1(p)) ≤ πh(i)(M2(p)) where πi(M(p)) = {D | (D, i) ∈ M(p)} denotes
the multiset of documents in M(p) with identifier i. As the comparison between
two markings is performed up to a renaming of transactions, the exact identi-
fier of a token does not matter. The only concern is whether two tokens with
the same (respectively with different) identifier(s) are mapped to tokens with
the same (resp. with different) identifier(s). Hence, we can equivalently consider
markings as partitions of a multiset 2 of pairs from P × Docτ,≤n. As a partition
of a set X is a set of subsets of X, any quasi order on X extends (using twice
the powerset extension) to a quasi order on the set of partitions of X. With this
representation M1 ≤ M2 when the two partitions are comparable for the exten-
sion to partitions of the ordering ≤ on P × Docτ,≤n given by (p,D) ≤ (p′,D′)
when p = p′ and D ≤ D′.

Proposition 2. The set of markings over bounded depth documents whose data
have well quasi ordered domains is a wqo.

Proof. From proposition 1, we know that (Docτ,≤n,≤) is a wqo. Since the set
of places is finite, the ordering relation on P × Docτ,≤n is also a wqo. Last,
the product of two wqos forms a wqo [16], and we have seen that extending
the ordering to multisets and then to partitions also yields a wqo. Hence, the
ordering on markings over documents of bounded depth is a wqo. �

2 by partition of a multiset X we mean a partition of the set �X� of occurrences of X.
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An immediate followup to well quasi orderedness is to set restrictions to
obtain well-structured transition systems (WSTS) and reuse existing results to
check coverability. An n-ary query Q is said to be monotonous when

(∀i ∈ {1, . . . , n} Di ≤ D′
i) =⇒ Q(D1, . . . , Dn) ≤ Q(D′

1, . . . , D
′
n)

Proposition 3. A wqo StDN with monotonous patterns and queries is a WSTS,
more precisely (M1[t〉M ′

1 ∧ M1 ≤ M2) =⇒ (∃M ′
2,M2[t〉M ′

2 ∧ M2 ≤ M ′
2)

Proof. According to Definition 7 we distinguish the initial transition tin, which
is responsible for the creation of new identifiers, from the other transitions.
If t = tin: The transition tin is not guarded, and results in a non-deterministic
creation of new documents D1, . . . , Dk with a fresh identity id in place pin,
namely M ′

1 = M1 � {(p, (D1, id)) ∪ · · · ∪ (p, (Dk, id))}. Then, one can find a
fresh integer id′ that is not used in M2 so that M2[tin〉M ′

2 where M ′
2 = M2 �

{(p, (D1, id
′))∪· · ·∪ (p, (Dk, id′))}. As M1 ≤ M2, there exists an injective map h

such that for every place p and every x ∈ Dom(h), πx(M1(p)) ≤ πh(x)(M2(p)).
We extend this map by letting h(id) = id′ to get πid(M ′

1(p)) ≤ πid′(M ′
2(p)) and

thus M ′
1 ≤ M ′

2.

General case (t ∈ T \ {tin}): This transition is enabled when all the patterns
P1 = 〈p1, t〉, . . . , Pk = 〈p1, t〉 attached to flows from places p1, . . . , pk in •t to
t are satisfied by some documents D1, . . . , Dk, with the same identifier id for
documents located in places •t \ PDB, and with identifier 0 for documents from
•t ∩ PDB. Upon firing, t consumes D1, . . . Dk from •t, and outputs a set of
newly created documents D′

1, . . . D
′
k′ with identifier id in places of t• \PDB, and

with identifier 0 in places of t• ∩ PDB where {D′
1, . . . D

′
k′} = ∪p∈t•Xp for some

Xp ∈ 〈t, p〉(D1, . . . , Dk). As M1 ≤ M2, there exists an injective mapping h such
that for every identifier x and every place p, πx(M1(p)) ≤ πh(x)(M2(p)). This
also yields, for each identifier x and each place p a map ϕp,x : πx(M1(p)) →
πh(x)(M2(p)), such that Di ≤ ϕp,x(Di). Let us denote by ϕ =

⋃
ϕp,x the union

of all these maps for p ∈ P , and x an identifier used in M1

Since guards are monotonous and Di ≤ ϕ(Di), one has ϕ(Di) |= Pi. From
the monotony of queries we deduce that for every place p ∈ •t, there exists X ′

p ∈
〈t, p〉(ϕ(D1), . . . , ϕ(Dk)) with Xp ≤ X ′

p. Thus transition t is enabled in marking
M2 and M2[t〉M ′

2 with M ′
2(p) = (M2 \ ({ϕ(D1), . . . , ϕ(Dk)} ∩ M2(p))) ∪ X ′

p.
Let us now prove that M ′

1 ≤ M ′
2. We can design a set of injective maps ϕ′

p,x :
πx(M ′

1(p)) → πh(x)(M ′
2(p)) witnessing M ′

1 ≤ M ′
2. For every Di ∈ M1(p)∩M ′

1(p),
we define ϕ′

p,x(Di) = ϕp,x(Di), as the documents that were not consumed remain
unchanged and hence comparable in both markings. Then, for each newly created
document D′

i in Xp, as Xp ≤ X ′
p, we necessarily have a document D′

j in X ′
p such

that D′
i ≤ D′

j . Hence we can set ϕ′
p,x(D′

i) = D′
j , and obtain D ≤ ϕ′

p,x(D) for
every D ∈ M ′

1(p). Hence, the map ϕ′ =
⋃

ϕ′
p,x witnesses M ′

1 ≤ M ′
2. �

Coverability can be decided using a standard backward algorithm. For a set
of markings X, we let pre(X) = {M | ∃t ∈ T,M ′ ∈ X,M [t〉M ′}. We also let
basis(X) be a basis for an upward closed set X. Let M be the marking that one
tries to cover. The algorithm iteratively computes basis for the sets of markings
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from which a marking in ↑ M can be reached in a finite number of steps. The
algorithm starts from the set X0 = {M}, that is a basis for all markings greater
than M . Then it builds iteratively Xi+1 = Xi ∪ basis(pre(↑ Xi)), and stops when
a fixed-point is reached, or as soon as there exists M ′ ∈ Xi such that M ′ ≤ M0,
indicating that there exists a sequence of transitions from M0 to a marking
greater than M . It was proved in [1,13] that this algorithms is correct and
terminates for effective WSTS where effectiveness means that i) the comparison
relation ≤ is effective and ii) (backward-effectiveness) one can effectively build
a finite basis for pre(↑ M).

Corollary 1 (Coverability). Coverability is decidable for backward-effective
wqo-StDN with monotonous patterns and queries.

Proof. It remains to show that the comparison among markings is effective.
For any pair of documents D1,D2 ∈ Docτ , one can effectively check for the
existence of a mapping from D1 to D2, and compare the values of paired data
fields, as we have assumed that the domains of these data-fields are effective
wqos. Then finding an identity preserving mapping among contents of places
(finite multisets) is also effective. �

Backward effectiveness means that from an upward closed set of markings
one can effectively build a finite representation of the data input to a transition
that might have generated these contents. This property is easily met if the effect
of a transition on a place is to aggregate finite amount of data collected from its
input places (for instance the sum of positive integers collected in forms), or to
append a new branch to a document (in this case, the input data can be obtained
by considering subtrees of the documents appearing in the original marking).

Let us now show that this result on coverability allows to prove more proper-
ties. For a pattern P , we define Sym(P ) the symbolic set of initial cases induced
by P as the set of documents satisfying P . We are now ready to address the
termination, soundness, and coverability for symbolic sets of initial cases. The
latter coverability question makes sense if one assumes that the query 〈tin, pin〉
generates Sym(P ). This is not always the case, and the set of documents gener-
ated by 〈tin, pin〉 needs not satisfy a single pattern P . It may even be the case
that this set of initial cases is not upward closed (for instance, a query can gen-
erate documents which nodes carry only odd integer values). The coverability
problem for the set of initial cases induced by P can be rephrased as follows:
assuming IMG(〈tin, pin〉) = Sym(P ), and given a marking M to cover, can one
find an initial marking M0 such that M0(pin) ∈ Sym(P ) and there exists M ′

greater than M in R(M0) ?

Theorem 2. Termination, soundness, and coverability for symbolic set of initial
cases defined by a monotonous pattern are decidable properties on the class of
backward-effective wqo-StDN with monotonous patterns and queries.

Proof. The termination of a case associated with an identifier id is equivalent
to the coverability of the marking with one token (D⊥, id) in place pout (and all
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other places empty) by the marking resulting from the initialization of this case
(using transition tin) where D⊥ is the least document (reduced to an untagged
root). Decidability of soundness also stems from decidability of coverability.
An StDN is sound if it terminates and whenever place pout contains a token,
one cannot find another place containing a token with the same identifier, i.e.
for each place p ∈ P \ {pout} the marking Mp with token (D⊥, id) in both place
pout and p and with no other tokens is not coverable from the initial marking.

Coverability, termination and soundness have solutions for a single given ini-
tial marking, i.e. for a particular chosen case. We would like to consider whether
transactions terminate or cover a given marking M for all or for some possi-
ble inputs to the system. We suppose that the set of results output by query
〈tin, pin〉 is the symbolic set of documents from Docτ,≤n that satisfy a par-
ticular monotonous pattern P . Then, one can compute the set BSat(P ) of doc-
uments obtained by replacing ancestor edges of P by sequences of edges with
untagged nodes in such a way that the depth of the obtained document remains
smaller than n, and replacing each constraint γ on values attached to a node
of P by a value selected from a basis for the upward closed set of values satis-
fying γ. This basis exists as P is monotonous, and the domains are wqos. This
set BSat(P ) forms a basis for all documents conforming to pattern P . Noticing
that R(M) ≤ R(M ′) when M ≤ M ′ for wqo and backward effective StDNs with
monotonous queries and patterns, coverability and termination can be verified
for all cases initiated by 〈tin, pin〉 if it can be proved for all elements in BSat(P ).
Note that it is sufficient to compute the fixed-point returned by the backward
coverability algorithm and then compare this set with all minimal elements in
BSat(P ). �

The above decidability results do not extend to reachability:

Theorem 3 (Undecidability of reachability). Reachability is undecidable,
even for backward effective wqo-StDN with monotonous patterns and queries.

Proof. An StDN can easily simulate reset Petri nets for which reachability is
undecidable [12]. We need only to deal with place pin (in order to conform with
Definition 6 we can assume a transition t from pin to pout such that pattern
〈pin, t〉 is never satisfied). The content of place pin encodes a particular mark-
ing of the reset net: A document D with a root node and a child labeled p
with n children indicates that place p of the reset net contains n tokens. This
set of tokens can be manipulated as a whole, incremented or decremented by
monotonous queries. Enabledness of a transition can be encoded by a pattern
that tests the existence of a token in some place p, i.e. they are trees with a
root, a child node tagged p and one children. Monotonous queries can be used
to increment or decrement the number of children of a particular node tagged
by p, encoding consumption or creation of tokens. Last, a query can remove all
children of a document, simulating a reset arc. Such queries are monotonous,
and transitions using this kind of queries are also backward effective. It is also
obvious that one can design a transition that will fire only once, produce a set of
documents encoding the initial marking of a reset net, and will then ignore all
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transactions produced by 〈tin, pin〉. Undecidability of the reachability problem
for reset nets [12] concludes the proof. �

This negative result should not be seen as a severe limitation: reachability
is usually undecidable outside the class of Petri nets, and when considering
transactional systems, properties of interest are usually not expressed in terms
of global states. Let us remark from the above proof that encoding a reset Petri
net with an StDN is straightforward. StDN can also simulate nested nets [22].
Nested nets are high-level nets, which tokens are markings of low-level nets
(which can be easily modeled by structured documents of bounded depth, with
a single id). They can evolve individually inside a place as standard Petri nets, or
interact with the higher-level net (which can be simulated by a transition of an
StDN). Synchronizations inside places of nested nets (involving two token-nets
in a place) can also occur. In StDN, transitions use only one document from
each place; however, synchronization inside a place p can be simulated by first
moving one document from p, to another place p′ and then firing a transition
that uses this document and another document from p.

Proposition 4. Well quasi orderedness of an StDN is undecidable. Coverability,
reachability and termination problems are undecidable for wqo StDNs.

Proof. We design a wqo StDN that encodes a two counters machine. A two coun-
ters machine is given as a pair of counters C1, C2 holding non-negative integers
and a finite list of instructions l1, . . . ln each of which, except the last one, is of
one of the following forms: i) li : inc(C�) meaning that we increment counter C�

and then go to the following instruction, ii) lj : if (C� = 0), lk else dec(Cj), lk′

indicating that if counter C� is null we must proceed to instruction lk otherwise
we decrement this counter and go to instruction lk′ . The machine halts when it
reaches the last instruction ln : Halt. A configuration of a counter machine is
given by the value of its counters, and the current instruction line. The machine
usually starts at instruction 0, with counters set to 0. It is well-known that one
cannot decide if a counter machine halts. For any counter machine, we can define
an StDN (represented in Figure 6) that encodes the moves of the machine.

First, we can encode a counter machine configuration as a document with
three nodes: a root, and its left and right children. The root is tagged by an
instruction number from l1, . . . , ln, the left and right children are tagged by c1
and c2 respectively with values given by non-negative integers. The correspond-
ing documents are of bounded depth with values from wqo domains. For each
instruction of the form li : inc(C�), we design a transition ti with •ti = t•i = pin

such that Pi = 〈p, ti〉 is the pattern reduced to a root whose tag has value li and
Qi = 〈ti, p〉 is the query that transforms a document into a document with root
li+1, and such that the value attached to the node with tag c� is incremented
by one, and the other one is left unmodified. For each instruction of the form
lj : if (C� = 0), lk else dec(Cj), lk′ we design two transitions tj,Z and tj,NZ such
that Pj,Z = 〈pin, tj,Z〉 is a pattern testing if the root of a document is labeled by
lj , and the value of node with tag c� is zero, Qj,Z = 〈tj,Z , pin〉 is the query that
transforms a document into a document with root lk, and such that the values
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Fig. 6. Encoding a counter Machine with wqo Structured Data Nets

attached to child nodes remain unchanged, Pj,NZ = 〈pin, tj,NZ〉 is the pattern
testing if the root of a document is labeled by lj , and the value of node with tag
c� is greater than zero, Qj,NZ = 〈tj,NZ , pin〉 is the query that transforms a doc-
ument into a document with root lk′ , and such that the value attached to node
with tag c� is decremented by one and the value attached to the other child node
remains unchanged. The initial configuration of the counter machine is created
by query Qin = 〈tin, pin〉 that produces a document with root labeled l0 and
two children nodes tagged respectively by c1, c2 with values 0. We set M0 as an
initial marking in which all places are empty. Transition tleave moves the token
from place p to pout if the root tag has value ln, i.e. the machine halted. Clearly,
the counter machine terminates iff one can reach a configuration in which pout is
not empty. Thus one cannot decide termination, and similarly the reachability
or coverability (of the marking with just one token in pout).

Let us now prove that one can not decide whether a net is wqo. One can
add a transition tnobnd to the above net such that •tnobnd = t•nobnd = pout,
〈pout, tnobnd〉 = tt, and 〈tnobnd, pout〉 is a query that increases the depth of a
document by 1, by inserting a children with some tag a between the root and its
first child (hence creating successive incomparable documents). Then the counter
machine terminates iff the corresponding StDN is not wqo. �

Even though well quasi orderedness of a net is undecidable, acceptable restric-
tions ensure this property. In many systems, queries are used to extract data from
a data-set (a list of records). The result is also a list of records that can be again
assembled as a bounded depth document. Other queries compute new values
from data-sets (sums, means, etc. ) and insert the results is a new document
(a “form”) of bounded depth and size. So, one can restrict to queries that pro-
duce only documents of bounded depth, which values domains are finite sets or
wqo sets such as integers without harming too much the expressiveness of the
model. Form filling queries that manipulate integers, rationals or strings are also
very often backward effective, provided the mechanisms used to select the nodes
carrying the values of interest to fill a form are monotonous.
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6 Conclusion

This paper has addressed an extension of Petri Nets whose transitions manipu-
late structured data via patterns and queries. Without limitations, this model is
Turing Powerful. However, under some restrictions on the nature of queries and
on the shape of documents some interesting properties, such as coverability, are
decidable. We believe that limiting data to structured documents of bounded
depth with wqo labels is a sensible approach: many information systems use
strings, booleans, etc, but do not need real values with arbitrary precision.

Several improvements might be investigated. An important issue is to identify
classes of data operations that allow StDNs to fall into decidable subclasses. Our
coverability proof relies on backward effectiveness of transitions to guarantee
effectiveness of the WSTS associated to a wqo StDN with monotonous queries
and patterns. This does not identify a particular class of queries. To be practical,
we would like to identify classes of non-trivial monotonous queries that ensure
effectiveness. Decidability results for positive active XML [3], for instance, use
another form of monotonicity: they assume that a document can only grow,
which can be an adequate assumption in case management systems. Considering
positive StDN could be a way to ensure effectiveness. Another improvement lies
in pattern expressiveness: currently, only individual constraints on data values
are attached to nodes. One could, however, consider patterns with constraints of
the form v.σ ≤ v′.σ′, involving values of several nodes, sets of patterns requiring
matching on several documents from a place, boolean combinations of patterns,...
and see how these extensions affect positive results. Another line of research
concerns symbolic manipulation of upward closed sets of documents. So far, we
have considered coverability for symbolic set of initial cases, but we can imagine
to define symbolic sets of initial markings, database contents, or target markings
to cover. We also want to consider extensions of the model with some essential
features for web services and transactional systems, for example allowing for
transaction cancellation. Such feature is currently not handled by our model:
one can even remark that an StDN might not be sound, even when it is wqo and
backward effective.
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Abstract. A Petri net is reversible if its initial marking is a home
marking, a marking reachable from any reachable marking. This prop-
erty is fundamental in man-made systems as it lets a system return to
its initial state using only internal operations.

Necessary and sufficient conditions are already known for the
reversibility of well-formed Choice-Free and ordinary Free-Choice nets.
Like the homogeneous Join-Free nets, these nets constitute subclasses of
Equal-Conflict nets. In this larger class, the reversibility property is not
well understood.

This paper provides the first characterization of reversibility for all
the live Equal-Conflict systems by extending, in a weaker form, a known
condition that applies to the Choice-Free and Free-Choice subclasses.
We also show that this condition is tightly related to the Equal-Conflict
class and does not apply to several other classes.

Keywords: Reversibility · Home markings · Liveness · Weighted petri
nets · Characterization · Equal-conflict · Join-free · Choice-free · Free-
choice

1 Introduction

Liveness and reversibility are behavioral properties of Petri nets that are fun-
damental for many real world applications. These systems (such as embedded
or flexible manufacturing systems) have to keep all their functions (transitions)
active over time, a condition modeled by the liveness property. These systems
often also require a steady, regular, behavior and the possibility of returning
to some particular states (markings) using only internal operations, a condition
modeled by the reversibility property.

A system is live if any transition can be fired after a finite number of
steps from any reachable marking. The markings that are reachable from every
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reachable marking–when they exist–are called home markings. A Petri net is
reversible, or cyclic, if its initial marking is a home marking, in which case all
reachable markings are home markings. Reversibility avoids a costly transient
phase and favors a steady behavior from the start. Besides, it often simplifies
substantially the study of the reachability graph.

Importance of Weights. In this study, we focus on weighted Petri nets, which
are well suited to the modeling of real-life systems. In the domain of embedded
systems, Synchronous Data Flow graphs [8], equivalent to particular weighted
Petri nets, have been introduced to model the communications between a finite
set of periodic processes. In the domain of flexible manufacturing systems (FMS),
the weights make possible the modeling of bulk consumption or production of
resources [15]. In these cases, weights allow a compact representation of the
volumes of data or resources exchanged.

Important Weighted Subclasses. We focus on subclasses of weighted Petri
nets that are defined by structural restrictions. A net is homogeneous if each place
has all its outputs weights equal. The Equal-Conflict systems form a homoge-
neous subclass where transitions that have a common input place share the same
set of input places.

This class generalizes several important subclasses of Petri nets. It contains
the Choice-Free systems, also known as output non-branching systems [3], in
which every place has at most one output transition. Weighted T-systems—
equivalent to Synchronous Data Flow graphs—are Choice-Free systems where
each place has at most one input transition. The homogeneous Join-Free Petri
nets form a subclass of Equal-Conflict nets in which each transition has at most
one input place. The homogeneous S-systems are homogeneous Join-Free systems
in which each transition has at most one output place.

Previous Results. The problem of checking the reversibility property is decid-
able [1,4], although its complexity is unknown. If the system is supposed to be
bounded, a naive exponential algorithm would check the strong connectedness
of its reachability graph. Moreover, neither one of the properties of liveness and
reversibility implies the other [11].

The relation between liveness and reversibility has been studied in several
weighted subclasses. The systems considered are often bounded, that is, with a
bounded number of tokens in every place for all the reachable markings. Well-
formedness is also commonly assumed for the net, ensuring the boundedness
of the system for any initial marking and the existence of at least one live
marking. Liveness and reversibility are equivalent for any well-formed T-system
[14]. For well-formed Choice-Free systems, a characterization of reversibility was
expressed in terms of the reversibility of particular subsystems under the liveness
assumption in [7]. For the same class, a necessary and sufficient condition for the
conjunction of liveness and reversibility was given in [15], which also applies to
well-formed ordinary Free-Choice nets [5]. To our knowledge, no result of similar
strength exists for homogeneous S-systems, hence for larger classes.
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Nevertheless, for Equal-Conflict systems, some characterizations of liveness
have been uncovered. Under the well-formedness assumption, there exist a struc-
tural necessary and sufficient condition of liveness [17] and a checking method
[16]. Also, the existence of reachable home markings is a necessary condition for
the combined liveness and boundedness of an Equal-Conflict system [17].

Liveness and reversibility have been studied in many other classes, notably
liveness in [2] and reversibility in [6].

Contributions. Our main contribution is a necessary and sufficient condition
of reversibility for live, not necessarily bounded, Equal-Conflict systems. It is
based on the existence of a feasible T-sequence, which is a sequence returning to
the initial marking and where each transition is fired at least once.

The existence of a T-sequence is a necessary and sufficient condition for a
well-formed Choice-Free system to be both live and reversible [15]. We exhibit a
simple counter-example for the homogeneous S-system class. Consequently, the
condition does not extend to the Equal-Conflict class.

We show easily that the existence of a feasible T-sequence is a necessary
condition for a system to be both live and reversible. The major result is the
proof that, for live Equal-Conflict systems, the existence of a T-sequence is also
a sufficient condition of reversibility. We also provide various counter-examples
showing that this characterization does not extend to several larger classes.

Organization of the Paper. In Section 2, we give general definitions, detail
notations and properties of Petri nets, and define the subclasses that we study
in the paper. In Section 3, we investigate the relationship between liveness and
reversibility in weighted Petri nets and several bounded subclasses. We also intro-
duce the notion of T-sequence and highlight its importance for the reversibility
property. In Section 4, we explore a particular definition of fairness in Equal-
Conflict nets and exploit it to prove the characterization of reversibility for all
the live Equal-Conflict systems. In Section 5, we show by means of counter-
examples that this characterization of reversibility does not extend to several
classes of Petri nets. Finally, Section 6 is our conclusion.

2 Definitions, Notations and Properties

We first recall definitions and notations for weighted nets, markings, systems
and firing sequences. Classical notions, such as liveness and boundedness, are
formalized. Lastly, special classes of nets, including Choice-Free, Join-Free and
Equal-Conflict nets, are recalled.

2.1 Weighted and Ordinary Nets

A (weighted) net is a triple N = (P, T,W ) where:

− the sets P and T are finite and disjoint, T contains transitions and P places,
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− W : (P × T ) ∪ (T × P ) �→ N is a weight function.

P ∪ T is the set of the nodes of the net.
An arc leads from a place p to a transition t (respectively a transition t to

a place p) if W (p, t) > 0 (respectively W (t, p) > 0). An ordinary net is a net
whose weight function W has values in {0, 1}.

The incidence matrix of a net N = (P, T,W ) is a place-transition matrix C
defined as

∀p ∈ P ∀t ∈ T, C[p, t] = W (t, p) − W (p, t)

where the weight of each non-existing arc is 0. The weight function W can be
represented by two place-transition matrices Pre and Post defined as follows:
∀p ∈ P , ∀t ∈ T , Pre[p, t] = W (p, t) and Post[p, t] = W (t, p). Consequently, the
incidence matrix can be defined as C = Post − Pre.

The pre-set of the element x of P ∪ T is the set {w|W (w, x) > 0}, denoted
by •x. By extension, for any subset E of P or T , •E =

⋃
x∈E

•x. The post-set
of the element x of P ∪ T is the set {y|W (x, y) > 0}, denoted by x•. Similarly,
E• =

⋃
x∈E x•.

We denote by maxN
p the maximum output weight of p in the net N . The

simpler notation maxp is used when no confusion is possible.
A join-transition is a transition having at least two input places.

2.2 Markings, Systems and Firing Sequences

A marking M of a net N is a mapping M : P → N. A system is a couple (N,M0)
where N is a net and M0 its initial marking.

A marking M of a net N enables a transition t ∈ T if ∀p ∈ •t ,M(p) ≥ W (p, t).
Generalizing to sets, a set T of transitions is enabled by M if every transition
of T is enabled by M . A marking M enables a place p ∈ P if M(p) ≥ maxp.
Generalizing to sets, a set P of places is enabled by M if every place of P is
enabled by M .

The marking M ′ obtained from M by firing an enabled transition t, denoted
by M

t−→ M ′, is defined by ∀p ∈ P,M ′(p) = M(p) − W (p, t) + W (t, p).
A firing sequence σ on the set of transitions T is a mapping {1, . . . , n} → T

with n ≥ 1, or N → T ; it is finite of length n in the first case and infinite
otherwise. A firing sequence σ = t1t2 · · · tn is feasible if the successive markings
obtained, M0

t1−→ M1
t2−→ M2 · · · tn−→ Mn, are such that Mi−1 enables the transi-

tion ti for any i ∈ {1, · · · , n}. We note M0
σ−→ Mn.

The Parikh vector �σ : T → N associated with a finite sequence of transitions
σ maps every transition t of T to the number of occurrences of t in σ.

A marking M ′ is said to be reachable from the marking M if there exists a
feasible firing sequence σ such that M

σ−→ M ′. The set of markings reachable
from M is denoted by [M〉.

A home marking is a marking that can be reached from any reachable
marking. Formally, M is a home marking in the system (N,M0) if ∀M ′ ∈
[M0〉,M ∈ [M ′〉. A system is reversible if its initial marking is a home marking.
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2.3 Liveness and Boundedness

Liveness and boundedness are two basic properties ensuring that all transitions
of a system S = (N,M0) can always be fired and that the overall number of
tokens remains bounded. More formally,

− A system S is live if for every marking M in [M0〉 and for every transition
t, there exists a marking M ′ in [M〉 enabling t.

− S is bounded if there exists an integer k such that the number of tokens in each
place never exceeds k. Formally, ∃k ∈ N ∀M ∈ [M0〉 ∀p ∈ P, M(p) ≤ k . S
is k -bounded if, for any place p ∈ P , k ≥ max{M(p)|M ∈ [M0〉} .

− A system S is well-behaved if it is live and bounded.

A marking M is live (respectively bounded) for a net N if the system (N,M) is
live (respectively bounded). The structure of a net N may be studied to ensure
the existence of an initial marking M0 such that (N,M0) is live and bounded:

− N is structurally live if a marking M0 exists such that (N,M0) is live.
− N is structurally bounded if the system (N,M0) is bounded for each M0.
− N is well-formed if it is structurally live and structurally bounded.

The algebraic properties of consistency and conservativeness are necessary
conditions for well-formedness for all weighted Petri nets [10,13]. They are
defined next in terms of the existence of particular annulers of the incidence
matrix.

2.4 Semiflows, Consistency and Conservativeness

Semiflows are particular left or right annulers of an incidence matrix C that is
supposed to be non-empty:

− A P-semiflow is a non-null vector X ∈ N|P | such that XT · C = 0.
− A T-semiflow is a non-null vector Y ∈ N|T | such that C · Y = 0.

We denote by I(V ) the set of the indices of the vector V . The support of a vector
V , denoted by |V |, is defined as the largest subset of I(V ) being associated to
non-zero components of V , meaning that ∀i ∈ |V |, V [i] �= 0 and ∀i ∈ I(V )\ |V |,
V [i] = 0. A P-semiflow is minimal if the greatest common divisor of its compo-
nents is equal to 1 and its support is not a proper superset of the support of any
other P-semiflow. Minimal T-semiflows are defined similarly.

We denote by 1n the column vector of size n whose components are all equal
to 1. The conservativeness and consistency properties are defined as follows using
the incidence matrix C of a net N :

− N is conservative if a P-semiflow X ∈ N|P | exists for C such that X ≥ 1|P |.
− N is consistent if a T-semiflow Y ∈ N|T | exists for C such that Y ≥ 1|T |.

The net on Figure 1 is conservative and consistent.
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Fig. 1. This weighted net is conservative (the left vector [2, 2, 1, 1, 1] is a P-semiflow
and its components are ≥ 1) and consistent (the right vector [2, 2, 2, 1]T is a T-semiflow
and its components are ≥ 1).

2.5 Choice-Free Nets, Join-Free Nets and Subclasses

The following basic subclasses of weighted Petri nets are defined by structural
restrictions on the number of inputs or outputs of nodes. By studying these
particular structures, the understanding of the behavior has been improved in
several larger classes [12,17].

In Choice-Free nets, each place has at most one output transition, meaning
that choices are not allowed. More formally, N = (P, T,W ) is a Choice-Free net
if ∀p ∈ P , |p•| ≤ 1.

In Join-Free nets, each transition has at most one input place, meaning that
synchronizations are not allowed. More formally, N = (P, T,W ) is a Join-Free
net if ∀t ∈ T , |•t| ≤ 1.

The net of Figure 1 is Choice-Free but not Join-Free: t3 is a join-transition.
A net N is a Fork-Attribution net (or FA net) if it is a Choice-Free net and a

Join-Free net. A net is an S-net if every transition has at most one input and one
output. A net is a T-net if every place has at most one input and one output.

2.6 Equal-Conflict Relation, Sets, Nets and Larger Classes

In order to consider nets that are more expressive than the basic Choice-Free or
Join-Free classes, some choices or synchronizations must be allowed.

However, in presence of structural choices, the behavior depends on the res-
olution of conflicts, which is limited by the preconditions of the conflicting tran-
sitions and by the current marking. When these preconditions are identical, all
the alternatives are equivalent and the study of the behavior is simplified.

This notion of equal preconditions is captured by the next relation on the
transitions of any weighted net, which was defined in [17].

Let N = (P, T,W ) be a net. Two transitions t, t′ of T are in equal conflict
relation if Pre[P, t] = Pre[P, t′] �= 0|P |, where Pre[P, t] denotes the t-th column
of the matrix Pre. It is an equivalence relation on the set of transitions, and
each equivalence class is an equal conflict set.

We deduce that an equal conflict set is enabled by a marking M if and only
if at least one transition of this set is enabled by M .
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A net N = (P, T,W ) is an Equal-Conflict (EC) net if for all transitions t and
t′ of N , •t ∩ •t ′ �= ∅ ⇒ Pre[P, t] = Pre[P, t′].

A consequence of this definition is that Equal-Conflict nets are homogeneous,
meaning that for every place p, all the output weights of p are equal. Figure 2
contains an Equal-Conflict net on the left.

The Equal-Conflict class strictly extends the expressiveness of Choice-Free
nets by adding the possibility to model choices that are equally favored.

p1 p2

t1 t2

2

2 3

3

p1 p2

t1 t2

2

3

3

p1 p2

t1 t2

2

4 3

3

Fig. 2. The net on the left is an Equal-Conflict net. In the middle, •t1 = {p1, p2} �=
{p2} = •t2 , hence the net is not Equal-Conflict. On the right, the pre-sets of both
transitions are equal, however it is not Equal-Conflict since it is not homogeneous: the
output weights of p1 are not all equal.

Finally, we recall the following well-known classes, whose weighted versions
generalize the Equal-Conflict class.

Free-Choice nets are ordinary (unit-weighted) Equal-Conflict nets. The
weighted generalization of this class encompasses the Equal-Conflict nets and
is depicted on the right in Figure 2.

A net N = (P, T,W ), either ordinary or weighted, is Asymmetric-Choice if
∀p1, p2 ∈ P , p•

1 ∩ p•
2 �= ∅ ⇒ p•

1 ⊆ p•
2 or p•

2 ⊆ p•
1. A weighted homogeneous

Asymmetric-Choice net is shown in the middle of Figure 2.
Figure 3 represents the inclusion relations between the special subclasses of

weighted Petri nets considered in this paper.

3 Liveness, Reversibility and T-sequences

We recall known results and provide examples that explain some interactions
between liveness and reversibility in weighted subclasses. We then introduce the
notion of T-sequence and study its importance in relation with these properties.

3.1 Previous Results on the Reversibility of Live Systems

Since we are interested in systems that are both live and reversible, we first illus-
trate some relations between these properties. While, under the well-formedness
assumption, liveness is equivalent to reversibility in weighted T-systems [14], it
does not imply reversibility in weighted Fork-Attribution systems and homoge-
neous S-systems, as illustrated in Figure 4.

Thus, since a live system may not be reversible, other notions, such as T-
sequences, must be introduced to study the reversibility property.
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Weighted Petri nets

Weighted Asymmetric-Choice

Weighted Free-Choice

T S

Equal-Conflict

Choice-Free Join-FreeFA

Circuits

Fig. 3. Some classes and subclasses of weighted systems.
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p1 p2p3
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11

t3 t2

t1

Fig. 4. On the left, a live S-system. On the right, a live Fork-Attribution system. None
of them is reversible.

3.2 T-sequences

We introduce next the notion of T-sequence and show that the existence of such
a sequence is necessary to have both liveness and reversibility.

Definition 1 (T-sequences, partial T-sequences). Consider a Petri net
with set of transitions T . A T-sequence is a sequence whose Parikh vector is
equal to a T-semiflow whose support is T . A partial T-sequence is a sequence
whose Parikh vector is equal to a T-semiflow whose support is different from T .

The alternative expressions feasible or realizable T-semiflow may be found in
the literature when there exists a feasible (partial or not) T-sequence. Such a
sequence, when feasible at the initial marking, defines weak reversibility in [14].

The next lemma provides a necessary condition to obtain both liveness and
reversibility.

Lemma 1. If a system S = (N,M0) is live and reversible, then it enables a
T-sequence.

Proof. Suppose that the system is live and reversible. By the liveness assumption,
there exists a feasible sequence σ0 whose support is the set of all transitions. By
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the reversibility assumption, there exists a feasible sequence σ1 returning to M0.
Thus, the feasible sequence σ0 σ1 is a feasible T-sequence. ��

Consequently, any live and reversible Petri net is consistent.
In the other direction, the existence of a feasible T-sequence implies both

liveness and reversibility in (weighted) Choice-Free nets [15] and (ordinary) Free-
Choice nets [5] under the well-formedness assumption. However this implication
is false in general. Indeed, a well-formed homogeneous S-system may have a fea-
sible T-sequence while it is neither live nor reversible, as illustrated in Figure 5.

1

2 2

1 1 1

2 2

t1 t2

t3t4

Fig. 5. This well-formed homogeneous S-system is not live (fire t1 t2) although a T-
sequence is feasible (fire t1 t1 t4 t2 t2 t3).

Other particular classes have been studied in [9], which investigates the
relationship between the reversibility property and the existence of reachable
markings that enable a partial T-sequence associated to a minimal T-semiflow.

This fact justifies the study of reversibility under liveness hypothesis in the
next section. We also show in that section that the existence of a feasible T-
sequence is sufficient for reversibility in the Equal-Conflict class when liveness is
assumed.

4 Reversibility of Live Equal-Conflict Systems

Under the liveness hypothesis, we investigate the reversibility property in Equal-
Conflict systems, which may be unbounded. First, we define a notion of fairness
and develop an associated property for sequences. Then, we use the fairness
to facilitate the proof of the characterization of reversibility for all live Equal-
Conflict systems.

4.1 Fairness in Equal-Conflict Systems

Taking inspiration from [17], we define a fairness property adapted to the Equal-
Conflict class. Then, we present a result about fairness that will prove useful for
the study of the reversibility property.

Definition 2 (Fairness in Equal-Conflict systems). An infinite firing
sequence is globally fair if it fires every transition of the system an infinite
number of times. An infinite firing sequence is locally fair if
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- when an equal conflict set contains a transition that is fired an infinite number
of times, all of its transitions are fired an infinite number of times, and
- when an equal conflict set is enabled, one of its transitions is fired after a finite
number of firings.

The following theorem is similar to a result of [17] which uses a slightly
different definition of fairness. Comparing with [17], we replace the boundedness
and strong connectedness assumptions by the liveness assumption.

Theorem 1 (Fairness in live Equal-Conflict systems). Let S be a live
Equal-Conflict system. An infinite sequence σ that is feasible in S is globally fair
if and only if it is locally fair.

Proof. If σ is globally fair, it is easy to see that σ is locally fair. Let us prove
the converse. Suppose that σ is locally fair.

Denote by Q the set of the equal conflict sets containing a transition that
occurs infinitely often in σ and by Q the set of the other equal conflict sets. The
set Q is non-empty since there is only a finite number of equal conflict sets and
σ is infinite. If Q is empty, then we are done. Now suppose that Q is non-empty.

By definition of Q and by the local fairness assumption, all the transitions of
the sets in Q are fired an infinite number of times in σ, while all the transitions of
the sets in Q are fired a finite number of times and become forever non-enabled
after the firing of a finite prefix sequence σ0 of σ. Denote by M the marking
reached by firing σ0 in S and by σ′ the infinite suffix sequence of σ satisfying
σ = σ0 σ′.

By the liveness assumption, there exists a transition t in Q and a finite
sequence σ1 feasible at M such that σ1 contains only transitions of Q and enables
t. The sequence σ1 may not be a prefix of σ′, however all the transitions of
Q are fired an infinite number of times in σ′. We deduce that a finite prefix
sequence σ2 of σ′ exists such that �σ2 ≥ �σ1. Moreover, since only transitions of
Q are structurally allowed to remove tokens from the inputs of t, the transition
t becomes enabled after the firing of the finite sequence σ0 σ2, contradicting the
fact that every transition of Q stays forever non-enabled after the firing of σ0.
Thus, Q is empty and σ is globally fair. ��

In the following, we will use fair sequences to study the reversibility of live
Equal-Conflict systems.

4.2 A Characterization of Reversibility under the Liveness
Assumption

By Lemma 1, in every live Petri net, the existence of a feasible T-sequence is
necessary for reversibility. We show that it is also sufficient for the class of live
Equal-Conflict nets.

To obtain the sufficiency, we show that after the firing of any feasible
sequence, we can use the T-sequence to construct another sequence that leads
to the initial marking.
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Starting from an initial marking, any firing sequence that is a prefix of a
feasible T-sequence can be trivially completed to reach the initial marking again.
More generally, any firing sequence that solves conflicts by following the local
ordering induced by the adequate multiple of the T-sequence can be completed
to reach the initial marking. However, if a transition is fired that solves a conflict
by following a different ordering, the possibility to reach the initial marking is not
ensured anymore. The occurrences of other transitions in the same conflicting
set that should have been fired earlier are called delayed occurrences.

The proof of the characterization is constructive and makes use of two algo-
rithms that compute this sequence. The first algorithm (Algorithm 1) fires at
least all the delayed occurrences and returns the corresponding sequence σt. The
second algorithm (Algorithm 2) starts after the end of the first algorithm and
builds a sequence σ′

t returning to the initial marking. These two sequences are
illustrated in Figure 6.

M ′
t

M0 Mt
t

σr

σt
σ′
t

Fig. 6. If the T-sequence σr is feasible and t is fired, then Algorithm 1 builds the
sequence σt and Algorithm 2 computes the sequence σ′

t, which returns to the initial
marking.

Notations. For every transition t, we denote by Et the equal conflict set contain-
ing t. We introduce σn, n being a positive integer, to denote the concatenation
of the sequence σ taken n times, and represent its infinite concatenation by σ∞.

The notation Kn
ti

(σ), n ≥ 1, or more simply Kn
i (σ), denotes the largest prefix

sequence of σ preceding the n-th occurrence of ti in σ, thus containing n − 1
occurrences of ti. For example, considering the sequence σ = t1 t2 t1 t3 t1 t2 t3,
K3

t1(σ) = t1 t2 t1 t3 and K1
t3(σ) = t1 t2 t1.

Consider an equal-conflict set E and sequences τ and κ such that �τ < �κ.
Assume there exists a transition t in E for which �τ(t) < �κ(t). Consider for each
transition t′ in E such that �τ(t′) < �κ(t′), its next occurrence in κ after its �τ(t′)-th
occurrence. The transition t′ in E whose next occurrence is the first to appear
in κ is returned by a function, called the next transition function and denoted
by tnext(E, τ, κ). Figure 7 illustrates these notations.

Algorithm 1 determines a way of firing the delayed occurrences while follow-
ing the local ordering induced by the T-sequence in every other equal conflict
set. Lemma 2 shows the termination of this algorithm. Then, Lemma 3 provides
an equality indicating a match between occurrence counts.

The next technical lemma proves the termination of Algorithm1, which com-
putes a particular sequence σt and is illustrated in Figure 8.
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1 1

1 12

11

2

t1 t3

t4t2

p0 p1 p2

Fig. 7. The equal conflict sets are Et1 = {t1, t3}, Et2 = {t2} and Et4 = {t4}. Consider
the feasible sequence σ = t4 t4 t1 t3 t1 t2 t3. The subsequences of σ obtained by projec-
tion on each set, σ1 = t1 t3 t1 t3, σ2 = t2 and σ4 = t4 t4, define local orderings. Define
τ = t3 t4 t1. Then �σ > �τ , and the next transition to be fired in Et1 is the one whose
next occurrence appears first in σ1. Since �τ(t1) = 1 and �τ(t3) = 1, we deduce that
tnext(Et1 , τ, σ) = t1.

Algorithm 1. Construction of a sequence σt that fires the delayed transi-
tions of Et by following the ordering of the T-sequence σr

Data: The system (N, Mt) obtained by firing t in S, the feasible T-sequence σr.
Result: The sequence σt that is feasible in (N, Mt) and fires the delayed

occurrences of κ0 = K1
t (σr).

1 τ := t;

2 while ∃ t′ ∈ Et \ {t}, �κ0(t
′) > �τ(t′) do

3 while the equal conflict set Et is not enabled do
4 Among the transitions that belong to enabled equal conflict sets, fire

the transition ti whose next occurrence after the �τ(ti)-th appears first in
(σr)

∞;
5 τ := τ ti;

6 end
7 Fire the transition tj = tnext(Et, τ, κ0);
8 τ := τ tj ;

9 end

10 τ is of the form t σt;
11 return σt

Lemma 2. Let (N,M0) be a live Equal-Conflict system in which a T-sequence
σr is feasible. Then, for every transition t enabled by M0, with M0

t−→ Mt,
Algorithm1 terminates and computes the sequence σt that is feasible at Mt.

Proof. Consider the marking Mt reached by firing a transition t from M0. We
prove that Algorithm 1 computes such a sequence σt that is feasible at Mt.
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The objective of the outer loop is to fire the transitions different from t in Et

until the number of their occurrences in τ equals that in κ0. Every time Et is
enabled, a firing occurs in this set that follows the order of κ0 until completion.

The objective of the inner loop is to fire transitions that do not belong to Et

by following the associated order in (σr)∞ so as to enable Et.
Let us show that the inner loop always terminates and enables Et. First,

by the liveness assumption, every reachable marking enables at least one equal
conflict set. Now suppose that the inner loop does not terminate. Consequently,
an infinite feasible sequence τ is fired that never enables Et. Since the firings in
the loop follow the order of (σr)∞ and the support of σr is T , the sequence τ
is locally fair, thus globally fair by Theorem 1, contradicting the fact that Et

never becomes enabled. We deduce that Et becomes enabled and the inner loop
terminates.

We now prove the termination of the algorithm. Since the inner loop always
terminates, a transition tj is fired at the end of every iteration of the outer loop
such that �κ0(tj) > �τ(tj) and tj is concatenated to the current τ , decreasing the
number of remaining steps to attain �κ0(tj). Hence the outer loop terminates. ��

1 1

1 12

11

2

t1 t3

t4t2

p0 p1 p2

1 1

1 12

11

2

t1 t3

t4t2

p0 p1 p2

Fig. 8. Consider the T-sequence σr = t1 t4 t1 t2 t3, which is feasible for the system
(N, M0) on the left. Setting t = t3, (N, Mt) is pictured on the right. Since the first
output transition of p1 to be fired in σr is t1 �= t3, two occurrences of t1 are delayed.
Starting from the system on the right, Algorithm 1 constructs the sequence σt that
fires the delayed occurrences while following the local ordering in every other place.
Before the loop, τ = t3 and κ0 = K1

t3(σr) = t1 t4 t1 t2. The sequence computed is
σt = t4 t1 t4 t1.

In Algorithm 1, the firings that did not belong to Et followed the order of σ∞
r .

At the end, there is no delayed occurrence of any transition in Et. We deduce
the next property on the number of occurrences in τ .

Lemma 3 (Property of τ = t σt). Let S = (N,M0) be a live Equal-Conflict
system in which a T-sequence σr is feasible. Consider the sequence σt constructed
by Algorithm 1 after the firing of any transition t in S. Consider the sequences
τ = t σt and κ = σα

r where α ≥ 1 is the smallest integer such that �τ ≤ α · �σr.
Then, for each equal-conflict set E such that tu = tnext(E, τ, κ) is defined, with
m = �τ(tu)+1 and Ku = Km

u (κ), and for every transition t′ ∈ E, �τ(t′) = �Ku(t′).
For every other equal-conflict set E, for each transition t′ in E, �τ(t′) = �κ(t′).
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Proof. Algorithm 1 terminates by Lemma 2. At the end of the outer loop, for
every equal-conflict set E such that tu = tnext(E, τ, κ) with �τ(tu) < �κ(tu), two
cases have to be considered.

If tu does not belong to Et, then all firings of E appeared in the same order
and are as many in τ as in Ku in the inner loop. We deduce that every transition
t′ of E satisfies �τ(t′) = �Ku(t′). Otherwise, tu belongs to Et and the first loop
fired precisely all the occurrences of Et that belong to κ0, in addition to the first
unique firing of t. Thus, every transition t′ of Et satisfies �τ(t′) = �Ku(t′).

Finally, in every other equal-conflict set, there is no transition tu such that
�τ(tu) < �κ(tu). Since �τ ≤ �κ, we deduce the second equality. ��

At the end of Algorithm 1, take the example of Figure 8, with Et1 = {t1, t3},
Et2 = {t2}, Et4 = {t4}, τ = t3 σt = t3 t4 t1 t4 t1 and κ = (σr)2.

For Et1 , tnext(Et1 , τ, κ) = t1, K1 = t1 t4 t1 t2 t3, �τ(t1) = 2 = �K1(t1) and
�τ(t3) = 1 = �K1(t3).

For Et2 , tnext(Et2 , τ, κ) = t2, K2 = t1 t4 t1 and �τ(t2) = 0 = �K2(t2).
For Et4 , the second equality of the lemma is satisfied: �τ(t4) = 2 = �κ(t4).
Using Lemma 3, the next theorem shows that Algorithm 2 builds a sequence

σ′
t that is feasible after the firing of τ = t σt and reaches the initial marking. The

sequence is illustrated in Figure 6 and an application of this second algorithm
is presented in Figure 9.

Algorithm 2. Computation of the feasible sequence σ′
t

Data: The sequences τ = t σt and κ = (σr)
α, the marking M ′

t such that
M0

τ−→ M ′
t

Result: The completion sequence σ′
t that is feasible in (N, M ′

t) such that

M ′
t

σ′
t−→ M0

1 while �τ �= �κ do
2 Fire the transition ti whose next occurrence after its �τ(ti)-th appears first in

κ;
3 τ := τ ti;

4 end
5 τ is of the form t σt σ′

t;
6 return σ′

t

Theorem 2. Let S = (N,M0) be a live Equal-Conflict system, with N =
(P, T,W ). Suppose there exists a feasible T-sequence σr in S. For every transi-
tion t enabled by M0 such that M0

t−→ Mt, there exists a sequence σ� that is
feasible at Mt such that σ = t σ� is a T-sequence satisfying �σ = k · �σr for some
integer k ≥ 1.
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Proof. In the rest of the proof, we note κ0 = K1
t (σr) the largest prefix sequence

of σr preceding the first occurrence of t, meaning that σr is of the form κ0 t σ2,
while the sequence κ0 does not contain any occurrence of t. This sequence is
well-defined since the support of �σr is T .

If t is the first transition of Et to be fired following the order of σr, meaning
that κ0 does not contain any occurrence of transitions in Et, then the sequence
κ0 does not use any token from the input places of t, thus one can execute κ0

after the firing of the first occurrence of t and the sequence t κ0 σ2 is feasible at
M0. Hence, σ� = κ0 σ2.

Otherwise, t is not the first transition in Et to be fired following the order
of σr, meaning that κ0 contains at least one occurrence of another transition of
Et. We show next that Algorithm 2, whose inputs are the sequences computed
by Algorithm 1, completes τ up to κ by following the order of the remaining
unfired occurrences in κ. We deduce that the sequence σ� obtained at the end
reaches the initial marking.

To achieve this objective, we prove that the following loop invariant I(k) is
true for k ≥ 0:
I(k): “at the end of iteration k, for every transition tu such that �τ(tu) < �κ(tu)
and tu = tnext(Etu , τ, κ), then for every transition tj of Etu , �τ(tj) = �K(tj),
where K denotes the sequence Km

u (κ) and m is the value �τ(tu) + 1”.
Before starting the loop, k = 0 and Lemma 3 applies.
Now assume that k iterations of the loop occurred and I(k) is true. During

iteration k + 1, a new transition ti is fired following the order of κ. At the end
of iteration k + 1, for every transition tu such that �τ(tu) < �κ(tu) and tu =
tnext(Etu , τ, κ), we denote by K ′ the sequence Km′

u (κ) where m′ = �τ(tu) + 1
and consider two cases. First, if tu does not belong to Eti , then K ′ is the same
sequence as in the previous iteration and for every transition tj of Etu , �τ(tj)
has not changed either, thus �τ(tj) = �K ′(tj). Otherwise, if tu belongs to Eti ,
implying Eti = Etu , then K ′ contains the same number of occurrences of every
transition tj of Eti as in the sequence K associated to ti in the previous iteration,
except for ti, whose number has been incremented by one. Besides, the only
transition whose number of occurrences in τ has been incremented by one is ti.
Consequently, for every transition tj of Etu , we have �τ(tj) = �K ′(tj). We deduce
finally that all the equalities that are supposed to be true at the end of iteration
k remain true at the end of iteration k + 1.

Hence, the invariant is true at every iteration of the loop. Furthermore, by
definition of the ti chosen at every step, for which we define the current value
m = �τ(ti)+1 and the sequence K = Km

i (κ), all the occurrences in K are already
present in the sequence τ of the current iteration. Thus, at the beginning of every
iteration, for every transition tj ∈ T , �τ(tj) ≥ �K(tj).

Moreover, the sequence K is feasible at M0 and leads to a marking that
enables ti, by definition of the feasible sequence κ. Thus, τ fired the input tran-
sitions of the input places of ti at least as many times as in K. Then, the invariant
implies that the transitions of Eti fired exactly as many times in K as in τ . Thus,
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the input places of ti received at least the number of tokens they would receive
by firing K from M0, implying that ti is enabled.

We deduce that the loop completes �τ up to �κ and terminates.
Finally, since κ is of the form (σr)α for some integer α > 0, the feasible

sequence t σ� is a T-sequence. ��

1 1

1 12

11

2

t1 t3

t4t2

p0 p1 p2

κ = (σr)2 = t1 t4 t1 t2 t3 t1 t4 t1 t2 t3

τ = t3 σt = t3 t4 t1 t4 t1

σ′
t = t2 t1 t1 t2 t3

Fig. 9. On the left, the system obtained at the end of Algorithm 1 and the correspond-
ing value of τ on the right. The crosses indicate the occurrences of transitions in κ
that have been fired in τ = t σt, setting t = t3. In Algorithm 2, α = 2 and κ = (σr)

2.
Following the ordering of κ, the sequence σ′

t = t2 t1 t1 t2 t3 is fired, leading to the initial
marking. Finally, after the initial firing of t3, the sequence σt σ′

t = t4 t1 t4 t1 t2 t1 t1 t2 t3
returns to the initial marking.

The next corollary provides the characterization of reversibility for all live
Equal-Conflict systems and is illustrated in Figure 10.

Corollary 1. Consider a live Equal-Conflict system S = (N,M0) such that
N = (P, T,W ). The system S is reversible if and only if it enables a T-sequence.

Proof. For the necessity, Lemma 1 applies.
We prove the sufficiency next. Suppose there exists a feasible T-sequence σr

in the live system S. We show that after the firing of any feasible sequence σ, with
M0

σ−→ M ′, there exists a feasible sequence σ� that leads to the initial marking.
For that purpose, we show by induction on the length n of σ the property P (n):

“If a sequence σ of length n is feasible in a live Equal-Conflict system S =
(N,M0) and a feasible T-sequence, denoted by σr, exists in S, then there exists

a feasible sequence σ� such that M0
σ σ�

−→ M0.”
If n = 0, σ and σ� are empty sequences and the initial marking is reached.

Otherwise, suppose n > 0, with σ = t σ′, note M0
t−→ M

σ′
−→ M ′, and

assume that the property P (n − 1) is true. Applying Theorem 2, there exists a

sequence σ′
t that is feasible at M such that M

σ′
t−→ M0 and the sequence t σ′

t is a
T-sequence. Thus, the T-sequence σ′

t t is feasible at M . Applying the induction
hypothesis on the sequence σ′ of size n − 1, which is feasible in the live system
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M0 M M ′t σ′

σ′
t

σd

σr

Fig. 10. If the T-sequence σr and the sequence σ = t σ′ are feasible at M0, then the
sequence σ� = σd σ′

t is feasible at M ′ and leads to M0.

(N,M), we obtain a sequence σd that is feasible at M ′ and returns to M . Thus,
the sequence σ� = σd σ′

t is feasible at M ′ and leads to M0.
We deduce that after the firing of any feasible sequence in S, there exists

a feasible sequence that returns to the initial marking. We conclude that S is
reversible. ��

Some examples of the previous sections provide some insight into the condi-
tions of this characterization. Indeed, Figure 4 pictures non-reversible systems
that are Equal-Conflict, live and do not enable any T-sequence. Figure 5 depicts a
non-reversible system that is Equal-Conflict, non-live and enables a T-sequence.

5 T-sequences in Larger Classes

In the previous section, we showed that the existence of a feasible T-sequence
is necessary and sufficient for reversibility in live Equal-Conflict systems, which
are not necessarily bounded.

p0

p1

p2

p3
p4

p5

t0
t1

t2

t3

1, 1, 1, 0, 0, 1

0, 1, 1, 0, 1, 2

0, 1, 0, 1, 1, 2

1, 0, 0, 1, 0, 2

t0

t3

t2

t1

1, 1, 0, 1, 0, 1

1, 2, 1, 0, 0, 0

0, 2, 1, 0, 1, 1

0, 2, 0, 1, 1, 1

t3

t1

t0

t3

t2

Fig. 11. The system allows the T-sequence t0 t3 t2 t1. Liveness, boundedness and non-
reversibility of the system can be deduced from its reachability graph on the right.
Multiplying the input and output weights of p0 by 2 yields a system in which any
transition firing preserves the overall number of tokens. We deduce that (2, 1, 1, 1, 1, 1)T

is a conservativeness vector, hence the net is structurally bounded. Since it is also
structurally live, it is well-formed.
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p0

p1

p2

p3 p4

t0t1

t2
t3

Place p Output set p•

p0 t0
p1 t2
p2 t0, t3
p3 t1, t2
p4 t2

Fig. 12. This ordinary Asymmetric-Choice system is unbounded since the place p1 is
unbounded (fire (t3 t1)

α for any positive integer α). It is live since t1 and t3 can always
be fired after a finite number of firings, thus allowing new firings of t0 and t2. It is not
reversible since there is always an occurrence of t1 between two occurrences of t2. The
system allows the T-sequence t0 t3 t2 t1.

2 3

2

2

2

p0

p1

p2

p3

t0 t1

t2

t3

Fig. 13. In this weighted Free-Choice system, the T-sequence t1 t3 t2 t0 is initially
enabled. The place p1 is unbounded (fire the sequence (t3 t2 t3 t2 t0)

α for any posi-
tive integer α), thus the system is unbounded. Two consecutive firings of t1 are not
possible, and t0 is either enabled by a firing of t1 followed by a firing of t3, or by two
firings of t3 with a firing of t2 in between. Firing only occurrences of t2 and t3 generates
tokens in p1 that cannot be destroyed. Hence the system is not reversible. After any
firing sequence, it is possible to send three tokens back to p0 while p1 contains one or
more tokens. Such a marking enables the T-sequence and we deduce the liveness.

Now we provide some counter-examples for this condition in other subclasses
of Petri nets. They are all strongly connected, live, and not reversible systems
allowing a T-sequence.

First, the characterization does not carry over to systems that are just well-
formed, even if the net is ordinary, as shown in Figure 11, which is inspired from
a system of [5].

Second, it does not apply either to the class of ordinary Asymmetric-Choice
systems, as shown by the unbounded system of Figure 12.

Last, it does not extend to weighted Free-Choice systems, even when they
are very close to Join-Free, as illustrated in Figure 13 where the system has only
one synchronization—a join-transition with just two inputs—that distinguishes
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it from the Join-Free class. We have not found yet a counter-example belonging
to the Join-Free class.

6 Conclusion

In any weighted Petri net, the existence of a feasible T-sequence is necessary
to have both liveness and reversibility, which are fundamental behavioral prop-
erties for embedded and flexible manufacturing systems and other real-world
applications. This necessary condition was already known to be sufficient for
well-formed, strongly connected, weighted Choice-Free and ordinary Free-Choice
systems. It is no longer sufficient for the well-formed homogeneous S-systems, a
class with both choices and weights included in the Equal-Conflict class.

By taking the liveness property as an assumption, we relaxed this condition
and proved that it is sufficient for reversibility in all the live Equal-Conflict
systems. Petri nets of this expressive class may not be strongly connected nor
be bounded.

Finally, we exhibited several counter-examples, all live, non-reversible and
allowing a T-sequence, belonging to larger classes of Petri nets.

As a consequence, extensions of our new characterization of reversibility
would require more constraints. We believe that non-homogeneous Join-Free
nets, bounded or not, or homogeneous bounded Asymmetric-Choice nets are
worth investigating.
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Abstract. SNAKES (SNAKES is the Net Algebra Kit for Editors and
Simulators) is a general purpose Petri nets library, primarily for the
Python programming language but portable to other ones. It defines a
very general variant of Python-coloured Petri nets that can be created
and manipulated through the library, as well as executed to explore state
spaces. Thanks to a variety of plugins, SNAKES can handle extensions
of Petri nets, in particular algebras of Petri nets [4,26]. SNAKES ships
with a compiler for the ABCD language that is precisely such an algebra.
Finally, one can use the companion tool Neco [14] that compiles a Petri
net into an optimised library allowing to compute efficiently its state
space or perform LTL model-checking thanks to library SPOT [8,13].
This paper describes SNAKES’ structure and features.

Keywords: Petri nets library · Prototyping · Simulation · Model-
checking

1 SNAKES in a Nutshell

snakes is a general purpose Petri net library for the Python programming lan-
guage (but we show in Section 4 that it can be ported to other languages). Using
snakes, one can create Petri nets, transform them (add/remove/. . . nodes,
add/remove/. . . arcs, etc.), manipulate their markings, and also fire transitions
(sequentially). snakes is not designed to perform analysis but because it can
execute modelled nets, it may be used to explore traces or state spaces. How-
ever, a companion tool called Neco is preferred for this purpose and provides
fast reachability and LTL explicit analysis.

snakes uses a very general variant of Python-coloured Petri nets (see
Section 1.3): tokens can carry arbitrary Python objects, transitions guards are
arbitrary Python expressions and arcs may be annotated with arbitrary Python
variables or expressions. Moreover, snakes provides support for various Petri
nets extensions: read arcs, whole-place arcs and inhibitor arcs. Because we use the
same language for the library and the Petri nets annotations, users are provided
c© Springer International Publishing Switzerland 2015
R. Devillers and A. Valmari (Eds.): PETRI NETS 2015, LNCS 9115, pp. 254–265, 2015.
DOI: 10.1007/978-3-319-19488-2 13
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Fig. 1. snakes compared with the most popular Python projects on GitHub (on March
20th, 2015). From left to right, bars represent: �� size of the project measured in number
of source lines of code, ranging from 184.6k for Django to 3.7k for HTTPie; �� number
of contributors, ranging from 1.0k for Ansible to 2 for snakes; �� popularity measured
as the number of stars (GitHub’s bookmarks) times the number of forks, ranging from
13.3k stars and 5.2k forks for Django to 2 stars and 1 fork for snakes (however, it is
worth noting that snakes has moved to GitHub only since March 15th, 2015).

with great flexibility. In addition to this flexibility, a general plugin mechanism
is provided to allow for redefining every aspect of snakes, like the firing rule
in particular. For instance, in [23,24] we show how snakes can be extended to
support time Petri nets (which requires less than 100 lines of code); or in [25],
we show how nets-within-nets, with transition firing synchronised between the
nested levels of nets, can be implemented using less than 30 lines of code.

snakes has been developed since 2002, progressively growing to about 81.5k
lines of portable Python, which represents quite a big effort as shown in Figure 1.
One reason that increases the size of snakes is that it does not rely on external
or system-dependant libraries and includes features that are not directly related
to Petri nets, for instance: a LL(1) parser generator; tools for Python code
parsing, refactoring and generation; tools for api documentation extraction and
generation. On the other hand, this allows snakes to work out-of-the-box on
any system with Python starting from version 2.5, including the 3.x series as
well as alternative implementations like PyPy, Jython, IronPython, or stackless
Python [27]. snakes is free software released under the gnu lgpl [10]. Because
it is freely available, it is hard to say how many users it has, but we measured
that the online documentation receives more than 300 unique visitors per month.
snakes is available at https://github.com/fpom/snakes.

1.1 Modules and Plugins

The whole library comes as a Python package organised as a hierarchy of modules
among which the main ones are:

– snakes is the top-level module that defines commonly used exceptions;
– snakes.data defines data structures like multisets, substitutions, etc.;
– snakes.typing defines a type system used to restrict the tokens in places;
– snakes.plugins gathers all the plugins provided with snakes (see below);
– snakes.pnml defines import/export functions to/from pnml (see below);

https://github.com/fpom/snakes
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– snakes.nets is the main module that defines all the Petri net related structures
like places, transitions, arcs, marking graph, etc.

Users typically need to import only snakes.nets that itself imports most of
the other modules. At the time module snakes.pnml was written, pnml used to
support only places/transitions nets and such nets are correctly imported from
or exported to pnml by snakes. But nets with high-level features like coloured
tokens are exported into a dialect that does not conform nowadays pnml, and
reciprocally, high-level pnml cannot be loaded into snakes. Adding this support
represents a huge work regarding the complexity of the latest standard.

The most useful plugins shipped with snakes are:

– gv allows to draw Petri nets using GraphViz [5] (see Figure 3 for pictures);
– ops provides nets compositions from algebras of Petri nets (sequence, choice,

iteration and parallel composition);
– pids offers dynamic process identifiers creation and destruction [20];
– labels allows to annotate nets and their nodes with arbitrary values;
– let allows to assign variables within expressions, which is useful to avoid

computing several times the same expression (more at the end of Section 1.3).

Generally, plugins are based on a set of hooks in the tools, allowing the plugin
to perform a specific action when the hook is activated. snakes takes a more
general approach: a plugin is basically a set of classes that extends the classes of
a module (snakes.nets in general). This is thus much more general since anything
can be extended or redefined. Moreover, it is also more flexible than standard
classes inheritance because it is made dynamically, depending on which plugins
are actually loaded. In order to avoid incompatible extensions and to simplify
the use, plugins declare which other plugins they conflict with as well as which
other they depend on.

1.2 Hello World

Figure 2 shows a simple example of snakes usage: this code loads snakes.nets
extended with plugin gv (lines 1-3); creates a Petri net (line 4); adds three places
(lines 5–7) and a transition (line 8); adds arcs (lines 9-11); draws the net once
(line 12); gets the modes for the transition (line 13, the returned modes are
given in the comment lines 14–17); fires the transition with one of these modes
(line 18); and finally draws the net once more (line 19). The resulting pictures
are displayed in Figure 3. One can note that places are here marked with string
objects and that the output arc from transition “concat” to place “sentence” is
labelled with a Python expression that concatenates three strings, two of which
being obtained by consuming tokens in the other places.

1.3 Transition Firing

As said previously, every Petri net in snakes can be executed, i.e., its transi-
tions can be fired. To achieve this, we need to make a compromise between the
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1 import snakes.plugins
2 snakes.plugins.load("gv", "snakes.nets", "snk")
3 from snk import ∗
4 pn = PetriNet("hello�world�in�SNAKES")
5 pn.add place(Place("hello", ["hello", "salut"]))
6 pn.add place(Place("world", ["world", "le�monde"]))
7 pn.add place(Place("sentence"))
8 pn.add transition(Transition("concat"))
9 pn.add input("hello", "concat", Variable("h"))

10 pn.add input("world", "concat", Variable("w"))
11 pn.add output("sentence", "concat", Expression("h�+�’�’�+�w"))
12 pn.draw("hello-1.eps")
13 modes = pn.transition("concat").modes()
14 # modes = [Substitution(h=’salut’, w=’world’),

15 # Substitution(h=’salut’, w=’le monde’),

16 # Substitution(h=’hello’, w=’world’),

17 # Substitution(h=’hello’, w=’le monde’)]

18 pn.transition ("concat").fire(modes[2])
19 pn.draw("hello-2.eps")

Fig. 2. Python code for the “hello world” example

sentence
{}

concat
True

 h + ’ ’ + w 

hello
{’salut’, ’hello’}

 h 

world
{’world’, ’le monde’}

 w 

sentence
{’hello world’}

concat
True

 h + ’ ’ + w 

hello
{’salut’}

 h 

world
{’le monde’}

 w 

Fig. 3. Pictures generated by the “hello world” example

generality of nets definitions and some implementation restrictions. Informally,
our definition is as follows: a Petri net is a tuple (S, T, �,M) where,

– S is a finite set of places;
– T is a finite set of transitions, disjoint from S;
– � is a labelling function such that

• for all s ∈ S, �(s) is the type of s, i.e., a restriction on the tokens it may
hold. This is implemented in snakes.typing as Boolean functions used to
check whether tokens can be accepted or not,

• for all t ∈ T , �(t) is the guard of t, implemented as a Python expression,
• for all (x, y) ∈ (S ×T )∪ (T ×S), �(x, y) is the annotation of the arc from

x to y and is a multiset of expressions to specify the tokens produced or
consumed through the arc;
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– M is the marking, i.e., a mapping from places to multisets of Python values.

In general, such a Petri net cannot be implemented, in particular in Python.
For instance, imagine an arc from a place s to a transition t and labelled with a
call to a function f(x). To fire t, we would need, for each token value v in s to
solve v = f(x) in order to discover the possible bindings for variable x. This is
clearly not feasible when f is an arbitrary Python function. So, snakes adopted
the following restrictions:

– input arcs (in S × T ) cannot be labelled with expressions, but only with
values, variables or combinations of them within structures that allow for
pattern matching (currently, only tuples are implemented);

– all the variables used in a transition, its guard and surrounding arcs should
appear on at least on one input arc so it can be bound.

Given this setting, the firing rule is quite straightforward and can be decom-
posed into two methods of a transition object t. First, t.modes() computes all the
possible bindings of the transition’s variables by matching input arcs annotations
with respect to all the tokens available in input places. The second limitation
above is not enforced but the modes of a transition that does not respect are
simply not computed by snakes (see below about relaxing a bit this limita-
tion); however, they could be provided by the user. Then, each such binding m
is checked to be a mode as follows:

– for each input place s, check if “eval(�(s,t), m)” yields a multiset of tokens
actually held by s, where eval is a Python function that evaluates arbitrary
Python expressions in a given environment (m plays this role here);

– check if “eval(�(t), m)” returns True;
– for each output place s, check if every token in “eval(�(t,s), m)” is accepted

by the type of s.

The second method, t.fire(m), actually fires the transition for a mode m by
consuming and producing the tokens as computed above.

To overcome a bit the limitation that every variable is bound from the input
arcs, plugin let provides a function also called let that allows to bind new variables
during the evaluation of an expression. In practice, this is useful only during
the evaluation of the guard, for instance “x > 10 and let(y="f(x)", z="g(x)")”
allows to introduce two new variables y and z whose values can be computed
arbitrarily (here by calling functions f and g), and that can be used in the output
arcs avoiding potential redundant calls to f and g. Note that let returns True if
it can successfully bind the variables, and False otherwise (e.g., if an expression
yields an exception), which is adequate for its use in guards.

2 ABCD for Friendly Modelling

snakes being a library, it is mainly targeted towards developers and researchers
who need to program with Petri nets. However, for the modeller, defining nets
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1 buffer hello : str = "hello", "salut"
2 buffer world : str = "world", "le�monde"
3 buffer sentence : str = ()
4 [hello−(h), world−(w), sentence+(h + ’�’ + w)]

Fig. 4. “Hello world” example revisited in abcd

using snakes directly may be tedious. A user friendly syntax is thus desirable
for users that mainly want to build models and explore them. For this purpose,
snakes comes with a compiler for the abcd modelling language (Asynchronous
Box Calculus with Data) which is a process algebra with friendly Python-like
syntax, that embeds full Python, and with a Petri nets semantics (see [26,
sec. 3.3] for more details). The compiler translates abcd code into Petri nets,
called from the command line, it can draw the computed net or save it into a file
(in snakes’ pnml dialect) for a later use. It may also be called from a Python
program to obtain a net object directly.

The example from Figure 2 could be expressed as shown in Figure 4. We can
see that places are expressed as typed buffers (str is Python’s type for strings)
with an initial content (empty in the case of “sentence”), and transitions are
expressed as atomic actions enclosed into square brackets within which the tokens
consumed from or produced into buffers are specified. However, abcd is not
designed as a textual syntax for Petri nets and it cannot express any Petri net.
Instead, it provides the modeller with a notion of control flow and parametrised
processes with local data. This is illustrated in Figure 5 where two producers
and two consumers share a buffer bag (defined line 1). Lines 2–4 define a net
(which can be considered as a process factory) parametrised by a value mod, two
instances of which being created in line 7 with distinct values for mod. Net prod
declares a local buffer count, this means that every instance of prod has its own
private copy of count. Line 4, the process itself consists of two atomic actions
connected by an iteration operator “∗”. The left action increments the value in
buffer count and produces in bag the current value of count modulo mod. The
right action [False] is a special one that can never be executed; because it is
used here as the exit of the iteration, process prod is forced to iterate forever
producing values in bag. Net cons shows two more features: guards for atomic
actions, given after keyword if, and sequential composition “;”. We can also see
the parallel composition “|” in the main process line 7. A fourth composition
that is not shown here is the choice “+”.

The abcd compiler also features an interactive simulator that allows step-
by-step execution of an abcd model, directly on the source code, like when using
a debugger for a programming language.

3 Efficient Model-Checking

snakes is first designed to be flexible and general, not to be efficient: instru-
menting Python code from a Python program is definitely not the fastest way
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1 buffer bag : int = ()
2 net prod (mod) :
3 buffer count : int = 0
4 [count−(x), count+(x+1), bag+(x % mod)] ∗ [False]
5 net cons (div) :
6 ( [bag−(x) if x % div == 0] ; [bag−(x) if x % div != 0] ) ∗ [False]
7 prod(5) | prod(7) | cons(2) | cons(3)

Fig. 5. A producer-consumer example in abcd

to explore the state space of a Petri net. In order to do this efficiently, one can
use tool Neco [14] that is available separately [11]. This tool compiles snakes
Petri nets into fast native code with an optimised marking structure and per-
transition optimised firing. Using the declared place types, it can type the vari-
ables on input arcs and generate Cython code [2], a dialect of Python extended
with C types. Then, Cython code is compiled into C source code that is finally
compiled into native code (all this process is automated). However, note that
Neco compiles and optimises Petri nets, not the embedded Python code. So, if a
Petri net embeds slow Python code and provides too few types (e.g., in Figure 2
we did not provide any typing for the places, so they are constrained to the
universal type object) Cython is forced to rely on the Python interpreter instead
of generating fast C code. Neco can also compile abcd models. In such a case,
it exploits many properties of the resulting Petri net that are known by con-
struction (for instance, control flow places are low-level 1-safe places and form
1-invariants on the sequential parts) and performs further optimisation during
the compilation.

Apart from its compiler, Neco also features a tool to build the state space
of a compiled net, and a tool to perform ltl model-checking on-the-fly. For the
latter purpose, it relies on library spot [8] that is exactly the complement to
Neco: on the one hand, Neco is able to construct a Kripke structure by firing the
transitions of the compiled Petri net; on the other hand, spot can turn a ltl
formula into a Bchi automaton and check on-the-fly the emptiness of its product
with the Kripke structure.

Neco was awarded at the Model-Checking Contest 2013 (satellite event of
the petri nets conference) as the most efficient explicit ltl model-checker.
Moreover, in many cases, it was the only tool to actually provide a result, which
assesses its robustness. A tutorial for using Neco is available online [11].

4 SNAKES Out of Python

Using Cython [2] again, it is easy to create a C binding for snakes (i.e., export its
api to a C library) so it can be called from another programming language. This
is not provided by default because there is not one unique binding of snakes,
but instead one possible binding for every combination of plugins. Fortunately,
writing such a binding is easy when we know where the technical difficulties are.
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1 # here we write regular Python code to import SNAKES or other

2 # modules, load plugins, define functions, ...

3 cdef public int newnet (char ∗name) :
4 # here we just write regular Python code that uses SNAKES

5 cdef public int addplace (char ∗net, char ∗name, int tokens) :
6 # and so on...

Fig. 6. Cython source code of the binding (file libsnk.pyx)

Moreover, one advantage of writing the binding for each such use case is that we
are able to produce an api that is exactly suited to our particular need.

The main difficulty is that, when calling snakes from another programming
language, we shall send references to Python objects outside of the Python run-
time. If it happens that an object is no more referenced from the Python runtime,
it is garbage collected and the outer reference becomes dangling, which is likely
to crash the program with a segmentation fault. To avoid this, we have to pro-
vide a storage for the objects with our own references. For instance, we may
store net objects and provide access to them through their names.

So, basically, our binding consists of a Cython file libsnk.pyx as sketched
in Figure 6 (see [22] for the full details). The Cython tool allows to compile this
source into a dynamic library (libsnk.so under Linux) along with a C header
file libsnk.h that can be used from a C program. The only constraint is to take
care to initialise the Python runtime and the library before to call its functions.

To use snakes from another programming language than C, a simple pos-
sibility is to rely on swig that allows to automatically generate bindings of C
libraries for almost 20 programming languages [1].

5 Use Cases

As explained already, it is very hard to have a clear picture of who is using
snakes because it is freely available and very few users actually ask for support.
Fortunately, there are works we known well about [6,7,12,14,15,21,29,30] and
that illustrate typical use cases for snakes as listed below.

Prototyping tools. A prototype implementation of a massively parallel ctl*
model-checking algorithm for abcd models of security protocols allowed to assess
scalability [15]. A new approach to process-symmetry reductions initially defined
in [20] has been prototyped in Neco by generating Python code, showing a dra-
matic performance boost [12], and can be now ported to Cython.

Compilation from/to Petri nets. Neco compiler is entirely implemented in
Python using snakes to handle the Petri nets and abcd as an input lan-
guage [14]. Apart from abcd, the Petri net semantics of various other formalisms
has been implemented using snakes, recently: a graphical variant of the π-
calculus [30] and a modelling language dedicated to toxic risk assessment in
biological and bio-synthetic systems [7].
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Modelling. snakes is also used to create Petri net models, like in [21] where
models of cloud services are represented as token-nets instrumented by a system-
net that models the elasticity mechanism. For this task, snakes is presumably
the only tool available because it allowed to create token-nets whose structures
and markings are determined during the firing of the transitions in system-net.
More often, an input language is used, like in [7,30], or abcd is used like in [15].
abcd has also been used to model peer-to-peer protocols for an industrial case
of distributed storage system [6,29].

Analysis. Many modelling works are made with model-checking in perspec-
tive, but very often, only reachability analysis is performed to check safety prop-
erties and this is surprisingly often made directly using snakes [6,21,29]. Neco
is also used to speedup state space computation [6] or to perform ltl model-
checking [30]. Another kind of analysis is to collect data along a collection of
randomly generated traces and to perform statistical analysis, either to assess
performances [21] or to evaluate other quantitative information, like in [6] where
the number of file loss of a peer-to-peer storage system is evaluated with respect
to the percentage of malicious peers present in the system.

6 Conclusion

We have presented snakes that enables to develop Petri net tools with great flex-
ibility regarding the variant of Petri nets, and allowing their execution for simu-
lation purpose or for limited reachability analysis. Efficient ltl model-checking
can be performed using Neco. snakes also ships with a compiler for the abcd
algebra of Petri nets allowing user-friendly modelling of high-level systems.

Ongoing and Future Work. Despite its age and reported stability, snakes is still
considered as a beta software because it lacks a real development team to meet
the standard expectations from a stable software. In particular, it is very hard
to provide a roadmap of planned features because they are added in a demand-
driven fashion and depend a lot on the time the author can spend. So, current
version is 0.9.17 and is slowly converging towards 1.0, which will be reached
when at least the following features will be covered:

– replace current pnml support that does not conform to the standards with
simpler file formats and rely on third-party tools [17] to handle pnml;

– integrate Neco through a plugin to allow its use transparently and bring ltl
model-checking directly to the users;

– fill a few holes in the documentation and perform minor code cleanup and
simplification.

This does not mean that no other features will be introduced in the meantime,
some in particular are very much desired:

– interactive simulation of any Petri net (in addition to abcd processes), and
fast automatic simulation coupled with statistical analysis of the traces;
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– integration with other tools (user interfaces, analysers, etc.), in particular
with CosyVerif [17], notably by supporting more inputs/outputs languages;

– genericity with respect to the annotation language by generalising the com-
pilation approach;

– automated api generation to other languages by extending the api docu-
mentation extraction tool to generate Cython bindings as presented above;

– extend abcd with a syntax for raw Petri nets, and with support for thread-
like processes as defined in [20] and [26, sec. 4.3].

Interface with other tools and integration with other programming languages
are two crucial features to open snakes to more researches out of the Python
ecosystem. It looks very useful not to limit its use to one particular programming
language so it can be helpful for a broader community.

Related Works. To the best of our knowledge, snakes is quite a unique tool
in that there is no other such general purpose Petri net library aimed at tools
developers, that is still actively developed and maintained. The Petri Net Ker-
nel [19] used to have similar goals for Java or Python, depending on the version,
but it received no update since October 2003.

Taking apart its purpose and considering only the Petri net variant proposed
in snakes, we may find similarities with other high-level Petri nets tools. In
particular, the coloured Petri nets [18] implemented in cpn tools [16] are also
Petri nets annotated with a programming language which is a variant of ml in
this case. A variant of coloured Petri nets coloured with the Haskell programming
language was proposed in [28] but the project appears stopped since 2004. The
tina toolbox [3] supports interfacing with C code, allowing to implement guards
for the transitions of a time Petri net, and to perform computation on transition
firing. But this is quite far from providing C-coloured Petri nets because the net
and C parts remain separated and the data is attached to the state instead of
to the tokens, which is a serious limitation from a modelling perspective.

When considering Neco together with snakes, it becomes relevant to com-
pare with explicit model-checkers for high-level Petri nets. cpn tools cited above
can perform ctl-like model-checking on a fully computed state space, while Neco
uses spot to perform ltl model-checking on-the-fly. This is similar to Helena [9]
that also works with Petri nets annotated with an ad-hoc language; moreover,
like Neco, Helena compiles the Petri net into C code in order to speedup tran-
sitions firing. However, this compilation is limited to the annotations and the
marking, but not generalised to the whole Petri net structure like in Neco.
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Abstract. One way to express correctness of a Petri net N is to specify
a linear inequality U , requiring each reachable marking of N to satisfy U .
A linear inequality U is stable if it is preserved along steps. If U is stable,
then verifying correctness reduces to checking U in the initial marking of
N . In this paper, we characterize classes of stable linear inequalities of
a given Petri net by means of structural properties. Thereby, we gener-
alize classical results on traps, co-traps, and invariants. We show how to
decide stability of a given inequality. For a certain class of inequalities,
we present a polynomial time decision procedure.

Keywords: Petri net analysis · Inductive invariants · Linear inequali-
ties · Stable properties · Traps · Co-traps · Invariants

1 Introduction

Distributed systems are inherently complex due to their native concurrency, local
states and steps of each part of the system, and message exchange between the
parts. Thus, precisely specifying and automatically verifying the correctness of
a given distributed system is difficult or impossible. Petri nets are a well-known
formalism to model the behavior of distributed systems. The combination of
an intuitive graphical syntax and clear mathematical semantics enables formal
specification and automatic verification of correctness of a model.

There are several approaches to specify the correctness of a Petri net N .
Thereby, the usual trade-off is between a more expressive formalism, and the
feasibility of deciding correctness. A simple formalism is to specify a linear
inequality U over the places of N , requiring each reachable marking of N to
satisfy U . Thereby, a place of N models a local condition, storage or buffer. A
marking of N aggregates all local states to a global state by assigning a number
of tokens to each place of N . Each place p in a linear inequality represents the
number of tokens on p. For instance, p ≤ 1 requires that every reachable marking
assigns at most one token to p, p1 + p2 ≤ 1 requires that p1 and p2 are never
simultaneously marked, and p1−p2 ≥ 0 requires that the number of tokens on p2
never exceeds the number of tokens on p1. As a more involved example, consider
a system that handles requests with processors, where each request requires the
availability of two processors. Assume R and P to be the places containing the
pending requests and the available processors, respectively. Then, the inequality

c© Springer International Publishing Switzerland 2015
R. Devillers and A. Valmari (Eds.): PETRI NETS 2015, LNCS 9115, pp. 266–286, 2015.
DOI: 10.1007/978-3-319-19488-2 14
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Q−2R ≥ 0 expresses a sufficient condition for the availablity of sufficiently many
processors to handle all pending requests. This notion of correctness is a special
class of safety properties, and has the following advantages: First, there exists
rich theory on linear inequalities, namely linear algebra. Second, there exist well-
known links between linear inequalities and structural properties of Petri nets,
namely invariants, traps, and co-traps. Unfortunately, 2EXP is a lower bound
for the complexity: We reduce coverability to validity of a single linear inequal-
ity, and 2EXP is a lower bound for the complexity of coverability [2]. Hence,
checking correctness is not necessarily feasible in practice for all nets and linear
inequalities. To the best of our knowledge, decidability of correctness described
by such linear inequalities has neither been proven nor disproven yet.

However, for some linear inequalities, correctness of N can be easily verified:
If a given linear inequality U is stable in the structure of N , that is, preserved
along each (not necessarily reachable) step of N , then correctness of N reduces
to checking U in the initial marking of N . Thus efficiently deciding stability can
be very valuable for deciding correctness. There exist characterizations of stable
inequalities by means of invariants, traps, and co-traps. However, these existing
characterizations are incomplete: There exist stable linear inequalities that are
neither linked to invariants, traps, nor co-traps.

In this paper, we tackle the two problems of

– characterizing sets of stable linear inequalities of a given net structure by
means of structural properties, and

– providing decision procedures to check whether a given linear inequality is
stable in a given net structure.

To this end, we introduce generalized traps and generalized co-traps as new struc-
tural properties based on traps and co-traps. We then characterize stable linear
inequalities by means of sur-invariants [5], [23], generalized traps, and general-
ized co-traps, generalizing existing results. We show that stability of a given
linear inequality is decidable, and provide a decision procedure for a subclass of
linear inequalities running in polynomial time.

We structure our paper as follows: After introducing basic notions in Sect. 2,
we discuss stable linear inequalities in Sect. 3. We characterize classes of stable
linear inequalities in Sect. 4 to 6: We present a complete characterization by
means of linear programming in Sect. 4, introduce inherently stable structural
properties in Sect. 5, and study the opposite direction, that is, structural prop-
erties implied by stability, in Sect. 6. From these characterizations, we derive
decision procedures in Sect. 7. In Sect. 8 we discuss related work, and conclude
our paper in Sect. 9. We sketch a reduction from coverability to validity in the
appendix of this paper.

2 Preliminaries

We write BA for the set of all functions A → B from some set A into some set B.
We write ZZ and IN for the sets of integers and natural numbers (including 0),
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respectively. As usual, x+y and xy denote the sum and product of two integers x
and y, respectively. We write |x| for the absolute value of an integer x. As usual,
≤ and < denote the natural weak and strict order on integers, respectively. If
needed, we extend these notions to the set ZZ ∪ {∞}, with x < ∞ for all x ∈ ZZ.
We call x ∈ ZZ ∪ {∞} a lower bound of X ⊆ ZZ if x ≤ x′ for all x′ ∈ X. If it
exists, we denote the infimum, that is, the greatest lower bound of X, as inf X.
As usual, inf ∅ = ∞.

We recall required notions on vectors over integers: Let A = {a1, . . . , an} be
an ordered set and v ∈ ZZA. Then, we call v an A-vector, where v[i] denotes
v(ai) for all 1 ≤ i ≤ n. For some x ∈ ZZ, xv ∈ ZZA is defined by (xv)[i] := xv[i]
for 1 ≤ i ≤ n. Let v and v′ be A-vectors. As usual, v + v′ and v · v′ denote
their sum and dot product, respectively, defined by (v + v′)[i] := v[i] + v′[i] and
v · v′ :=

∑n
i=1 v[i]v′[i]. We write ≤ for the natural partial order on A-vectors

with v ≤ v′ iff for all 1 ≤ i ≤ n: v[i] ≤ v′[i]. If for all 1 ≤ i ≤ n, v[i] ≥ 0,
we call v semi-positive. If for all 1 ≤ i ≤ n, v[i] ≤ 0, then we call v semi-
negative. Let B ⊆ A. Then, the characteristic A-vector of B is the A-vector
charA(B) ∈ {0, 1}A with charA(B)[i] := 1 iff ai ∈ B. If clear from the context,
we dismiss the index, and simply write char(B) instead of charA(B).

In the remainder of this section, we recall notions of Petri nets as they can be
found in [21]. A net structure S = 〈P, T, F 〉 consists of finite disjoint sets P and T
of places and transitions, respectively, and a flow relation F ⊆ (P ×T )∪(T ×P ).
Let x ∈ P ∪ T . Then, x is a node of S with preset •x := {y | yFx} and postset
x• := {y | xFy}. We always assume the set of places to be ordered: Then, each
t ∈ T induces the following three P -vectors: t− := char(•t), t+ := char(t•), and
tΔ := t+ − t− .

Each semi-positive P -vector m is a marking of S. The natural number m[i]
denotes the number of tokens on pi in m. We say that pi is marked in m, if
m[i] > 0. Let t ∈ T . If m ≥ t−, then t is enabled in m in S, written t

m−→S . Let
m′ = m + tΔ. If t is enabled in m in S, then m, t, and m′ form a step of S

resulting in marking m′, written m
t−→S m′. For i = 1, 2, let mi

ti−→S m′
i with

m′
1 = m2. Then, m1

t1−→S m′
1 and m2

t2−→S m′
2 are subsequent. As usual, we

extend the notation of steps to subsequent steps such as m1
t1−→S . . .

tn−→S m′
n,

or m1
t1...tn−−−−→S m′

n. A marking m2 is reachable from a marking m1 in S, iff
m1 = m2 or m1

σ−→ m2 for some transition sequence σ. We write ReachS(m)
for the set of all markings reachable from m.

3 Stable Linear Inequalities of Petri Nets

In this section, we discuss stable linear inequalities, and their connections to
the well-known structural properties of traps and co-traps. Let for this section
S = 〈P, T, F 〉 with P = {p1, . . . , pn} be a net structure. A P -inequality is a
linear inequality where each variable is a place from P . A P -inequality can be
semi-positive, semi-negative or mixed, based on the weights of each variable.
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Fig. 1. A net structure S1 with inequalities U1,1, . . . ,U1,10. Definitions for the infimum
of U w.r.t. t, sur-invariants, generalized traps and generalized co-traps can be found in
Sect. 4, Sect. 5.1, Sect. 5.2, and Sect. 5.3, respectively.

Definition 1 (P -inequality, semi-positive, semi-negative, mixed). Let k
be a P -vector, and c ∈ ZZ. Then, k and c induce the P -inequality U = k ·P ≥ c
with weights k and constant c. If k is semi-positive (semi-negative), then U is
semi-positive ( semi-negative). If U is neither semi-negative nor semi-positive,
then U is mixed.

Thereby, P is merely a symbol representing the variables in the P -inequality. We
can conceive P as a vector containing each place. Then, the written-out scalar
product yields the common syntax as used in Fig. 1. The classes of semi-positive
and semi-negative P -inequalities overlap in the cases where all weights are zero;
the class of mixed P -inequalities is disjoint from the other classes. Our definition
also covers inequalities of the form k ·P ≤ c which can be written as −k ·P ≥ −c.
As we only consider integer c, we can also express strict inequalities: For each
integer x, we have x > c iff x ≥ c + 1.

Figure 1 shows a very simple net structure S1 consisting of places A and B,
and a transition a. Each entry in the first column of the accompanying table is
an example for a P1-inequality for P1 = {A,B}.

We can evaluate a marking m in a P -inequality U by assigning m[i] to each
place pi. Based thereon, we define validity of U in m in the obvious way:

Definition 2 (Value, satisfaction, validity). Let U = k · P ≥ c be a
P -inequality. Let m be marking of S.

– k · m is the value of m in U .
– Marking m satisfies U , or synonymously, U is valid in m, iff k ·m ≥ c. We

write M(U) for the set of all U -satisfying markings of S.
– Petri net 〈S,m〉 satisfies U , or synonymously, U is valid in 〈S,m〉, iff U is

valid in each m′ ∈ ReachS(m).
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As an example, consider S1, U1,1, U1,2 and U1,8 from Fig. 1. Then,
(
1 0

) ∈
M(U1,1) ∩ M(U1,8),

(
0 1

) ∈ M(U1,1),
(
0 0

) ∈ M(U1,2).
We recall the property of stability. Intuitively, a P -inequality is stable if

its validity is preserved along steps. An important remark is that stability is
independent from reachability, preservation is required in all steps. Our definition
is similar to the definition in [21], and only refined by defining t-stability for a
given transition t.

Definition 3 (Stability). Let t ∈ T . Let U be a P -inequality.

– U is t-stable in S iff for all steps m t−→S m′: m ∈ M(U) implies m′ ∈ M(U).
– U is stable in S iff U is t-stable for each t ∈ T .

The second column in the table in Fig. 1 contains a checkmark (�) if the P1-
inequality in the first column is a-stable. We go through some of the examples:
Intuitively, U1,1 is a-stable because the places A and B are equally weighted
and a just “shifts” a token from A to B. Similarly, U1,4 is stable: In each U1,4-
satisfying marking m, there is at most one token on A and B, and A and B are
never marked at once: Thus, a is either disabled, or firing a leads to the marking(
0 1

)
. In contrast to that, U1,5 is not stable due to the satisfying marking

(
1 0

)

which enables a, but firing a leads to the non-satisfying marking
(
0 1

)
. At first

glance it may be counter-intuitive that U1,8 is not a-stable, because U1,6 and
U1,7 are both a-stable. This can be explained with the marking m =

(
1 0

)
which

enables a: Both U1,6 and U1,8 are valid in m. However, firing a from each of them
has different consequences: U1,6 stays valid because one token on B is sufficient
to satisfy U1,6. In contrast to that, U1,8 becomes invalid, because one token on
B is not sufficient to satisfy U1,8. Marking m does not satisfy U1,7, another
token on either place is required; once there are at least two tokens in the net,
U1,7 is valid and stays valid, because the number of tokens does not change. The
P1-inequality U1,10 requires at least as many tokens on B as on A, and is stable
because a consumes tokens from A and produces tokens on B.

As mentioned in the introduction, stability of U reduces validity of U in some
Petri net 〈S,m〉 to validity of U in m: If U is stable in S and valid in m, then
U is valid in every marking m′ ∈ ReachS(m).

Traps and co-traps (also known as siphons or structural deadlocks) are well-
known structural properties inducing stable P -inequalities. Thereby, traps and
co-traps are usually defined as sets of places with certain properties. Intuitively,
a trap is a set Q of places with the following property: Once Q is marked, Q
cannot become unmarked again – hence, tokens are trapped in Q. In contrast
to that, a co-trap is a set of places Q that – once unmarked – can never be
marked again. For technical reasons, we conceive a trap or co-trap as its induced
P -inequality instead of a set of places:

Definition 4 (Trap, co-trap). Let Q ⊆ P be a set of places and t ∈ T a
transition. If t− · char(Q) ≥ 1 implies t+ · char(Q) ≥ 1, then char(Q) · P ≥ 1 is
a t-trap. If t+ · char(Q) ≥ 1 implies t− · char(Q) ≥ 1, then −char(Q) ·P ≥ 0 is
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a t-co-trap. If U is a t-trap for each transition t ∈ T , then U is a trap. Likewise,
if U is a t-co-trap for each t ∈ T , then U is a co-trap.

As mentioned before, all traps and co-traps are stable. The table in Fig. 1
contains the trap U1,1 and the co-trap U1,2. The table also contains examples
of P1-inequalities that are stable, but neither traps nor co-traps. Some of them
are generalized traps or generalized co-traps as we will show in Sect. 5.2 and
5.3. Finally, there is the set of canonical P -inequalities which are trivially stable
because they are valid in every marking: Let Q ⊆ P . Then, U = char(Q) ·P ≥ 0
is a canonical inequality. Obviously, U is valid in each m of S, and thus also
stable in S.

4 A Complete Characterization Based on
Linear Programming

In this section, we provide a complete characterization of all stable P -inequalities
of a given net structure S = 〈P, T, F 〉 with P = {p1, . . . , pn}. To this end, we
define the infimum of a P -inequality U w.r.t. a given transition t in S. Intuitively,
the infimum of U w.r.t. t is the least value of all markings m in U enabling t, or
∞ if t is disabled in every U -satisfying marking.

Definition 5 (Infimum of a P -inequality w.r.t. a transition). Let k be a
P -vector and c ∈ ZZ. Let t ∈ T be a transition. Let Mt be the set of all markings
of S enabling t. Then,

inft,S(k · P ≥ c) := inf{k · m | m ∈ Mt ∩ M(k · P ≥ c)}
is the infimum of k · P ≥ c w.r.t. t in S.

Thereby, the infimum is well-defined, because the constant c is a lower bound
for the set of all markings satisfying U . Figure 1 shows examples of infimums
for different inequalities: E.g. U1,1 has an infimum of 1, as the marking

(
1 0

)

enables a and satisfies U1,1. In contrast to that, no marking both satisfies U1,2

and enables a, thus, the infimum U1,2 is ∞. Regarding U1,7, we see that the
infimum is 5: We need at least one token on A to enable a; in order to satisfy
U1,7, we need to add another token; B has the lower weight, and putting a token
on B leads to a value of 5.

Now we can use the infimum of a P -inequality w.r.t. a transition t for a
characterization of all t-stable P -inequalities: Let U be the inequality k · P ≥ c.
Then, U is t-stable iff the sum of the k-weighted effect of t and the infimum of
U w.r.t. t is greater than or equal to c.

Theorem 1. Let t ∈ T be a transition. Let k be a P -vector and c ∈ ZZ. Then,
the following are equivalent:

1. k · P ≥ c is a t-stable inequality.
2. inft,S(k · P ≥ c) + k · tΔ ≥ c .



272 M. Triebel and J. Sürmeli

Fig. 2. Overview: Characterizations of stable P -inequalities. Thereby, pivot mixed, pivot
semi-negative, pivot semi-positive denote the sets of stable pivot mixed, stable pivot
semi-positive, and stable pivot semi-negative P -inequalities, respectively.

Proof. Let U = k · P ≥ c.

“1.⇒2.” Let U be t-stable. If t is disabled in each m ∈ M(U), then inft,S(U) =
∞, and 2. trivially holds. Let t be enabled in at least one U -satisfying mark-
ing. Then, by Definition 5, inft,S(U) ≥ c, and there exists a marking m

with k · m = inft,S(U) and m enables t. Let m
t−→S m′. By the firing rule,

k · m′ = k · (m + tΔ) = k · m + k · tΔ = inft,S(U) + k · tΔ. Because U is
t-stable, k · m′ ≥ c. Therefore, inft,S(U) + k · tΔ ≥ c.

“2.⇒1.” Let inft,S(U) +k · tΔ ≥ c. If inft,S(U) = ∞, then t is disabled in each
m ∈ M(U), and U is trivially t-stable. Let m ∈ M(U) and t be enabled in m.
Let m t−→S m′. Then, k ·m′ = k · (m+ tΔ) = k ·m+k · tΔ. By Definition 5,
k ·m ≥ inft,S(U). Therefore, k ·m′ = k ·m+k · tΔ ≥ inft,S(U)+k · tΔ ≥ c.
Hence, m′ ∈ M(U) and U is t-stable. ��
As an example, in Fig. 1 one can see that all inequalities are stable iff the

sum of the infimum and k · aΔ is greater than or equal to the constant of the
inequality.

5 From Structure to Stability

In this section, we extend the work on sur-invariants [5], [23] in Sect. 5.1, and
generalize the existing structural properties of traps and co-traps to generalized
traps and generalized co-traps in Sect. 5.2 and 5.3, respectively. We show that
each of these structural properties implies stability. We discuss the converse of
these statements in Sect. 6. Figure 2 summarizes the findings of Sect. 5 and 6.
Let for this section S = 〈P, T, F 〉 with P = {p1, . . . , pn} be a net structure.
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5.1 Sur-Invariants

Let t be a transition. A P -inequality is a t-sur-invariant iff t has a semi-positive
weighted effect.

Definition 6 (Sur-Invariant). Let t ∈ T be a transition. Let U = k · P ≥ c
be a P -inequality. Then, U is a t-sur-invariant iff k · tΔ ≥ 0.

Figure 3 shows examples: Every transition of S3a puts at least as many tokens
on A as on B. In S3b, each transition consuming from a 2-weighted place produces
two tokens. In S3c, we have an inverse effect.

Fig. 3. Three sur-invariants U3a, U3b and U3c of S3a, S3b and S3c, respectively

Lemma 1. Let t ∈ T be a transition. Let U be a P -inequality. If U is a t-sur-
invariant of S, then U is t-stable in S.

Proof. If M(U) = ∅ or m �≥ t− for all m ∈ M(U), U is trivially stable. Otherwise,
let m ∈ M(U) and m

t−→S m′ be a step of S. Then, k · m′ = k · (m + tΔ) =
k·m+k·tΔ. Because m ∈ M(U), we have k·m ≥ c. Because U is a sur-invariant,
k ·tΔ ≥ 0. Therefore, k ·m+k ·tΔ ≥ c, and thus k ·m′ ≥ c and m′ ∈ M(U). ��

The converse does not hold, as U1,4 and U1,7 in Fig. 1 illustrate. Both P1-
inequalities are stable, but kaΔ = −1 in both cases. Thus, U1,4 and U1,7 are
not sur-invariants.

5.2 Generalized Traps

Here, we consider a P -inequality U of the form k ·P ≥ c, where k and c are semi-
positive. We derive conditions for U to be a generalized t-trap by generalizing
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Fig. 4. A generalized trap and a generalized co-trap: U4a is a generalized trap of S4a,
and U4b is a generalized co-trap of S4b

t-traps: By Definition 4, a t-trap is induced by a set Q of places, such that t
consuming tokens from Q implies t producing tokens on Q. Thus, once marked,
a t-trap stays marked along t-steps — tokens are “trapped”. Hence, a t-trap
is a P -inequality where a place p has weight 1 if p ∈ Q, and 0 otherwise. The
constant of a trap is always 1. A generalized t-trap U is also a semi-positive
inequality. However, the weights and the constant may differ from 0 and 1. We
weaken the structural requirement as follows: U is a t-sur-invariant, or the value
of t+ in U is sufficiently high, that is, at least the constant of U .

Definition 7 (Generalized trap). Let t ∈ T be a transition. Let U = k·P ≥ c
be a semi-positive P -inequality. Then, U is a generalized t-trap if U is a t-sur-
invariant or k · t+ ≥ c.

Figure 2 depicts the relationship between t-sur-invariants and generalized
t-traps: The intersection between the two sets is the set of semi-positive t-sur-
invariants. Therefore, U3b from Fig. 3b is a generalized trap, as it is a semi-
positive sur-invariant. Figure 4a shows another example for a generalized trap
U4a: First, S4b is t-sur-invariant for every gray transition t �= a. Second, U4a is a
generalized a-trap but not an a-sur-invariant, as the weighted effect is negative.

We show that each generalized t-trap U is t-stable. If U is a t-sur-invariant,
we can apply Lemma 1. Otherwise, we inspect a t-step from an arbitrary U -
satisfying marking and apply semi-positivity of U :

Lemma 2. Let t ∈ T be a transition. Let U be a semi-positive P -inequality. If
U is a generalized t-trap of S, then U is t-stable in S.

Proof. If U is a t-sur-invariant, we can apply Lemma 1. Otherwise, we have
k · t+ ≥ c. If M(U) = ∅ or m �≥ t− for all m ∈ M(U), then U is trivially stable.
Otherwise, let m ∈ M(U) and m

t−→S m′ be a step. Then, k ·m′ = k ·(m+tΔ) =
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k ·m− k · t− + k · t+. Because t is enabled in m, m ≥ t−. By assumption, k is
semi-positive. Thus k · (m − t−) is semi-positive. From k · t+ ≥ c, we can thus
conclude k · m′ ≥ c, and m′ ∈ M(U). ��

The converse does not hold, as U1,7 in Fig. 1 illustrates. The P1-inequality is
semi-positive and stable, but it is neither a sur-invariant nor a generalized trap,
as the weighted effect is −1 and k · a+ = 2 < 4.

Finally, we show that the classical trap theorem (every t-trap is t-stable) is
an actual special case of Lemma 2. To this end, we first show that every t-trap
is a generalized t-trap:

Lemma 3. Let t ∈ T be a transition. Let U be a t-trap of S. Then, U is a
generalized t-trap of S.

Proof. Let U = k · P ≥ 1. We show that k · tΔ < 0 implies k · t+ ≥ 1. If
k · tΔ < 0, there exists some place p ∈ •t and k[i] = 1. Because U is a t-trap,
there exists some j with 1 ≤ j ≤ n and t+[j] = 1. Because k is semi-positive, we
have k · t+ ≥ 1. ��

It remains to be shown that there exists a generalized t-trap which is not a
classical t-trap. This can be easily seen, as classical t-traps cannot have coeffi-
cients other than 0 or 1.

Likewise, we can show that each canonical P -inequality char(Q) · P ≥ 0 for
Q ⊆ P is a generalized t-trap: The condition char(Q) ·t+ ≥ 0 is trivially satisfied.

5.3 Generalized Co-traps

In this section we consider again a P -inequality U of the form k · P ≥ c, but in
contrast to the previous section, now k and c are semi-negative. In the following,
we introduce the notion of generalized t-co-traps. As a preparation, we show a
sufficient condition for t-stability of semi-negative P -inequalities:

Lemma 4. Let t ∈ T be a transition. Let U = k · P ≥ c a semi-negative P -
inequality. If k · t− < c, then U is t-stable.

Proof. If M(U) = ∅, U is trivially stable. Otherwise, let m ∈ M(U). Then,
k · m ≥ c. By assumption, k · t− < c. Thus k · t− < c ≤ k · m. Because k is
semi-negative, t− �≤ m. Therefore, t is disabled in each marking m ∈ M(U) and
U is trivially t-stable. ��

Now we are ready to introduce generalized t-co-traps, generalizing classical
co-traps. By Definition 4, a t-co-trap is induced by a set of places Q, such that
t producing tokens on Q implies t consuming tokens from Q. Thus, once Q is
unmarked, it cannot be marked again by t-steps. For this reason, every t-co-
trap is a semi-negative inequality where each place Q has weight −1, each place
outside Q has weight 0, and the constant is 0. A generalized t-co-trap generalizes
a t-co-trap in two ways: First, we allow arbitrary semi-negative weights instead of
only −1 and 0. Second, the constant may be an arbitrary semi-negative number
instead of only 0. Structurally, we require U is either a t-sur-invariant, or t-stable
by the condition in Lemma 4.
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Definition 8 (Generalized co-trap). Let t ∈ T be a transition. Let U =
k · P ≥ c be a semi-negative P -inequality. Then U is a generalized t-co-trap of
S iff U is a t-sur-invariant, or k · t− < c.

Figure 2 depicts the relationship between t-sur-invariants, generalized t-traps,
and generalized t-co-traps: The intersection between the set of t-sur-invariants
and the set of generalized t-co-traps is the set of semi-negative t-sur-invariants.
The intersection of the set of generalized t-traps and generalized t-co-traps is
non-empty — the weights of a P -inequality that is both a generalized t-trap and
generalized t-co-trap are all 0.

Figure 3c depicts the generalized co-trap U3c, because U3c is a semi-negative
sur-invariant. Figure 4b shows another, more interesting example of a generalized
co-trap: U4b is a t-sur-invariant for every gray transition t �= a. However, U4b is
a generalized a-co-trap but not an a-sur-invariant.

We show that each generalized t-co-trap U is t-stable. For the case that U is
not a t-sur-invariant, we apply Lemma 4.

Lemma 5. Let t ∈ T be a transition. Let U be a semi-negative P -inequality. If
U is a generalized t-co-trap of S, then U is t-stable in S.

Proof. If U is a t-sur-invariant, we can apply Lemma 1. Otherwise, k · t− < c.
Then, by Lemma 4, t is disabled in each m ∈ M(U), and thus U is t-stable. ��

The converse does not hold in general, as shown by U1,4 in Fig. 1. The semi-
negative P1-inequality is stable, but is not a generalized co-trap, as the weighted
effect is negative and k · a− = −1 ≥ −3.

Finally, we show that the classical co-trap theorem (every t-co-trap is t-stable)
is an actual special case of the generalized co-trap theorem. To this end, we first
show that every t-co-trap is a generalized t-co-trap:

Lemma 6. Let t ∈ T be a transition. Let U be a t-co-trap of S. Then, U is a
generalized t-co-trap of S.

Proof. Let U = k ·P ≥ 0 be a classical t-co-trap with coefficients −1 and 0. We
show that k · tΔ < 0 implies k · t− < 0. If k · tΔ < 0, there is some place pi ∈ t•

and k[i] = −1. Because U is a t-co-trap, there exists some j with 1 ≤ j ≤ n and
t−[j] = −1. Because k is semi-negative, k · t− < 0. ��

It remains to be shown that there exists a generalized t-co-trap which is not
a classical t-trap. As every classical t-co-trap has only weights in {0, 1}, this can
be easily seen.

6 From Stability to Structure

In this section, we discover structural properties of stable inequalities. As a first
subclass with distinct structural properties, we introduce t-sharp P -inequalities.
A P -inequality U is t-sharp if there exists a U -satisfying marking that enables t.
Let for this section S = 〈P, T, F 〉 with P = {p1, . . . , pn} be a net structure.
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Definition 9 (t-sharp). Let U = k · P ≥ c be a P -inequality. Let t ∈ T be a
transition. Let Mt be the set of all markings enabling t. Then, U is t-sharp iff
there exists a marking m ∈ Mt with k · m = c.

We observe that a P -inequality U is t-sharp iff the infimum of U w.r.t. t
coincides with the constant of U . Applying this argument and Theorem 1, we
show that t-stability and t-sharpness together imply that U is a t-sur-invariant:

Lemma 7. Let t ∈ T be a transition. Let U = k ·P ≥ c be a P -inequality. If U
is t-stable and t-sharp, then U is a t-sur-invariant.

Proof. If U is t-sharp, then there exists a marking m, such that k ·m = c and m
enables t. Hence, m is in the set Mt ∩M(U) from Definition 5. Because k ·m = c,
k·m is also an infimum of the set {k·m′ | m′ ∈ M(U)}. Therefore, inft,S(U) = c.
From Theorem 1 and t-stability of U , we get inft,S(U)+k · tΔ ≥ c. Applying the
assumption inft,S(U) = c, we have c+k ·tΔ ≥ c which is equivalent to k ·tΔ ≥ 0.
Therefore, by Definition 6, U is a t-sur-invariant. ��

In the following, we investigate conditions for the t-sharpness of a P -
inequality U . To this end, we introduce the class of pivot P -inequalities, and
derive sufficient conditions for t-sharpness in Sect. 6.1. In Sect. 6.2 to 6.4 we
apply these conditions to show that t-stable mixed pivot P -inequalities are t-
sur-invariants, t-stable semi-positive pivot P -inequalities are generalized t-traps,
and t-stable semi-negative pivot P -inequalities are generalized t-co-traps.

6.1 Pivot Inequalities

We identified pivot P -inequalities as a class of P -inequalities that can be easily
syntactically characterized, and yield simple sufficient conditions for t-sharpness.
A P -inequality is pivot, if there exists at least one place with absolute weight 1.

Definition 10 (Pivot P -vector, pivot P -inequality). Let U = k ·P ≥ c be
a P -inequality.

1. k is pivot iff there exists i with 1 ≤ i ≤ n and |k[i]| = 1.
2. U is pivot iff k is pivot.

For an inequality it is easy to check whether it is a pivot inequality. Furthermore,
we observe that every t-trap or t-co-trap is a pivot inequality, because all of its
coefficients are 0 or 1.

In the following, we show sufficient conditions for t-sharpness for classes of
pivot inequalities.

Lemma 8. Let t ∈ T be a transition. Let k be a pivot P -vector and k[i] = 1.
Let c ∈ ZZ. Let k · t− ≤ c. Then, U = k · P ≥ c is t-sharp.
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Fig. 5. A net structure S5 with marking m5 and an a-sharp inequality U5

Proof. Let P = {p1, . . . , pn}. We construct a marking m as follows: Let v be
the P -vector defined by

v[j] :=

{
c − k · t− if i = j

0 otherwise .

Let m = t− + v. We first show k ·m = c: k ·m = k · (t− + v) = k · t− + k · v =
k ·t− +k[i]v[i] = k ·t− +c−k ·t− = c. From this, we can conclude m ∈ M(U). It
remains to be shown that m enables t. Let 1 ≤ j ≤ n. If i �= j, then m[j] = t−[j].
If i = j, then m[j] = t−[j] + c − k · t−. By assumption, k · t− ≤ c, and also
c − k · t− ≥ 0. Therefore, m[j] ≥ t−[j] and finally m ≥ t− and t is enabled in
m. Therefore, U is t-sharp. ��

We can use this to show the existence of such a marking if the pivot is
negative and k · t− ≥ c:

Lemma 9. Let t ∈ T be transition. Let k be a pivot P -vector and k[i] = −1.
Let c ∈ ZZ. Let k · t− ≥ c. Then, U = k · P ≥ c is t-sharp.

Proof. We observe that −k[i] = 1 and −k · t− ≤ −c. Applying Lemma 8, there
exists a marking m that enables t and −k · m = −c. Then, k · m = c. ��

Finally, we show a stronger existence lemma for mixed pivot P -inequalities:

Lemma 10. Let t ∈ T be a transition. Let k be a mixed pivot P -vector. Let
c ∈ ZZ. Then, U = k · P ≥ c is t-sharp.

Proof. We distinguish the cases k[i] = 1 vs. k[i] = −1 and k·t− ≤ c vs. k·t− > c.

– Let k[i] = 1 and k · t− ≤ c. Then we can apply Lemma 8.
– Let k[i] = −1 and k · t− ≥ c. Then we can apply Lemma 9.
– Let k[i] = 1 and k · t− > c. Because k is mixed, there exists 1 ≤ j ≤ n with
k[j] < 0. Let d = c−k·t−

k[j] . Then, d is a rational number. Let κ be the least
integer with κ ≥ d.
Let v be the P -vector defined by

v[�] :=

⎧
⎪⎨

⎪⎩

κ if � = j

c − k · t− − k[j]κ if � = i

0 otherwise.
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Let m = t−+v. We show k·m = c as follows: k·m = k·(t−+v) = k·t−+k·
v = k ·t−+k[j]κ+k[i](c−k ·t−−k[j]κ) = k ·t−+k[j]κ+c−k ·t−−k[j]κ = c.
It remains to be shown that m is a marking enabling t. To this end, we show
v[�] ≥ 0 for all 1 ≤ � ≤ n. First, we show κ ≥ 0 by showing d ≥ 0. We have
d = c−k·t−

k[j] . By assumption k · t− > c and k[j] < 0. Hence, c − k · t− < 0
and also d ≥ 0. Now, we show c − k · t− − k[j]κ ≥ 0. To this end, we
use 0 ≤ d ≤ κ and k[j] < 0, and instead show c − k · t− − k[j]d ≥ 0.
c−k · t− −k[j]d = c−k · t− −k[j] c−k·t−

k[j] = c−k · t− − c+k · t− = 0. Hence,
m ≥ t− and t is enabled in m.

– Let k[i] = −1 and k · t− < c. Then, −k[i] = 1 and −k · t− > c. Thus by the
previous part of the proof, there exists a marking m with −k ·m = −c and
m enables t. From this, we conclude k · m = c.

Therefore, U is t-sharp. ��
An example of m = t− + v as constructed in the proof can be seen in Fig. 5. At
least one token is in every pre-place of a and k · m = 3.

Combining Lemma 8 to 10 with Lemma 7, we show the following theorem:

Theorem 2. Let t ∈ T be a transition. Let U = k · P ≥ c be a stable pivot
P -inequality. Then each of the following conditions implies that U is a t-sur-
invariant:

1. There exists k[i] = 1 and k · t− ≤ c.
2. There exists k[i] = −1 and k · t− ≥ c.
3. k is mixed.

Proof. 1. Applying Lemma 8 yields t-sharpness, applying Lemma 7 and the
assumption that U proves k · tΔ ≥ 0. Analogously, 2. and 3. are shown by
replacing Lemma 8 by Lemma 9 and Lemma 10, respectively. ��

6.2 Stable Mixed Pivot Inequalities Are Sur-Invariants

From Theorem 2, we can directly derive that all t-stable mixed pivot P -
inequalities are t-sur-invariants. This yields the following characterization:

Theorem 3 (Sur-invariant theorem). Let t ∈ T be a transition. Let U be a
mixed pivot P -inequality of S. Then, the following are equivalent:

1. U is t-stable in S.
2. U is a t-sur-invariant of S.

Proof. “1.⇒2.” Follows directly from Theorem 2.
“2.⇒1.” Follows directly from Lemma 1. ��

Figure 2 visualizes this relationship. As written in the caption of Fig. 2, mixed
pivot stands for the set of all stable mixed pivot P -inequalities.
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6.3 Stable Semi-positive Pivot Inequalities Are Generalized Traps

Applying Theorem 2, we show that each t-stable semi-positive pivot inequality
is a generalized t-trap. There, the only remaining proof objective is to show that
k · t− > c implies k · t+ ≥ c. Here, the main argument is that t is enabled in the
U -satisfying marking t−, and firing t yields the marking t+. From t-stability, we
can conclude that t+ satisfies U . The combination of this result with Lemma 2
yields the following characterization:

Theorem 4 (Generalized trap theorem). Let t ∈ T be a transition. Let U
be a semi-positive pivot P -inequality of S. Then, the following are equivalent:

1. U is t-stable in S.
2. U is a generalized t-trap of S.

Proof. Let U = k · P ≥ c.

“1.⇒2.” We show that U is a generalized t-trap. We show that U is a t-sur-
invariant or k · t+ ≥ c.
1. Let k · t− ≤ c. Then, by Theorem 2, U is a t-sur-invariant.
2. Let k · t− > c. Then, t− ∈ M(U), t is enabled in t−, and t− t−→S t+.

Then, t+ ∈ M(U), because U is stable. Thus, k · t+ ≥ c.
“2.⇒1.” Follows directly from Lemma 2. ��

Figure 2 visualizes this relationship. As written in the caption of Fig. 2,
semispspositive pivot stands for the set of all stable semi-positive P -inequalities.
The sets mixed pivot and semi-positive pivot are disjoint because mixed means
being neither semi-positive nor semi-negative.

6.4 Stable Semi-negative Pivot Inequalities Are Generalized
Co-traps

Applying Theorem 2, we show that each t-stable semi-negative pivot inequality
is a generalized t-co-trap. Here, the proof is very short: By Definition 8, U =
k·P ≥ c is a t-co-trap iff (1) U is a t-sur-invariant or (2) k·t− < c. By Theorem 2,
the complement of case (2) implies case (1). The combination of this result with
Lemma 2 yields the following characterization:

Theorem 5 (Generalized co-trap theorem). Let t ∈ T be a transition. Let
U be a semi-negative pivot P -inequality of S. Then, the following are equivalent:

1. U is t-stable in S.
2. U is a generalized t-co-trap of S.

Proof. Let U = k · P ≥ c.

“1.⇒2.” Let t be a transition of S. We show that U is a generalized co-trap
by showing that U is a t-sur-invariant or k · t− < c. It is sufficient to that
k · t− ≥ c implies that U is a t-sur-invariant, which we have shown in
Theorem 2.
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“2.⇒1.” Follows directly from Lemma 5. ��
Figure 2 shows this relationship. As written in the caption of Fig. 2, semisp-

snegative pivot is the set of stable semi-negative pivot inequalities. The intersec-
tion of the sets semi-negative pivot and semi-positive pivot is empty, because a
P -inequality with semi-positive and semi-negative weights has zero weights, and
thus is not pivot.

7 Deciding Stability of Linear Inequalities

As shown in the appendix, 2EXP is a lower bound for the complexity of deciding
validity of an inequality. Thus, the computational effort is high and deciding
validity may become infeasible for practical purposes. As validity of a stable
inequality reduces to validity in the initial marking, deciding stability efficiently
is of particular interest.

In this section, we show decidability of stability for arbitrary P -inequalities.
We discuss the complexity of deciding stability, and distinguish between arbi-
trary and pivot P -inequalities. Let S = 〈P, T, F 〉 be a net structure with
P = {p1, . . . , pn}. We assume the following input:

– A transition t given as two P -vectors t+ and t−.
– A P -inequality U = k · P ≥ c given as the P -vector k and the integer c.

Theorem 1 directly provides the basis for deciding t-stability: The condition
on the infimum of U w.r.t. t is necessary and sufficient. From linear programming,
we know that there exists some procedure solve that gets two P -vectors v,v′ and
an integer c as input, and solves the linear program inf{v ·m | m ≥ v′,k·m ≥ c}
[17]. Now we can use solve to decide t-stability:

Theorem 6 (Decidability of stability). Let S = 〈P, T, F 〉 and t ∈ T . Let U
be a P -inequality. Then, t-stability and stability of U are decidable problems.

Proof. Let U = k · P ≥ c. Clearly, given input k, t− and c, solve computes
inft,S(U). Then, applying Theorem 1, compute inft,S(U)+k ·tΔ, and compare it
to c. Thus, t-stability is decidable. We can simply apply this procedure for each
t ∈ T to decide stability of U . ��

Regarding complexity, we argue that deciding t-stability is in NP, because
the condition on inft,S(U) in Theorem 1 can be reduced to the decision variant
of the linear optimization problem, which in turn is known to be in NP [19].
In particular, it is not necessary to actually solve the optimization problem
by calling solve: It is sufficient to solve the decision variant. As we can decide
stability by deciding t-stability for each t ∈ T , deciding stability is also in NP. We
leave (dis-)proving NP-hardness of deciding stability to future work. However,
NP as upper bound for the complexity bound is signifantly better than the lower
bound 2EXP for deciding validity.

We apply Theorem 3 to 5 to show that deciding t-stability and stability is in
P for the class of pivot inequalities. Thereby, we assume integer arithmetics and
comparisons, and accessing a vector at a given index to have constant complexity.
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Theorem 7 (Complexity of deciding stability for pivot inequalities). Let
S = 〈P, T, F 〉 be a net structure and t ∈ T . Let U be a pivot P -inequality. Then,
deciding t-stability and deciding stability of U are problems in P. In particular, t-
stability and stability can be decided in O(|P |) and O((|P | + |T |)2), respectively.

Proof. Obviously, the class of U (mixed, semi-positive, semi-negative) can be
determined in O(|P |). Given the class, one can decide t-stability by checking
whether U is a t-sur-invariant (Theorem 3), generalized t-trap (Theorem 4),
or generalized tspsco-trap (Theorem 5). Inspecting the respective definitions, we
conclude that there are at most two dot-products to compute and compared with
some constant. The dot-product of two P -vectors can be computed in O(|P |).
Hence, deciding t-stability is in O(|P |). Hence, deciding t-stability of U is in P.
Stability (in contrast to t-stability) can be decided by deciding t-stability for
each transition t. Therefore, deciding stability is in O(|P ||T |) ⊆ O((|P | + |T |)2).
Hence, deciding stability of U is in P. ��

8 Related Work

Our notions of validity and stability of P -inequalities are the same as in [21].
However, we refine the definition of stability, as t-stability, where the parameter
t is some transition. The relation between stability and t-stability is natural,
and it is not a big step to switch between the two notions: The refined notion of
t-stability removes universal quantification in favor of introducing a parameter.

The term stability is known and used in literature, as deciding validity for
a stable property reduces to deciding validity in the initial marking. Thereby, a
stable, valid property is often called an inductive invariant. In the following, we
discuss works that study combinations of inductive invariants, structural proper-
ties and linear algebra. The usage of integer linear programming [10] is common
in structural Petri net analysis [14], [20], [22]. In [14], the author computes valid
linear equations by means of linear algebra. Under the additional assumption
that every transition is quasi-live, every valid equation is also stable [21]. This
does not hold for inequalities, as a simple argument one may take boundedness
of a given place. Traps and co-traps are known at least since the early seventies
[12]. Since then, they are a fundamental part in the theory of Petri nets [5], [8],
[13], [18], [21], [23]. In practice, traps and co-traps are used as analysis techniques
in the fields of flexible manufacturing systems [1], [7], and synthetic biology [13].
In this paper, we generalized the notions of traps and co-traps in order to charac-
terize sets of stable inequalities. The concept of traps has also been generalized
for colored Petri nets [8]. We restricted ourselves to elementary Petri nets, also
known as P/T nets, and have not yet studied the influence of extensions such
as token colors or hot vs. cold transitions. Different procedures for deciding and
computing traps and co-traps are surveyed in [3]. Here, the focus is often on enu-
merating minimal traps and co-traps, that is, minimal w.r.t. set inclusion. We
have not yet discovered such a notion as a minimal generalized trap or co-trap.
Our procedures are merely decision procedures for a given inequality. However,
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our characterizations cover strictly larger classes of stable inequalities. The idea
of sur-invariants has already been introduced in [5], [23] where they appear as
generalizations of transition invariants. The property of sur-invariants is implic-
itly mentioned in [22]. In this work, we continued the work on this topic.

In [15], the author provides a decision procedure for the stability of Pres-
burger formulas by reducing stability to satisfiability. A P -inequality can be
expressed as a Presburger formula [11]. On the one hand, Presburger formulas
are more general than P -inequalities, therefore decidability of stability follows
as a corollary from decidability of stability of Presburger formulas. On the other
hand, our characterization by means of linear programming leads to a proof
that deciding stability of P -inequalities is in NP. In contrast to that, deciding
satisfiability of Presburger formulas has double exponential complexity [9]. In
particular, our characterizations lead to a polynomial algorithm for the subclass
of pivot inequalities.

In [16], the author studies inductive invariants in the context of reachability.
They show the following: If a marking is not reachable, then there exists an
inductive Presburger invariant proving this. This does not imply the existence
of a stable P -inequality, as Presburger formulas are a strict super class of P -
inequalities. The related class of stable modulo-invariants is discussed in [4] in
the context of reachability.

The correctness notion in this paper only copes with very specific safety
properties, namely, a given P -inequality is required to hold in every reachable
marking. In order to cope with more involved safety properties or even liveness
properties, one could consider P -inequalities as the atomic propositions of some
temporal logics. If one chooses the temporal logics of CTL∗ [6], then the formula
AG k · P ≥ c mirrors the correctness notion in this paper. In contrast to that,
the more involved formula AGEF k · P ≥ c requires that from every reachable
marking, there is a marking reachable that satisfies k · P ≥ c.

9 Conclusion and Future Work

In this paper, we studied stable P -inequalities of net structures. Thereby, a stable
P -inequality is a linear inequality where each variable is a place, and validity is
preserved along all steps. In Sect. 4, we provided a complete characterization of
all stable P -inequalities by means of linear programming. Then, we tackled the
problem of characterizing the set of stable P -inequalities by means of structural
properties. To this end, we followed two directions: In Sect. 5, we studied stability-
inducing structural properties, namely sur-invariants, and the newly introduced
generalized traps and co-traps. In Sect. 6, we inspected cases where stability
implies structural properties. To this end, we introduced pivot P -inequalities,
that is, P -inequalities with at least one weight with absolute value 1. This class
is syntactically characterized, and – to the best of our knowledge – did not gain
attention before in the context of Petri nets. We showed that stability implies
structural properties for all pivot P -inequalities. Together, Sect. 5 and 6 provide
a complete characterization of all stable pivot P -inequalities by means of sur-
invariants, generalized traps, and generalized co-traps. We applied the results
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of Sect. 4 to 6 in Sect. 7 to show that deciding stability is in NP for arbitrary
P -inequalities, and in P for pivot P -inequalities. In contrast to that, we show
in the appendix of this paper that deciding the validity of a given P -inequality
in a Petri net is a remarkably more complex problem: In particular, we show
that 2EXP is a lower bound for the complexity of deciding validity. As deciding
validity of stable P -inequalities is trivial, we propose to decide stability before
deciding validity. Verifying this proposal in a case study with Petri net models
from practice would be an interesting endeavor which we leave for future work.

In the remainder of this section, we discuss some further ideas for future work.
As a start, we have only shown that deciding stability is in NP. An interesting
point would be to see whether this problem is also NP-hard. As already discussed
in Sect. 8, we only provided decision procedures for stability. It would be desirable
to have a procedure to enumerate a canonical, finite set of stable P -inequalities.
Similarly, one can consider a case where some P -inequality U is not stable, but
can be composed from finitely many stable P -inequalities U1, . . . , Un. Here, the
challenge is to find a stability-preserving composition operator. At first glance,
addition and conjunction would be obvious choices; however, addition does not
preserve stability (but validity), and the conjunction of two inequalities is gen-
erally not expressible as an inequality. As the conjunction of two P -inequalities
is a Presburger formula [11], one could lift our results to Presburger formulas,
or apply a mixed approach. The trap/co-trap theorem relates traps and co-traps
with liveness of a Petri net. It would be interesting to find a similar theorem for
generalized traps and generalized co-traps. In this context, it would be interest-
ing to define a duality relation on generalized traps and co-traps, similar to “a
set of places that is both a trap and a co-trap”. From a practical point of view,
it would be interesting to implement our decision procedures. Then, one could
make a case study to compare the pure reachability-based approach to deciding
validity, with the mixed approach of first checking stability.

If a P -inequality U is stable, every P -inequality that is equivalent to U is
also stable. Therefore, an efficient procedure to construct an equivalent pivot
P -inequality U ′ from U , if such U ′ exists, would be useful: Stability of U then
reduces to stability of U ′. A first approach could be to decide whether U is a
multiple of some pivot P -inequality U ′ by finding the greatest common divisor
of the coefficients.

Appendix: Reducing coverability to validity

We suspect validity of P -inequalities to be decidable, as a proof one would try
to reduce validity to reachability by adding arcs to each transition such that
one distinct place stores the value of the current marking. In this section, we
reduce the problem of coverability to the problem of validity. Let N = 〈S,m〉 be
a Petri net with S = 〈P, T, F 〉. We inspect the complexity of deciding validity
of a P -inequality U = k · P ≥ c in N . To this end, we reduce coverability to
validity, which has 2EXP as a lower bound for the complexity [2]. A marking
m′ is coverable in N iff there is a reachable marking m′′ with m′ ≤ m′′.
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In order to facilitate our construction, we introduce arc weights. It is well
known that arc weights can be considered “syntactic sugar” with respect to
reachability, and do not add to expressive power. We can formally consider arc
weights by changing the flow relation F to a flow function, mapping each pair
〈x, y〉 ∈ (P × T ) ∪ (T × P ) to a natural number.

Let p̂ �∈ P and t̂ �∈ T . For a given marking m′, we define the net N ′ := 〈S′,m〉
as follows: S′ := 〈P ′, T ∪ {t̂}, F ′〉, P ′ := P ∪ {p̂}, F ′(x, y) := F (x, y) for all
〈x, y〉 ∈ (P × T ) ∪ (T × P ), F ′(p, t̂) := m′(p) for all p ∈ P , F ′(t̂, p) := m′(p) for
all p ∈ P , F ′(t̂, p̂) := 1, F ′(p̂, t̂) := 0.

Let U = k ·P ′ ≥ 0 be the P ′-inequality with zero weights for all p ∈ P , and
weight −1 for p̂. We show that N ′ satisfies U iff m′ is not coverable in N . To
this end, we first observe that every step of S is also a step of S′. Let v be some
P ′-vector assigning 0 to all p ∈ P . If m′′ is a marking of S with m′ ≤ m′′, then
we have

m′′ + v
t̂−→S′ m′′ + v + v′ ,

where v′ is the P ′-vector assigning 1 to p̂ and 0 to all p ∈ P . Hence, if some
marking m′′ covering m′ is reachable in N , then p̂ can be marked in N ′. Now,
we observe that p̂ cannot be marked in N ′ if m′ is not coverable in N . Finally,
N satisfies U iff p̂ cannot be marked. Thus, m′ is not coverable iff N ′ satisfies U .
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Abstract. Process mining techniques aim to analyze and improve con-
formance and performance of processes using event data. Process dis-
covery is the most prominent process-mining task: A process model is
derived based on an event log. The process model should be able to
capture causalities, choices, concurrency, and loops. Process discovery is
very challenging because of trade-offs between fitness, simplicity, preci-
sion, and generalization. Note that event logs typically only hold example
behavior and cannot be assumed to be complete (to avoid overfitting).
Dozens of process discovery techniques have been proposed. These use a
wide range of approaches, e.g., language- or state-based regions, genetic
mining, heuristics, expectation maximization, iterative log-splitting, etc.
When models or logs become too large for analysis, the event log may be
automatically decomposed or traces may be clustered before discovery.
Clustering and decomposition are done automatically, i.e., no additional
information is used. This paper proposes a different approach where a
localized event log is assumed. Events are localized by assigning a non-
empty set of regions to each event. It is assumed that regions can only
interact through shared events. Consider for example the mining of soft-
ware systems. The events recorded typically explicitly refer to parts of
the system (components, services, etc.). Currently, such information is
ignored during discovery. However, references to system parts may be
used to localize events. Also in other application domains, it is possible
to localize events, e.g., communication events in an organization may
refer to multiple departments (that may be seen as regions). This paper
proposes a generic process discovery approach based on localized event
logs. The approach has been implemented in ProM and experimental
results show that location information indeed helps to improve the qual-
ity of the discovered models.

1 Introduction

Today’s systems record all kinds of events, e.g., social interaction, financial
transactions, user-interface activities, and the use of (mobile) devices. As more
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and more event data become available, the practical relevance of process min-
ing further increases. Process mining techniques aim to discover, monitor and
improve real processes by extracting knowledge from event logs [1]. The three
most prominent process-mining tasks are: (i) process discovery : learning a pro-
cess model from example behavior recorded in an event log, (ii) conformance
checking : diagnosing and quantifying discrepancies between observed behavior
and modeled behavior, and (iii) performance analysis: identifying bottlenecks,
delays, and inefficiencies using the timestamps of events. Starting point for anal-
ysis is often an automatically discovered process model. In this paper, we focus
on this first step, i.e., learning a process model from event data.

Input for process discovery is an event log. Each event in such a log refers to
an activity (i.e., a well-defined step in some process) and is related to a particular
case (i.e., a process instance). The events are partially ordered. Events related
to a case describe one “run” of the process. Such a run is often referred to as a
trace. It is important to note that an event log contains only example behavior.

Process discovery is challenging for a variety of reasons. Typically, only a
fraction of the behavior possible can be observed and there is no explicit infor-
mation on behaviors that are impossible, i.e., a sequence of activities that never
occurred, may still happen in the future, but may also be impossible. Moreover,
mixtures of choice, concurrency, and iteration may be difficult to uncover using
merely an event log.

In this paper we propose to use “location information” present in most data
sources. We assume that each event belongs to one or more regions. A region
may be a software/hardware component, a service, a department, a team, or
a geographic location. Regions can only interact through shared events just
like communication involves multiple parties. We assume that events with non-
overlapping sets of regions cannot influence each other directly. This is compa-
rable to the independence assumption often used in statistical analysis.

Localized event logs combined with the independence assumption allow for
a new decomposition approach. A sublog of the overall event log is created for
every region. Then a submodel is created for each sublog. These submodels are
merged into an overall model. Whereas traces at the global level are often unique
showing only a fraction of the possible behavior, traces in the sublogs may have
more repetitive behavior and easily cover all possible local behaviors. Therefore,
location information may provide valuable information guiding decomposed dis-
covery. This speeds up analysis and, most likely results in models better describ-
ing reality.

The idea to partition event logs is not new, see for example decomposi-
tion approaches [3,4] and trace clustering approaches [9,16,27]. However, unlike
existing approaches we do not try to partition cases or activities through mining.
Instead, we propose to exploit location information explicitly attached to events.
Such information is often available or derivable.

The approach has been implemented in ProM and experiments using syn-
thetic and real-life event logs demonstrate the value of location information.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 introduces preliminaries, including process models. Process
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mining, in particular control-flow discovery, is introduced in Section 4. Local-
ized event logs, i.e., logs where events have one or more associated regions, are
presented in Section 5. Such logs may be used for decomposed process discovery,
as shown in Section 6. The experiments presented in Section 7 (using synthetic
data and data from two real-life software systems) show that localized event logs
allow for significantly better models. Section 8 concludes the paper.

2 Related Work

For an introduction to process mining, we refer to [1].
Process discovery, i.e., discovering a process model from a multiset of exam-

ple traces, is a very challenging problem and various discovery techniques have
been proposed [5–8,10,11,13,15,18,19,21,25,28,29]. Many of these techniques
use Petri nets during the discovery process. It is impossible to provide a complete
overview of all techniques here. Very different approaches are used, e.g., heuris-
tics [13,28], inductive logic programming [15], state-based regions [5,11,25],
language-based regions [8,29], and genetic algorithms [21]. Classical synthesis
techniques based on regions [14] cannot be applied directly because the event
log contains only example behavior. For state-based regions one first needs to cre-
ate an automaton as described in [5]. Moreover, when constructing the regions,
one should avoid overfitting. Language-based regions seem good candidates for
discovering transition-bordered Petri nets for subnets [8,29]. Recently, a family
of inductive mining approaches has been proposed by Leemans et al. [18,19].
These techniques can deal with incompleteness and infrequent behavior, but
still provide formal guarantees (e.g., perfect fitness and rediscoverability for spe-
cific parameter settings). The approach presented in this paper can be used in
conjunction with all existing process discovery approaches.

Also related is the work on decomposed process mining. In [2] two types of
log decomposition are identified: vertical decomposition and horizontal decom-
position. In a vertical partitioning complete cases are assigned to a group and
end-to-end process models are discovered or checked. Traditional trace clustering
techniques may be viewed as vertical decomposition techniques (not for scalabil-
ity but for obtaining simpler models). Several authors have proposed such trace
clustering techniques [9,16,27]. Here traces are grouped and simplified models
are created per group. The approach in this paper is based on a horizontal decom-
position (traces are split into subtraces) rather than a vertical decomposition. In
a horizontal partitioning activities are assigned to (possibly overlapping) groups
[2–4]. Cases are projected on subsets of activities, thus resulting in a sublog per
group. A process fragment is discovered or checked per subgroup. The principles
presented in [3,4] are used to prove the correctness of the approach proposed in
this paper.

Different divide and conquer approaches are possible [3,4,12]. For example,
one may decompose event logs and process models based on the refined process
structure tree identifying Single-Entry Single-Exit (SESE) fragments [22,24].
This can only be done for conformance checking. Here, explicit location infor-
mation is exploited to decompose discovery into relatively independent parts.
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3 Process Models

The results presented in this paper do not depend on a particular representation.
However, we use labeled Petri nets with designated initial and final markings to
illustrate the approach. This section introduces the preliminaries needed in the
remainder.

B(A) is the set of all multisets over some set A. For some multiset b ∈ B(A),
b(a) denotes the number of times element a ∈ A appears in b. b = [x3, y2, z] is a
multiset having 6 elements: three x elements (i.e., b(x) = 3), two y elements (i.e.,
b(y) = 2), and one z element (i.e., b(z) = 1). Operators are defined as usual, e.g.
[x2, y] � [x, y, z] = [x3, y2, z] is the union of two multisets.

σ = 〈a1, a2, . . . , an〉 ∈ X∗ denotes a sequence over X of length n. 〈 〉 is the
empty sequence and σ1 · σ2 is the concatenation of two sequences. σ�Q is the
projection of σ on Q, e.g., 〈a, b, c, a, b, c〉�{a,c}= 〈a, c, a, c〉.
Definition 1 (Sequence Projection). Let X be a set and Q ⊆ X one of its
subsets.�Q∈ X∗ → Q∗ is a projection function and is defined recursively: (1)
〈 〉�Q= 〈 〉 and (2) for σ ∈ X∗ and x ∈ X: (〈x〉 · σ)�Q= σ�Q if x �∈ Q, and
(〈x〉 · σ)�Q= 〈x〉 · σ�Q if x ∈ Q.

Definition 2 (Applying Functions to Sequences). Let f ∈ X �→ Y be
a partial function.1 f may be applied to sequences of X using the following
recursive definition (1) f(〈 〉) = 〈 〉 and (2) for σ ∈ X∗ and x ∈ X:

f(〈x〉 · σ) =

{
f(σ) if x �∈ dom(f)
〈f(x)〉 · f(σ) if x ∈ dom(f)

Figure 1 shows a labeled Petri net composed of places P = {p1, p2, . . . , p21}
and transitions T = {t1, t2, . . . , t18}. The flow relation F = {(p1, t1), (t1, p2),
(t1, p8), . . .} specifies the connections between places and transitions. A tran-
sition may have a label, e.g., transition t1 has label a. The label refers to the
activity associated with the transition. Two transitions may have the same label,
e.g., t13 and t15 correspond to the same activity. Note that transition t4 has no
label, i.e., it does not correspond to a transition and is sometimes called “invis-
ible”.

Definition 3 (Labeled Petri Net). A labeled Petri net is a tuple N =
(P, T, F, l) defining a finite set of places P , a finite set of transitions T (such
that P ∩ T = ∅), a flow relation F ⊆ (P × T ) ∪ (T × P ), and a labeling function
l ∈ T �→ UA where UA is some universe of activity names. A marking of N is a
multiset of places M , i.e., M ∈ B(P ).

A labeled Petri net N = (P, T, F, l) defines a directed graph with nodes P ∪T
and edges F . A transition t ∈ dom(l) has a label l(t) that refers to some activity.

1 A partial function f ∈ X �→ Y has a domain dom(f) ⊆ X and a range rng(f) =
{f(x) | x ∈ dom(f)} ⊆ Y .
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Fig. 1. Labeled Petri net with initial marking [p1] and final marking [p21]. The dashed
lines refer to regions and will be explained later.

An invisible transition t ∈ T \ dom(l) has no label and does not correspond to
some observable activity. The state of a Petri net, called marking, is a multiset
of places indicating how many tokens each place contains. The initial marking
shown in Figure 1 is [p1]. Another marking of this Petri net is [p3, p5, p15, p19].

A transition t ∈ T is enabled in marking M of net N , denoted as (N,M)[t〉,
if each of its input places •t contains at least one token. An enabled transition
t may fire, i.e., one token is removed from each of the input places •t and one
token is produced for each of the output places t• . Transition t1 in Figure 1
is enabled in the initial marking. Firing t1 results in [p2, p8, p16]. In marking
[p3, p5, p15, p19] five transitions are enabled: t3, t4, t5, t14, t17. Firing t4 results
in marking [p4, p6, p15, p19].

(N,M)[t〉(N,M ′) denotes that t is enabled in M and firing t results in mark-
ing M ′. Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. (N,M)[σ〉
(N,M ′) denotes that there is a set of markings M0,M1, . . . ,Mn such that
M0 = M , Mn = M ′, and (N,Mi)[ti+1〉(N,Mi+1) for 0 ≤ i < n. A marking M ′

is reachable from M if there exists a sequence σ such that (N,M)[σ〉(N,M ′).
In this paper we consider Petri nets with a designated initial and final mark-

ings. The behavior considered are all complete firing sequences from the initial
marking Minit to the final marking Mfinal .

Definition 4 (System Net). A system net is a triplet SN = (N,Minit ,Mfinal)
where N = (P, T, F, l) is a labeled Petri net, Minit ∈ B(P ) is the initial marking,
and Mfinal ∈ B(P ) is the final marking. USN is the universe of system nets.
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Given a system net SN , φ(SN ) is the set of all possible visible traces, i.e.,
complete firing sequences starting in Minit and ending in Mfinal projected onto
the set of observable activities using function l.

Definition 5 (Visible Traces). Let SN = (N,Minit ,Mfinal) ∈ USN be a sys-
tem net with N = (P, T, F, l). φ(SN ) = {l(σ) | (N,Minit )[σ〉(N,Mfinal )} is the
set of visible traces starting in Minit and ending in Mfinal .2

Given a universe of activities UA, UT = UA
∗ is the universe of visible traces.

φ(SN ) ⊆ UT defines the set of visible traces that can be generated by SN . Note
that transitions may be invisible and that there may be multiple transitions
having the same label. However, φ(SN ) abstracts from such internals.

In this paper, we use Petri nets to illustrate the approach. However, the
results do not depend on the modeling language selected. Therefore, we define
the more neutral notion of a process model. A system net SN defines a process
model PM = φ(SN ) if there is at least one firing sequence from the initial to
the final marking.3

Definition 6 (Process Model). A process model PM is a non-empty set of
visible traces, i.e., PM ⊆ UT and PM �= ∅. UPM is the universe of process
models.

In the remainder we use the following shorthand to refer to the activities
appearing in a model: α(PM ) = {a | ∃σ∈PM a ∈ σ}.

4 Process Mining

Starting point for any process mining technique is an event log with partially
ordered events referring to cases and activities. To introduce events logs formally,
we need to introduce some notations. Next to the universe of activities UA, the
universe of visible traces UT , and the universe of process models UPM , we assume
four additional universes:

– UE is the set of all possible event identifiers,
– UC is the set of all possible case identifiers,
– UAttr is the set of all possible attribute names, and
– UVal is the set of all possible attribute values.

Definition 7 (Event Log). L = (E,C, act , case, attr ,≺) is an event log if:
– E ⊆ UE is a set of events,
– C ⊆ UC is a set of cases,
– act ∈ E → UA maps events onto activities,

2 Note that l(σ) maps a firing sequence onto a trace of visible activities (see Defini-
tion 2).

3 Note that the labeled Petri net may deadlock or livelock before reaching Mfinal . Such
traces are not considered because they cannot be related to cases in the event log.
It is up to the discovery approach to ensure some notion of soundness.
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– case ∈ E → C maps events onto a set of cases,
– attr ∈ E → (UAttr �→ UVal) maps each event onto a partial function assign-

ing values to some attributes, and
– ≺ ⊆ E × E defines a partial order on events.4

UL is the set of all possible event logs.

Any e ∈ E uniquely identifies an event. act(e) is the activity executed for case
case(e). There may be cases without events, but every event refers to precisely
one case. Event may have any number of attributes, e.g., attr(e)(timestamp) =
2015-01-19T22:51:30.700+01:00 denotes the time event e occurred. Definition 7
assumes a partial order on events. In literature often a total order is assumed
within a case, i.e., a case corresponds to a sequence of events. However, sometimes
one is not sure about the ordering of events, e.g., multiple events have happened
on the same day without an explicit order. Moreover, we may know the actual
causal dependencies based on analyzing dataflow dependencies. In both cases, a
partial order is more appropriate.

In the remainder we use the following shorthand to refer to the activities
appearing in an event log: α(L) = {act(e) | e ∈ E}.

Definition 8 (Process Discovery Technique). A process discovery tech-
nique disc ∈ UL → UPM maps event logs onto process models such that for
any L ∈ UL: α(L) = α(disc(L)).

A process discovery technique produces a process model for an event log.
Here we only require that the set of activities in the event log α(L) matches
the set of activities in the model α(disc(L)). As discussed in Section 2, many
discovery techniques have been proposed in literature. These may be viewed as
specific instances of disc.

Process discovery is challenging because event logs are often far from com-
plete and there are at least four competing quality dimensions: (1) fitness, (2)
simplicity, (3) precision, and (4) generalization [1]. A model with good fitness
allows for most of the behavior seen in the event log. A model has a perfect
fitness if all traces in the log can be replayed by the model from beginning to
end. The simplest model that may explain the behavior seen in the log is the
best model. This principle is known as Occam’s Razor. Fitness and simplicity
alone are not sufficient to judge the quality of a discovered process model. For
example, it is very easy to construct an extremely simple Petri net that is able
to replay all traces in an event log (but also any other event log referring to
the same set of activities).5 Similarly, it is undesirable to have a model that
only allows for the exact behavior seen in the event log. Remember that the log
contains only example behavior and that many traces that are possible may not

4 A partial order is a binary relation that is (1) irreflexive, i.e. x �≺ x, (2) antisym-
metric, i.e. x ≺ y implies y �≺ x, and (3) transitive, i.e. if x ≺ y and y ≺ z, then
x ≺ z.

5 System net SN = ((P, T, F, l), Minit , Mfinal) with P = ∅, T = α(L), F = ∅, l the
identity function, Minit = [ ], and Mfinal = [ ] can replay any case in L.



294 W.M.P. van der Aalst et al.

have been observed yet. A model is precise if it does not allow for “too much”
behavior. A model that is not precise is “underfitting”, i.e., the model allows
for behaviors very different from what was seen in the log. At the same time,
the model should generalize and not restrict behavior to just the examples seen
in the log. A model that does not generalize is “overfitting”. Overfitting means
that an overly specific model is generated whereas it is obvious that the log only
holds example behavior (i.e., the model explains the particular sample log, but
there is a high probability that the model is unable to explain the next batch of
cases).

Here we do not quantify the four quality dimensions and restrict ourselves to
simple fitness notions such as perfect fitness and the fraction of perfectly fitting
cases.

Definition 9 (Fitness). Let L = (E,C, act , case, attr ,≺) ∈ UL be an event log
and PM ∈ UPM a process model.
– A case c ∈ C is perfectly fitting PM (notation PM � c) if and only if there

exists a trace σ = 〈a1, a2, . . . , an〉 ∈ PM and a bijection f ∈ {1, 2, . . . n} →
{e ∈ E | case(e) = c} such that ai = act(f(i)) for 1 ≤ i ≤ n and f(j) �≺ f(i)
for any 1 ≤ i ≤ j ≤ n.6

– fit(L,PM ) = {c ∈ C | PM � c} is the set of perfectly fitting cases.
– nofit(L,PM ) = C \ fit(L,PM ) is the set of non-fitting cases,
– fitness(L,PM ) = |fit(L,PM )|

|C| is the fraction of traces in the event log perfectly
fitting the model, and

– L is perfectly fitting PM if nofit(L,PM ) = ∅.
Note that we use interleaving semantics for process models while events are

partially ordered (to capture uncertainty or causalities). Event log L is perfectly
fitting model PM if for any observed case c there is model trace that could
explain the set of events observed for c. When making a trade-off between fit-
ness, simplicity, precision, and generalization, we may end up with a model not
ensuring perfect fitness (e.g., deliberately leaving out exceptional behavior).

5 Localized Event Logs

As mentioned in the introduction, we assume localized event logs, i.e., each event
e has a non-empty set of regions loc(e). If event e occurs exclusively inside
region r (i.e., no interaction between regions), then loc(e) = {r}. If event e
describes some form of interaction between two regions r1 and r2, then loc(e) =
{r1, r2}. Any form of interaction (from communicating humans to function calls
and service invocations) involves multiple entities (e.g., components, services, or
departments), here called regions.

6 A function f ∈ X → Y is bijective if there is a one-to-one correspondence between
the elements of X and Y , i.e., function f is total, surjective and injective.
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Definition 10 (Localized Event Log). A localized event log LL = (L,R, loc)
is composed of an event log L = (E,C, act , case, attr ,≺) ∈ UL, a set of locations
(called regions) R, and a location function loc ∈ E → PNE (R).7

Given an event e, loc(e) defines the set of regions involved. As mentioned before,
regions can only interact through shared events.

Fig. 2. Localized event log with 4 cases and 23 events

Figure 2 visualizes a small event log with E = {e1, e2, . . . , e23} (23 events),
C = {c1, c2, c3, c4} (4 cases), and R = {r1, r2} (2 regions). Functions act and case
are also depicted in Figure 2: act(e1) = a, case(e1) = c1, act(e2) = b, case(e2) =
c1, act(e8) = a, case(e8) = c2, etc. ≺ is only partially shown in Figure 2. Ordering
relations of events in different cases are not depicted and only the transitive reduc-
tion of the ordering relations within a case is shown. Consider for example case c1.
First activity a is executed (event e1) followed by both b (event e2) and c (event
e3), then f (event e4) is executed followed by both g (event e5) and h (event e6).
Case c1 concludes with the execution of activity k (event e7). We abstract from
attributes here (i.e., attr is not shown), e.g., each event e may have an associated
timestamp attr(e)(timestamp) and resource attr(e)(resource). The location func-
tion loc is depicted using the shaded rectangles: loc(e1) = {r1}, loc(e2) = {r1},
loc(e4) = {r1, r2}, loc(e5) = {r2}, loc(e20) = {r1, r2}, loc(e23) = {r2}, etc.
Note that all f events belong to both regions.

Classical discovery approaches consider all events to be potentially related.
However, based on the regions involved we may conclude that events are unre-
lated thus significantly simplifying process discovery. Consider again the localized
event log of Figure 2. Based on the four cases, one could conclude that d is always
followed by i and that j is always preceded by e. However, we have seen only four
cases and the next case may reveal new behavior. Process discovery should be
able to deal with incompleteness. For non-trivial processes, typically most traces
are globally unique, i.e., there is no other case following exactly the same path
from start to finish. If there are many unique traces, one cannot assume global
completeness. However, we may assume events to be unrelated unless they are
7 PNE (X) = {Y ⊆ X | Y �= ∅}, i.e., all non-empty subsets of X.
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Fig. 3. Process model represented by a system net (the initial marking is shown; the
final marking only marks the sink place)

Fig. 4. Overfitting process model not taking into account the regions. Due to incom-
pleteness, dependencies between {b, c, d, e} and {g, h, i, j} are derived that do not exist.

in the same region. Interaction between regions is possible only through shared
events. Using this assumption, we could discover the process shown in Figure 3
using only the four cases of Figure 2. Without using such an assumption, we
may end up with the process model shown in Figure 4. This model allows for
the behavior exhibited by the four cases in Figure 2 and nothing more. In this
overfitting model, e may be followed by g and h, or e may be followed by j, but
e may not be followed by i. However, using the notion of regions in the localized
event log, we know that the choice made in region r1 is unrelated to the choice
made in region r2.

To illustrate the value of localized events consider the system net shown in
Figure 5 (the final marking just marks place end). There are n concurrent parts
each composed of k parallel activities. The model allows for:

pstall =
(n(k + 2))!
((k + 2)!)n

(k!)n

possible (sequential) traces.8 Note that we only consider sequential traces here.
We may also consider the number of “directly follows” relations:
8 Each of the n concurrent parts allows for k! = k × (k − 1) × . . . × 1 sequential traces

of length k + 2 (abstracting from the fixed first activity as and the last activity ae
which are invariable, but including ais and aie)). These n traces of length k + 2

can be interleaved in (n(k+2))!
((k+2)!)n

ways and there are (k!)n unique collections of such n
traces.
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Fig. 5. A process composed of n + 2 subprocesses marked rs, r1, r2, . . . , rn, re. Each
of the n subprocesses in the middle has k parallel activities. For larger values of n and
k this process is difficult to discover due to the many possible interleavings.

df all = n + n(k + 1)(k + (n − 1)(k + 2)) + n(1 + (n − 1)(k + 2))

where a directly follows relation is a pair of activities such that one activity is
directly followed in a sequential trace.9 The directly follows relation is interest-
ing because it is used by many process discovery algorithms to uncover causal
relationships.

Let us now consider one of the concurrent parts (say ri with i ∈ {1, . . . , n}).
The submodel allows for pst i = k! possible (sequential) traces of length k + 4

9 Activity as can be directly followed by n activities (a1s . . . ans). Each ais activity
(with i ∈ {1, . . . , n}) can be directly followed by k + (n − 1)(k + 2) activities. Each
aij activity (with i ∈ {1, . . . , n} and j ∈ {1, . . . , k}) can also be directly followed by
k + (n − 1)(k + 2) activities. Each aie activity (with i ∈ {1, . . . , n}) can be directly
followed by 1 + (n − 1)(k + 2) activities. Activity ae is never followed by another
activity.
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Table 1. Effects of n and k values in Figure 5 on the number of traces or direct
successions that need to be observed for complete coverage

parameters n 1 1 5 5 1 10 10
k 1 5 1 5 10 1 10

overall pro-
cess

number of unique
traces

1 120 1.68E+8 7.91E+31 3628800 4.39E+24 4.17E+177

number of directly fol-
lows relationships

4 32 200 1140 112 850 14080

single frag-
ment

number of unique
traces

1 120 1 120 3628800 1 3628800

number of directly fol-
lows relationships

4 32 4 32 112 4 112

combined
fragments

minimal number of
global traces needed to
cover all locally unique
traces

1 120 1 120 3628800 1 3628800

total number of local
directly follows rela-
tionships

4 32 20 160 112 40 1120

(including as, ais, aie and ae). The corresponding number of directly follows
relations is df i = k2 + k + 2.10

Table 1 shows the effects of parameters n and k (there are n concurrent parts
each composed of k parallel activities). If n = 10 and k = 10, then there are
4.17 × 10177 unique traces. Clearly, it is highly unlikely (understatement) to see
all of these possibilities. Per concurrent part, there are 3628800 unique traces, still
a lot but nevertheless a spectacular reduction (factor 1.15 × 10171). Process dis-
covery algorithms do not rely on seeing all possible traces to avoid overfitting. For
example, if there are loops there may be infinitely many possible behaviors (see
for example the lower part of Figure 1). Therefore, many discovery algorithms use
notions such as the directly follows relation. If n = 10 and k = 10, then the directly
follows relation has 14080 elements. This reduces to 1120 if it suffices to see only
the local directly follows relationships, i.e., less than 8 percent of the overall direct
successions need to be observed to discover the “correct” model!

Figure 5 is a rather extreme example. However, it nicely shows that the same
model can be discovered using smaller, less complete event logs by exploiting
localization information in event logs. Compare this to statistics where assump-
tions about independence are used in predictions or when computing confidence
intervals.

Definition 10 allows for two events that refer to the same activity but different
regions. For process discovery, we would like to relate activities to a fixed number
of regions. Hence, we aim at event logs that are stable.

Definition 11 (Stable). A localized event log LL = (L,R, loc) with L = (E,C,
act , case, attr ,≺) is stable if for all e1, e2 ∈ E with act(e1) = act(e2): loc(e1) =
loc(e2).
10 Activity as can only be directly followed by ais in the submodel corresponding

to ri. Activity ais can be directly followed by k activities. Each aij activity (with
j ∈ {1, . . . , k}) can be followed by k activities (aie and aij ′ with j′ �= j). Activity
aie can only be directly followed by ae.
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The localized event log of Figure 2 is stable, e.g., f events always refer to r1
and r2. A localized event log that is not stable can be “stabilized” by refining
function act ∈ E → UA. For example, function act can be replaced by act ′ where
act ′(e) = (act(e), loc(e)) for e ∈ E. The new function distinguishes activities
having distinct sets of regions involved.

6 Decomposed Process Discovery

A localized event log can be transformed into a collection of sublogs, i.e., one
event log per region. The sublogs are used to discover submodels. Finally, the
submodels can be merged into a single overall process model. To create sublogs,
we define a projection operator.

Definition 12 (Projection). Let L = (E,C, act , case, attr ,≺) be an event log
and X ⊆ E a subset of events. L �X= (X,C, act �X , case �X , attr �X ,≺′) with
≺′ = (≺ ∩(X × X)).11

Definition 13 (Decomposed Discovery). Let LL = (L,R, loc) be a localized
event log with L = (E,C, act , case, attr ,≺) and A = α(L), and let disc ∈ UL →
UPM be a process discovery technique. For any region r ∈ R, we define the
following shorthands:
– Er = {e ∈ E | r ∈ loc(e)} are the events of region r,
– Lr = L�Er

is the sublog of region r,
– Ar = {act(e) | e ∈ Er} are the activities of region r, and
– PM r = disc(Lr) is the process model discovered for region r.

PM R = {σ ∈ A∗ | ∀r∈R σ�Ar
∈ PM r} is the overall process model constructed

by merging the individual models.

Note that the smaller process models are merged by weaving the region-based
subsequences.

Fig. 6. Two projected event logs based on the over-
all event log of Figure 2: one sublog for each region

Figure 6 illustrates how
event logs can be projected
onto the different regions.
Now a model can be dis-
covered for each region and
the models can be merged as
defined next.

PM R merges the subpro-
cesses discovered for the |R|
sublogs. Activity sequence σ
is a visible trace of PM R

if and only if σ �Ar
∈ PM r

(i.e., the projected sequence
is a visible trace of the corre-
sponding submodel) for each

11 f�X is function f with the domain restricted to X, i.e., dom(f�X) = X ∩ dom(f).
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region r ∈ R. Like the rest of the paper, Definition 13 is not Petri net specific.
However, the merging of the submodels into one overall model corresponds to
the following union operator for system nets.

Definition 14 (Union of Nets). Let SN 1 = (N1,M1
init ,M

1
final) ∈ USN with

N1 = (P 1, T 1, F 1, l1) and SN 2 = (N2,M2
init ,M

2
final) ∈ USN with N2 = (P 2, T 2,

F 2, l2) be two system nets with P 1 ∩ P 2 = ∅.
– P 3 = P 1 ∪ P 2 is the resulting set of places,
– AS = rng(l1) ∩ rng(l2) is the set of shared activities (appearing in both

regions),
– T 1

S = {t ∈ dom(l1) | l1(t) ∈ AS} and T 2
S = {t ∈ dom(l2) | l2(t) ∈ AS} are

the transitions corresponding to shared activities,
– T 3 = {(t1, t2) ∈ T 1

S × T 2
S | l1(t1) = l2(t2)} ∪ {(t1,�) | t1 ∈ T 1 \ T 1

S} ∪ {(�
, t2) | t2 ∈ T 2 \ T 2

S} is the resulting set of transitions,12

– dom(l3) = {(t1, t2) ∈ T 3 | t1 ∈ dom(l1) ∨ t2 ∈ dom(l2)}, l3((t1, t2)) = l1(t1)
if t1 ∈ dom(l1) and l3((t1, t2)) = l2(t2) if t2 ∈ dom(l2),

– F 3 = {(p, (t1, x)) ∈ P 1×T 3 | (p, t1) ∈ F 1}∪{((t1, x), p) ∈ T 3×P 1 | (t1, p) ∈
F 1}∪{(p, (x, t2)) ∈ P 2×T 3 | (p, t2) ∈ F 2}∪{((x, t2), p) ∈ T 3×P 2 | (t2, p) ∈
F 2},

– N1 ∪ N2 = (P 3, T 3, F 3, l3) is the union of N1 and N2, and
– SN 1 ∪SN 2 = (N1 ∪N2,M1

init �M2
init ,M

1
final �M2

final) is the union of system
nets SN 1 and SN 2.

The above definition takes the union of two system nets, but this can be
extended to any number of system nets. The following lemma shows that such
union based on merging transitions indeed implements the composition used in
Definition 13.

Lemma 1. Let SN 1,SN 2, . . . ,SN n be n system nets with non-overlapping sets
of places. φ(

⋃
1≤i≤n SN i) = {σ ∈ A∗ | ∀1≤i≤n σ �rng(li)∈ φ(SN i)} with A =

⋃
1≤i≤n rng(li) as the set of activities.

Proof. Assume n = 2, SN 1 ∪ SN 2 = (N1 ∪ N2,M1
init � M2

init ,M
1
final � M2

final),
N1 = (P 1, T 1, F 1, l1), N2 = (P 2, T 2, F 2, l2), and N1 ∪ N2 = (P 3, T 3, F 3, l3).
The proof can be generalized for any number of system nets n ≥ 1.

Let σ ∈ φ(SN 1∪SN 2), we need to show that σ�rng(l1)∈ φ(SN 1) and σ�rng(l2)∈
φ(SN 2). SN 1 can be seen as a projection of SN 1 ∪ SN 2, i.e., places in P 2 are
removed, places in P 1 are kept, transitions of the type (�, t2) are removed,
and transitions of the type (t1, t2) or (t1,�) renamed to t1. The firing sequence
corresponding to σ in SN 1 ∪ SN 2 corresponds to a firing sequence in SN 1 after
renaming and removing transitions of the type (�, t2) from the sequence. This
firing sequence is indeed possible because removing places from P 2 can never lead
to blocking transitions. Hence, σ�rng(l1)∈ φ(SN 1). Similarly: σ�rng(l2)∈ φ(SN 2).

12 Next to synchronizing transitions of the form (t1, t2), there are transitions of the
form (t1, 	) or (	, t2) that do no synchronize as these are local to one of the nets.
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Let σ ∈ A∗ be such that σ�rng(l1)∈ φ(SN 1) and σ�rng(l2)∈ φ(SN 2), we need
to show that σ ∈ φ(SN 1 ∪ SN 2). σ�rng(l1)∈ φ(SN 1) defines a full firing sequence
σ1 ∈ (T 1)∗ with l1(σ1) = σ�rng(l1), i.e., a sequence of transitions starting in M1

init

and ending in M1
final . Similarly, σ�rng(l2)∈ φ(SN 2) defines a full firing sequence

σ2 ∈ (T 2)∗ with l2(σ2) = σ�rng(l2). Note that l1(σ1)�AS
= l2(σ2)�AS

= σ�AS
.

There exists a σ3 ∈ (T 3)∗ such that l3(σ3) = σ, f1(σ3) = σ1 and f2(σ3) =
σ2 with dom(f1) = {(t1, t2) ∈ T 3 | t1 �=�}, f1(t1, t2) = t1, and dom(f2) =
{(t1, t2) ∈ T 3 | t2 �=�}, f2(t1, t2) = t2. Such a sequence exists because in σ both
system nets agree on shared activities AS and for any t1 and t2 with l1(t1) =
l2(t2) ∈ AS : (t1, t2) ∈ T 3 (i.e., all combinations have been included). Now, it is
easy to see that σ3 is indeed a firing sequence possible in SN 1 ∪SN 2: it starts in
M1

init � M2
init and ends in M1

final � M2
final . Since l3(σ3) = σ, σ ∈ φ(SN 1 ∪ SN 2).

��
The lemma is related to classical results on net composition [20]. Also see [3,4]
for other properties preserved by the union of two system nets in relation to an
event log.

Theorem 1 (Decomposed Discovery). Let LL = (L,R, loc) be a stable local-
ized event log and let disc ∈ UL → UPM be a process discovery technique. Let
PM R, PM r, and Lr be as defined in Definition 13.
– fit(L,PM R) ⊆ ⋂

r∈R fit(Lr,PM r),
– fitness(L,PM R) ≤ |⋂r∈R fit(Lr,PM r)|

|C| ,
– fit(L,PM R) =

⋂
r∈R fit(Lr,PM r) if ≺ defines a strict total order,13

– fitness(L,PM R) = |⋂r∈R fit(Lr,PM r)|
|C| if ≺ defines a strict total order.

Proof. The second and fourth statement follow directly from the first and third
statement respectively. To prove the first statement we need to show that for
any c ∈ fit(L,PM R) and r ∈ R: c ∈ fit(Lr,PM r). Because PM � c there is a
trace σR = 〈a1, a2, . . . , an〉 ∈ PM R and a bijection f ∈ {1, 2, . . . n} → {e ∈ E |
case(e) = c} such that ai = act(f(i)) for 1 ≤ i ≤ n and f(j) �≺ f(i) for any
1 ≤ i ≤ j ≤ n. Let σr = σR �Ar

. Clearly, σr ∈ PM r due to the construction
of PM R (see Definition 13). c is not just an case in L but also a case in Lr

(see Definition 12). Due to stability, the set of c events projected away matches
the elements projected away in σr = σR�Ar

. Hence, a smaller bijection can be
created relating σr to the Ar events in c. Therefore, c ∈ fit(Lr,PM r).

The reverse does not necessarily hold if ≺ is just a partial order and not a
total order. The partial order could be linearized differently in the region-based
submodels. To prove the third statement we additionally need to show that for
any c ∈ L such that c ∈ fit(Lr,PM r) for all r ∈ R: c ∈ fit(L,PM R). Since ≺ is
now a strict total order, there is one σ = 〈a1, a2, . . . , an〉 describing the sequence
of activities (not events) in case c. Let σr = σ�Ar

. For all r ∈ R: σr ∈ PM r

because c ∈ fit(Lr,PM r) and LL is stable. Since PM R = {σ ∈ A∗ | ∀r∈R σ�Ar
∈

PM r}, we conclude that σ ∈ PM R and c ∈ fit(L,PM R). ��
13 A strict order is a partial order that is also trichotomous (exactly one of x ≺ y,

y ≺ x or x = y holds).
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Fig. 7. Five discovered system nets: one for each region. The initial markings are
indicated. The final markings are the states with all sink places marked with one token
(not indicated explicitly).

Figure 7 shows the basic idea. Suppose that we take an event log created by
simulating Figure 1 such that the event log is locally complete with respect to the
directly follows relation. Now project the overall event log onto the five regions
and discover a process model per region. In this case, discovery techniques may
discover the five system nets shown in Figure 7. It is easy to see that these
submodels indeed describe the corresponding sublogs well. The five system nets
in Figure 7 may be merged using Definition 14. In this case we do not get
Figure 7 immediately. However, after removing some of the redundant places
(i.e., hanging places whose removal does not change the behavior), we get the
original system net (modulo renaming of places).

The composition of an overall model from submodels used in Definition 13
(and the specific Petri-net realization in Definition 14), assumes synchronous
communication. Asynchronous communication can be supported by introducing
special “channel regions”, these are regions with a send and receive activity. This
corresponds to the system net SN a = (({pbuffer}, {tsend , treceive}, {(tsend , pbuffer ),
(pbuffer , treceive)}, l), [ ], [ ]) with l(tsend) = asend and l(treceive) = areceive . The
corresponding process PM a = φ(SN a) is a simple buffer and may be viewed as
a region. Hence, results like the property expressed in Theorem 1 can also be
applied in the asynchronous setting.

7 Experimental Results

The decomposition discovery approach was implemented as a plugin for ProM
(www.processmining.org) – an open source framework aimed to develop and
test process mining algorithms. The plugin takes a localized event log as input
(in localized event logs regions are specified as additional event attributes) and

www.processmining.org
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produces a system net as a result. This plugin was added to the package called
LocalizedLogs available in the Nightly Build of ProM. The DivideAndConquer
package [26] is used to handle the sublogs and to merge the resulting models.

7.1 Synthetic Event Data

Consider the reference model of a booking process depicted in Figure 8. Figure 9
shows an event log, generated by this model. This event log is not complete with
respect to the directly follows relation, e.g., in the small event log the select hotel
activity never directly followed the register activity.

Fig. 8. A system net of a booking process with the initial and final markings [p1] and
[p8] respectively

Fig. 9. A localized event log generated by the system net presented in Figure 8. There
are two regions: one concerned with flights (r1 ) and one concerned with hotels (r2 ).

All the known discovery methods, including those that deal with incomplete
logs, will not rediscover the initial model, because they cannot exploit localiza-
tion information and demand some form of global completeness. The inductive
mining approach [19], which is able to mine models from incomplete event logs,
will discover the process model presented in Figure 10. The model is overfitting
the event log with respect to the accidental ordering of two selection activities.
Moreover, two loops are created. However, if we apply the approach proposed in
this paper, we discover the initial system net (Figure 8) using the same discov-
ery technique (after removing redundant hanging places, as described). This is
possible because the event log in Figure 9 is complete per region.
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Fig. 10. The process model discovered by the inductive miner without exploiting local-
ization information. Note that causalities between unrelated parts are inferred due to
the incomplete event log.

7.2 Real-Life Event Data from Software

Using the approach proposed we have analyzed event logs of two real-life software
systems: a booking flight system and a banking system.

The user of a booking flight system fills three different web forms to insert per-
sonal, insurance and payment information. The user may complete the web forms
in any order. Thus, due to the event log complexity and incompleteness the direct
application of the well-known discovery algorithms quickly results incomprehensi-
ble process models that contain misleading cycles and non-existing dependencies
between activities. The overall event log was enriched with three regions corre-
sponding to the web forms, i.e., an attribute was added for this purpose. These
regions naturally follow from the system design. Hence, it was easy to produce a
localized event log. Shared activity labels correspond to common window opera-
tions, such as load and unload, and data verification. By applying the approach
presented in this paper, we could obtain the model depicted in Figure 11.

Fig. 11. A model of a booking flight system. Shared activities are highlighted in white,
although it is not explicitly shown, they belong to all the regions.

The inductive mining approach was utilized as an underlying algorithm. The
model obtained by directly applying the inductive miner contains 1809 connec-
tions between transitions, because of a global cycle, connecting almost all the tran-
sitions with each other, while the model constructed using regions contains only



Process Discovery Using Localized Events 305

177 connections.14 Relations derived between different regions other than through
overlapping activities are artifacts of the incompleteness of the event log.

The other software system under consideration is a banking system. This bank-
ing system handles requests and provides the user with the information about cus-
tomer services. The banking system has a hierarchical structure and is represented
by different program layers. Namely, it includes facade, services, data and com-
mon data access layers. Each request is received on the facade layer and then redi-
rected to the next layer of the hierarchy. To treat layers as regions the event log
was enriched with additional events, denoting request/response communications
between layers and belonging to both communicating regions. The localized event
log can be used to create the model. Again, the resulting model is simpler and our
approach succeeds in handling incompleteness better than traditional approaches:
the model contains 1986 connections between transitions instead of 19115, pre-
sented in the model obtained by applying the inductive miner directly on the event
log. This multilayer model was represented as a model of interacting processes (or
layers). A plugin for ProM, which constructs a BPMN [23] model of interacting
processes from a set of system nets and a corresponding event log, was developed
as well. This plugin is based on the BPMN-supporting plugins, described in [17].
It converts each system net to a BPMN process within a pool, each request or
response activity is converted to a message event, and each pair of correspond-
ing message events is connected by a message flow. Note that for this plugin each
shared event should have an additional attribute to determine its type (send or
receive event). The automatically generated BPMN model of the multilayer bank-
ing system is presented in Figure 12.

Fig. 12. A BPMN model discovered for a multilayer
banking system

Thus, the decomposi-
tion discovery approach
allows not only to improve
the quality of the mod-
els discovered, but also
assists in creating hierar-
chical models exploiting
higher-level process nota-
tions like BPMN.

For models constructed
from the real-life event
logs using various discov-
ery approaches: heuris-
tic [13,28], inductive [18,
19], and ILP (language-
based regions) [8,29] min-
ers, quality metrics, such
as fitness, precision and

14 A pair (t1, t2) is a “connection” between visible transitions t1 and t2 (i.e., t1, t2 ∈
dom(l)) if and only if there exists a non-trivial path from t1 to t2, which does not go
through other visible transitions.
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generalization were obtained. Table 2 contains quality characteristics15 of pro-
cess models constructed directly from the event log, using the discovery approach
specified, and the characteristics of corresponding process models constructed
using localization information. Table 2 shows that the models constructed from
the localized logs allow for more traces to fit and are more general, while the
models constructed directly from the event logs tend to be more precise, but less
fitting.

Table 2. Quality of process models discovered from the real-life event logs

Event logs Discovery algorithms Fitness Trace fitness Precision Generalization

Booking system Heuristic miner 0.00 / 0.13 0.64 / 0.75 0.55 / 0.32 0.89 / 0.90
Inductive miner 0.23 / 1.00 0.85/ 1.00 0.22 / 0.16 0.98 / 1.00
ILP miner 1.00 / 1.00 1.00/ 1.00 0.36 / 0.25 1.00 / 1.00

Banking system16 Inductive miner 0.25 / 1.00 0.84 / 1.00 0.14/ 0.06 0.97 / 1.00
ILP miner 0.54 / 1.00 0.64 / 1.00 0.44 / 0.16 0.68 / 1.00

8 Conclusion

In this paper we presented a novel process discovery approach exploiting local-
ization information, i.e., events refer to one or more regions. Such information
is available in most application domains. In this paper, we illustrated this using
event data from software systems. Such systems have an explicit architecture and
events may be related to this architecture. Hence, it is easy to create localized
event logs. Experiments show that such reasonably chosen information can be
used to produce much better process models. Whereas conventional approaches
require some global form of completeness, our approach only needs local com-
pleteness (within a region). Therefore, the resulting models are simpler, more
general and allow more cases to fit. Moreover, localization information may be
exploited to create hierarchical models.
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Abstract. Petri nets are a successful formal method for the modeling and
verification of asynchronous, concurrent and distributed systems. Reach-
ability analysis can provide important information about the behavior of
the model. However, reachability analysis is a computationally hard prob-
lem, especially when the state space is infinite. Abstraction-based tech-
niques are often applied to overcome complexity. In this paper we analyze
an algorithm, which uses counterexample guided abstraction refinement.
This algorithm proved its efficiency on the model checking contest. We
examine the algorithm from a theoretical and practical point of view. On
the theoretical side, we show that the algorithm cannot decide reachabil-
ity for relatively simple instances. We propose a new iteration strategy
to explore the invariant space, which extends the set of decidable prob-
lems. We also give proofs on the theoretical limits of our approach. On
the practical side, we examine different search strategies and we present
our new, complex strategy with superior performance compared to tradi-
tional strategies. Measurements show that our new contributions perform
well for traditional benchmark models as well.

Keywords: Petri nets · Reachability analysis · Abstraction · CEGAR ·
ILP

1 Introduction

The development of complex, distributed and safety-critical systems requires
mathematically precise proofs in order to ensure the suitability and correctness
of the design. Formal modeling and verification methods provide such tools.
However, a major drawback of using formal techniques is their computation and
memory-intensive nature. Even for relatively small asynchronous and concurrent
models, the state space and the set of possible behaviors can be unmanageably
large, or even infinite. This is usually referred to as the “state space explosion”
problem in the literature.

This problem also holds for one of the most popular modeling formalisms,
Petri nets. The behavior of a Petri net model is determined by the set of reachable
states and fireable transitions. Therefore, reachability analysis is an important
c© Springer International Publishing Switzerland 2015
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formal verification technique for Petri nets. The reachability problem answers the
question whether a given state is reachable from the initial state of the modeled
system. However, solving reachability is a computationally hard problem. There-
fore, abstraction-based techniques are often involved to overcome complexity.

Wimmel and Wolf published an algorithm [18], which applies counterexample
guided abstraction refinement to the reachability problem of Petri nets. Their
algorithm proved its efficiency at the model checking contest in 2013 [10]. After
its publication, we analyzed the algorithm regarding correctness and complete-
ness, and published our results in [8]. Although the algorithm can solve many
problems efficiently, we proved that it fails to decide reachability for relatively
simple instances. In worse cases it may even give a wrong answer. We suggested
improvements and we also extended the algorithm to be able to handle inhibitor
arcs and submarking coverability problems. Furthermore, we proved that even
the improved algorithm is incomplete due to its iteration strategy.

In this paper we continue our work with further theoretical and practical
investigations. In Section 2 we introduce the theoretical background of our work.
We present the algorithm of Wimmel and Wolf [18] and a brief overview of
our previous findings [8] in Section 3. Then, we introduce our current results.
On the theoretical side, we propose a new iteration strategy to be used during
the phase that explores the invariant space (Section 4). We show that our new
approach extends the set of decidable problems and we also give theoretical
results on its limits. On the practical side, we examine the behavior of well-known
search strategies (depth- and breadth-first search) for the solution space traversal
and we also present our new, complex strategy combining the advantages of
BFS and DFS (Section 5). We prove the efficiency of our new approaches with
measurements on traditional benchmark models and on our special nets as well
(Section 6). Finally, we conclude our work in Section 7.

2 Background

In this section we introduce the theoretical background of our work. First,
we present Petri nets (Section 2.1), then we introduce reachability analysis
(Section 2.2).

2.1 Petri Nets

Petri nets [13] are graphical models for concurrent and asynchronous systems,
providing both structural and dynamical analysis. A discrete Petri net is a tuple
PN = (P, T,E,W ), where P is the set of places, T is the set of transitions,
with P �= ∅ �= T and P ∩ T = ∅, E ⊆ (P × T ) ∪ (T × P ) is the set of arcs
and W : E �→ Z

+ is the weight function assigning weights w−(pj , ti) to the edge
(pj , ti) ∈ E and w+(pj , ti) to the edge (ti, pj) ∈ E. Places and transitions are
numbered from zero in our work.

A marking of a Petri net is a mapping m : P �→ N. If a place p contains k
tokens in a marking m then m(p) = k. The initial marking is denoted by m0.
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Dynamic Behavior. A transition t ∈ T is enabled in a marking m, if m(pj) ≥
w−(pj , t) holds for each pj ∈ P with (pj , t) ∈ E. An enabled transition t can fire,
consuming w−(pj , t) tokens from places pj ∈ P with (pj , t) ∈ E and producing
w+(pj , t) tokens on places pj ∈ P with (t, pj) ∈ E. The firing of a transition t
in a marking m is denoted by m[t〉m′ where m′ is the marking after firing t.

A word σ = t1t2 . . . tn ∈ T ∗ is a firing sequence. A firing sequence is realizable
in a marking m and leads to m′ (denoted by m[σ〉m′), if m[t1〉 . . . [tn〉m′. The
Parikh image of a firing sequence σ is a vector ℘(σ) : T �→ N, where ℘(σ)(ti) is
the number of the occurrences of ti in σ. The empty firing sequence is denoted
by ε.

2.2 Reachability Problem

A marking m′ is reachable from m if a realizable firing sequence σ ∈ T ∗ exists for
which m[σ〉m′ holds. The set of all reachable markings from the initial marking
m0 of a Petri net PN is denoted by R(PN,m0). The reachability problem is
to decide if m′ ∈ R(PN,m0) holds for a given marking m′. The aim of reacha-
bility analysis is to solve the reachability problem by finding a realizable firing
sequence m0[σ〉m′. The reachability problem is decidable [12], but it is at least
EXPSPACE-hard [11] and no upper bound is known yet.

State Equation. The incidence matrix of a Petri net is a matrix C|P |×|T |, where
C(i, j) = w+(pi, tj) − w−(pi, tj). The element C(i, j) represents the change in
the number of tokens in pi after firing tj . Let m and m′ be markings of the Petri
net, then the state equation takes the form m + Cx = m′. Any vector x ∈ N

|T |

fulfilling the state equation is called a solution. Note, that for any realizable
firing sequence σ leading from m to m′, the Parikh image of the firing sequence
fulfills the equation m + C℘(σ) = m′. On the other hand, not all solutions of
the state equation are Parikh images of a realizable firing sequence. Therefore,
the existence of a solution for the state equation is a necessary but not sufficient
criterion for reachability. A solution x is called realizable if a realizable firing
sequence σ exists with ℘(σ) = x.

T-invariants. A vector y ∈ N
|T | is called a T-invariant if Cy = 0 holds. A real-

izable T-invariant represents the possibility of a cyclic behavior in the modeled
system, since its complete occurrence does not change the marking. However,
during firing the transitions of the T-invariant, some intermediate markings can
be of interest. If each component of the T-invariant y is either zero or one we
also denote y by enumerating the components with value one, e.g., y = (1, 0, 1, 0)
can be denoted by y = {t0, t2}.

Solution Space. The solution space of the state equation m + Cx = m′ is
semi-linear. Each solution x can be written as the sum of a base solution and
the linear combination of T-invariants [18], which can formally be written as
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x = b+
∑

i niyi, where b ∈ N
|T | is the base solution and ni ∈ N is the coefficient

of the T-invariant yi ∈ N
|T |.

3 CEGAR Approach on Petri Nets

In this section we introduce the CEGAR approach generally (Section 3.1) and
we present an algorithm published by Wimmel and Wolf [18], which applies the
CEGAR approach to the reachability problem of Petri nets (Section 3.2). After
its publication, we examined the correctness and completeness of their algorithm
[8]. These findings form a basis for our current work, so we introduce them briefly
in Section 3.3.

3.1 CEGAR Approach

Abstraction is a general mathematical approach for solving hard problems. It
hides the irrelevant details, so the abstract model can be handled easier. One
such technique is existential abstraction [5], which means that the abstract
model over-approximates the original one. Therefore, if an invariant holds in
the abstract model, it also holds in the original model. However, if there is a
counterexample for which the invariant does not hold, it might be caused by the
over-approximation. Thus, every counterexample must be examined whether it
has a corresponding concrete counterexample in the original model. If a con-
crete counterexample exists, the invariant does not hold in the original model.
Otherwise, the abstract counterexample is spurious and the abstraction has to
be refined using the information from the examination. This technique is called
the “counterexample guided abstraction refinement” (CEGAR) and it is widely
used in model checking [1], [4], [9].

3.2 Reachability Analysis of Petri Nets Using CEGAR

Wimmel and Wolf published an algorithm [18], which applies the CEGAR app-
roach to the reachability analysis of Petri nets, using the state equation. Figure 1
shows an overview of their algorithm, while each step is detailed in this section.

Create initial
abstraction

Solve the
abstract model

Examine the
solution

Refine the
abstraction

Stop

Reachability
problem

State
equation

No solution

Solution

Realizable

Not realizableConstraints

Fig. 1. Petri net CEGAR algorithm flowchart
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Initial Abstraction. The input of the algorithm is a reachability problem
m′ ∈ R(PN,m0), which is transformed into the initial abstraction, namely the
state equation of the form m0 + Cx = m′.

Solving the Abstract Model. Solving the abstract model (i.e., the state
equation) is an integer linear programming problem [6]. The ILP solver yields a
minimal solution with respect to the cost function. In the algorithm of Wimmel
and Wolf [18], the sum of the firing count of transitions is minimized in order to
obtain trajectories with the shortest length.

The state equation is an over-approximation of the set of reachable markings,
since its feasibility is a necessary, but not sufficient condition for reachability.
Therefore, if no abstract solution exists, the target marking cannot be reached
in the Petri net either. However, a solution of the abstract model may or may
not be realizable by a firing sequence. Thus, further examinations are needed.

Examining the Solution. The solution of the state equation is a vector x ∈
N

|T |, where x(t) denotes the number of times a transition t ∈ T has to fire
in order to reach m′ from m0. However, x does not include any information
about the order of the transition firings and whether they are enabled. Thus,
the algorithm has to explore the state space of the Petri net with the limitation
that each transition t can fire at most x(t) times. If the target marking m′ can be
reached with this limit (i.e., x is realizable), it is a sufficient proof for reachability.
Otherwise, x is a counterexample and the abstraction has to be refined.

Abstraction Refinement. If a solution x is not realizable, the ILP solver has to
be forced to generate a different solution. This can be done by adding additional
constraints (i.e., linear inequalities over transitions) to the state equation. The
following two types of constraints were defined by Wimmel and Wolf [18].

– Jump constraints have the form |ti| < n, where n ∈ N, ti ∈ T and |ti|
represents the firing count of the transition ti. Jump constraints can be used
to obtain different base solutions, exploiting their pairwise incomparability.

– Increment constraints have the form
∑k

i=1 ni|ti| ≥ n, where ni ∈ Z, n ∈ N,
and ti ∈ T . Increment constraints can be used to reach non-base solutions,
i.e., T-invariants are added in some linear combination.

After adding the new constraint, the state equation may become infeasible,
or a new solution is obtained. Figure 2 presents the solution space. The bottom
dots represent base solutions, while the cones represent the linear space formed
by the T-invariants. The upper dots correspond to non-base solutions. Jumps
are denoted by dashed arrows and increments by continuous arrows. The precise
method for generating constraints and traversing the solution space is presented
later in this section, but first, partial solutions are introduced.
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Fig. 2. Solution space of the state equation [18]

Partial Solutions. Given a Petri net PN = (P, T,E,W ) and a reachability
problem m′ ∈ R(PN,m0), a partial solution is a tuple ps = (C, x, σ, r), where:

– C is the set of (jump and increment) constraints, together with the state
equation they define the ILP problem,

– x is the minimal solution satisfying the state equation and the constraints
belonging to the set C,

– σ ∈ T ∗ is a maximal realizable firing sequence, with ℘(σ) ≤ x, i.e., each
transition t ∈ T can fire at most x(t) times and enabled transitions must fire
in some order,

– r = x − ℘(σ) is the remainder vector.

Partial solutions are generated during the examination of the solution x by
exploring the state space of the Petri net. For this purpose, Wimmel and Wolf
use a “brute force” method with some optimization. The algorithm builds a tree
with markings as nodes and occurrences of transitions as edges. The root of the
tree is the initial marking m0, and there is an edge labeled by t between nodes
m1 and m2 if m1[t〉m2 holds. On each path leading from the root of the tree
to a leaf, each transition ti can occur at most x(ti) times. Each path to a leaf
represents a maximal firing sequence, thus a new partial solution. The marking
reached is referred to as the final marking of the partial solution.

A partial solution is called a full solution if r = 0 holds, thus ℘(σ) = x,
which means that σ realizes the solution vector x. Wimmel and Wolf proved
that for each realizable solution of the state equation a full solution exists. This
full solution can be reached by continuously expanding the minimal solution of
the state equation with constraints [18].

Consider now a partial solution ps = (C, x, σ, r), which is not a full solution,
i.e., r �= 0. This means that some transitions could not fire enough times. There
are three possible situations in this case:

1. x may be realizable by another firing sequence σ′, thus a full solution ps′ =
(C, x, σ′, 0) can be found in the tree.

2. By adding jump constraints, greater, but pairwise incomparable solutions
can be obtained.
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3. For transitions t ∈ T with r(t) > 0 increment constraints can be added to
increase the token count in the input places of t, while the final marking
m′ must be unchanged. This can be achieved by adding new T-invariants to
the solution. These T-invariants can “borrow” tokens for transitions in the
remainder vector.

Generating Constraints. When a partial solution is not a full solution, both
jump and increment constraints can be added, but they are applied on a different
level:

– Jump constraints are generated from solution vectors of the state equation.
– Increment constraints are generated from partial solutions (which are obtai-

ned from solution vectors).

Jump Constraints. Given a solution vector x, for each transition ti ∈ T with
x(ti) > 0 a jump constraint ci of the form |ti| < x(ti) can be added to the
state equation. If a new solution vector yi is obtained after adding one of the
constraints ci, this process can be recursively repeated for yi. Wimmel and Wolf
proved that every base solution can be obtained using jump constraints [18].

Increment Constraints. Let ps = (C, x, σ, r) be a partial solution with r > 0.
This means that some transitions could not fire enough times. Wimmel and
Wolf use a heuristic to find the places and number of tokens needed to enable
these transitions. If a set of places actually needs n (n > 0) tokens, the heuristic
estimates a number from 1 to n. If the estimate is too low, this method can be
applied again, converging to the actual number of required tokens. The heuristic
consists of the following three steps:

1. First, it builds a dependency graph to collect the transitions and places
that are of interest. These are transitions that could not fire, and places
that disable these transitions under the final marking of ps. An edge from a
place p to a transition t means that p disables t, while an edge in the opposite
direction means that firing t would increase the token count in p. Each source
SCC1 of the dependency graph has to be investigated, because it cannot get
tokens from other components. Therefore, an increment constraint is needed.

2. The second step is to calculate the minimal number of missing tokens for
each source SCC. There are two sets of transitions, Ti ⊆ T and Xi ⊆ T . If
one transition in Ti becomes fireable, it may enable all the other transitions
of the SCC, while transitions in Xi cannot activate each other, therefore
their token shortage must be fulfilled at once.

3. The third step is to construct an increment constraint c for each source SCC
from the information about the places and their token requirements. These
constraints will force transitions (with r(t) = 0) to produce tokens in the
given places. Since the final marking is left unchanged, a T-invariant is added
to the solution vector.

1 Source strongly connected component, i.e., one without incoming edges from other
components.
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When applying the new constraint c, three situations are possible depending
on the T-invariants in the Petri net:

– If the state equation and the set of constraints become infeasible, this partial
solution cannot be extended to a full solution, therefore it is no longer of
interest.

– If the ILP solver can produce a solution x + y (with y being a T-invariant),
new partial solutions can be found for y. If none of them helps getting closer
to a full solution, the algorithm can get into an infinite loop, but no full
solution is lost. A method to avoid this non-termination phenomenon will
be discussed later in this section.

– If there is a new partial solution ps′ where some transitions in the remainder
vector could fire, this method can be repeated.

The following theorem of Wimmel and Wolf [18] states that if the reachability
problem has a solution, it can be reached by the CEGAR approach:

Theorem 1. If the reachability problem has a solution, a realizable solution of
the state equation can be reached by continuously expanding the minimal solution
with jump and increment constraints.

Optimizations. Wimmel and Wolf also presented some methods for optimiza-
tion [18]. In our current work, only the following T-invariant filtering opti-
mization is important. After adding a T-invariant y to the partial solution
ps = (C, x, σ, r), all the transitions of y may fire without enabling any transition
in r, yielding a partial solution ps′ = (C′, x + y, σ′, r) with ℘(σ′) = ℘(σ) + y.
The final marking and remainder vector of ps′ is the same as in ps, therefore the
same T-invariant y is added to the solution by the heuristic again, which can
prevent termination. Thus, the algorithm cuts the search space at ps′. However,
during firing the transitions of y, the algorithm could get closer to enabling a
transition in r (without reaching the limit where it becomes enabled). These
“better” intermediate markings should be detected, and be used as new partial
solutions. Wimmel and Wolf gave a definition for better intermediate markings,
which we generalized it in our former work [8]. Our definition is as follows.

Definition 1 (Better intermediate marking). An intermediate marking mi

is considered better than the final marking m′ of the firing sequence σ if there
exists a transition t with r(t) > 0 and a place p with (p, t) ∈ E for which
m′(p) < w−(p, t) ∧ mi(p) > m′(p) holds.

This means that t is disabled by p and p had more tokens in the intermediate
marking mi than in the final marking m′.

3.3 Correctness and Completeness of the Algorithm

After Wimmel and Wolf published their algorithm, we examined the correctness
and completeness properties and we published our findings in [8]. This section
summarizes these results.
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Correctness. We proved by a counterexample that the algorithm is incorrect
due to an over-estimation in the increment constraint generating heuristic. In
this case, incorrectness resulted in an answer “not reachable” for a reachable
marking. We suggested a method to detect such situations giving the answer
“not decidable”. We also presented a new algorithm that tries to find the solution
in such cases.

Completeness. We presented several subclasses of Petri nets for which the
algorithm could not decide reachability and we suggested solutions to most of
them. However, we proved that the improved algorithm is still incomplete due
to its iteration strategy. In our current work we present a similar, but simpler
proof (Section 4.1) and we propose a new iteration strategy to extend the set of
decidable problems (Section 4.2).

4 New Iteration Strategy to Explore the Invariant Space

In this section we show that the algorithm of Wimmel and Wolf cannot decide
reachability for relatively simple examples, because not every necessary invariant
is explored (Section 4.1). We propose a new iteration strategy to traverse the
invariant space by involving so-called “distant” invariants (Section 4.2). We show
that this new approach extends the set of decidable problems and we also give
theoretical results on its limitations. We also present a new filtering criterion
(Section 4.3), which can avoid non-termination of the algorithm.

4.1 Proof of the Incompleteness

We prove the incompleteness of the algorithm published by Wimmel and Wolf
[18] with the following example. Consider the Petri net PN in Figure 3 with
the reachability problem (1, 1, 0) ∈ R(PN, (0, 1, 0)), i.e., producing a token in
p0. The vector xs = (1, 1, 1, 1, 1) is a solution, realized by the firing sequence
σs = t3t1t0t2t4.

p0 p1 p2t0

t1

t2

t3

t4

2

2

Fig. 3. A counterexample of completeness

The algorithm does the following steps. The minimal solution vector is x0 =
(1, 0, 0, 0, 0), i.e., firing t0. Since t0 is not enabled, the only partial solution is
ps0 = (∅, x0, σ0 = ε, r0 = (1, 0, 0, 0, 0)). The algorithm finds that an additional
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token is required in p1 and only t1 can satisfy this need. With an increment
constraint c1 : |t1| ≥ 1, the T-invariant {t1, t2} is added to the new solution
vector x1 = (1, 1, 1, 0, 0). Only t2 and t1 can fire (in this order), thus the only
partial solution for x1 is ps1 = ({c1}, x1, σ1 = t2t1, r1 = r0). This partial solution
is skipped by the T-invariant filtering optimization, since the only difference
from ps0 is that all transitions of a T-invariant were fired. Furthermore, there
are no better intermediate markings, since no additional token was “borrowed”
from the T-invariant {t1, t2}. The algorithm terminates at this point, leaving
the problem undecided. Without the filtering optimization, the algorithm would
add the T-invariant {t1, t2} again and again, preventing termination.

The problem is that the original algorithm does not recognize that although
{t1, t2} can fire, it only circulates the same token, instead of “lending” a new
one. An extra token could be produced in p2 (and then moved in p1) using the
T-invariant {t3, t4}. However, {t3, t4} is not connected directly to p1 (where the
tokens are missing), so the iteration strategy of the algorithm does not try to
involve it. We propose an extension to the iteration strategy in Section 4.2 in
order to involve such “distant” invariants into the solution vector.

4.2 Involving Distant Invariants

Let y and z be T-invariants. We say that z is a distant invariant for y if z can
produce tokens in a place connected to y. This can be written formally as follows.

Definition 2 (Distant invariant). The T-invariant z is a distant invariant
for the T-invariant y if a place p and transitions t1, t2 exist with y(t1) > 0,
z(t2) > 0, ((t1, p) ∈ E ∨ (p, t1) ∈ E), w+(p, t2) − w−(p, t2) > 0 and y(t2) = 0.

The definition states that y includes t1, z includes t2 and t1 is connected to p,
where the firing of t2 increases the number of tokens. This way z can “borrow”
tokens for y. The extra criterion y(t2) = 0 is needed to ensure that we do not
produce tokens for y by itself. In the example in Figure 3, {t3, t4} is a distant
invariant for {t1, t2} because t3 can produce tokens in p2, which is connected to
t1 (and t2).

When a transition in the remainder could not fire, the original algorithm
tried to increase the token count on its input places. Our definition of distant
invariants generalizes this concept the following way. When a partial solution is
skipped by the T-invariant filtering optimization, it means that a T-invariant
was fired, but could not “lend” enough tokens to enable a transition in the
remainder. The basic idea of involving distant invariants is to try to increase the
token count in any place connected to the filtered T-invariant. If some tokens can
be produced, the filtered invariant will then be able to transfer them indirectly
to the place that lacks tokens. There are two problems to be solved:

– How many tokens should be produced for the invariant that caused filtering?
– Termination criterion: if the distant invariant cannot help, adding it again

can lead to non-termination.
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Number of Tokens Produced in the Invariant. Estimating the required
number of tokens is a hard problem, since the sum of the tokens in the places of
a T-invariant may change during firing. Over-estimation can also be a problem:
the final marking of the invariant may not be the “best” state regarding the
number of tokens. Therefore, we produce only one token at a time and repeat
this process if it was not enough.

Termination Criterion. When a distant invariant does not help, there are two
possible cases. The distant invariant z could either not lend any tokens to the
filtered invariant y or it could lend some, but not enough to enable a transition
in the remainder.

The first case means that not only y lacks tokens, but z as well. Thus, we
can now apply our strategy again, i.e., involving a distant invariant for y + z.
This way we form a “chain” of distant invariants, which is defined formally as
follows.

Definition 3 (Chain of distant invariants). Let y1, y2, . . . , yn (n ∈ N) be T-
invariants. We say that y1 + y2 + . . .+ yn, n ∈ N is a chain of distant invariants
if yi+1 is a distant invariant for yi (for 1 ≤ i < n). A subchain of a chain
y1 + y2 + . . . + yn is a chain y1 + y2 + . . . + yk, with k ≤ n.

The definition of distant invariants ensures termination for such chains, since
the newly involved distant invariant must have at least one transition that is not
included in the previous ones and the number of transitions in a Petri net is
finite.

The second case indicates that z could lend some tokens, but not enough.
Therefore, we can involve distant invariants again for y. If z is the only distant
invariant for y, this simply results in adding z again, but in general any distant
invariant can be involved. However, if y = y1 + y2 + . . . + yn is a chain, this
would only produce tokens in places connected to yn. Thus, we have to involve
a distant invariant for every subchain in order to transfer the tokens to the
originally filtered invariant (y1).

Our new ideas above are formulated in Algorithm 1. The input of the algo-
rithm is a partial solution ps′ that was skipped due to ps and the number of
better intermediate markings during the firing sequence of ps′. Partial solutions
are extended to store a chain of distant invariants, which is initially 0.

At first we calculate the difference between the solution vectors of ps and ps′

and we initialize the list of constraints with the constraints of ps′. The following
two cases are possible.

– If the chain of ps �= 0, some distant invariants were already involved. If there
are better intermediate markings (nb > 0), then these invariants helped (but
not enough) to enable a transition in the remainder. In this case we can
involve them again, so the chain of ps′ is the same as in ps and we involve a
distant invariant for every subchain.
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Algorithm 1. Distant invariant algorithm
Input : ps′: Partial solution skipped

ps: Partial solution that caused skipping ps′

nb: Number of better intermediate markings for ps′

Output : x: New solution vector found by involving distant invariants
1 z ← difference invariant between ps and ps′ ;
2 C∗ ← constraints of ps′;
3 if the chain of ps �= 0 ∧ nb > 0 then
4 Chain of ps′ ← Chain of ps;
5 for each subchain of ps′ do
6 C∗ ← C∗∪ {constraint to involve a distant invariant for the subchain};
7 end

8 end
9 else if z is a distant invariant for the chain of ps then

10 Chain of ps′ ← Chain of ps + z;
11 C∗ ← C∗∪ {constraint to involve a distant invariant for the chain of ps′};

12 end
13 x ← solve the state equation with C∗;
14 return x;

– Otherwise we extend the chain of ps with z and involve distant invariants
only for the whole chain. However, we have to first check if z is really an
extension to the chain of ps, since ps′ can be a solution obtained by the
original increment constraints.

Finding a constraint to involve a distant invariant for a chain (or subchain) y
is quite straightforward. We get the places connected to the transitions of y and
we create a constraint using the third step of the increment constraint generating
heuristic to produce a token in these places. If no constraint can be found, the
algorithm returns no new solution. If there are multiple distant invariants for
y, all of them can be found using jump constraints from the original algorithm.
Finally, we solve the state equation extended with C∗ and return the solution (if
found).

This new strategy can solve the example in Figure 3 trivially. As a complex
example, consider the Petri net PN in Figure 4 with the reachability problem
(1, 1, 0, 0, 2) ∈ R(PN, (0, 1, 0, 0, 2)), i.e., producing a token in p0.

p0 p1 p2 p3 p4t0

t1

t2

t3

t4

t5

t6

3

3

Fig. 4. Distant invariant example
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The minimal solution of the abstract model is firing t0, which is not enabled.
Thus, the T-invariant {t1, t2} is added twice in order to get two additional tokens
in p1. This invariant can fire but it does not help getting closer to enabling t0 so
the partial solution is skipped. At this point, our new algorithm tries to produce
a token in any of the places connected to {t1, t2}, i.e., p1 and p2 by distant
invariants. Therefore, the T-invariant {t3, t4} is added once to the new solution.
This invariant can also fire but does not help enabling t0. The partial solution is
skipped, and since {t3, t4} is a distant invariant for {t1, t2}, the algorithm now
tries to produce a token in places connected to the chain {t1, t2}∪{t3, t4}, i.e., in
p1, p2, and p3. This implies that the invariant {t5, t6} is added once. Firing this
invariant does not enable t0, but yields an extra token in p1, which is a better
intermediate marking. Thus, the partial solution is skipped but the algorithm
now tries to involve distant invariants for every subchain, namely for {t1, t2}
and {t1, t2, t3, t4}, resulting in the addition of {t3, t4} and {t5, t6}. The solution
vector is now (1, 2, 2, 2, 2, 2, 2), which can be realized by the firing sequence
t5t5t3t3t1t1t0t2t2t4t4t6t6.

Limitations. Although our new approach can solve a new range of prob-
lems, it also has some limitations. As an example consider the Petri net PN
in Figure 5(a) with the reachability problem (1, 1, 0) ∈ R(PN, (0, 1, 0)), i.e.,
producing a token in p0.

p0 p1 p2t0

t1

t2

t3

t4

2

2 2

2

(a) Not decidable example

p0 p1 p2

p3p4p5

t0

t1

t2

t3

t4

2

2 2

2

(b) Example on non-termination

Fig. 5. Example nets for the limitation of distant invariants

The minimal solution is firing t0, which is not enabled. Thus, the T-invariant
{t1, t2} is added once in order to get an additional token in p1. This invariant
can fire, but it does not help getting closer to enabling t0 so the partial solution
is filtered. At this point the algorithm tries to produce tokens for {t1, t2} using
distant invariants, which implies adding {t3, t4} once. This invariant can fire,
lending a token in p2. However, t1 requires two tokens to fire and produce one
in p1. This partial solution is also filtered and there are no better intermediate
markings, since we only count the tokens in places connected to the disabled
transition t0, which is p1. The algorithm terminates at this point leaving the
problem undecided.
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A trivial idea for this example would be to extend the definition of better
intermediate markings (Definition 1) to count tokens not only in places connected
to the transition that cannot fire, but in places connected to the filtered T-
invariant as well. This can be formalized as follows. Let ps = (C, x + y, σ, r)
be a partial solution that was skipped due to the invariant y. Suppose that we
obtained ps′ = (C′, x + y + z, σ′, r) by involving the distant invariant z for y,
which could not enable any transition in the remainder, thus ps′ is skipped as
well. Furthermore, suppose that no better intermediate marking was found using
Definition 1 (as in the example in Figure 5(a)). Given a partial solution ps and a
place p let max(ps, p) be max(m(p)) during firing σ of ps from the initial marking
m0. Then the definition of better intermediate markings can be generalized in
the following way.

Definition 4. Given the partial solutions ps and ps′ as described above, an
intermediate marking mi of σ′ is considered better than the final marking m′ if
Definition 1 holds or a transition t with y(t) > 0 and a place p with (p, t) ∈
E ∨ (t, p) ∈ E exists for which mi(p) > max(ps, p) holds.

The generalized definition states that the intermediate marking is also con-
sidered better if there is a place connected to the filtered T-invariant, which
contains more tokens than in any marking in the firing sequence of the previous
partial solution. If a better intermediate marking exists for ps′ using this defini-
tion, then we can involve z again. However, this definition would often lead to
non-termination since the filtered T-invariant (y) is already enabled (otherwise
it would not have been filtered). Thus, we cannot give an upper bound on the
number of tokens in p, as opposed to our original definition, where we produce
tokens in p until the transition that is disabled by p gets enabled.

As an example consider the Petri net PN in Figure 5(b) with the reachability
problem (1, 1, 0, 0, 0, 1) ∈ R(PN, (0, 1, 0, 1, 0, 0)), i.e., producing a token in p0 and
moving the token from p3 to p5. This net works similarly to the net in Figure 5(a),
but occurrences of the transitions t3, t4, and t1 can only appear in this order,
due to the upper part (places p3, p4, p5) of the net. As in the previous example,
{t1, t2} is added first, then {t3, t4}. Suppose now, that we consider it a better
intermediate marking when t3 produced a token in p2. This implies that {t3, t4}
is added again. Now t4 can fire two times, producing two tokens in p2. There are
two possible sequels. If t1 fires, it produces an extra token in p1 and enables t0.
However, the extra tokens must be consumed in order to reach the final marking,
but t4 cannot fire after t1. The search terminates on this path, since no more
solutions can be found. The second case is that t4 fires, which consumes the
tokens from p2 so t1 cannot transfer them to p1. Thus, t0 is still not enabled, but
we had a better intermediate state, since we had two tokens in p2. Therefore,
{t3, t4} is added again and this process repeats avoiding termination.

The examples in Figure 5 show that the generalized definition (Definition 4)
may help to decide reachability for some instances, but it may also yield non-
termination.
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4.3 New Filtering Criterion

Although a partial solution is skipped using the T-invariant filtering optimiza-
tion, we may obtain new solutions from it through intermediate markings or
distant invariants. This yields a new branch in the search space, which can also
lead to non-termination.

There are special cases where T-invariants can either fire or not, both being
a maximal firing sequence. As an example, consider the Petri net in Figure 4 and
suppose that t1, t2, t3, and t4 each has to fire once. A possible maximal firing
sequence is t2t4t3t1, but t2t1 is also maximal, since neither t4 nor t3 is enabled
afterwards. When such invariants exist, it is possible that the following two
partial solutions are obtained from ps = (C, x, σ, r) after adding the invariant y:

– ps′ = (C′, x + y, σ′, r), with ℘(σ′) = ℘(σ) + y, and
– ps′′ = (C′, x + y, σ, r + y).

In the first case, the invariant was fired (i.e., added to the firing sequence),
while in the second case it was not fired (i.e., added to the remainder). The
first case can be detected by the T-invariant filtering optimization. However, we
found that the second case can also lead to non-termination if there are at least
two T-invariants with this property.

To overcome this problem, we detect when a T-invariant is added to the
remainder, i.e., we get ps′′ = (C′, x + y, σ, r + y) from ps = (C, x, σ, r). However,
ps′′ cannot be filtered immediately because the remainder is different so the
abstraction refinement may add new invariants that can help. We only skip
ps′′ if ps was skipped by the original T-invariant filtering optimization, which
also means that ps′′ was obtained through intermediate markings or distant
invariants.

5 Search Strategies

As already mentioned in Section 3.2, the algorithm of Wimmel and Wolf traverses
the semi-linear solution space of the state equation. At each non-realizable solu-
tion, multiple (jump and/or increment) constraints can be applied, each yield-
ing a new path in the solution space. However, the authors did not publish the
strategy for the solution space traversal in [18]. An overview pseudo-code was
published later in [19]. In this section we present three different search strategies:
depth-first search (Section 5.1), breadth-first search (Section 5.2) and our new
approach, a complex strategy (Section 5.3), which combines the advantages of
DFS and BFS. Measurement results supporting our statements in this section
can be found in Section 6.2.

5.1 Depth-First Search

Depth-first search (DFS) can be very effective regarding memory usage and
computation time as well. It only stores one path of the solution space in memory
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at a time for backtracking purposes and it has a fast convergence if several
invariants have to be added to reach a realizable solution. However, DFS has
some disadvantages as well:

– It may not find the minimal solution by choosing a path, which contains a
solution but not the minimal one.

– It may fail to terminate in an infinite solution space by choosing a path,
where T-invariants can be added infinitely many times without finding a
realizable solution.

The T-invariant filtering optimization (Section 3.2) and our new filtering
criterion (Section 4.3) cuts the search space, but does not always detect infinite
loops. We tried to give stronger criteria for cutting, but then realizable solutions
were lost, reducing the set of decidable problems.

5.2 Breadth-First Search

Due to the problems of DFS, we implemented a breadth-first search (BFS) ver-
sion of the algorithm as well. The number of base solutions can grow exponen-
tially, but it is always finite so we still use DFS between the base solutions and
only use BFS in the linear space of invariants. As opposed to DFS, it is less
efficient, but always finds the minimal solution if the target marking is reach-
able. When the target marking is not reachable, BFS may fail to terminate in an
infinite solution space. The T-invariant filtering optimization can prevent this in
some cases and can also make the computational time shorter.

5.3 Complex Search

We also developed a new, complex search strategy, which combines the advan-
tages of DFS and BFS. We traverse the base solutions using DFS as previously.
When exploring the invariant space over a base solution our main strategy is
DFS, but with a little BFS extension: at each solution x, we generate all partial
solutions belonging to x, instead of continuing the search with the first one and
filter them based on a partial order.

Ordering of Partial Solutions. We define an ordering over vectors and partial
solutions as follows.

Definition 5 (Ordering of vectors). A vector x is less than a vector y (deno-
ted by x < y), if and only if x(i) ≤ y(i) for each index i and x �= y.

Definition 6 (Ordering of partial solutions). A partial solution ps1 =
(C, x, σ1, r1) is less than a partial solution ps2 = (C, x, σ2, r2) (denoted by ps1 <
ps2), if and only if r2 < r1.

A partial solution ps1 is less than a partial solution ps2 if the remainder r2 is
less than r1. This means that ps2 is closer to realization, since every transition
fired in the sequence of ps1 was also fired in ps2, but ps2 may have more fired
transitions. Note that this is a partial order, since partial solutions ps1, ps2 may
exist with ps1 ≮ ps2 and ps2 ≮ ps1, e.g., if r1 = (1, 0) and r2 = (0, 1).
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Filtering Partial Solutions. For our filtering criterion we define maximal and
minimal partial solutions.

Definition 7 (Maximal partial solution). A partial solution ps of a solution
x is maximal, if and only if no other partial solution ps′ exists for x with ps < ps′.

Definition 8 (Minimal partial solution). A partial solution ps of a solution
x is minimal, if and only if no other partial solution ps′ exists for x with ps′ < ps.

The filtering criterion is quite simple, we only keep minimal and maximal par-
tial solutions. Since the ordering is partial, there can be more than one minimal
and maximal partial solutions.

We keep the maximal partial solution because it has a minimal remainder,
i.e., it is the closest to realizing the solution vector. Also, the T-invariant filtering
optimization works well for maximal partial solutions, since every T-invariant
that can fire, must also fire (i.e., it is added to the firing sequence). A minimal
partial solution has maximal remainder, i.e., not every enabled T-invariant was
fired. This yields a slower convergence to a realizable solution. However, since
the remainder is different from the remainder of the maximal partial solution,
the abstraction refinement may involve different invariants.

6 Evaluation

We implemented our algorithm as a plug-in for the PetriDotNet [15] frame-
work to evaluate its performance. We compared our approach to other tools and
algorithms (Section 6.1) and we also measured the performance of the different
search strategies (Section 6.2).

6.1 Comparison to Other Tools and Algorithms

We compared our algorithm to the implementation of Wimmel and Wolf, which
is called the SARA tool [17]. We also compared our approach to the well-known
saturation-based model checking algorithm [2], [14]. The results can be seen in
Table 1, where TO refers to an unacceptable run-time (> 600 seconds), ERR
means a run-time exception and NS implies that the algorithm terminated, but
could not solve the problem.

The FMS model [3] represents a flexible manufacturing system. The parame-
ter of the model determines the size of the state space, while the structure of the
net is fixed. The results show that our algorithm outperforms both saturation
and the SARA tool. The Kanban model [3] illustrates a production scheduling
method. The parameter determines the size of the state space. We experienced
that our algorithm can find a realizable solution quickly, but it examines many
partial solutions before finding the full solution. The Dining philosophers model
[7] is often used to show the problems of parallel programming and mutual exclu-
sion. As the parameter grows, both the structure of the net and the state space
becomes larger. Saturation and SARA performs better for these models.
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Table 1. Comparison of our algorithm to SARA and saturation

Model Our algorithm SARA Saturation

FMS-10 0,041 s 0,001 s 0,06 s
FMS-50 0,048 s 0,018 s 1,09 s
FMS-100 0,056 s 0,059 s 8,03 s
FMS-200 0,071 s 0,278 s 69,7 s
FMS-400 0,105 s 0,868 s TO
FMS-800 0,226 s 3,537 s TO
FMS-1600 0,317 s ERR TO
FMS-3200 0,65 s ERR TO
FMS-6400 1,274 s ERR TO
FMS-12800 2,54 s ERR TO

Kanban-10 0,032 s 0,03 s 0,002 s
Kanban-13 1,074 s 0,05 s 0,003 s
Kanban-16 3,055 s 0,09 s 0,01 s
Kanban-19 7,128 s 0,134 s 0,03 s
Kanban-22 16,039 s 0,2 s 0,03 s
Kanban-25 31,181 s 0,268 s 0,05 s

Dphil-10 0,078 s 0,005 s 0,01 s
Dphil-20 0,204 s 0,012 s 0,02 s
Dphil-30 0,399 s 0,021 s 0,03 s
Dphil-50 1,156 s 0,037 s 0,03 s
Dphil-100 6,989 s 0,094 s 0,04 s
Dphil-200 67,603 s 0,33 s 0,05 s

Distant1 0,027 s 0,001 s -
Distant2 0,068 s NS -
Distant3 0,083 s NS -
Distant4 0,116 s NS -
Distant5 0,078 s NS -
Distant6 0,063 s NS -
Distant7 0,137 s NS -

The Distant models are built by us [16] to test our new iteration strategy,
which involves distant invariants. The Distant1 and Distant3 models can also be
seen in Fig. 3 and Fig. 4. After publishing our former proof of incompleteness
[8], we contacted Wimmel and Wolf and they extended their implementation to
be able to solve Distant1. However, the original algorithm cannot solve complex
examples on distant invariants. As the state space of these models are infinite,
saturation cannot handle these problems.

Due to the complexity of the models, further examination is required to
determine how the structure and behavior of the models affect the performance
of the algorithms and which algorithm is the most effective for a given type of
models. This is an interesting future research direction.
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6.2 Comparison of Search Strategies

The solution space (i.e., the abstract model) is usually small for the examples
presented in Table 1, so every search strategy has a similar performance. We
created models with many T-invariants (i.e., a large solution space) to evaluate
the different search strategies. The results can be seen in Table 2, where the cost
corresponds to the size of the solution, i.e.,

∑
t∈T x(t). The two parameters in

the model name determine the number of invariants. The asterisk indicates a
different ordering of places and transitions.

Table 2. Measurement results for different search strategies

DFS BFS Complex

Model Time Cost Time Cost Time Cost

Chain 1+2 0,04 s 7 0,055 s 7 0,039 s 7
Chain 1+3 0,095 s 13 0,828 s 13 0,1 s 13
Chain 1+4 0,291 s 21 85,24 s 21 0,288 s 21
Chain 1+4* 24,2 s 35 55,28 s 21 1,498 s 29
Chain 1+5 54,59 s 39 TO 31 56,36 s 39
Chain 2+2 0,076 s 11 0,277 s 11 0,074 s 11
Chain 2+3 0,197 s 19 12,768 s 19 0,288 s 23
Chain 2+3* 2,28 s 29 5,288 s 19 1,387 s 23

It is clear that DFS is more efficient than BFS regarding computational time.
However, it often fails to find the minimal solution. Our combined strategy often
outperforms DFS, while also being closer to the minimal solution.

7 Conclusions

In our paper we examined an abstraction-based algorithm for the reachability
problem of Petri nets. From the theoretical point of view, we showed that the
original algorithm cannot decide reachability for relatively simple nets. We pre-
sented a new iteration strategy based on distant invariants in order to overcome
this deficiency. We also gave theoretical results on the limits of our new app-
roach. From the practical point of view, we examined the behavior of the solution
space traversal with DFS and BFS strategies and we also proposed a new, com-
plex strategy based on a partial order between solutions. We demonstrated the
efficiency of our new approaches with measurements.
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Abstract. Software agents can be considered as similar to humans inter-
acting with one another to complete a complex activity or, in an organisa-
tional setting, a workflow. More so, agents can view their own behaviour
as workflows, which can require other resources in order to be exe-
cuted. This paper examines and describes an approach to consider agent
behaviour as workflows and agents as both workflow engines and work-
flow resources. This approach can achieve a flexible and more uniform
type of agent interaction. The paper describes the approach as a design
pattern and blueprint. It also presents a first technical proof-of-concept.
The general approach, concepts and prototype are based on and realised
with reference Petri nets. This enables a clear transition between the
conceptual approach and the practical realisation.

Keywords: Workflows · Agents · Integration · Interaction · Communi-
cation · Petri nets

1 Introduction

In an agent-oriented software system each agent provides its own part of the
overall functionality. In order to achieve the overall system goal different agents
need to interact. These interactions are predefined. This means that agents and
their functionality are known in the execution environment (e.g. a directory
service). When functionality is needed by other agents, it is looked up using
preexisting (i.e. predefined at modelling time) knowledge. The agent requiring
the functionality then directly communicates with the agent providing it.

This sort of interaction works well for agent systems in general. However,
there are aspects which could be improved. These aspects include, but are not
limited to, questions of availability and workload-balancing (e.g. fully utilising
the available capacity), encapsulation (e.g. protecting critical system parts), or
flexibility (e.g. dynamically changing service providers). These kinds of aspects
can be handled by introducing helper constructs such as proxy agents. Yet, these
kinds of constructs only tackle specific technical issues. This paper proposes a
different way of handling the interaction between agents on a conceptual level.

A distributed agent system is, in its function, similar to a group of human
individuals working together to achieve a common goal. The interactions between
c© Springer International Publishing Switzerland 2015
R. Devillers and A. Valmari (Eds.): PETRI NETS 2015, LNCS 9115, pp. 329–349, 2015.
DOI: 10.1007/978-3-319-19488-2 17
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such a group can be supported by a workflow system. A workflow consists of a
set of tasks, which are executed individually to achieve an overall purpose.

Workflow principles, like task atomicity, control flow encapsulation and the
separation between execution and resources, can be applied to agent interaction.
Considering an agent’s behaviour as workflows, agents become workflow engines
and tasks represent sets of related actions. These tasks may require the func-
tionality of other agents. At this point these other agents are considered in the
same way as human users or workflow resources1. They complete tasks and send
back the results to the task creator, which can continue in its behaviour.

The paper presents the overall approach in three incremental but distinct
contributions. First, the similarities between agent and workflow systems are
emphasised, resulting in a general perspective of agent systems as workflow sys-
tems. Building on this perspective the core details of agents as workflow engines
and resources are described as a design pattern and blueprint. Finally, in order
to validate the technical aspects of the pattern the WorkBroker-prototype
is introduced as a proof-of-concept. To illustrate the approach the paper uses
simple examples. More complex scenarios and comparative case-studies are cur-
rently being developed, but are outside of the scope of this paper.

Additionally the approach contributes to our ongoing research of utilising
and applying Petri nets in software engineering. On an abstract level, Petri
nets are used to motivate and illustrate concepts, perspectives and ideas. But
reference Petri nets [16] are also and more importantly used as the principal
part of our executable code in the systems we create. We strive to realise any
software artefact and concept as reference nets that are effortlessly embedded
into and executed by the Java-based event formalism at the core of our runtime
environment Renew. This includes agents, workflows, objects, use-cases, etc.
This paper presents a proof-of-concept that reference nets can be used to realise
a combination of agent behaviour and workflows in the same way.

The paper contains eight sections. After this introduction Section 2 describes
the technical background. Sections 3 to 5 present the three incremental contri-
butions of the approach characterised above. Section 6 contains an overall dis-
cussion, Section 7 examines related work. The paper is concluded in Section 8.

2 Background

Reference nets [16] are a Petri net formalism following the nets-within-nets prin-
ciples introduced in [21]. Tokens in reference nets are references to other refer-
ence nets or Java objects. This is used to build complex systems by nesting and
interconnecting components. Communication between reference net instances
is handled through synchronous channels [7]. The Reference Net Workshop
(Renew2 [16,17]) serves as the modelling and execution environment for ref-
erence net systems. To support reference nets and Petri nets features Renew
utilises a Java-based event formalism at its core.
1 To distinguish between human users and agents, we use the term resource for agents.
2 Renew is available at www.renew.de.

www.renew.de
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Reference nets have been used for the agent architecture and agent implemen-
tation adopted in this paper. Our reference architecture for multi-agent systems
is called Mulan (Multi Agent Nets [20]). Agent systems in Mulan are defined
on four layers. Each layer serves as the direct execution environment for the next
one. The layers are: System, agent platform, agent, agent protocol (behaviour).
Capa (Concurrent Agent Platform Architecture [9]) is an implementation of
Mulan. Capa utilises reference nets as the majority of the executable code to
realise fully functioning agent systems following the FIPA (Foundation for Intel-
ligent Physical Agents) standards for agents [10]. Decision making in Capa is
realised through nets which represent purely agent internal behaviour and can
function proactively. Agent knowledge is stored in an internal knowledge base
net which can be accessed by agent behaviours.

As described and compared in e.g. [6,20] there are several alternative agent
architectures that could be used for similar purposes. However, Mulan offers
the advantages of Java-based execution and reference nets (e.g. natural con-
currency, mutual exclusion, expressiveness, nesting of nets, graphical represen-
tation). Through these advantages Mulan has proven itself over the years in
many research and teaching projects.

For workflow aspects we use workflow nets [1], which model (business) pro-
cesses as Petri nets. The reference net realisation of workflow nets uses a special
transition called the task transition [13]. This transition is used to model work-
flow tasks with multiple operations (request, confirm, cancel) as a single transi-
tion for modelling. For execution the task transition is automatically translated
into a complex net structure which realises the desired complex behaviour. Please
note that aspects such as workflow soundness and correctness are outside of the
scope of this paper. These aspects are currently being researched on top of the
context described in this paper and will be presented at a later time.

3 General Perspective

Considering an agent system as a workflow system is a natural perspective. There
are a number of similarities between the two types of systems. Both feature
independent entities performing certain actions in a certain order with a high
amount of collaboration and interaction.

In workflow systems human users perform tasks defined in workflows. Dif-
ferent users with different qualifications are needed to complete all tasks in the
workflow. In agent systems software agents perform their functions as defined in
their behaviour. Different agents providing different functionality are needed to
complete the overall purpose of the system.

The key difference, in this context, is that a workflow system uses a work-
flow management system (WFMS) to distribute, manage and handle all things
related to workflows and tasks. In an agent system the agents need to handle this
management of their interactions on their own. There are helper constructs, such
as directory services, but in general a software agent is responsible for deciding
and handling what data is transmitted to which agent. This happens without
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Fig. 1. Conceptual view of agent and workflow systems

any higher authority or guarantee that the work the agent wishes another agent
to perform is actually done.

Figure 1 illustrates this perspective3. The upper part shows a Petri net rep-
resentation of a regular agent system. Three agents perform actions and interact
with one another. Basically, agent A alternates between performing an action
and sending a request for an action to agents B and C respectively. Additionally
agent C performs an independent action before it receives the request from agent
A. Note that the initialisation and termination are part of the (implicit) system
behaviour and are not assigned to one particular agent.

The lower part of Figure 1 shows a workflow system containing one workflow
net. The representation has been enhanced with information about users and

3 To keep the nets simple we limit ourselves to a basic example that uses
mostly sequences and only one set of connected behaviour. More complex behaviour,
including multiple, concurrent behaviours/workflows, is also supported and
handled equally.
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arranged to indicate the tasks they execute. The sequence of tasks A1, B1 and
A2 is executed concurrently to the task C1. Once these tasks are finished the
tasks C2 and A3 can be performed in sequence.

It is evident from Figure 1 that the two systems are very closely related.
Except for the communication each agent action has a corresponding workflow
task. Agents and users also correspond and the order of execution for actions
and tasks is identical. There are two key differences between the workflow and
agent views. The workflow considers the behaviour globally (i.e. for all users)
and the assignment of tasks is not directly clear. In the agent view the behaviour
is partitioned onto the three agents, which localises the behaviour and directly
defines the assignment of actions. The global view explains the missing repre-
sentation of communication in the workflow system. The unclear assignment of
users is consolidated with the agent view if we assume unique user roles.

This means that the workflow view can be applied to the agent system if the
communication and resource assignment are addressed. This application opens
up a number of possibilities on how the behaviour of agents can be improved
with established mechanisms used in workflow systems.

A complete application of the workflow view and all its aspects to agent
systems is, however, not desirable. Some of the key qualities of agents are their
autonomy, the encapsulation of data and functionality, and their ability to make
certain decisions independently. These (and more) key qualities make agents as
versatile as they are, especially in distributed environments. A complete appli-
cation with a central master workflow that controls the behaviour of the agents
globally would greatly diminish or even completely eliminate these qualities.
Also, the approach should only be applied on the application level of agent sys-
tems and not on the meta and middleware level. The involved aspects can’t
adequately utilise the concepts and principles introduced by workflow manage-
ment. This will be further discussed in Section 6.

To maintain the key qualities of agents a moderate approach is required.
In Figure 1 each agent has its own behaviour “lane” which consists of the
actions that it actually executes. These lanes are connected by the communi-
cation between agents but are, in general, independent. Still, the connection
also states that actions B1 and C2 can only be performed once agent A has sent
requests for them. Considering this, we can assume that these actions are like
assignments agents B and C execute for agent A. This means that agent A’s
behaviour can be considered as a workflow in which actions B1 and C2 are tasks
for other agents. The other actions (A1,A2,A3) are consequently tasks that are
both controlled and executed directly by agent A.

Agent B is, under this consideration, only a resource for the workflow of
agent A. Agent C, however, also executes action C1, which is independent from
the other agents, but is a precondition to action C2. This means that Agent C
controls a workflow and task of its own, but also acts as a resource for task C2
in agent A’s workflow.

In other words, agents are considered in a dual capacity as both workflow
engines and workflow resources. As engines they control their own behaviour
defined and executed as a set of workflows. As resources they perform tasks
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Fig. 2. Conceptual view of an agent system using workflow principles

within their own or other agents’ workflows and thus provide the actual func-
tionality required for those tasks.

Figure 2 shows a net representation4 of this view for the system from Figure 1.
Agent behaviour now distinguishes between engine and resource aspects. On the
engine side tasks control the actions or sets of actions of the resource side,
which correspond to the actual functionality. Communication aspects, especially
message exchange, are incorporated into the tasks as well. Figure 2 also takes
into account that agent A controls tasks B1 and C2. Agent B exclusively acts as
a resource for task B1. Agent C, however, controls the task C1 itself and acts as
a resource for (the subsequent) task C2. Agents B and C retain their autonomy,
as they can decide to deny requests from agent A.

The remaining key difference between agent and workflow systems is the
infrastructure provided by a WFMS. A WFMS handles the communication and
interaction between workflow users and engines. An agent system does not pos-
sess such a mechanism, therefor agents manage their own interactions. An inter-
mediary system handling these aspects is the final part of the approach that
needs to be provided. As a kind of middleware, it realises a process-infrastructure
for agent systems by bridging the gap between agent workflow engines and agent
workflow resources. It is responsible for workflow management aspects like task
assignment and the mapping between tasks and actions. It also provides com-
munication and synchronisation mechanisms. The components of the approach,
especially the intermediary system and workflow engines, are aligned to the

4 The dotted connections between tasks and actions are not Petri net arcs. They repre-
sent conceptual connections that need to be implemented by complex net structures
like the task transition. This also applies to Figure 8.
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Fig. 3. Conceptual view of an agent workflow engine

components of the WfMC reference model for WFMS [12], though this is not
further discussed in this paper.

4 Agents as Workflow Engines and Resources

This section presents the core details of how the perspective presented in the
previous section can be realised as a design pattern. There are three major
components in this perspective. Agents as workflow engines are described in
Section 4.1. Agents as workflow resources are described in Section 4.2. Finally,
the intermediary system is described in Section 4.3.

4.1 Agents as Workflow Engines

In order to control agent behaviour with workflows the task concept needs to
be introduced into agent behaviour. Each set of related actions of the agent
needs to be mapped into tasks. This is the main modelling challenge on the
control/engine side of the agent behaviour.

Tasks are either performed by an agent itself or involve other agents. For
modelling purposes they are handled exactly the same, they may however be
handled differently at execution time. This will be discussed in Section 6.

The dependencies and order between the tasks need to be defined as well.
Any additional information about the execution of the tasks (e.g. execution
rules defining which agents are allowed to perform which tasks, parameters that
are transmitted, results that are expected) needs to be made available to the
executing agent as well. The result is a workflow representation of one behaviour
of one particular agent. This needs to be applied to all behaviours of an agent.

Workflow nets [1] are well suited for the required representation and mod-
elling aspects. Other workflow representations are also possible, if they are
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compatible with the intended agent system. With foresight to the inclusion into
our Petri net-based agent systems we limit ourselves from here on to
workflow nets.

The task transition for reference (workflow) nets ([13]) is the main modelling
construct for agents as workflow engines. Figure 3 illustrates this. The task
transition is used for modelling in Renew as a single transition. At runtime it is
automatically translated into a more complex net structure (visible on the right-
hand side of Figure 3). This net structure enables requesting the workitem5,
confirming the completion of the activity and cancelling the execution of the
activity. These transitions connect via synchronous channels (indicated by the
grey arrows) to a middleware within the agent. The task transition also keeps
the state of the activity in the central place.

The inscription of the task transition contains some of the additional informa-
tion mentioned above, namely the task-identifier, the parameters and the result.
The task-identifier can be used by the agent to query the remaining additional
information stored in its knowledge base. Parameters and the result apply to
variables on the incoming and outgoing arcs of the task transition.

When the agent executes such a workflow it controls the execution of the net
through the middleware. The middleware communicates with the intermediary
system and reports available workitems. These workitems are made available to
eligible resources, which can then request them. The middleware receives infor-
mation about the state of the task from the intermediary system. Any change of
the state of the task is implemented by firing the corresponding transition within
the task transition net structure. Another important function of the workflow
engine is to ensure the isolation of case data for each instance of a workflow.
Some of that data may be relevant only to the current case. This data may
be stored directly in the workflow net instance for that case. Other data (e.g.
obtained results) may be required in other workflows and should be extracted
to the knowledge base of an agent beforehand.

Atomicity of tasks is another important aspect. The design of the task tran-
sition ensures atomicity within the workflow engine. Data or results can only
be made available in the workflow outside of the task after its internal confirm
transition has been fired. If the activity is cancelled the original input parameters
are put back onto the precondition places by the internal cancel transition.

Workflows are started by an engine proactively (e.g. directly after initialisa-
tion) or reactively (e.g. after another workflow has been finished). Once all tasks
of a workflow have been completed by resources, the engine has successfully
finished the behaviour it controlled.

4.2 Agents as Workflow Resources

Agent workflow resources perform the tasks that are contained in the control
workflows executed by the agent workflow engines. This means that these agents
take on the same role as human users in a regular workflow system.
5 An available task in an active workflow is called a workitem. An activity is a workitem

assigned to a resource. This distinction clearly identifies the context.
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Fig. 4. Conceptual view of an agent workflow resource

When a task is activated in an agent workflow engine the intermediary sys-
tem is informed. It polls the workitems from all active agent workflow engines.
Depending on the technical implementation, the workitems may either be offered
to the resources to be requested or they may be assigned automatically. If they are
offered, a middleware within the resource agent receives lists of workitems (work-
lists) and decides which of these are requested. If workitems are assigned auto-
matically, the middleware simply receives the information about the workitem.

When a requested or assigned workitem is received by the middleware it
initiates the execution of the resulting activity. This is done by instantiating
a standardised net structure. This net structure is shown in Figure 4, which
illustrates the realisation of the agent workflow resource. It closely resembles
the net structure contained within the task transition of the control workflow
in the workflow engine. The operations performed in the net structure (request
workitem, confirm/cancel activity) correspond to those in the control workflow.
These operations are matched by the intermediary system. When an activity is
cancelled the middleware handles any rollback aspects related to the resource.

The main difference between the net structure of the resource and that of the
task transition is the interface to the internal functionality. When the activity
is started, the central place is filled with data about the activity. This enables
the interface to the internal functionality to fire, which in turn initiates the
actions required to accomplish the activity. Note that, similar to the engine
agent, all of these transitions are controlled by the middleware of the resource
agent. Once the internal functionality has finished all the necessary actions the
interface becomes active again and creates the result objects so the activity can
be completed correctly by the middleware and intermediary system.
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A task may require more complex behaviour and further interactions with
other agents. This can be handled by allowing the internal functionality to initi-
ate a new workflow to control this complex behaviour. In such cases the resource
agent would act as an engine for this subworkflow in order to complete its task
in the original engine’s workflow. This is further discussed in Section 6.

While the net structure shown in Figure 4 is standardised for all tasks the
internal functionality has to be implemented for each task individually6. This is
the main modelling challenge on the resource side of the behaviour of agents.
In combination with the partition of tasks on the control/engine side of the
behaviour it completely realises the behaviour of its agent. In other words, the
modelling challenge in regular agent behaviour is split into these two aspects.

4.3 The Intermediary System

The intermediary system bridges the gap between agent workflow engines and
agent workflow resources. It is responsible for the connecting control between the
task of an engine and the actions of a resource. It also handles the communication
aspects between the different agents. This section will discuss the basics and
concepts of an intermediary system. Section 5 will present a current technical
prototype of such a system.

Both agent workflow engines and agent workflow resources connect to the
intermediary system through their internal middleware. In general, the interme-
diary system itself consists of one or more specialised agents. These agents are
the direct communication partners of the middlewares of engines and resources.
The idea behind the intermediary system is illustrated in Figure 5.

An engine’s middleware sends information about requestable workitems to
the intermediary system and receives information about the state of workitems
and activities in order to control the corresponding task transition. For engines
the intermediary system is basically the central contact point of a system. It
receives information about the state of all workflows in the workflow engines
and provides status updates back to them.

Resource middleware receives information about requestable workitems or
already automatically assigned activities from the intermediary system. Since
this is a proactive behaviour the intermediary system needs to know about
the available resources beforehand. Hence, resources need to register with the
intermediary system before they can receive any information. The intermediary
system also receives (manual) requests for available workitems and confirma-
tions/cancellations of activities from the resources. These are the status updates
sent to the engines.

An important function of the intermediary system is to match the requests,
confirmations and cancellations between engines and resources. When a task
becomes activated in an engine the middleware of the engine is notified of that.
It creates a workitem and sends it to the intermediary system.

6 Carefully modelled functionality can be reused in the context of multiple tasks.
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Fig. 5. Conceptual view of the role of the intermediary system

The information about requestable workitems is gathered by the intermedi-
ary system into worklists. These worklists are used regardless of whether the
tasks are to be assigned to resources automatically or are manually requestable
by the resources. For automatic assignment the worklist are processed for each
available resource and decisions about the assignment made by the intermedi-
ary system. This, for example, can be based on availability or current workload
of resources. The intermediary system can also isolate resources in critical or
mutually exclusive (sections of) workflows through the worklists. Worklists for
a resource only contain those workitems, which the resource is permitted to
request. This is realised by comparing the role and type of a registered resource
to the execution rule for that task (provided by the engine). For manual assign-
ment the worklists are sent to each resource individually. The middleware of the
resource then decides which workitems to request.

When such a request arrives at the intermediary system it forwards it to the
engine. The engine has the ultimate control over whether or not the request is
accepted. It either denies the request and the workitem remains available or it
accepts the request and creates a new activity by firing the internal transition
of the task. The resource receives this activity from the intermediary system.
The middleware of the resource fires its own request transition and transmits
the activity object via synchronous channel during firing. The resource can then
perform the actions required for the activity.

When an activity is completed the resource agent’s middleware fires the con-
firm transition. Activity and result are transmitted through the intermediary
system to the engine agent. It receives the result and fires the confirm transition
of the task transition. The execution of the workflow can then continue.
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The cancellation of activities fires the cancel transitions but works similarly.
The difference is that no result is transmitted and that the state of the control
workflow (in the task transition’s locality) is reset. Consequently the workitem
becomes available again which starts the process anew.

These complex interactions between engine, intermediary system and resource
are indicated in Figure 5 by dashed arcs between transitions in engine and
resource and by places in the intermediary system. The inscriptions indicate
the sequence of messages.

Note that the engine can still decide to refuse the confirmation of an activity.
This may be due to an erroneous or faulty result or a missed constraint (e.g.
exceeded time-limit). In this case the cancellation of the activity could be called
to reset the local state. It is also, for example, feasible to provide the engine with
mechanisms to force a confirmation or cancellation from a resource. These are,
however, aspects that rely solely on the implementation of the intermediary sys-
tem and the middleware within the agents. They extend the capabilities within
the approach but don’t change it fundamentally.

5 The WorkBroker Prototype

The current WorkBroker-system is a prototype implementing and serving as
a proof-of-concept for the design pattern described in the previous section. It
focuses on the implementation of the intermediary system (see Section 4.3) as a
Capa agent system and utilises reference workflow nets. It is being developed in
the context of two PhD theses and also as part of our annual teaching project.
The project aims to create a process support environment for the Paose (Petri
net-based, Agent- and Organization-oriented Software Engineer-
ing [5]) development approach.

The WorkBroker is a subsystem of that environment. It is responsible for
bridging the gap between engine agents executing workflows for Paose processes
and resource agents directly supporting the developers. The subsystem’s role in
the overall system is specialised, but it is independently extended to be used
on its own as a full-fledged intermediary system. The independence of system
components is a typical perspective on agent-oriented systems. Consequently,
each individual component (subsystem, agent etc.) requires more effort to be
built. Nonetheless, the compositionality, resilience and robustness of systems
built this way are improved.

Figure 6 shows part of the coarse design diagram7 for the WorkBroker-
prototype. This represents the core functionality. Secondary aspects, like data-
base access or monitoring, have been omitted.

Engine and resource roles provide the middleware for engines and resources.
These roles can be assumed by multiple agents in the system (in addition to their
other functional roles). The roles provide internal behaviour nets to these agents

7 In Paose, the coarse design diagram provides an overview of system from which the
architecture is derived.
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Fig. 6. Part of the Coarse Design Diagram of the WorkBroker-prototype

which implement the functionality of the middleware. The WorkBroker role
implements the intermediary system.

The interactions between the roles can be classified into two interfaces with
multiple grouped interactions (as illustrated in Figure 6). The interactions in
Control of task transition of the engine interface and Management of task in the
resource interface correspond to the core function of an intermediary system to
match task operations (request/confirm/cancel) between engines and resources.
They are always called in pairs (e.g. confirmActivity and doConfirmActivity) and
are connected by functionality implemented within the WorkBroker role. The
remaining groups of interactions realise updating available workitems within the
WorkBroker, resource registration and worklist distribution.

To illustrate the implementation, part of the internal functionality of the
WorkBroker role is shown as an example in Figure 7. This is only part of the
net that implements matching a confirmed activity between engine and resource.
The overall net is too large to discuss in the scope of this paper. All interac-
tions between this net and other nets (e.g. interactions) are realised through
synchronous channels (indicated by net:channelname(parameter)). Additional
details can be found in the emphasised, bracketed comments within the Figure.

The partial net in Figure 7 receives a request to confirm an activity from a
confirmActivity interaction (1.). This initiates the doConfirmActivity interaction
(not shown in the figure). That interaction communicates with the lower part
of the net (2.) to determine the executing (owner) engine of the activity. Once
the interaction is completed the result is handed back to the net (3.). If the
engine agreed to the confirmation, the activity is removed from the internal list
of the WorkBroker (4a.). If the engine disagreed, the activity remains in the
internal list (4b.). Finally, the resource is informed about the result (5.).
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Fig. 7. Part of the WorkBroker functionality for confirming activities
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Even as a prototype of an intermediary system the WorkBroker-prototype
already realises key parts of the required core functionality. The involved mid-
dlewares allow the declaration of tasks by engines and the subsequent workitem
requests and activity confirmations/cancellations by resources. The WorkBro-
ker role manages available workitems and administers between engines and
resources. The prototype is, however, still limited in some points. The interface
to declare tasks is currently limited to certain types of tasks in the context of
the overall process support environment. Similarly, only certain resource func-
tionality of the environment can be called. Standardised calls for resource func-
tionality and the extension of the task interface for engines are currently under
development.

6 Discussion

The approach described in the previous sections applies workflow management
principles to the behaviour of and between software agents. Principles, like the
separation between workflow engine (control flow) and workflow resource (func-
tionality) and the introduction of tasks and task atomicity, have different effects
on agent systems. This section discusses these effects, advantages and disadvan-
tages, as well as some open questions to the approach.

As stated above, one major workflow principle introduced by the approach
is the separation between engines and resources which leads to a decoupling
between interacting agents. Agents no longer need to know their interaction
partners beforehand. The matching between engines and resources is handled
by the intermediary system. This allows for a more flexible choice of interaction
partners. Different alternative resources may be considered by an engine as it
has the ability to deny a request for a workitem. Furthermore the intermediary
system can have a positive influence on the efficiency, as it can monitor workloads
and take appropriate actions. It can also enforce security and encapsulation
aspects by filtering worklists and preventing resources from requesting tasks
they are not qualified or authorised for.

The central role of the intermediary system has some disadvantages though.
There is an increased communicative overhead for the messages. But the individ-
ual messages are more standardised, as most of the exchanges deal with request-
ing workitems and confirming or cancelling activities. These exchanges would
follow uniform patterns with differing parameters. This simplifies both mod-
elling and implementing communication aspects.

Another disadvantage of the intermediary system is that, if it fails, the con-
nection between engines and resources can be lost. A distributed implementation
of the intermediary system could compensate for a partial failure. Such an imple-
mentation could utilise multiple agents on multiple platforms. If one of these
agents failed the communication could be handled by the remaining agents.

A further major principle is the introduction of the task concept into agent
behaviour. The task concept enhances the abstraction for the modeller. Multiple
related actions can be combined into one task. This simplifies agent protocols,
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though the readability of these protocols becomes a major focus for an implemen-
tation. It needs to ensure that task descriptions contain all relevant information.
Modellers also need to make sure to combine actions reasonably.

The task concept also introduces a kind of atomicity into agent behaviour.
The ability to cancel tasks and reset the local state of the workflow is beneficial
in multiple ways. Agents can reason about the quality of a result, decide to
discard it and start the task over. They can also cancel an execution that violates
expected completion time or other constraints.

The introduction of the task concept also affects the resource side. Function-
ality for a task can be modelled in small, reusable fragments, instead of large and
interdependent protocols. This way it can be more easily exchanged or modified,
since the control flow is encapsulated by the workflow in the workflow engine.
As long as the interface to the workflow remains unchanged, the details of the
implementation of the task functionality do not affect the workflows. Flexibility
can also be supported by offering different variants of a task implementation
instantiated depending on the system state at runtime.

An open question is how internal tasks should be handled. Internal tasks
contain only actions the engine will perform as a resource itself. This means
that the communication with the intermediary system is unnecessary. However,
in some cases (e.g. high workload) it may be beneficial to delegate even internal
tasks. One solution is to provide an optional shortcut for internal tasks in the
engine middleware and let the engine decide at runtime.

As far as methodology is concerned the approach can be incorporated into
the established Paose development approach ([5], see Section 5). Paose models
a system along two main dimensions: Behaviour and structure. The behaviour,
modelled as agent interactions, corresponds directly to the scope of workflows
in the approach. The structure, defined through agent roles, can provide the
basis for task execution rules and consequent assignment of tasks. From a tech-
nical perspective, an implementation of the intermediary system would have
to be made available for Paose systems. As stated before, the WorkBroker
from Section 5 is currently being extended to that purpose. Exchanging other
artefacts (e.g. agent protocol nets with workflow (fragments)) within Paose is
unproblematic, as they are already realised as reference nets.

Another aspect related to tasks concerns subworkflows. The approach doesn’t
limit the complexity of the behaviour involved in a task. In fact, it is possible
for a task to require interactions between the resource agent and other agents.
This means that in order to accomplish a task a resource may need to initiate a
new control workflow and execute it. The agent would be active as a resource for
the task and as an engine for the workflow at the same time. This introduces a
distinction into the workflows as proactive behaviour and reactive subworkflows.

This aspect is illustrated in Figure 8, which extends the previous example of
Figure 2. Task B1 of agent A now causes agent B to start the reactive subwork-
flow B1. That subworkflow contains tasks that are performed by agents B and
C. The result of that subworkflow is reported back to the resource functionality
of agent B. Agent B then reports the termination and result back to task B1 in
agent A, which is then confirmed.
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Fig. 8. Conceptual view of the handling of subworkflows

With this type of nesting of processes the approach can support very com-
plex and interconnected behaviour. It also enables more complex interactions
between agents to be combined into a single task (for the initiator). For exam-
ple, subworkflow B1 in Figure 8 may also call resource functionality in agent A.
In that case agent A would be a resource in the workflow of one of its own
resources. These and more complex kinds of interdependencies can be handled
through the use of subworkflows. The example in Figure 8 also emphasises the
resource perspective on agents. Agent C acts as a resource for tasks C1 and
C3. These are independent from one another and may be available concurrently.
This means that agent C, like a human workflow user, can autonomously decide
which task to complete first.

There are some apparent differences between agents and workflows that
concern the applicability of the approach. Agents may run continuously, while
workflows should always terminate. However, agents as artefacts of a software
system should also always terminate at some point. Therefore, their individual
behaviours, which this approach maps to workflows, should also terminate.

Another issue relates to the different levels of complexity agent and workflow
systems can represent. In practice, some parts of an agent system cannot be
reasonably realised as workflows. This applies to the standardised functions and
mechanisms of the agent middleware (i.e. core functionality like initialisation,
message handling, knowledge) and the meta-level of organisation, agent and
behaviour management. Nonetheless, even these aspects can still be regarded as
workflows. These aspects constitute a form of behaviour and the actions involved
in it follow some kind of order. They can consequently be combined into tasks
and workflows. However, as these aspects are mostly agent-internal or highly
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standardised they do not benefit from the advantages of workflow principles to
the same degree. Instead, disadvantages like the increased management overhead
and complexity would decrease efficiency for hardly any gain.

Keeping these considerations in mind, the approach can reasonably be applied
to any agent application (i.e. the part of an agent system that is not standard-
ised middleware). Even very complex agent behaviour can, with the right level
of abstraction, be mapped onto tasks and workflows. This means that the agent
application can fully take advantage of the enrichment provided by the app-
roach. Still, it may not always be completely suitable for all parts of a system.
In cases in which agent behaviour can be grouped in large complex tasks (with
possible subworkflows) the enrichment provided by the approach can be utilised
fully. In other cases, which feature only small, simple tasks the advantages may
be applied to a lesser extent. The disadvantages, such as the increased commu-
nication overhead, may then outweigh the benefits. With this issue in mind the
approach can be opened up to make regular agent behaviour implementation
and standard agent communication part of the control workflows. Tasks could
then be used in cases in which the advantages could be fully utilised. For other
cases standard agent behaviour would be employed.

7 Related Work

Our approach combines agents and workflows. There are many such research
efforts in several different contexts. But mostly, agents are used to realise and
improve WFMS. Many examples for such agent-based WFMS can be found.
[4] provides intelligent agents with a certain awareness of current workflows.
The agent reasons about the most likely path a user might take in order to
provide more efficient support. [19] uses agents to monitor workflows and coor-
dinate resources in order to avoid delays in task execution. There are many more
functions in workflow management for which agents can be used. [8] identifies
twenty-four such functions and classifies over 100 publications into this scheme.

Our approach, on the other hand, falls into the rarer category, in which
workflows are used to improve agent management. Another such approach is
described in [14]. They propose to control the state of an agent with an internal
workflow engine. One engine combines workflows from different engines into a
master workflow. This way a certain degree of flexibility is achieved but the app-
roach fails to explain how and by which agent the master workflow is executed.
Such a master workflow for all aspects of an interaction impairs the autonomy
of the agents and limits their capabilities. The paper also fails to address how
the implementation of the task functionality is implemented and accessed.

A further approach to utilise workflow nets for agent interaction is described
in [15]. In it, a predetermined plan is transformed into a workflow net for the
cooperation between the currently active agents. It features less flexibility then
our approach as the plan and workflow net need to be reevaluated and reformed
if the agents change. In our approach resource allocation is dynamic and agents
can easily be exchanged. The approach in [15] does, however, feature a strong
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formal basis dealing with workflow soundness and critical sections. These aspects
are outside of the scope of this paper, but are being currently researched.

Our approach also shares some connections to service-oriented computing.
[2,18] deal with partner synthesis in this context. This means that the con-
figuration of a service requires a partner service to be considered controllable.
Controllability is a correctness criterion for services. Applying these notions to
the relation between engine and resource in our context can be used to improve
areas like optimal resource assignment.

Interorganisational workflows are also a related topic. Their high degree of
autonomy enables agents to be considered as independent organisations. Related
concepts, like the ones presented in [3], may be used to improve the approach.

A topic directly related to our approach is presented in [11]. It enables mod-
elling Capa agent interactions in a subset of BPMN8. The ability to define agent
behaviour directly in an established workflow notation will be used to improve
our approach in the future. BPMN could enhance or possibly even replace the
currently used workflow nets.

8 Summary and Outlook

This paper presents an approach on how to apply workflow management princi-
ples to agent interaction. The first stage in this research is an overall perspective
on agent systems as workflow systems, with agents serving as workflow engines
and resources. This unusual consideration serves as the basis for a design pat-
tern, the second stage of the research. Lastly, the design pattern is realised in a
technical proof-of concept, the WorkBroker-prototype.

Examining the contributions of perspective, pattern and prototype, we have
found several advantages that can improve interactions between agents: Enabling
task atomicity in agent behaviour, dividing functionality into reusable and flex-
ible fragments, decoupling the control flow from the functionality and standar-
dising communication between agents are some of the effects that have been
discussed. We are confident that, by continuing with our research efforts in this
context, even more beneficial effects can be achieved.

The approach was developed in the context of a larger ongoing effort to com-
bine and integrate agents and workflows. This integration effort aims to enable
system modellers to use agents and workflows as modelling constructs on the
same abstraction level. This provides an entity abstraction that can dynami-
cally act as an agent, a workflow or both. This enables a modeller to utilise and
combine properties of agents and workflows in an extensive yet structured way.
A general description of the ideas can be found in [22].

By applying workflows to agent behaviour, this paper’s approach represents
one key part of that desired complete integration. In the future the approach will
be extended on a conceptual level to support the integration efforts to an even
greater effect. An extended technical implementation of the WorkBroker-
prototype will also be used to provide technical aspects of the integration.
8 Business Process Model and Notation, http://www.omg.org/spec/BPMN/2.0/.

http://www.omg.org/spec/BPMN/2.0/
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Work on the conceptual approach and technical implementation will also
continue independently from the overall integration effort. This will focus on
extending the WorkBroker-prototype and incorporating it into the Capa
agent toolset. Another major focus will be the realisation of more, comparative
case-studies and complex examples. This will enable us to validate and more
concretely qualify the effects of the approach.

As a concluding observation, the approach, as a proof-of-concept, affirms
the use of Petri nets in our own research and software engineering in general.
We designed and implemented a net-based combination of agent behaviour and
workflows. This combined software concept can now, thanks to the common basis
of reference Petri nets, be easily embedded with existing, net-realised concepts,
like the agents and components featured in Mulan and Capa. Properties of
nets, such as concurrency, expressiveness, nesting, etc., contributed greatly in
creating models and systems in several projects. We will continue to design and
implement diverse software engineering concepts with Petri nets to add them to
our expanding toolset. We are confident this research will continue to validate
our position that Petri nets are an appropriate and useful technique for practical
software engineering.
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