
Require, Test and Trace IT

Bernhard K. Aichernig1, Klaus Hörmaier2, Florian Lorber1(�),
Dejan Ničković3, and Stefan Tiran1,3

1 Graz University of Technology, Graz, Austria
aichernig@ist.tugraz.at

2 Infineon Technologies Austria AG, Villach, Austria
3 AIT Austrian Institute of Technology, Vienna, Austria

Abstract. We propose a framework for requirement-driven test gener-
ation that combines contract-based interface theories with model-based
testing. We design a specification language, requirement interfaces, for
formalizing different views (aspects) of synchronous data-flow systems
from informal requirements. Multiple views of a system, modeled as re-
quirement interfaces, are naturally combined by conjunction.

We develop an incremental test generation procedure with several ad-
vantages. The test generation is driven by a single requirement interface
at a time. It follows that each test assesses a specific aspect or feature of
the system, specified by its associated requirement interface. Since we do
not explicitly compute the conjunction of all requirement interfaces of
the system, we avoid state space explosion while generating tests. How-
ever, we incrementally complete a test for a specific feature with the
constraints defined by other requirement interfaces. This allows catch-
ing violations of any other requirement during test execution, and not
only of the one used to generate the test. Finally, this framework de-
fines a natural association between informal requirements, their formal
specifications and the generated tests, thus facilitating traceability. We
implemented a prototype test generation tool and we demonstrate its
applicability on an industrial use case.

Keywords: Model-based testing · Test-case generation · Requirements
engineering · Traceability · Requirement interfaces · Formal specifica-
tion · Synchronous systems · Consistency checking · Incremental test-case
generation

1 Introduction

Modern software and hardware systems are becoming increasingly complex, re-
sulting in new design challenges. For safety-critical applications, correctness ev-
idence for designed systems must be presented to the regulatory bodies (see for
example the automotive standard ISO 26262 [16]). It follows that verification
and validation techniques must be used to provide evidence that the designed
system meets its requirements. Testing remains the preferred practice in in-
dustry for gaining confidence in the design correctness. In classical testing, an
engineer designs a test experiment, i.e. an input vector that is executed on the

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 113–127, 2015.
DOI: 10.1007/978-3-319-19458-5_8

114 B.K. Aichernig et al.

system-under-test (SUT) in order to check whether it satisfies its requirements.
Due to the finite number of experiments, testing cannot prove the absence of
errors. However, it is an effective technique for catching bugs. Testing remains a
predominantly manual and ad-hoc activity that is prone to human errors. As a
result, it is often a bottleneck in the complex system design.

Model-based testing (MBT) is a technology that enables systematic and au-
tomatic test case generation (TCG) and execution, thus reducing system design
time and cost. In MBT, the SUT is tested for conformance against its specifica-
tion, a mathematical model of the SUT. In contrast to the specification, that is a
formal object, the SUT is a physical implementation with often unknown inter-
nal structure, also called a “black-box”. The SUT can be accessed by the tester
only through its external interface. In order to reason about the conformance
of the SUT to its specification, one needs to use the testing assumption [24],
stating that the SUT can react at all times to all inputs and can be modeled in
the same language as its specification.

The formal model of the SUT is derived from its informal requirements. The
process of formulating, documenting and maintaining system requirements is
called requirement engineering. Requirements are typically written in a textual
form, using possibly constrained English, and are gathered in a requirements doc-
ument. The requirements document is structured into chapters describing various
(behavioural, safety, timing, etc.) views of the system. Intuitively, a system must
correctly implement the conjunction of all its requirements. Sometimes, require-
ments can be inconsistent, resulting in a specification that does not admit any
correct implementation.

In this paper, we propose a requirement-driven framework for MBT of syn-
chronous data-flow reactive systems. In contrast to classical MBT, in which the
requirements document is usually formalized into one monolithic specification,
we exploit the structure of the requirements and adopt a multiple viewpoint
approach.

Timing View

Consistency
Check

Test Case
Generation

Behavioral View Power Cons. View
Requirements Document

consistent purpose
test

Test Suite

Test Case

System
Under Test

Execution

Violated ReqsInconsistent
Trace to

Reqs

inconsistent

Requirement Interface
A2

Requirement Interface
A3

Requirement Interface A = A1 ∧ A2 ∧ A3

· · ·

Trace fail to

· · · · · · · · ·

fail

pass

A1

Requirement Interface

Tn

Reqk Reqk+1 Reqm Reqm+1 Reqn

T1

Req1

Fig. 1. Overview of using requirement interfaces for testing, analysis and tracing

Require, Test and Trace IT 115

We first introduce requirement interfaces as the formalism for modeling system
views as subsets of requirements. It is a state-transition formalism that supports
compositional specification of synchronous data-flow systems by means of as-
sume/guarantee rules, that we call contracts. We associate subsets of contracts
to requirement identifiers, to facilitate their tracing to the informal requirements
from which the specification is derived. These associations can later on be used
to generate links between the work products [2], connecting severals tools.

A requirement interface is intended to model a specific view of the SUT.
We define the conjunction operation that enables combining different views of
the SUT. Intuitively, a conjunction of two requirement interfaces is another re-
quirement interface that requires contracts of both interfaces to hold. We assume
that the overall specification of the SUT is given as a conjunction of requirement
interfaces modeling its different views.

Next, we develop a requirement-driven TCG and execution procedure from
requirement interfaces, with language inclusion as the conformance relation. We
present a procedure for TCG from a specific SUT view, modeled as a requirement
interface, and a test purpose. Such a test case can be used directly to detect
if the implementation by the SUT violates a given requirement, but cannot
detect violation of other requirements in the conjunction. Next, we extend this
procedure by completing such a partial test case with additional constraints from
other view models that enable detection of violations of any other requirement.

Finally, we develop a tracing procedure that exploits the natural mapping
between informal requirements and our formal model. Thus, inconsistent con-
tracts or failing test cases can be traced back to the violated requirements. We
believe that such tracing information provides precious maintenance and debug-
ging information to the engineers. We illustrate the entire workflow of using
requirement interfaces for consistency checking, testing and tracing in Figure 1.

2 Requirement Interfaces

We introduce requirement interfaces, a formalism for specification of synchronous
data-flow systems. Their semantics is given in the form of labeled transition
systems (LTS). We define consistent interfaces as the ones that admit at least
one correct implementation. The refinement relation between interfaces is given
as language inclusion. Finally, we define the conjunction of requirement interfaces
as another interface that subsumes all behaviors of both interfaces.

2.1 Syntax

Let X be a set of typed variables. A valuation v over X is a function that assigns
to each x ∈ X a value v(x) of the appropriate type. We denote by V (X) the set
of all valuations over X . We denote by X ′ = {x′ | x ∈ X} the set obtained by
priming each variable in X . Given a valuation v ∈ V (X) and a predicate ϕ on
X , we denote by v |= ϕ the fact that ϕ is satisfied under the variable valuation
v. Given two valuations v, v′ ∈ V (X) and a predicate ϕ on X ∪ X ′, we denote
by (v, v′) |= ϕ the fact that ϕ is satisfied by the valuation that assigns to x ∈ X
the value v(x), and to x′ ∈ X ′ the value v′(x′).

116 B.K. Aichernig et al.

Given a subset Y ⊆ X of variables and a valuation v ∈ V (X), we denote
by π(v)[Y], the projection of v to Y . We will commonly use the symbol wY to
denote a valuation projected to the subset Y ⊆ X . Given the sets X , Y1 ⊆ X ,
Y2 ⊆ X , w1 ∈ V (Y1) and w2 ∈ V (Y2), we denote by w = w1 ∪ w2 the valuation
w ∈ V (Y1 ∪ Y2) such that π(w)[Y1] = w1 and π(w)[Y2] = w2.

Given a set X of variables, we denote by XI , XO and XH three disjoint
partitions of X denoting sets of input, output and hidden variables, such that
X = XI∪XO∪XH . We denote by Xobs = XI∪XO the set of observable variables
and by Xctr = XH∪XO the set of controllable variables1. A contract c on X∪X ′,
denoted by (ϕ, ψ), is a pair consisting of an assumption predicate ϕ on X ′

I ∪X

and a guarantee predicate ψ on X ′
ctr ∪ X . A contract ĉ = (ϕ̂, ψ̂) is said to be

an initial contract if ϕ̂ and ψ̂ are predicates on X ′
I and X ′

ctr, respectively, and
an update contract otherwise. Given two valuations v, v′ ∈ V (X) and a contract
c = (ϕ, ψ) over X ∪ X ′, we say that (v, v′) satisfies c, denoted by (v, v′) |= c,
if (v, π(v′)[XI]) |= ϕ → (v, π(v′)[Xctr]) |= ψ. In addition, we say that (v, v′)
satisfies the assumption of c, denoted by (v, v′) |=A c if (v, π(v′)[XI]) |= ϕ. The
valuation pair (v, v′) satisfies the guarantee of c, denoted by (v, v′) |=G c, if
(v, π(v′)[Xctr]) |= ψ)2.

Definition 1. A requirement interface A is a tuple 〈XI , XO, XH , Ĉ, C,R, ρ〉,
where

– XI , XO and XH are disjoint finite sets of input, output and hidden vari-
ables, respectively, and X = XI ∪XO ∪XH denotes the set of all variables;

– Ĉ and C are finite non-empty sets of initial and update contracts;
– R is a finite set of requirement identifiers;
– ρ : R → P(C ∪ Ĉ) is a function mapping requirement identifiers to subsets

of contracts, such that
⋃

r∈R ρ(r) = C ∪ Ĉ.

We say that a requirement interface is receptive if in any state it has defined
behaviors for all inputs, that is

∨
(ϕ̂,ψ̂)∈Ĉ ϕ̂ and

∨
(ϕ,ψ)∈C ϕ are both valid. A

requirement interface is fully-observable if XH = ∅. A requirement interface is
deterministic if for all (ϕ̂, ψ̂) ∈ Ĉ, ψ̂ has the form

∧
x∈XO

x′ = c, where c is
a constant of the appropriate type, and for all (ϕ, ψ) ∈ C, ψ has the form∧

x∈Xctr
x′ = f(X), where f is a function over X that has the same type as x.

Example 1. We use the N -bounded FIFO buffer example to illustrate all the
concepts introduced in the paper. Let Abeh be the behavioral model of the buffer.
The buffer has two Boolean input variables enq, deq, i.e. Xbeh

I = {enq, deq}, two
Boolean output variables E, F, i.e. Xbeh

O = {E,F} and a bounded integer internal
variable k ∈ [0 : N] for some N ∈ N, i.e. Xbeh

H = {k}. The textual requirements
are listed below:

r0: The buffer is empty and the inputs are ignored in the initial state.

1 We adopt SUT-centric conventions to naming the roles of variable.
2 We sometimes use the direct notation (v, w′

I) |=A c and (v, w′
ctr) |=G c, where wI ∈

V (XI) and wctr ∈ V (Xctr).

Require, Test and Trace IT 117

r1: enq triggers an enqueue operation when the buffer is not full.
r2: deq triggers a dequeue operation when the buffer is not empty.
r3: E signals that the buffer is empty.
r4: F signals that the buffer is full.
r5: Simultaneous enq and deq (or their simultaneous absence), an enq on the

full buffer or a deq on the empty buffer have no effect.

We formally define3 Abeh as Ĉbeh = {c0}, Cbeh = {ci | i ∈ [1, 5]}, Rbeh = {ri | i ∈
[0, 5]} and ρbeh(ri) = {ci}, where

c0 : true
 (k′ = 0) ∧ E′ ∧ ¬F′

c1 : enq′ ∧ ¬deq′ ∧ k < N
 k′ = k + 1
c2 : ¬enq′ ∧ deq′ ∧ k > 0
 k′ = k − 1
c3 : true
 k′ = 0 ⇔ E′

c4 : true
 k′ = N ⇔ F′

c5 : (enq′ = deq′) ∨ (enq′ ∧ F) ∨ (deq′ ∧ E)
 k′ = k

2.2 Semantics

Given a requirement interface A defined over X , let V = V (X)∪{v̂} denote the
set of states in A, where a state v is a valuation v ∈ V (X) or the initial state
v̂
∈ V (X). The latter is not a valuation, as the initial contracts do not specify
unprimed and input variables. There is a transition between two states v and v′

if (v, v′) satisfies all its contracts. The transitions are labeled by the (possibly
empty) set of requirement identifiers corresponding to contracts for which (v, v′)
satisfies their assumptions. The semantics [[A]] of A is the following LTS.

Definition 2. The semantics of the requirement interface A is the LTS [[A]] =
〈V, v̂, L, T 〉, where V is the set of states, v̂ is the initial state, L = P(R) is the
set of labels and T ⊆ V × L× V is the transition relation, such that:

– (v̂, R, v) ∈ T if v ∈ V (X),
∧

ĉ∈Ĉ(v̂, v) |= ĉ and R = {r | (v̂, v) |=A

ĉ for some ĉ ∈ Ĉ and ĉ ∈ ρ(r)};
– (v,R, v′) ∈ T if v, v′ ∈ V (X),

∧
c∈C(v, v

′) |= c and R = {r | (v, v′) |=A

c for some c ∈ C and c ∈ ρ(r)}.
We say that τ = v0

R1−−→ v1
R2−−→ · · · Rn−−→ vn is an execution of the requirements

interface A if v0 = v̂ and for all 1 ≤ i ≤ n− 1, (vi, Ri+1, vi+1) ∈ T . In addition,

we use the following notation: (1) v
R−→ iff ∃v′ ∈ V (X) s.t. v

R−→ v′; (2) v → v′

iff ∃R ∈ L s.t. v
R−→ v′; (3) v → iff ∃v′ ∈ V (X) s.t. v → v′; (4) v

ε
=⇒ v′ iff

v = v′; (5) v
w
=⇒ v′ iff ∃Y ⊆ X s.t. π(v′)[Y] = w and v → v′; (6) v

w
=⇒ iff

∃v′, Y ⊆ X s.t. π(v′)[Y] = w and v → v′; (7) v w1·w2···wn=======⇒ v′ iff ∃v1, . . . , vn−1, vn
s.t. v

w1=⇒ v1
w2=⇒ · · · vn wn=⇒ v′; and (8) v

w1·w2···wn=======⇒ iff ∃v′ s.t. v w1·w2···wn=======⇒ v′.
We say that a sequence σ ∈ V (Xobs)

∗ is a trace of A if v̂
σ
=⇒. We denote by

L(A) the set of all traces of A. Given a trace σ of A, let A after σ = {v | v̂ σ
=⇒ v}.

Given a state v ∈ V , let succ(v) = {v′ | v → v′} be the set of successors of v.
3 For readability we use the concrete syntax ϕ � ψ to denote (ϕ,ψ) in our examples.

118 B.K. Aichernig et al.

2.3 Consistency, Refinement and Conjunction

A requirement interface consists of a set of contracts, that can be conflicting.
Such an interface does not allow any correct implementation. We say that a re-
quirement interface is consistent if it allows at least one correct implementation.

Definition 3. Let A be a requirement interface, [[A]] its associated LTS, v ∈ V
a state and C = Ĉ if v is initial, and C otherwise. We say that a state v ∈ V is
consistent, denoted by cons(v), if for all wI ∈ V (XI), there exists v′ such that
wI = π(v′)[XI],

∧
c∈C(v, v

′) |= c and cons(v′). We say that A is consistent if
cons(v̂).

Example 2. Abeh is consistent – every reachable state accepts every input valu-
ation and generates an output valuation satisfying all contracts. Consider now
replacing c2 in Abeh with the contract c′2 : ¬enq′ ∧ deq′ ∧ k ≥ 0
 k′ = k − 1,
that incorrectly models r2 and decreases the counter k upon deq even when the
buffer is empty, setting it to the value minus one. This causes an inconsistency
with the contracts c3 and c5, that state that if k equals zero the buffer is empty,
and that dequeue on an empty buffer has no effect on k.

We define the refinement relation between two requirement interfaces A1 and
A2, denoted by A2 � A1, as trace inclusion.

Definition 4. Let A1 and A2 be two requirement interfaces. We say that A2

refines A1, denoted by A2 � A1, if (1) A1 and A2 have the same sets XI , XO

and XH of variables; and (2) L(A1) ⊆ L(A2).

We use a requirement interface to model a view of a system. Multiple views
are combined by conjunction. The conjunction of two requirement interfaces is
another requirement interface that is either inconsistent due to a conflict between
views, or is the greatest lower bound with respect to the refinement relation. The
conjunction of A1 and A2, denoted by A1 ∧ A2, is defined if the two interfaces
share the same sets XI , XO and XH of variables.

Definition 5. Let A1 = 〈XI , XH , XO, Ĉ
1, C1,R1, ρ1〉 and A2 = 〈XI , XH , XO,

Ĉ2, C2,R2, ρ2〉 be two requirement interfaces. Their conjunction A = A1 ∧A2 is
the requirement interface 〈XI , XH , XO, Ĉ, C,R, ρ〉, where
– Ĉ = Ĉ1 ∪ Ĉ2 and C = C1 ∪ C2;
– R = R1 ∪R2; and
– ρ(r) = ρ1(r) if r ∈ ρ1 and ρ(r) = ρ2(r) otherwise.

Remark: For refinement and conjunction, we require the two interfaces to share
the same alphabet. This additional condition is used to simplify definitions. It
does not restrict the modeling – arbitrary interfaces can have their alphabets
equalized without changing their properties by taking union of respective input,
output and hidden variables. Contracts in the transformed interfaces do not
constrain newly introduced variables. For requirement interfaces A1 and A2,
alphabet equalization is defined if (X1

I ∪ X2
I) ∩ (X1

ctr ∪ X2
ctr) = (X1

O ∪ X2
O) ∩

(X1
H ∪X2

H) = ∅. Otherwise, A1
� A2 and vice versa, and A1 ∧A2 is not defined.

Require, Test and Trace IT 119

Example 3. We now consider a power consumption view of the bounded FIFO
buffer. Its model Apc has the Boolean input variables enq and deq and a bounded
integer output variable pc. The following textual requirements specify Apc:

ra: The power consumption equals zero when no enq/deq is requested.
rb: The power consumption is bounded to 2 units otherwise.

The interface Apc consists of Ĉpc = Cpc = {ca, cb},
Rpc = {ri | i ∈ {a, b}} and ρ(ri) = {ci}, where:

ca : ¬enq ∧ ¬deq
 pc′ = 0
cb : enq ∨ deq
 pc′ ≤ 2

The conjunction Abuf = Abeh ∧ Apc is the requirement interface such that
Xbuf

I = {enq, deq}, Xbuf
O = {E,F, pc}, Xbuf

H = {k}, Ĉbuf = {c0, ca, cb}, Cbuf =
{c1, c2, c3, c4, c5, ca, cb}, Rpc = {ri | i ∈ {a, b, 0, 1, 2, 3, 4, 5}}, and ρ(ri) = {ci}.

The conjunction of two requirement interfaces with the same alphabet is the
intersection of their traces.

Theorem 1. Let A1 and A2 be two consistent requirement interfaces defined
over the same alphabet. Then either A1 ∧ A2 is inconsistent, or L(A1 ∧ A2) =
L(A1) ∩ L(A2).

We now show some properties of requirement interfaces.
The conjunction of two requirement interfaces with the same alphabet is either

inconsistent, or it is the greatest lower bound with respect to refinement.

Theorem 2. Let A1 and A2 be two consistent requirement interfaces defined
over the same alphabet such that A1 ∧A2 is consistent. Then A1 ∧A2 � A1 and
A1 ∧ A2 � A2, and for all consistent requirement interfaces A, if A � A1 and
A � A2, then A � A1 ∧ A2.

The following theorem states that the conjunction of an inconsistent require-
ment interface with any other interface remains inconsistent. This result enables
incremental detection of inconsistent specifications.

Theorem 3. Let A be an inconsistent requirement interface. Then for all con-
sistent requirement interfaces A′ with the same alphabet as A, A ∧ A′ is also
inconsistent.

For proofs we refer to our technical report [4].

3 Testing and Tracing

In this section, we present our test-case generation and execution framework and
instantiate it with bounded model checking techniques. For now, we assume that
all variables range over finite domains. This restriction can be lifted by consid-
ering richer data domains in addition to theories that have decidable quantifier
elimination, such as linear arithmetic over reals. Note that before executing the
test-case generation, we can apply a consistency check on the requirement inter-
face. For details, we refer to our technical report [4].

120 B.K. Aichernig et al.

3.1 Test Case Generation

A test case is an experiment executed on the SUT I by the tester. We assume
that I is a black-box that is only accessed via its observable interface. We assume
that I can be modeled as an input-enabled, deterministic4 requirement interface.
Without loss of generality, we can represent I as a total sequential function
I : V (XI) × V (Xobs)

∗ → V (XO). A test case TA for a requirement interface A
overX takes a history of actual input/output observations σ ∈ L(A) and returns
either the next input value to be executed or a verdict. Hence, a test case can
be represented as a partial function TA : L(A) → V (XI) ∪ {pass, fail}.

We first consider the problem of generating a test case from A. The test
case generation procedure is driven by a test purpose. Here, a test purpose is a
condition specifying the target set of states that a test execution should reach.
Hence, it is a formula Π defined over Xobs.

Given a requirement interface A, let φ̂ =
∨

(ϕ̂,ψ̂)∈Ĉ ϕ̂ ∧ ∧
(ϕ̂,ψ̂)∈Ĉ ϕ̂ → ψ̂ and

φ =
∨

(ϕ,ψ)∈C ϕ ∧ ∧
(ϕ,ψ)∈C ϕ → ψ. The predicates φ̂ and φ encode the transition

relation of A, with the additional requirement that at least one assumption
must be satisfied, thus avoiding input vectors for which the test purpose can be
trivially reached due to under-specification. A test case for A that can reach Π
is defined iff there exists a trace σ = σ′ ·wobs in L(A) such that wobs |= Π . The
test purpose Π can be reached in A in at most k steps if

∃i,X0, . . . , Xk. i ≤ n ∧ φ0 ∧ . . . ∧ φk ∧
∨

i≤k

Π [Xobs\X i
obs],

where φ0 = φ̂[X ′\X0] and φi = φ[X ′\X i, X\X i−1] represent the transition
relation of A unfolded in i steps.

Given A and Π , assume that there exists a trace σ in L(A) that reaches Π .
Let σI be a projection to inputs. π(σ)[XI] = w0

I · w1
I · · ·wn

I . We first compute
ωσI ,A (see Algorithm 1), a formula5 characterizing the set of output sequences
that A allows on input σI .

Algorithm 1. OutMonitor

Input: σI = w0
I · w1

I · · ·wn
I , A

Output: ωσI ,A

1: ω0
σI ,A

← θ̂[X ′
I\w0

I , X
′
ctr\X0

ctr]
2: for i = 1 to n do
3: ωi

σI ,A
← θ[XI\wi-1

I , X ′
I\wi

I , Xctr\Xi-1
ctr , X

′
ctr\Xi

ctr]
4: end for
5: ω∗

σI ,A
← ω0

σI ,A
∧ . . . ∧ ωn

σI ,A

6: ωσI ,A ← qe(∃X0
H , X1

H , . . . , Xn
H .ω∗

σI ,A
)

7: return ωσI ,A

Let θ̂ =
∧

(ϕ̂,ψ̂)∈Ĉ ϕ̂ → ψ̂

and θ =
∧

(ϕ,ψ) ϕ → ψ.
For every step i, we repre-
sent by ωi

σI ,A
the allowed

behavior of A constrained
by σI (Lines 1 − 4). The
formula ω∗

σI ,A
(Line 5) de-

scribes the transition rela-
tion of A, unfolded to n
steps and constrained by
σI . However, this formula

refers to the hidden variables of A and cannot be directly used to characterize

4 The restriction to deterministic implementations is for presentation purposes only,
the technique is general and can also be applied to non-deterministic systems.

5 The formula ωσI ,A can be seen as a monitor for A under input σI .

Require, Test and Trace IT 121

the set of output sequences allowed by A under σI . Since any implementation of
hidden variables that preserves correctness of the outputs is acceptable, it suf-
fices to existentially quantify over hidden variables in ω∗

σI ,A
. After eliminating

the existential quantifiers with strategy qe, we obtain a simplified formula ωσI ,A

over output variables only (Line 6).

Algorithm 2. TσI ,A

Input: σI = w0
I · · ·wn

I , A, σ = w0
obs · · ·wk

obs

Output: V (XI
I) ∪ {pass, fail}

1: ωσI ,A ← OutMonitor(σI , A)
2: for i = 0 to k do
3: wi

O ← π(wi
obs)[XO]

4: end for
5: ω0,k

σI ,A
← ωσI ,A[X

0
O\w0

O, . . . , X
k
O\wk

O]

6: if ω0,k
σI ,A

= true then
7: return pass
8: else if ω0,k

σI ,A
= false then

9: return fail
10: else
11: return wk+1

I

12: end if

Let TσI ,A be a test case, pa-
rameterized by the input se-
quence σI and the requirement
interface A from which it was
generated. It is a partial func-
tion, where TσI ,A(σ) is defined if
|σ| ≤ |σI | and for all 0 ≤ i ≤ |σ|,
wi

I = π(wi
obs)[XI], where σI =

w0
I · · ·wn

I and σ = w0
obs · · ·wk

obs.
Algorithm 2 gives a constructive
definition of the test case TσI ,A.
Incremental test-case generation:
So far, we considered test case
generation for a flat requirement
interface A. We now describe how
test cases can be incrementally
generated when the interface A

consists of multiple views6, i.e. A = A1 ∧ A2. Let Π be a test purpose for the
view modeled with A1. We first check whether Π can be reached in A1, which is
a simpler check than doing it on the conjunction A1 ∧A2. If Π can be reached,
we fix the input sequence σI that drives A1 to Π . Instead of creating the test
case TσI ,A1 , we generate TσI ,A1∧A2 , which keeps σI as the input sequence, but
collects output guarantees of A1 and A2. Such a test case drives the SUT to-
wards the test purpose in the view modeled by A1, but is able to detect possible
violations of both A1 and A2.

We note that test case generation for fully observable interfaces is simpler
than the general case, because there is no need for the quantifier elimination,
due to the absence of hidden variables in the model. A test case from a deter-
ministic interface is even simpler as it is a direct mapping from the observable
trace that reaches the test purpose – there is no need to collect constraints on
the output since the deterministic interface does not admit any freedom to the
implementation on the choice of output valuations.

Example 4. Consider the requirement interface Abeh for the behavioral view of
the 2-bounded buffer, and the test purpose F. Our test case generation proce-
dure gives the input vector σI of size 3 such that σI [0] = (enq, deq), σI [1] =
(enq,¬deq) and σI [2] = (enq,¬deq). The observable output constraints for σI

(encoded in OutMonitor) are E ∧ ¬F in step 0, ¬E ∧ ¬F in step 1 and ¬E ∧ F in
step 2. Together, the input vector σI and the associated output constraints form
the test case TσI ,beh. By using the incremental test case generation procedure,

6 We consider two views for the sake of simplicity.

122 B.K. Aichernig et al.

we can extend TσI ,beh to a test case TσI ,buf that also takes into account the power
consumption view of the buffer, resulting in output constraints E ∧ ¬F ∧ pc ≤ 2
in step 0, ¬E ∧ ¬F ∧ pc ≤ 2 in step 1 and ¬E ∧ F ∧ pc ≤ 2 in step 2.

3.2 Test Case Execution

Algorithm 3. TestExec

Input: I , TσI ,A

Output: {pass, fail}
1: in : V (XI) ∪ {pass, fail}
2: out : V (XO)
3: σ ← ε
4: in ← TσI ,A(A,σ)
5: while in �∈ {pass, fail} do
6: out ← I(in, σ)
7: σ ← σ · (in ∪ out)
8: in ← TσI ,A(A,σ)
9: end while
10: return in

Let A be a requirement interface, I a SUT with
the same set of variables as A, and TσI ,A a
test case generated from A. Algorithm 3 defines
the test case execution procedure TestExec that
takes as input I and TσI ,A and outputs a verdict
pass or fail. TestExec gets the next test input in
from the given test case TσI ,A (Lines 4, 8), stim-
ulates at every step the SUT I with this input
and waits for an output out (Line 6). The new in-
puts/outputs observed are stored in σ (Line 7),
which is given as input to TσI ,A. The test case
monitors if the observed output is correct with re-
spect to A. The procedure continues until a pass

or fail verdict is reached (Line 5). Finally, the verdict is returned (Line 10).

Proposition 1. Let A, TσI ,A and I be arbitrary requirement interface, test case
generated from A and implementation, respectively. Then, we have that:

1. if I � A, then TestExec(I, TσI ,A) = pass; and
2. if TestExec(I, TσI ,A) = fail, then I
� A.

Proposition 1 immediately holds for test cases generated incrementally from
a requirement interface of the form A = A1 ∧ A2. In addition, we notice that
a test case TσI ,A1 , generated from a single view A1 of A does not need to be
extended to be useful, and can be used to incrementally show that a SUT does
not conform to its specification. We state the property in the following corollary,
that follows directly from Proposition 1 and Theorem 2.

Corollary 1. Let A = A1 ∧ A2 be an arbitrary requirement interface composed
of A1 and A2, I an arbitrary implementation and TσI ,A1 an arbitrary test case
generated from A1. Then, if TestExec(I, TσI ,A1) = fail, then I
� A1 ∧A2.

3.3 Traceability

Requirement identifiers as first-class elements in requirement interfaces facilitate
traceability between informal requirements, views and test cases. A test case
generated from a view Ai of an interface A = A1 ∧ . . .∧An is naturally mapped
to the set Ri of requirements. In addition, requirement identifiers enable tracing
violations caught during consistency checking and test case execution back to
the conflicting/violated requirements.

Tracing inconsistent interfaces to conflicting requirements: When we detect
an inconsistency in a requirement interface A defining a set of contracts C, we

Require, Test and Trace IT 123

use QuickXPlain, a standard conflict set detection algorithm [17], in order to
compute a minimal set of contracts C′ ⊆ C such that C′ is inconsistent. Once
we compute C′, we use the requirement mapping function ρ defined in A, to
trace back the set R′ ⊆ R of conflicting requirements.

Tracing fail verdicts to violated requirements: In fully observable interfaces,
every trace induces at most one execution. In that case, a test case resulting
in fail can be traced to a unique set of violated requirements. This is not the
case in general for interfaces with hidden variables. A trace that violates such
an interface may induce multiple executions resulting in fail with different val-
uations of hidden variables, and thus different sets of violated requirements. In
this case, we report all sets to the user, but ignore internal valuations that would
introduce an internal requirement violation before inducing the visible violation.
Again, more details can be found in our technical report [4].

4 Implementation and Experimental Results

Implementation and experimental setup: We present a prototype that imple-
ments our test case generation framework introduced in Section 3. The proto-
type was integrated in our model-based testing toolchain MoMuT7 and named
MoMuT::REQs. The implementation uses Scala 2.10 and the SMT solver Z3.
The tool implements both monolithic and incremental approaches to test case
generation. All experiments were run on a MacBook Pro with a 2.53 GHz Intel
Core 2 Duo Processor and 4 GB RAM.

Demonstrating example: In order to experiment with our implementation,
we model three variants of the buffer behavioral interface. All three variants
model buffers of size 150, with different internal structure. Buffer 1 models a
simple buffer with a single counter variable k. Buffer 2 models a buffer that is
composed of two internal buffers of size 75 each and Buffer 3 models a buffer
that is composed of three internal buffers of size 50 each. We also remodel a
variant of the power consumption interface that created a dependency between
the power used and the state of the internal buffers (idle/used).

We compare the monolithic and incremental approach to test case generation,
by generating tests for the conjunction of the buffer interfaces and the power
consumption interface, and incrementally, by generating tests only for the buffer
interfaces, and completing them with the power consumption interface. Table 1
summarizes the results. The three examples diverge in complexity, expressed in
the number of contracts and variables. Our results show that the incremental
approach outperforms the monolithic one, resulting in speed-ups from 33% to
68%. Results on the consistency check can be found in our technical report [4].

Industrial application: We present an automotive use case from the European
ARTEMIS project8, that partially motivated our work on requirement inter-
faces. The use case was initiated by our industrial partner Infineon and evolves
around building a formal model for analysis and test case generation for the

7 http://www.momut.org
8 https://mbat-artemis.eu

http://www.momut.org
https://mbat-artemis.eu

124 B.K. Aichernig et al.

Table 1. Run-time in seconds for incremental and monolithic test case generation

Contracts # Variables tinc tmon speed-up

Buffer 1 6 6 10 16.8 68 %
Buffer 2 15 12 36.7 48.8 33 %
Buffer 3 20 15 69 115.6 68 %

safing engine of an airbag chip. The requirements document, developed by a
customer of Infineon, is written in natural (English) language. We identified 39
requirements that represent the core of the system’s functionality and iteratively
formalized them in collaboration with the designers of Infineon. The resulting
formal requirement interface is deterministic and consists of 36 contracts.

The formalization process revealed several under-specifications in the infor-
mal requirements that were causing some ambiguities. These ambiguities were
resolved in collaboration with the designers. The consistency check revealed two
inconsistencies between the requirements. Tracing the conflicts back to the infor-
mal requirements allowed their fixing in the customer requirements document.

We generated 21 test cases from the formalized requirements, that were de-
signed to ensure that every boolean internal and output variable is at least
activated once and that every possible state of the underlying finite state ma-
chine is reached at least once. The average length of the test cases was 3.4, but
since the test cases are synchronous, each of the steps is able to trigger sev-
eral inputs and outputs at once. The test cases were used to test the Simulink
model of the system, developed by Infineon as the part of their design process.
The Simulink model of the safing engine consists of a state machine with seven
states, ten smaller blocks transforming the input signals and a Matlab function
calculating the final outputs according to the current state and the input signals.
In order to execute the test cases, Infineons engineers developed a test adapter
that transforms abstract input values from the test cases to actual inputs passed
to the Simulink model. We illustrate a part of the use case with three customer
requirements that give the flavor of the underlying system’s functionality:

r1: There shall be seven operating states for the safing engine: RESET state,
INITIAL state, DIAGNOSTIC state, TEST state, NORMAL state, SAFE state
and DESTRUCTION state.

r2: The safing engine shall change per default from RESET state to INIT state.
r3: On a reset signal, the safing engine shall enter RESET state and stay while

the reset signal is active.

These informal requirements were formalized with the following contracts with
a one to one relationship between requirements and contracts:

c1: true
 state’ = RESET ∨ state’ = INIT ∨ state’ = DIAG ∨ state’ = TEST
∨ state’ = NORM ∨ state’ = SAFE ∨ state’ = DESTR

c2 : state = RESET
 state’ = INIT
c3 : reset’
 state’ = RESET

This case study extends an earlier one [2] with test-case execution and a
detailed mutation analysis evaluating the quality of the generated test cases.

Require, Test and Trace IT 125

We created 66 mutants (six turned out to be equivalent), by flipping every
boolean signal (also internal ones) involved in the Matlab function calculating
the final output signals. Our 21 test cases were able to detect 31 of the 60 non-
equivalent mutants, giving a mutation score of 51.6%. These numbers show that
state and signal coverage is not enough to find all faults and confirm the need to
incorporate a more sophisticated test case generation methodology. Therefore,
we manually added 10 test purposes generating 10 additional test cases. The
combined 31 test cases finally reached a 100% mutation score. This means that
all injected faults were detected. In order to achieve this high mutation score
fully automatically, we will add support for fault-based test-case generation to
our tool, like we recently did for UML [1] and timed automata [3].

5 Related Work

The main inspiration for this work was the introduction of the conjunction op-
eration and the investigation of its properties [11] in the context of synchronous
interface theories [9]. While the mathematical properties of the conjunction in
different interface theories were further studied in [6,21,15], we are not aware of
any similar work related to model-based testing.

Synchronous data-flow modeling [7] has been an active area of research in
the past. The most important synchronous data-flow programming languages
are Lustre [8] and SIGNAL [13]. These languages are implementation languages,
while requirement interfaces enable specifying high-level properties of such pro-
grams. Testing of Lustre-like programs was studied by Raymond et al. [20] and
Papailiopoulou [19]. Compositional properties of specifications in the context
of testing were studied before [25,18,22,5,10]. None of these workes consider
synchronous data-flow specifications, and the compositional properties are in-
vestigated with respect to the parallel composition and hiding operations, but
not conjunction. A different notion of conjunction is introduced for the test case
generation with SAL [14]. In that work, the authors encode test purposes as trap
variables, and conjunct them in order to drive the test case generation process to-
wards reaching all the test purposes with a single test case. Consistency checking
of contracts has been studied in [12], yet for a weaker notion of consistency.

Our specifications using constraints share similarities with the Z specification
language [23], that also follows a multiple-viewpoint approach to structuring a
specification into pieces called schemas. However, a Z schema defines the dynam-
ics of a system in terms of operations. In contrast, our requirement interfaces
follow the style of synchronous languages.

Finally, the application of the TCG and consistency checking tool for require-
ment interfaces and its integration into a set of software engineering tools was
presented in [2]. That work focuses on the requirement-driven testing methodol-
ogy, workflow and tool integration and gives no technical details about require-
ment interfaces. In contrast, this paper provides a sound mathematical theory
for requirements interfaces and their associated incremental TCG, consistency
checking and tracing procedures.

126 B.K. Aichernig et al.

6 Conclusions and Future Work

Wepresented a framework for requirement-drivenmodeling and testing of complex
systems that naturally enablesmultiple-view incrementalmodeling of synchronous
data-flow systems. The formalism enables conformance testing of complex systems
to their requirements and combining partial models via conjunction.

Our requirement-driven framework opens many future directions. We will ex-
tend our procedure to allow generation of adaptive test cases. We will investigate
in the future other compositional operations in the context of testing synchronous
systems such as the parallel composition and quotient. We also plan to study
whether partitioning the requirements into views is feasible via (semi) automa-
tion, based on static analysis of input/output dependencies between require-
ments. We will consider additional coverage criteria and test purposes and will
use our implementation to generate test cases for other industrial-size systems
from our automotive, avionics and railways partners.

Acknowledgment. We are grateful to the anonymous reviewers for their valuable
and detailled feedback. The research leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreements No 269335 and No 332830
and from the Austrian Research Promotion Agency (FFG) under grant agreements
No 829817 and No 838498 for the implementation of the projects MBAT, Combined
Model-based Analysis and Testing of Embedded Systems and CRYSTAL, Critical Sys-
tem Engineering Acceleration.

References

1. Aichernig, B.K., Auer, J., Jöbstl, E., Korošec, R., Krenn, W., Schlick, R., Schmidt,
B.V.: Model-based mutation testing of an industrial measurement device. In: Seidl,
M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 1–19. Springer, Heidelberg
(2014)

2. Bernhard, K.A., Hörmaier, K., Lorber, F., Ničković, D., Schlick, R., Simoneau, D.,
Tiran, S.: Integration of Requirements Engineering and Test-Case Generation via
OSLC. In: QSIC, pp. 117–126 (2014)

3. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants — model-based mu-
tation testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP 2013.
LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013)

4. Aichernig, B.K., Lorber, F., Ničković, D., Tiran, S.: Require, test and trace it.
Technical Report IST-MBT-2014-03, Graz University of Technology, Institute
for Software Technology (2014), https://online.tugraz.at/tug online/voe main2.
getVollText?pDocumentNr=637834&pCurrPk=77579

5. Aiguier, M., Boulanger, F., Kanso, B.: A formal abstract framework for modelling
and testing complex software systems. Theor. Comput. Sci. 455, 66–97 (2012)

6. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

7. Benveniste, A., Caspi, P., Le Guernic, P., Halbwachs, N.: Data-flow synchronous
languages. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 1–45. Springer, Heidelberg (1994)

https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=637834&pCurrPk=77579
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=637834&pCurrPk=77579

Require, Test and Trace IT 127

8. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for
programming synchronous systems. In: POPL, pp. 178–188. ACM Press (1987)

9. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Synchronous and
bidirectional component interfaces. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 414–427. Springer, Heidelberg (2002)

10. Daca, P., Henzinger, T.A., Krenn, W., Ničković, D.: Compositional specifica-
tions for ioco testing: Technical report. Technical report, IST Austria (2014),
http://repository.ist.ac.at/152/

11. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: EMSOFT, pp. 79–88. ACM (2008)

12. Ellen, C., Sieverding, S., Hungar, H.: Detecting consistencies and inconsistencies
of pattern-based functional requirements. In: Lang, F., Flammini, F. (eds.) FMICS
2014. LNCS, vol. 8718, pp. 155–169. Springer, Heidelberg (2014)

13. Gautier, T., Le Guernic, P.: Signal: A declarative language for synchronous pro-
gramming of real-time systems. In: Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274,
pp. 257–277. Springer, Heidelberg (1987)

14. Hamon, G., De Moura, L., Rushby, J.: Automated test generation with sal. CSL
Technical Note (2005)

15. Henzinger, T.A., Ničković, D.: Independent implementability of viewpoints. In:
Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539, pp.
380–395. Springer, Heidelberg (2012)

16. ISO. ISO/DIS 26262-1 - Road vehicles - Functional safety - Part 1 Glossary. Techni-
cal report, International Organization for Standardization / Technical Committee
22 (ISO/TC 22), Geneva, Switzerland (July 2009)

17. Junker, U.: Quickxplain: Preferred explanations and relaxations for over-
constrained problems. In: AAAI, pp. 167–172. AAAI Press (2004)

18. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth-
ods in System Design 34(3), 238–304 (2009)

19. Papailiopoulou, V.: Automatic test generation for lustre/scade programs. In: ASE,
pp. 517–520. IEEE Computer Society, Washington, DC (2008)

20. Raymond, P., Nicollin, X., Halbwachs, N., Weber, D.: Automatic testing of reactive
systems. In: RTSS, pp. 200–209. IEEE Computer Society (1998)

21. Reineke, J., Tripakis, S.: Basic problems in multi-view modeling. Technical Report
UCB/EECS-2014-4, EECS Department, University of California, Berkeley (Jan-
uary 2014)

22. Sampaio, A., Nogueira, S., Mota, A.: Compositional verification of input-output
conformance via csp refinement checking. In: Breitman, K., Cavalcanti, A. (eds.)
ICFEM 2009. LNCS, vol. 5885, pp. 20–48. Springer, Heidelberg (2009)

23. Michael Spivey, J.: Z Notation - a reference manual, 2nd edn. Prentice Hall Inter-
national Series in Computer Science. Prentice Hall (1992)

24. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 17(3), 103–120 (1996)

25. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

http://repository.ist.ac.at/152/

	Require, Test and Trace IT
	1 Introduction
	2 Requirement Interfaces
	2.1 Syntax
	2.2 Semantics
	2.3 Consistency, Refinement and Conjunction

	3 Testing and Tracing
	3.1 Test Case Generation
	3.2 Test Case Execution
	3.3 Traceability

	4 Implementation and Experimental Results
	5 Related Work
	6 Conclusions and Future Work

