
Timed Mobility and Timed Communication

for Critical Systems

Bogdan Aman(�) and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science,
Blvd. Carol I no.11, 700506, Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. We present a simple but elegant prototyping language for
describing real-time systems including specific features as timeouts, ex-
plicit locations, timed migration and timed communication. The parallel
execution of a step is provided by multiset labelled transitions. In order
to illustrate its features, we describe a railway control system. Moreover,
we define some behavioural equivalences matching multisets of actions
that could happen in a given range of time (up to a timeout). We define
the strong time-bounded bisimulation and the strong open time-bounded
bisimulation, and prove that the latter one is a congruence. By using var-
ious bisimulations over the behaviours of real-time systems, we can check
which behaviours are closer to an optimal and safe behaviour.

1 Introduction

To emphasize real-time aspects in critical systems, we use our prototyping lan-
guage called rTiMo (real Timed Mobility) having specific features as timeouts,
explicit locations, timed migration and timed communication. The timed con-
straints on migration and communication are used to coordinate interactions
among various processes in time-aware systems. A notable advantage of using
rTiMo to describe real-time critical systems is the possibility to express natural
compositionality, explicit mobility, parallel execution of actions, scalable speci-
fication of complex systems in a modular fashion, and behavioural equivalences
between matching multisets of actions that could happen in a given range of
time (up to a timeout). Moreover, describing processes in rTiMo allows an au-
tomatic verification by using the model checking capabilities of Uppaal [1]. Here
we emphasize on the behaviours of the critical systems depending not only on
the order of actions, but also on the time at which the actions are performed.
Thus, correctness and performances issues are closely related. When choosing
which behavioural equivalence relation to adopt for a certain time-aware sys-
tem, we should decide what properties should be preserved by the equivalence
relation and how behaves the reliable system taken as reference. On the other
hand, all the equivalence relations should be compositional with respect to the
main constructs of the language: for example, if two systems are equivalent, then
they remain equivalent when composed in parallel with the same third system.
This allows compositional reasoning, and so each parallel component can be
substituted by equivalent ones.

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 146–161, 2015.
DOI: 10.1007/978-3-319-19458-5_10

Timed Mobility and Timed Communication for Critical Systems 147

In critical systems the time issues are essential. A correct evolution depends
not only on the actions taken, but also when the actions happen. A system may
crash if an action is taken too early or too late. We illustrate how rTiMoworks
by describing a railway control system, a well-known example of a real-time
system [11]. The system used in this paper is composed of two railways that
intersect on a mobile bridge, together with several trains that want to cross the
bridge. The mobile bridge is used to allow ships sail on the river below. The most
important security rule is to avoid collision by prohibiting more than one train
to cross the bridge at any given moment. The railway crossing is equipped with
a controller that either allows or stops trains from crossing, depending on the
state of the bridge (up or down). We use new temporal bisimilarities to define
equivalence classes of trains offering similar services with respect to the waiting
time (possibly up to an acceptable time difference). By using various bisimu-
lations over the behaviours of real-time critical systems, we can identify which
behaviours are closer to an optimal and safe behaviour (i.e., reductions work
as expected) and compare it with sub-optimal ones containing faults (unaccept-
able reductions). The bisimulations can return some useful information about
the compared processes: a qualitative indication that a sub-optimal behaviour
might be present, and also quantitative information about the possible location
or moment of a fault.

2 rTiMo : Syntax and Semantics

In rTiMo the processes can migrate between different locations of a distributed
environment consisting of a number of explicit distinct locations. Timing con-
straints over migration and communication actions are used to coordinate pro-
cesses in time and space. The passage of time in rTiMo is described with respect
to a real-time global clock, while migration and communication actions are per-
formed in a maximal parallel manner. Timing constraints for migration allow one
to specify a temporal timeout after which a mobile process must move to another
location. Two processes may communicate only if they are present at the same
location. In rTiMo, the transitions caused by performing actions with timeouts
are alternated with continuous transitions. The semantics of rTiMo is provided
by multiset labelled transitions in which multisets of actions are executed in
parallel (in one step).

Timing constraints applied to mobile processes allow us to specify how many
time units are required by a process to move from one location to another. A
timer in rTiMo is denoted by Δt, where t ∈ R+. Such a timer is associated with
a migration action such as goΔtbridge then P indicating that process P moves
to location bridge after t time units. A timer Δ5 associated with an output
communication process aΔ5!〈z〉 then P else Q makes the channel a available
for communication (namely it can send z) for a period of 5 time units. It is also
possible to restrict the waiting time for an input communication process aΔ4?(x)
then P else Q along a channel a; if the interaction does not happen before the
timeout 4, the process gives up and continues as the alternative process Q.

148 B. Aman and G. Ciobanu

The syntax of rTiMo is given in Table 1, where the following are assumed:
• a set Loc of locations, a set Chan of communication channels, and a set Id
of process identifiers (each id ∈ Id has its arity mid);

• for each id ∈ Id there is a unique process definition id(u1, . . . , umid
)
def
= Pid,

where the distinct variables ui are parameters;
• a ∈ Chan is a communication channel; l is a location or a location variable;
• t ∈ R+ is a timeout of an action; u is a tuple of variables;
• v is a tuple of expressions built from values, variables and allowed operations.

Table 1. rTiMo Syntax

Processes P,Q ::= aΔt!〈v〉 then P else Q � (output)
aΔt?(u) then P else Q � (input)
goΔtl then P � (move)
0 � (termination)
id(v) � (recursion)
P | Q (parallel)

Located Processes L ::= l[[P]]
Systems N ::= L � L | N

The only variable binding constructor is aΔt?(u) then P else Q that binds the
variable u within P (but not within Q). fv(P) is used to denote the free variables
of a process P (and similarly for systems); for a process definition, is assumed
that fv(Pid) ⊆ {u1, . . . , umid

}, where ui are the process parameters. Processes
are defined up-to an alpha-conversion, and {v/u, . . .}P denotes P in which all
free occurrences of the variable u are replaced by v, eventually after alpha-
converting P in order to avoid clashes.

Mobility is provided by a process goΔtl then P that describes the migration
from the current location to the location indicated by l after t time units. Since l
can be a variable, and so its value is assigned dynamically through communica-
tion with other processes, this form of migration supports a flexible scheme for
the movement of processes from one location to another. Thus, the behaviour can
adapt to various changes of the distributed environment. Processes are further
constructed from the (terminated) process 0, and parallel composition P | Q. A
located process l[[P]] specifies a process P running at location l, and a system
is built from its components L | N . A system N is well-formed if there are no
free variables in N .

Operational Semantics. The first component of the operational semantics of
rTiMo is the structural equivalence ≡ over systems. The structural equivalence
is the smallest congruence such that the equalities in Table 2 hold. Essentially,
the role of≡ is to rearrange a system in order to apply the rules of the operational
semantics given in Table 3. Using the equalities of Table 2, a given system N
can always be transformed into a finite parallel composition of located processes
of the form l1[[P1]] | . . . | ln[[Pn]] such that no process Pi has the parallel
composition operator at its topmost level. Each located process li[[Pi]] is called
a component of N , and the whole expression l1[[P1]] | . . . | ln[[Pn]] is called a
component decomposition of the system N .

Timed Mobility and Timed Communication for Critical Systems 149

Table 2. rTiMo Structural Congruence

(NNULL) N | l[[0]] ≡ N
(NCOMM) N | N ′ ≡ N ′ | N
(NASSOC) (N | N ′) | N ′′ ≡ N | (N ′ | N ′′)
(NSPLIT) l[[P | Q]] ≡ l[[P]] | l[[Q]]

The operational semantics rules of rTiMo are presented in Table 3. The mul-

tiset labelled transitions of form N
Λ−→ N ′ use a multiset Λ to indicate the actions

executed in parallel in one step. When the multiset Λ contains only one action λ,

in order to simplify the notation, N
{λ}−−→ N ′ is simply written as N

λ−→ N ′. The
transitions of form N

t� N ′ represent a time step of length t.

Table 3. rTiMo Operational Semantics

(Stop) l[[0]] � λ−→ (DStop) l[[0]]
t� l[[0]]

(DMove) if t ≥ t′ then l[[goΔtl′ then P]]
t′� l[[goΔt−t′ l′ then P]]

(Move0) l[[goΔ0l′ then P]]
l�l′−−→ l′[[P]]

(Com) l[[aΔt!〈v〉 then P else Q | aΔt′?(u) then P ′ else Q′]]
{v/u}@l−−−−−→ l[[P | {v/u}P ′]]

(DPut) if t ≥ t′ > 0 then l[[aΔt!〈v〉 then P else Q]]
t′� l[[aΔt−t′ !〈v〉 then P else Q]]

(Put0) l[[aΔ0!〈v〉 then P else Q]]
a!Δ0@l−−−−−→ l[[Q]]

(DGet) if t ≥ t′ > 0 then l[[aΔt?(u) then P else Q]]
t′� l[[aΔt−t′?(u) then P else Q]]

(Get0) l[[aΔ0?(u) then P else Q]]
a?Δ0@l−−−−−→ l[[Q]]

(DCall) if l[[{v/x}Pid]]
t� l[[P ′

id]] and id(v)
def
= Pid then l[[id(v)]]

t� l[[P ′
id]]

(Call) if l[[{v/x}Pid]]
id@l−−−→ l[[P ′

id]] and id(v)
def
= Pid then l[[id(v)]]

id@l−−−→ l[[P ′
id]]

(DPar) if N1
t� N ′

1, N2
t� N ′

2 and N1 | N2 � λ−→ then N1 | N2
t� N ′

1 | N ′
2

(Par) if N1
Λ1−−→ N ′

1 and N2
Λ2−−→ N ′

2 then N1 | N2
Λ1∪Λ2−−−−→ N ′

1 | N ′
2

(DEquiv) if N ≡ N ′, N ′ t� N ′′ and N ′′ ≡ N ′′′ then N
t� N ′′′

(Equiv) if N ≡ N ′, N ′ Λ−→ N ′′ and N ′′ ≡ N ′′′ then N
Λ−→ N ′′′

In rule (Move0), the process goΔ0l′ then P migrates from location l to loca-
tion l′ and evolves as process P . In rule (Com), a process aΔt!〈v〉 then P else Q
located at locationl, succeeds in sending a tuple of values v over channel a to pro-
cess aΔt?(u) then P ′ else Q′ also located at l. Both processes continue to execute
at location l, the first one as P and the second one as {v/u}P ′. If a communica-
tion action has a timer equal to 0, then by using the rule (Put0) for output action
or the rule (Get0) for input action, the generic process aΔ0 ∗ then P else Q
where ∗ ∈ {!〈v〉, ?(x)} continues as the process Q. Rule (Call) describes the
evolution of a recursion process. The rules (Equiv) and (DEquiv) are used to
rearrange a system in order to apply a rule. Rule (Par) is used to compose

150 B. Aman and G. Ciobanu

larger systems from smaller ones by putting them in parallel, and considering
the union of multisets of actions.

The rules devoted to the passing of time are starting with D. For instance,

in rule (DPar), N1 | N2 	 λ−→ means that no action λ (i.e, an action labelled by
l′ � l, {v/u}@l, id@l, goΔ0@l, a?Δ0@l or a!Δ0@l) can be applied in the system
N1 | N2. Negative premises are used to denote the fact that the passing to a new
step is performed based on the absence of actions; the use of negative premises
does not lead to an inconsistent set of rules.

A complete computational step is captured by a derivation of the form:

N
Λ−→ N1

t� N ′.
This means that a complete step is a parallel execution of individual actions

of Λ followed by a time step. Performing a complete step N
Λ−→ N1

t� N ′ means
that N ′ is directly reachable from N . If there is no applicable action (Λ = ∅),
N

Λ−→ N1
t� N ′ is written N

t� N ′ to indicate (only) the time progress.

Proposition 1. For all systems N , N ′ and N ′′, the following statements hold:

1. If N
t�N ′ and N

t�N ′′, then N ′≡N ′′;

2. N
(t+t′)� N ′ if and only if there is a N ′′ such that N

t� N ′′ and N ′′ t′� N ′.

The first item of Proposition 1 states that the passage of time does not intro-
duce any nondeterminism into the execution of a process. Moreover, if a process
is able to evolve to a certain time t, then it must evolve through every time
moment before t; this ensures that the process evolves continuously.

3 Modelling Critical Systems by Using rTiMo

The use of rTiMo for specifying critical systems is illustrated by considering
a railway bridge controller, a real-time problem concerned with the control of
accessing a mobile bridge by several trains according to the rule that the bridge
can be accessed only by one train at a time. The system is defined as a number
of trains (we use three trains), two railways (each divided into two sections on
each side of the bridge), and a mobile bridge that can allow ships to sail on the
river below (the bridge is up) or not (the bridge is down). This is a simplified
version of the system described in [11]. Since not all the actions can take place
simultaneously, their delays are modelled by timers.

The initial system is described in rTiMoby:

railway1a[[train1 | train3]] | railway1b[[0]] | railway2a[[train2]] | railway2b[[0]]
| bridge[[operate | control1]],

Timed Mobility and Timed Communication for Critical Systems 151

where the processes placed inside locations are as defined below.

Fig. 1. A railway crossing

In what follows branches that continue with a 0 process are omitted.
Waiting indefinitely on a channel a is abstracted by using the timer Δ∞.

train1 = goΔ15bridge then apprΔ20!〈train1, railway1a, railway1b〉
| stopΔ25?(x) then moveΔ∞?(y)

then (goΔ3bridge then goΔ7railway1b then train1′

| goΔ10bridge then leaveΔ1!〈train1〉)
else (goΔ2bridge then goΔ7railway1b then train1′

| goΔ9bridge then leaveΔ1!〈train1〉)
train2 = goΔ11bridge then apprΔ20!〈train2, railway2a, railway2b〉

| stopΔ21?(x) then moveΔ∞?(y) then (goΔ2bridge

then goΔ6railway2b then train2′

| goΔ8bridge then leaveΔ1!〈train2〉)
else (goΔ1bridge then goΔ6railway1b then train2′

| goΔ7bridge then leaveΔ1!〈train2〉)
train3 = goΔ1bridge then apprΔ20!〈train3, railway1a, railway2b〉

| stopΔ11?(x)then moveΔ∞?(y)
then (goΔ1bridge then goΔ5railway2b then train3′

| goΔ6bridge then leaveΔ1!〈train3〉)
else (goΔ0.5bridge then goΔ5railway1b then train3′

| goΔ5.5bridge then leaveΔ1!〈train3〉)
operate = downΔ∞?(v) then upΔ∞?(w) then operate

control1 = apprΔ∞?(x1, y1, z1) then (downΔ1!〈x1〉 | control0 | control2)
control0 = leaveΔ∞?(x) then (upΔ1!〈x1〉 | unblockΔ∞!〈x1〉)
controli = apprΔ∞?(xi, yi, zi)

then [goΔ0yi then stopΔ1!〈xi〉 | goΔ10iyi then moveΔ1!〈xi〉
| waitΔ10i?(x) then 0 else (downΔ10!〈x1〉 | control0)
| unblockΔ1?(z) then controli−1 else controli+1]

A train movement is abstractly modelled using go actions to describe the
migrations between the locations of the system (the parts of the railways and the
bridge). The synchronization between the controllers operating the bridge and
the trains is modelled by communication actions. When a train is approaching,
it communicates with the controli on channel appr, announcing the name of
the train, the current location and the destination. The timer Δ20 means that
the controli has to acknowledge in at most 20 units of time that the train is
approaching. If the bridge is occupied, the train has to be stopped in 10 units
of time from the receiving of the approach message; otherwise the train goes
to location bridge. When the controli decides to stop a train, it does it by

152 B. Aman and G. Ciobanu

synchronizing on channel stop at the train location. After a train was stopped,
it waits for the synchronization on the channel move allowing it to cross the
bridge. It can be noticed that if a train is stopped, then it takes a longer period
of time to cross the bridge.

The bridge has to ensure the following safety properties: the bridge is down
whenever a train is at the crossing, and it prevents trains crossing when another
train is engaged in crossing. The controller controli interacts with the incoming
trains, instruct them what to do (e.g., stop or move) and sends messages to
control the operation of the bridge (either up or down).

In what follows are written some evolution steps for the system described
above. For each process are written only the actions to be applied next (e.g.,
the train1 process is represented as train1 = goΔ15bridge . . . | stopΔ25?(x) . . .).
In order to follow easily the evolution, the reductions are performed one after
another instead of an entire multiset of reductions; the whole parallel step is

delimited by the time steps
t�. To ease the reading, we bold the actions or the

processes that are executed in the next step. We illustrate only a few reductions
just to give an idea how the system evolves.

railway1a[[train1 | train3]] | railway2a[[train2]] | railway1b[[0]] | railway2b[[0]]
| bridge[[operate | control1]]

1� railway1a[[goΔ14bridge . . . | stopΔ24?(x) . . .
| goΔ0bridge . . . | stopΔ10?(x) . . .]]

| railway2a[[goΔ10bridge . . . | stopΔ20?(x) . . .]]
| railway1b[[0]] | railway2b[[0]] | bridge[[operate | control1]]

railway1a�bridge−−−−−−−−−−−→ railway1a[[goΔ14bridge . . . | stopΔ24?(x) . . . |stopΔ10?(x) . . .]]
| railway2a[[goΔ10bridge . . . | stopΔ20?(x) . . .]] | railway1b[[0]] | railway2b[[0]]
| bridge[[operate | control1 | apprΔ20!〈train3, railway1a, railway2b〉]]

{(train3,railway1a,railway2b)/(x1,y1,z1)}@bridge−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
railway1a[[goΔ14bridge . . . | stopΔ24?(x) . . . | stopΔ10?(x) . . .]]
| railway2a[[goΔ10bridge . . . | stopΔ20?(x) . . .]] | railway1b[[0]] | railway2b[[0]]
| bridge[[operate | downΔ1!〈train3〉
| {(train3, railway1a, railway2b)/(x1, y1, z1)}control0
| {(train3, railway1a, railway2b)/(x1, y1, z1)}control2]]

{train3/v}@bridge−−−−−−−−−−−−→ railway1a[[goΔ14bridge . . . | stopΔ24?(x) . . . | stopΔ10?(x) . . .]]
| railway2a[[goΔ10bridge . . . | stopΔ20?(x) . . .]] | railway1b[[0]] | railway2b[[0]]
| bridge[[upΔ∞?(w) . . . | {(train3, railway1a, railway2b)/(x1, y1, z1)}control0

| {(train3, railway1a, railway2b)/(x1, y1, z1)}control2]]
10� . . .

An important advantage of using rTiMo to describe time-aware systems is the
possibility to verify certain interesting real-time properties such as safety prop-
erties (a specified error cannot occur) and bounded liveness properties (configu-
ration reachability within a certain amount of time) by using the model checking
capabilities of the software tool Uppaal . This is possible due to the relationship
between rTiMo and timed safety automata presented in [1], allowing a natural
use of the software tool Uppaal for verification of critical systems described in
rTiMo .

Timed Mobility and Timed Communication for Critical Systems 153

4 Real-Time Behavioral Equivalences in rTiMo

Bisimulation is one of the important notion related to concurrent complex sys-
tems [15]. We focus here on behavioural equivalences over multiset labelled tran-
sition systems; unlike the classical definition in which two systems are equivalent
if they match each other’s actions, in this paper we consider that two systems are
equivalent if they match each other’s multiset of actions. Moreover, this could
happen in a certain range of time (up to a timeout). An advantage of equiva-
lences defined in this way is that one could aim at obtaining a correspondence
between processes that otherwise would not be equivalent (by using already ex-
isting equivalences where the order of compared actions has to be the same,
at the same moment of time). The multisets of actions could be considered as
timely equivalent if they are in a similar interval of time, without imposing a
strict moment for each action. Bisimilarity could be also useful when reasoning
about behavioural equivalences of processes: given a process, one can check if it is
behaving as intended (optimal behaviour) or not (sub-optimal behaviour). Two
processes are said to be equivalent if they are able to “simulate” each others’
actions, step by step, and continue to be equivalent after each such step [14].

When choosing which equivalence relation to adopt for a given system, one
needs to decide what properties should be preserved by the equivalence relation.
It is an advantage if the equivalence relations are compositional with respect
to the main constructs of the formalism, and so allowing the components to be
substituted by equivalent ones without any side-effect.

Definition 1. A timed bisimulation R over rTiMo systems using a set Act
of actions is a symmetrical binary relation satisfying the conditions:

– for all (N1, N2) ∈ R, if N1
λ−→ N ′

1 for λ ∈ Act and N ′
1, then N2

λ−→ N ′
2 and

(N ′
1, N

′
2) ∈ R for some N ′

2.

– for all (N1, N2) ∈ R, if N1
t� N ′

1 for t ∈ R+ and N ′
1, then N2

t� N ′
2 and

(N ′
1, N

′
2) ∈ R for some N ′

2.

Two rTiMo systems are timed bisimilar iff there is a timed bisimulation rela-
tion containing them.

In a similar way as in timed distributed π-calculus [4], the standard notion of
bisimilarity is extended to take into account timed transitions and multisets of
actions. For a set A, A∗ denotes the set of all multisets over A. For a multiset

of actions Λ = {λ1, . . . , λn} ∈ A∗, the sequence
λ1−→ . . .

λn−−→ is denoted by
Λ−→.

The identity relation over the set L of located processes is id
def
= {(L,L) |L∈

L}. The inverse of a relation R is R−1 def
= {(L2, L1) | (L1, L2)∈R}. The com-

position of relations R1 and R2 is R1R2
def
= {(L,L′′) | ∃L′∈L such that(L,L′)

∈R1 and (L′, L′′)∈R2}.
Definition 2. A binary relation R ⊆ L × L is called a timed simulation (T
simulation) if when (l[[P]], l[[Q]]) ∈ R and Λ ∈ {id@l, {v/u}@l, goΔ0@l, a?Δ0@l,
a!Δ0@l}∗:

154 B. Aman and G. Ciobanu

• if l[[P]]
Λ−→ l�l′−−→ l′[[P ′]] | l[[P ′′]] then ∃Q′, Q′′ s.t. l[[Q]]

Λ−→ l�l′−−→ l′[[Q′]] | l[[Q′′]],
(l′[[P ′]], l′[[Q′]]) ∈ R and (l[[P ′′]], l[[Q′′]]) ∈ R;

• if l[[P]]
Λ−→ t� l[[P ′]] then ∃Q′ s.t. l[[Q]]

Λ−→ t� l[[Q′]] and (l[[P ′]], l[[Q′]]) ∈ R.

If R and R−1 are timed simulations, then R is called a timed bisimulation (T
bisimulation). Strong timed bisimilarity (ST bisimulation) ∼ is defined by

∼ def
= {(l[[P]], l[[Q]]) ∈ L × L | ∃T bisimulation R and (l[[P]], l[[Q]]) ∈ R}.

This definition treats timed transitions as normal transitions, and so it coincides
with the original notion of bisimulation over a labelled transition system.

Remark 1. ∼ is an equivalence relation, and also the largest ST bisimulation.

Example 1. Inspired by the railway system of Subsection 3, consider the follow-
ing simplified two located processes:

L1 = railway1a[[stopΔ5?(x) then (goΔ3bridge then goΔ7railway1b)

else (goΔ2bridge then goΔ7railway1b)]]

L2 = railway1a[[stopΔ5?(x) then (goΔ2bridge then goΔ6railway1b)
else (goΔ1bridge then goΔ6railway1b)]]

If the trains reach bridge after different numbers of time units, the two located
processes are not strong timed bisimilar, i.e., (L1 	∼ L2), because they have
different evolutions in time (after 7 units of time).

L1
5� railway1a[[stopΔ0?(x) then (goΔ3bridge then goΔ7railway1b) (DPar)

else (goΔ2bridge then goΔ7railway1b)]]
stop?Δ0@railway1a−−−−−−−−−−−−−→ railway1a[[goΔ3bridge then goΔ7railway1b]] (Get0)
2� railway1a[[goΔ1bridge then goΔ7railway1b]] (DPar)
1� railway1a[[goΔ0bridge then goΔ7railway1b]] (DPar)

L2
5� railway1a[[stopΔ0?(x) then (goΔ2bridge then goΔ6railway1b) (DPar)

else (goΔ1bridge then goΔ6railway1b)]]
stop?Δ0@railway1a−−−−−−−−−−−−−→ railway1a[[goΔ2bridge then goΔ6railway1b]] (Get0)
2� railway1a[[goΔ0bridge then goΔ6railway1b]] (DPar)
railway1a�bridge−−−−−−−−−−−→ bridge[[goΔ7railway1b]] (Move0)

Strong timed equivalences require an exact matching between the multisets of
transitions of two located processes, for the entire evolution. Sometimes these
requirements are too strong. According to [12], there are problems in computer
science and artificial intelligence where only the timed behaviour within a given
amount of time t is of interest. Sometimes one needs to see if two critical systems
have the same behaviour for a predefined period of time and not for their entire
evolution (e.g., trains that behave equivalently only between two locations, re-
gardless of what happens for the rest of their evolutions). That is why in what
follows the equivalences are restricted to a given time range [0, t], thus defining
time-bounded equivalences.

Definition 3. The binary relations Rt ⊆ L × L, t ∈ R+ over located processes
are called time-bounded simulations (TB simulations) if for t ∈ R+, when-
ever (l[[P]], l[[Q]]) ∈ Rt and Λ∈{id@l, {v/u}@l, goΔ0@l, a?Δ0@l, a!Δ0@l}∗:

Timed Mobility and Timed Communication for Critical Systems 155

• if l[[P]]
Λ−→ l�l′−−→ l′[[P ′]] | l[[P ′′]] then ∃Q′, Q′′ such that l[[Q]]

Λ−→ l�l′−−→ l′[[Q′]] |
l[[Q′′]], (l′[[P ′]], l′[[Q′]]) ∈ Rt and (l[[P ′′]], l[[Q′′]]) ∈ Rt;

• ∀t′ ≤ t, t′ ∈ R+ if l[[P]]
Λ−→ t′� l[[P ′]] then ∃Q′ such that l[[Q]]

Λ−→ t′� l[[Q′]]
and (l[[P ′]], l[[Q′]]) ∈ Rt−t′ .

If Rt and R−1
t , with t ∈ R+, are time-bounded simulations, then Rt is a time-

bounded bisimulation (TB bisimulation). Time-bounded bisimilarities
�t are defined by

�t
def
= {(l[[P]], l[[Q]])∈L×L | ∃ TB bisimulation Rt and (l[[P]], l[[Q]])∈Rt}.

(l[[P]], l[[Q]]) ∈ �t can be written also as l[[P]] �t l[[Q]].

Example 2. Consider the two located processes of Example 1. Even if those
systems have different definitions, they are time-bounded bisimilar before time
unit 7 (L1 �7 L2) since they have the same evolutions during this period at
location railway1a. Hence L1 and L2 cannot be identified by timed bisimulation,
but this is possible by using time-bounded bisimulation for the time range [0, 7].
However, if t > 7, then L1 	�t L2.

Time-bounded bisimulation satisfies the following properties showing that an
equivalence�t includes the equivalence�u for any u ≤ t. This result is consistent
with the continuity of time. This means that if two processes are time-bounded
equivalent in a finite time range [0, t], then they are time-bounded equivalent in
any finite time range [0, u], u ≤ t.

Lemma 1. For any processes P and Q, location l, and any u, t ∈ R+:
If l[[P]] �t l[[Q]], then for any u ≤ t it holds that l[[P]] �u l[[Q]].

A useful question to ask about an rTiMo located process is the reachability
of a given process within a given amount of time. In what follows l and l′ denote
the same or different locations:

Definition 4. Given t ∈ R+ and l[[P]], l′[[Q]] ∈ L, the t-bounded reachability
problem asks if there exists a computation leading from l[[P]] to l′[[Q]] in at
most t units of time.

The next lemma states that time-bounded bisimulation is adequate to check
t-bounded reachability on arbitrary located processes.

Lemma 2. If l[[P]] �t l[[Q]], then l′[[R]] is reachable from l[[P]] in at most t
units of time iff l′[[R]] is reachable from l[[Q]] in at most t units of time.

Using the TB bisimulations �t, a specific relation of bisimilarity is defined,
called strong time-bounded bisimilarity, satisfying Proposition 2.

Definition 5. Strong time-bounded bisimilarity (STB bisimulation), de-
noted �, is defined by:

�= {(l[[P]], l[[Q]])∈L×L | ∃t ∈ R+ and a TB bisim. �t s.t. (l[[P]], l[[Q]]) ∈�t}.

156 B. Aman and G. Ciobanu

Proposition 2. The following statements hold:

1. � is a TB bisimulation;
2. � is closed to identity, inverse, composition and union;
3. � is the largest TB bisimulation;
4. � is an equivalence.

Using the fact that � is an equivalence can be used to partition a state space
into equivalence classes such that states in the same class are observationally
equivalent with respect to the system’s behaviour. This leads to a reduction of
the state space prior to model checking.

4.1 Strong Open Time-Bounded Equivalences

Bisimulation as a congruence is a desirable feature for any (real-time) language
for critical systems because it can be used in checking compositionally whether
two critical systems are behaving similarly. This means that the specifications
related by a bisimulation relation R can be used interchangeably as parts of a
larger process without affecting the overall behaviour of the latter (as depicted
in Figure 2). In this paper behavioural equivalences are based on the observable
transitions of processes, rather than on their states (as done in timed automata
and time/timed Petri nets).

P

l

R Q

l

implies P

l

. . .

l′
R Q

l

. . .

l′

Fig. 2. Interchangeably equivalent parts of a larger system

In this section we define such a relation for rTiMo , a relation inspired by
the open bisimilarity [14]. In this kind of bisimilarity, all names that occur in a
system are potentially replaceable (all free names are treated as variables). The
newly defined open bisimilarity is necessary since, according to the following
example, the TB equivalence is not closed under arbitrary substitutions.

Example 3. Consider that train1 from Subsection 3 is located in the depot (has
not entered yet either railway1a or railway2a of the two railways to which
the depot is connected) and wants to reach railway2b. In order to reach the
destination it is necessary to use either railway1a or railway2a. It has to take a
decision on which of the these two railways its journey starts. In order to decide
on this aspect it sends a query to the depot in order to receive an answer that
can help it in making this decision. There are two situations: the train1 decides
either to use the received information (process P1) or not (process P2).

Timed Mobility and Timed Communication for Critical Systems 157

P1 = newrailΔ0?(railway1a) then queryΔ2!〈railway1a〉
| queryΔ5?(u) then (goΔ3u then train1).

P2 = newrailΔ0?(railway1a) then queryΔ2!〈railway1a〉
| queryΔ5?(u) then (goΔ3railway1a then train1).

For any t ∈ R+, it holds that station[[P1]] �t station[[P2]] because

station[[P1]]
newrail?Δ0@station−−−−−−−−−−−−−→ {railway1a/u}@station−−−−−−−−−−−−−−−→
station[[goΔ3railway1a then train1]], and

station[[P2]]
newrail?Δ0@station−−−−−−−−−−−−−→ {railway1a/u}@station−−−−−−−−−−−−−−−→
station[[goΔ3railway1a then train1]].

After communicating on channel query, results the same process and thus
station[[P1]] �t station[[P2]]. However, if in these two processes, P1 and P2,
the free names are rewritten by the substitution σ = {railway2a/railway1a}
(meaning that name railway2a is communicated instead of railway1a), then

station[[P1σ]]
newrail?Δ0@station−−−−−−−−−−−−−→ {railway1a/u}@station−−−−−−−−−−−−−−−→
station[[goΔ3railway1a then train1]], and

station[[P2σ]]
newrail?Δ0@station−−−−−−−−−−−−−→ {railway1a/u}@station−−−−−−−−−−−−−−−→
station[[goΔ3railway2a then train1]].

These processes have different behaviours, and so
station[[P1]] 	�t station[[P2]].

Following the style presented in [15], we define the following bisimilarity that
becomes a congruence by closing the bisimilarity under arbitrary substitutions.

Definition 6. The binary relations Ro
t ⊆ L × L, t ∈ R+ over located pro-

cesses are called open time-bounded simulations (OTB simulations) if for
t ∈ R+, whenever (l[[P]], l[[Q]]) ∈ Ro

t , then for any substitution σ and Λ ∈
{id@l, {v/u}@l, goΔ0@l, a?Δ0@l, a!Δ0@l}∗ it holds:

• if l[[Pσ]]
Λ−→ l�l′−−→ l′[[P ′]] | l[[P ′′]] then ∃Q′, Q′′ such that l[[Qσ]

Λ−→ l�l′−−→ l′[[Q′]] |
l[[Q′′]], (l′[[P ′]], l′[[Q′]]) ∈ Ro

t and (l[[P ′′]], l[[Q′′]]) ∈ Ro
t ;

• ∀t′ ≤ t, t′ ∈ R+ if l[[Pσ]]
Λ−→ t′� l[[P ′]] then ∃Q′ such that l[[Qσ]]

Λ−→ t′� l[[Q′]]
and (l[[P ′]], l[[Q′]]) ∈ Ro

t−t′ .

If Ro
t and (Ro

t)
−1 are open time-bounded simulations for t ∈ R+, then Ro

t are
called open time-bounded bisimulations (OTB bisimulations). Open time-
bounded bisimilarities �o

t are defined by

�o
t
def
= {(l[[P]], l[[Q]])∈L×L | ∃OTB bisimulation Ro

t and (l[[P]], l[[Q]])∈Ro
t}.

(l[[P]], l[[Q]]) ∈ �o
t can be written as l[[P]] �o

t l[[Q]].

The intuition is that two located processes are equivalent whenever all possible
instantiations (substitutions of their free names) have matching transitions.

The next result is consistent with the continuity of time: an open time-
bounded equivalence �t

0 includes the open time-bounded equivalence �u
0 , for

any u ≤ t. This means that if two processes are open time-bounded equivalent
in a finite time range [0, t], then they are open time-bounded equivalent in any
finite time range [0, u], u ≤ t.

158 B. Aman and G. Ciobanu

Lemma 3. For any processes P and Q, location l, and any u, t ∈ R+: if l[[P]] �o
t

l[[Q]], then for any u ≤ t it holds that l[[P]] �o
u l[[Q]].

Using the OTB bisimulations �o
t , a specific relation of bisimilarity is defined,

called strong open time-bounded bisimilarity; this relation satisfies the state-
ments of Proposition 3.

Definition 7. Strong open time-bounded bisimilarity (SOTB bisimula-
tion), denoted �o, is defined by:

�o= {(l[[P]], l[[Q]])∈L×L | ∃t ∈ R+ and a OTB bisim. �o
t s.t. (l[[P]], l[[Q]]) ∈�o

t}.

The following results present some properties of the SOTB equivalences.

Proposition 3. The following statements hold:

1. �o is a OTB bisimulation;

2. �o is closed to identity, inverse, composition and union;

3. �o is the largest OTB bisimulation;

4. �o is an equivalence.

Definition 8. A binary relation R is said to be closed under substitutions
if whenever (l[[P]], l[[Q]]) ∈ R, then (l[[Pσ]], l[[Qσ]]) ∈ R for any substitution σ.
Formally,

clos(R)
def
= {(l[[Pσ]], l[[Qσ]]) |(l[[P]], l[[Q]])∈R

and σ is an arbitrary substitution}.

The connections between � and �o are illustrated in the next result. The
second item states that �o is included in �, namely if l[[P]] �o l[[Q]] implies
that l[[P]] � l[[Q]].

Lemma 4. 1. If � is closed under substitution, then �=�o.

2. �o⊆�.

The following result states that the SOTB equivalence �o is preserved by
migration, communication and parallel composition.

Lemma 5. For P, P ′, Q,Q′∈P and l, l′∈Loc, if l[[P]]�o l[[P ′]] then

1. l[[P | Q]] �o l[[P ′ | Q]];

2. l[[aΔt′?(u) then P else Q]]�o

l[[aΔt′?(u) then P ′ else Q]];

3. l[[goΔt′ l′ then P]] �o l[[goΔt′ l′ then P ′]].

As a consequence of Lemmas 3 and 5, the main result of the paper is obtained.

Theorem 1. �o is a congruence.

Timed Mobility and Timed Communication for Critical Systems 159

When choosing which bisimulation to adopt in certain situation one needs to
decide what kind of properties should be preserved by the equivalence relation.
If the bisimulation is not a congruence then the bisimilar systems can still be
distinguished by putting them in appropriate contexts. On the other hand, if
the bisimulation is a congruence, this means that the systems that are related
by a congruence relation, e.g., �o in our case, can be used interchangeably as
parts of a larger system without affecting the overall behaviour of the latter (as
depicted in Figure 2). For this reason, usually one needs to ensure that he defines
equivalences that are in fact congruences. In this way theories can be constructed
that support modular description and verification of critical systems. Thus, it
should be possible to use the congruence relation�o in computer simulations and
model checkers for real-time systems with timed migration and communication.

5 Conclusion and Related Work

Several proposals for real-time modelling and verification have been presented
in the literature (e.g., [16]). A comprehensive overview of the development of an
algebraic theory of processes with time is given in [3]. In this paper we used a pro-
totyping language rTiMo for describing real-time critical systems. It emphasizes
the essential aspects, and is different from all these previous approaches since
it encompasses specific features as timeouts, explicit locations, timed migration
and communication. Starting from a first version of TiMo proposed in [6], sev-
eral variants were developed during the last years in order to model various
complex systems; we mention the access permissions given by a type system in
perTiMo [7]. TiMo is a simpler version of timed distributed π-calculus [8]. In-
spired by TiMo , a flexible software platform was introduced in [5] to support
the specification of agents allowing timed migration in a distributed environ-
ment. Interesting properties as bounded liveness and optimal reachability are
presented in [2]. A verification tool called TiMo@PAT is presented in [9]; it was
developed by using an extensible platform for model checkers called PAT.

In this paper rTiMo is used for comparing in a formal way the behaviours
of critical systems. In particular, we have presented an example of applying
rTiMo to the distributed railway bridge system, illustrating that rTiMo pro-
vides a natural framework for modelling and reasoning about critical systems
with timed migration and concurrency given by interaction/communication. This
leads to a compositional approach of verifying concurrent critical systems, in
opposition to the noncompositional approach provided by inductive assertion
method and Hoare logic.

Behavioural equivalences are useful to define some observational criteria that
processes should fulfil. Several behavioural equivalences over tDπ and TiMo are
studied in [4]. In practice, even though several processes can be valid solutions
to a given problem, some processes may be preferable to others. For example, a
faster or less resource consuming process is often preferred to one that is slower or
demanding more resources, respectively. In fact, there are many ways to evaluate
processes. An important goal of defining bisimulations is to obtain refinements

160 B. Aman and G. Ciobanu

and equivalence relations that can reduce state space to their equivalence classes,
in order to facilitate a more efficient (automated) verification.

We defined two bisimulations (� and �o) over real-time distributed processes,
and illustrated them by using a distributed railway control system involving a
mobile bridge and several trains. The behavioural equivalences are established in
terms of relative time (timeouts) and locations, and are also used to distinguish
between optimal and sub-optimal behaviours. We prove that �o is a congruence,
allowing a compositional reasoning of complex real-time systems in terms of their
observable parallel behaviours. The first equivalence (�) resembles the finite-
horizon bisimulation defined over time-inhomogeneous Markov chains [10], in the
sense that they also consider a threshold in time when comparing two systems.

The strong bisimulations studied in the paper are useful but their usage is
somehow limited in the sense that at each moment either the time elapse or
the multiset of actions should coincide. A weaker version of these bisimulations
could be defined, having a more practical use in real problems: e.g., to distinguish
between trains having the same route, but different moving time depending on
the type of the train (e.g., InterRegio or InterCity). Such weak bisimulations in
rTiMo and verification of realistic scenarios with a powerful model-checker like
Uppaal [13] represent a future work. The capabilities of Uppaal allow verifi-
cation of various properties: reachability of desired configurations (e.g., several
mobile elements being close to each other at some time instance), the fact that
the system does not block, and whether an error occurs (e.g., two trains collide).

Acknowledgements. The work was supported by a grant of the Romanian National
Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-
2011-3-0919.

References

1. Aman, B., Ciobanu, G.: Real-Time Migration Properties of rTiMo Verified in
Uppaal. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS,
vol. 8137, pp. 31–45. Springer, Heidelberg (2013)

2. Aman, B., Ciobanu, G., Koutny, M.: Behavioural Equivalences over Migrating
Processes with Timers. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS
2012. LNCS, vol. 7273, pp. 52–66. Springer, Heidelberg (2012)

3. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. In: Monographs
in Theoretical Computer Science, An EATCS Series. Springer, Berlin (2002)

4. Ciobanu, G.: Behaviour Equivalences in Timed Distributed π-Calculus. In:
Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software Intensive
Systems. LNCS, vol. 5380, pp. 190–208. Springer, Heidelberg (2008)

5. Ciobanu, G., Juravle, C.: Flexible Software Architecture and Language for Mo-
bile Agents. Concurrency and Computation: Practice and Experience 24, 559–571
(2012)

6. Ciobanu, G., Koutny, M.: Modelling and Verification of Timed Interaction and
Migration. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp.
215–229. Springer, Heidelberg (2008)

Timed Mobility and Timed Communication for Critical Systems 161

7. Ciobanu, G., Koutny, M.: Timed Migration and Interaction With Access Permis-
sions. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 293–307.
Springer, Heidelberg (2011)

8. Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. Electronic Notes in
Theoretic Computer Science 164(3), 81–99 (2006)

9. Ciobanu, G., Zheng, M.: Automatic Analysis of TiMoSystems in PAT. In: Proc.
18th International Conference on Engineering of Complex Computer Systems, pp.
121–124. IEEE Computer Society (2013)

10. Han, T., Katoen, J.-P., Mereacre, A.: Compositional Modeling and Minimization of
Time-Inhomogeneous Markov Chains. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 244–258. Springer, Heidelberg (2008)

11. Heitmeyer, C., Lynch, N.: The Generalized Railroad Crossing: A Case Study in
Formal Verification of Real-Time Systems. In: Proc. of IEEE Real-Time Systems
Symposium, pp. 120–131 (1994)

12. Kamide, N.: Bounded Linear-Time Temporal Logic: A Proof-Theoretic Investiga-
tion. Annals of Pure and Applied Logic 163, 439–466 (2012)

13. Larsen, K.G., Petterson, P., Yi, W.: Uppaal in a Nutshell. International Journal
on Software Tools for Technology Transfer 1(2), 134–152 (1997)

14. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press (1999)

15. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2011)

16. Yi, W., Pettersson, P., Daniels, M.: Automatic Verification of Real-time Commu-
nicating Systems by Constraint-Solving. In: International Conference on Formal
Description Techniques, pp. 223–238 (1994)

	Timed Mobility and Timed Communication for Critical Systems
	1 Introduction
	2 rTiMo: Syntax and Semantics
	3 Modelling Critical Systems by Using rTiMo
	4 Real-Time Behavioral Equivalences in rTiMo
	4.1 Strong Open Time-Bounded Equivalences

	5 Conclusion and Related Work

