
Manuel Núñez
Matthias Güdemann (Eds.)

 123

LN
CS

 9
12

8

20th International Workshop, FMICS 2015
Oslo, Norway, June 22–23, 2015
Proceedings

Formal Methods
for Industrial
Critical Systems

Lecture Notes in Computer Science 9128
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Manuel Núñez · Matthias Güdemann (Eds.)

Formal Methods
for Industrial
Critical Systems
20th International Workshop, FMICS 2015
Oslo, Norway, June 22–23, 2015
Proceedings

ABC

Editors
Manuel Núñez
Universidad Complutense de Madrid
Madrid
Spain

Matthias Güdemann
Systerel
Aix-en-Provence
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-19457-8 ISBN 978-3-319-19458-5 (eBook)
DOI 10.1007/978-3-319-19458-5

Library of Congress Control Number: 2015940351

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information stor-
age and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at FMICS 2015, the 20th International Work-
shop on Formal Methods for Industrial Critical Systems, which was held during
June 22–23, 2015, in Oslo, Norway. The FMICS 2015 workshop took place as a collo-
cated event of the 20th International Symposium on Formal Methods, FM 2015.

The aim of the FMICS workshop series is to provide a forum for researchers who
are interested in the development and application of formal methods in industry. In par-
ticular, FMICS brings together scientists and engineers who are active in the area of
formal methods and interested in exchanging their experiences in the industrial usage
of these methods. The FMICS workshop series also strives to promote research and de-
velopment for the improvement of formal methods and tools for industrial applications.
The topics of interest include, but are not limited to:

– Design, specification, code generation, and testing based on formal methods
– Methods, techniques, and tools to support automated analysis, certification, debug-

ging, learning, optimization, and transformation of complex, distributed, depend-
able, real-time systems, and embedded systems

– Verification and validation methods that address shortcomings of existing methods
with respect to their industrial applicability, e.g., scalability and usability issues

– Tools for the development of formal design descriptions
– Case studies and experience reports on industrial applications of formal methods,

focusing on lessons learned or identification of new research directions
– Impact of the adoption of formal methods on the development process and associ-

ated costs
– Application of formal methods in standardization and industrial forums

This year we received 20 submissions. Each of these submissions went through a
rigorous review process in which each paper received at least three reports. We selected
12 papers for presentation during the workshop and inclusion in these proceedings. The
workshop also featured invited talks by Kim G. Larsen (Aalborg University, Denmark)
and by Marielle Petit-Doche (Systerel, France). In addition, two invited talks by Dino
Distefano (Queen Mary University, UK and Facebook) and José Meseguer (University
of Illinois, USA) organized by the Workshop on Automated Specification and Verifica-
tion of Web Systems were open to FMICS participants.

We would like to thank the ERCIM FMICS working group coordinator Radu Ma-
teescu (Inria Grenoble and LIG) for his counselling and support during the organization
of FMICS 2015. We would like to thank the FM 2015 workshops chairs Marieke Huis-
man and Volker Stolz for their help with the local arrangements in Oslo. We would like
to thank the chairs of the 11th Workshop on Automated Specification and Verification of
Web Systems, Maurice H. ter Beek (ISTI-CNR, Pisa, Italy) and Alberto Lluch Lafuente
(Technical University of Denmark), for the generous offer to share their invited speak-
ers with FMICS attendants. Finally, we would like to thank the Program Committee

VI Preface

members and external reviewers for their useful and detailed reviews and discussions,
all authors for their submissions, and all attendees of the workshop.

June 2015 Manuel Núñez
Matthias Güdemann

Organization

Programm Committee Chairs

Manuel Núñez Universidad Complutense de Madrid, Spain
Matthias Güdemann Systerel, France

Programm Committee

María Alpuente Universitat Politècnica de Valencia, Spain
Alvaro Arenas IE University, Spain
Jiri Barnat Masaryk University, Czech Republic
Jean-Paul Blanquart Astrium Satellites, France
Eckard Böde Offis, Germany
Mario Bravetti University of Bologna, Italy
Michael Dierkes Rockwell Collins, France
Cindy Eisner IBM Research - Haifa, Israel
Alessandro Fantechi Università di Firenze, Italy
Francesco Flammini Ansaldo, Italy
María del Mar Gallardo University of Málaga, Spain
Stefania Gnesi ISTI-CNR, Italy
Matthias Güdemann Systerel, France
Clément Houtmann Google, Switzerland
Frédéric Lang Inria and LIG, France
Luis Llana Universidad Complutense de Madrid, Spain
Alberto Lluch DTU, Denmark
Paqui Lucio University of the Basque Country, Spain
Tiziana Margaria University of Potsdam, Germany
Jasen Markovski GN ReSound Benelux, The Netherlands
Radu Mateescu Inria and LIG, France
David Mentré Mitsubishi Research, France
Manuel Núñez Universidad Complutense de Madrid, Spain
Charles Pecheur Université Catholique de Louvain, Belgium
Ralf Pinger Siemens AG, Germany
Jaco van de Pol University of Twente, The Netherlands
Wendelin Serwe Inria and LIG, France
Hans Svensson Quviq, Sweden
Anton Wijs Technical University of Eindhoven,

The Netherlands
Fatiha Zaïdi Université Paris-Sud XI, France

VIII Organization

Additional Reviewers

Emilie Balland
Demis Ballis
Marcello M. Bersani
Paul Brauner
Laura Carnevali
Marcus Gerhold
Jeroen Meijer

Invited Talks

Formal Verification of Industrial Critical Software

Marielle Petit-Doche

Systerel, Les portes de l’Arbois, Bâtiment A — 1090, rue René Descartes
13857 Aix-en-Provence CEDEX 3, France

marielle.petit-doche@systerel.fr

www.systerel.fr

Abstract. In this talk I will review the challenges for using formal verification
based on automatic tools, like model-checkers, in the industrial development pro-
cess of safety critical systems is discussed. This usage must be integrated into an
appropriate process and must allow for independent result-checking.

Our approach is illustrated with a case study from the openETCS ITEA2
research project using the Systerel Smart Solver S3, a modern SAT-based model-
checker for equivalence checking and safety properties analysis of SCADE, C or
Ada programs.

This work was partially funded by the “Direction Générale de la compétitivité, de l’industrie
et des services” (DGCIS) (Grant No. 112930309) within the ITEA2 project openETCS.

From Timed Automata
to Stochastic Hybrid Games

Model Checking, Performance Evaluation, Synthesis and
Optimization

Kim G. Larsen

Department of Computer Science, Aalborg University, Denmark
kgl@cs.aau.dk

Abstract. Timed automata [1] and games [3,7], priced timed automata [2,4] and
energy automata [6] have emerged as useful formalisms for modeling real-time and
energy-aware systems as found in several embedded and cyber-physical systems.
During the last 20 years the real-time model checker UPPAAL has been developed
allowing for efficient verification of hard timing constraints of timed automata.
Moreover a number of significant branches exists, e.g. UPPAAL CORA provid-
ing efficient support for optimization, and UPPAAL TIGA allowing for automatic
synthesis of strategies for given safety and liveness objectives. In the beginning
of this decade the branch UPPAAL SMC [10,11] has been released, providing a
highly scalable new engine that supports (distributed) statistical model checking
of stochastic hybrid automata (and games).

The most recent branch of the UPPAAL family is the tool UPPAAL STRAT-
EGO [8,9], that combines all of the above tools and extend the with techniques
from machine learning, in order to generate, optimize, compare and explore con-
sequences and performance of strategies synthesized for stochastic priced timed
games in a userfriendly manner. In particular, UPPAAL STRATEGO allows for
generation of strategies that simultaneously satisfy a number of hard real-time
constraints, while having near optimal expected performance properties.

The various branches of UPPAAL have been applied in concerted fashions to
a range of real-time and cyber-physical examples including schedulability and
performance evaluation of mixed criticality systems, modeling and analysis of
biological systems, energy-aware wireless sensor networks, synthesis and perfor-
mance evaluation of smart grids and energy-aware buildings and battery-aware
scheduling.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
2. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Benedetto

and Sangiovanni-Vincentelli [5], pp. 49–62, http://dx.doi.org/10.1007/3-540-45351-2_8
3. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: Uppaal-tiga:

Time for playing games! In: CAV. pp. 121–125 (2007)
4. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager,

F.W.: Minimum-cost reachability for priced timed automata. In: Benedetto and Sangiovanni-
Vincentelli [5], pp. 147–161, http://dx.doi.org/10.1007/3-540-45351-2_15

This work has been supported by the projects IDEA4CPS, SENSATION and CASSTING.

http://dx.doi.org/10.1007/3-540-45351-2_8
http://dx.doi.org/10.1007/3-540-45351-2_15

From Timed Automata to Stochastic Hybrid Games XIII

5. Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.): Hybrid Systems: Computation and
Control, 4th International Workshop, HSCC 2001, Rome, Italy, March 28-30, 2001, Proceed-
ings, Lecture Notes in Computer Science, vol. 2034. Springer (2001)

6. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted
timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) Formal Modeling and
Analysis of Timed Systems, 6th International Conference, FORMATS 2008, Saint Malo,
France, September 15-17, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5215,
pp. 33–47. Springer (2008), http://dx.doi.org/10.1007/978-3-540-85778-5_4

7. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for
the analysis of timed games. In: CONCUR. pp. 66–80 (2005)

8. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G., Taankvist, J.H.:
On time with minimal expected cost! In: Cassez, F., Raskin, J. (eds.) Automated Technology
for Verification and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW,
Australia, November 3-7, 2014, Proceedings. Lecture Notes in Computer Science, vol. 8837,
pp. 129–145. Springer (2014), http://dx.doi.org/10.1007/978-3-319-11936-6_10

9. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal stratego.
In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. Lecture Notes in Computer Science, vol. 9035, pp. 206–211. Springer
(2015), http://dx.doi.org/10.1007/978-3-662-46681-0_16

10. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., van Vliet, J., Wang,
Z.: Statistical model checking for networks of priced timed automata. In: Fahrenberg, U.,
Tripakis, S. (eds.) Formal Modeling and Analysis of Timed Systems - 9th International Con-
ference, FORMATS 2011, Aalborg, Denmark, September 21-23, 2011. Proceedings. Lec-
ture Notes in Computer Science, vol. 6919, pp. 80–96. Springer (2011), http://dx.doi.org/10.
1007/978-3-642-24310-3_7

11. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for statistical model
checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 349–355. Springer
(2011), http://dx.doi.org/10.1007/978-3-642-22110-1_27

http://dx.doi.org/10.1007/978-3-540-85778-5_4
http://dx.doi.org/10.1007/978-3-319-11936-6_10
http://dx.doi.org/10.1007/978-3-662-46681-0_16
http://dx.doi.org/10.1007/978-3-642-24310-3_7
http://dx.doi.org/10.1007/978-3-642-24310-3_7
http://dx.doi.org/10.1007/978-3-642-22110-1_27

Contents

Formal Verification of Industrial Critical Software . 1
Marielle Petit-Doche, Nicolas Breton, Roméo Courbis,
Yoann Fonteneau, and Matthias Güdemann

Applications

A Case Study on Formal Verification of the Anaxagoros Hypervisor
Paging System with Frama-C . 15

Allan Blanchard, Nikolai Kosmatov, Matthieu Lemerre,
and Frédéric Loulergue

Intra-procedural Optimization of the Numerical Accuracy
of Programs . 31

Nasrine Damouche, Matthieu Martel, and Alexandre Chapoutot

Formal Analysis and Testing of Real-Time Automotive Systems Using
UPPAAL Tools . 47

Jin Hyun Kim, Kim G. Larsen, Brian Nielsen, Marius Mikučionis,
and Petur Olsen

Successful Use of Incremental BMC in the Automotive Industry 62
Peter Schrammel, Daniel Kroening, Martin Brain, Ruben Martins,
Tino Teige, and Tom Bienmüller

Protocols

Colored Petri Net Modeling of the Publish/Subscribe Paradigm in the
Context of Web Services Resources . 81

Valentin Valero, Hermenegilda Macià, Gregorio Dı́az,
and M. Emilia Cambronero

Model Checking a Server-Side Micro Payment Protocol 96
Kaylash Chaudhary and Ansgar Fehnker

Specification and Analysis

Require, Test and Trace IT . 113
Bernhard K. Aichernig, Klaus Hörmaier, Florian Lorber,
Dejan Ničković, and Stefan Tiran

XVI Contents

Applying Finite State Process Algebra to Formally Specify
a Computational Model of Security Requirements in the
Key2phone-Mobile Access Solution . 128

Sunil Chaudhary, Linfeng Li, Eleni Berki, Marko Helenius,
Juha Kela, and Markku Turunen

Timed Mobility and Timed Communication for Critical Systems 146
Bogdan Aman and Gabriel Ciobanu

On the Formal Analysis of Photonic Signal Processing Systems 162
Umair Siddique, Sidi Mohamed Beillahi, and Sofiène Tahar

Verification

Automated Verification of Nested DFS . 181
Jaco C. van de Pol

On the Formal Verification of Optical Quantum Gates in HOL 198
Mohamed Yousri Mahmoud, Prakash Panangaden,
and Sofiène Tahar

Author Index . 213

Formal Verification

of Industrial Critical Software

Marielle Petit-Doche(�), Nicolas Breton, Roméo Courbis,
Yoann Fonteneau, and Matthias Güdemann

Systerel, Les portes de l’Arbois, bâtiment A — 1090,
rue René Descartes, 13857 Aix-en-Provence CEDEX 3, France
{marielle.petit-doche,nicolas.breton,romeo.courbis,
yoann.fonteneau}@systerel.fr, matthias@guedemann.org

www.systerel.fr

Abstract. In this paper, the challenges for using formal verification
based on automatic tools, like model-checkers, in the industrial develop-
ment process of safety critical systems is discussed. This usage must be
integrated into an appropriate process and must allow for independent
result-checking.

Our approach is illustrated with a case study from the openETCS
ITEA2 research project using the Systerel Smart Solver S3, a modern
SAT-based model-checker for equivalence checking and safety properties
analysis of Scade, C or Ada programs.

1 Introduction

Railway and aerospace critical software require rigorous design, verification and
validation processes. These can be achieved by the use of formal methods as
recommended by the standards in these domains [7,13].

One possibility is to apply formal methods from the early stage of the de-
sign to produce “correct-by-construction” software. Numbers of success stories
have already been described, for example in the railway industry with the B
method [4,2,8]. Another approach is to introduce formal methods later, during
an independent verification and validation phase: starting from an informal spec-
ification, the properties to verify are identified and formally specified in parallel
to the software design activities. Then, they are automatically checked on an
executable model or the code.

In the following we describe how this second approach can be applied using the
Systerel Smart Solver S3, a model-checking tool based on SAT technologies, ded-
icated to automatic proof of properties on Scade, C or Ada code. This approach
has been successfully applied on industrial critical software, for example [6].

M. Güdemann—This work was partially funded by the “Direction Générale de la
compétitivité, de l’industrie et des services” (DGCIS) (Grant No. 112930309) within
the ITEA2 project openETCS.

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 1–11, 2015.
DOI: 10.1007/978-3-319-19458-5_1

2 M. Petit-Doche et al.

In the sequel we illustrate the approach on a part of the on-board unit software
of the European Train Control System (ETCS), developed in Scade for the
openETCS project1.

The paper is structured as follows: In Section 2 S3 model-checker is introduced
and show how it can be used for certifiable formal verification. Section 3 gives
an overview of the openETCS project which serves as a case study for the S3
application explained in Section 4. Section 5 concludes the paper.

2 Introduction to Systerel Smart Solver

2.1 Principles of S3

Systerel Smart Solver (S3) is a SAT-based model checker for safety properties
analysis.

The High Level Language (HLL), the input language of S3, is a stream oriented
declarative data-flow language which can be used to model:

– the system behavior
– the environment
– the formal expression of the properties.

S3 proceeds to the analyses of properties on the traces of the HLL models
following one of these two strategies:

– Induction to prove a property (see [14]);
– Bounded model checking (BMC) to falsify a property or generate test cases
(see [5,1]).

Thus S3 can be applied on different ways to verify and validate a critical
industrial system.

2.2 Application of S3: Static Analysis

S3 adds some proof obligations to assess that the HLL model is correctly defined:

– Indexes of arrays belong to their ranges
– Latch definition range check
– No division by 0
– No overflow and no underflow on arithmetic expressions
– Output and constraint initialization check

Besides, the translators from a language to HLL can also generate proof obli-
gations to be analyzed by S3, to check that the code does not have undefined
behavior with respect to the source language.

For example the C-translator adds some proof obligations to ensure confor-
mance with the C99 standard.

1 http://openetcs.org/

http://openetcs.org/

Formal Verification of Industrial Critical Software 3

2.3 Application of S3: Verification of Safety Properties

Safety Properties are of the form always φ meaning that the Boolean predicate
φ holds Globally, i.e., in every state reachable from the initial state. S3 can be
used to verify safety properties as shown in the process in Fig. 1.

Fig. 1. Safety Property Verification

First the source program in either C, Scade, Ada,... is translated into HLL
format via a translator; this HLL system model is then combined with safety
properties expressed in HLL to form a verification model. Environment hypothe-
ses and constraints can be added if a property does not hold based only on
the formal model of the software and requires additional hypotheses about the
overall system and/or its environment.

Finally the properties are verified using S3.
A good approach is to first use the BMC strategy with a rather large depth

(depending on the system). After, if there is no counter-example, the induction
strategy can be launched.

2.4 Application of S3: Equivalence Verification of Different Models

There are different areas where the formal verification of equivalence is required.
One such example is the verification of equivalence of two different tool chains
for the same task in an approach based on diversification. Such an approach is
often used in the development of safety critical systems, to decrease the prob-
ability of errors. In general, two different versions of a software are developed
independently, using different programming languages, different approaches and
also separate teams.

The equivalence of the two resulting system models is then verified using S3.
To prove equivalence between two HLL models, we make the hypothesis that

the inputs of the two HLL models are equal and we want to prove that the
outputs are equal (see Fig. 2).

The equivalence could also be used to prove that a code is equivalent to a
specification: the code is translated into HLL and the specification is written in
HLL.

4 M. Petit-Doche et al.

Fig. 2. Equivalence Check

It is also used in the certification flow (see section 2.6).

2.5 Application of S3: Test Case Generation

S3 can also be used for test case generation:

– In the case of functional black-box testing, the main difficulty in writing of
test scenario is to define the values of the outputs to observe as a function
of the input values, as the analysis of the functionality can be complex.

– In the case of white-box verification, the difficulty is to define the right input
values to cover a function, a branch or a condition.

As an alternative, for black box-testing, S3 shall allow to determine easily test
oracle. For white-box testing, we can easily write a test objective in HLL that
states exactly the objective of the test (e.g. the desired output values). Applying
a BMC strategy, we obtain all the desired scenario with the expected values of
the inputs.

2.6 Certifiable Systerel Smart Solver

In order to conform to industrial standards requirements for critical systems [7,13],
we propose a certifiable formal verification solution with S3 (see Fig.3).

When building certifiable formal verification solutions, the certifiable Systerel
Smart Solver (cS3) approach relies on three different techniques:

Diversification of the Translation Chain: the translation of a model to
HLL is done twice2, with two translators being developed by two indepen-
dent teams in two independent programming language (for instance one in
C the other in Ocaml).

2 When applicable, these diversified translations are performed from differentiated
sources.

Formal Verification of Industrial Critical Software 5

Fig. 3. Certifiable solution

Equivalence-check of the Translated Models: the outputs of the two di-
versified translation chains are compared using equivalence checking. S3 is
used together with an equivalence-constructor to check if the two translated
models are sequentially equivalent, i.e., if given the same scenario on their
inputs, they would produce the same outputs.

Record of Results in a Verifiable Proof-log: when a proof is validated or
an equivalence between model established, the result of the S3 is not a simple
“OK” answer, but a proof-log file that contains an encoding of the proof of
this claim in a sound and complete proof-system. An independent checker is
run a-posteriori to check the correctness of this proof.

3 The openETCS Project

The openETCS (http://openetcs.org/) project aims at providing an open-source
formal model for the European Train Control System (ETCS), an automatic
train protection system. The goal is to produce an open reference model which
can be verified following an open-proof [12] approach.

3.1 European Train Control System

The ETCS is an automatic train protection system, targeted at providing a
common standard for European cross-border railway. It allows for automatic
train protection for high-speed trains up to 500 km/h. The ETCS is divided in
on-board subsystems and trackside subsystems.

The main function of ETCS trackside system is to calculate and provide the
movement authority of all the trains present in a section of tracks, in such a way
that signals are obeyed and collision between trains avoided.

http://openetcs.org/

6 M. Petit-Doche et al.

The main function of ETCS on-board system is to ensure that the train runs
in an authorized portion of track and never exceeds its authorized speed. In
order to be able to move, a train receives a movement authority (MA) which
authorizes the train to move until a certain position on the track, with potential
speed restrictions.

The technical specifications of the system are provided by the European Rail-
way Agency [9]3

3.2 OpenETCS Case Study

The openETCS project partners have decided to provide SysML and Scade
models of some on-board kernel functions [11]. Use of different formal methods
have been proposed to verify or validate these models [10].

In this context, we have used S3 to verify some properties and validate parts
of the functional behavior. We focused our work on the on-board sub-function
which is in charge of mode and level management.

Mode and Level Management. Depending on the equipment of the track
and the train, and way of interaction between them, five ETCS levels are define:
Level 1, 2 and 3 are applied when both tracks and trains are equipped to
communicate together following the ETCS protocol; Level 0 is used when the
tracks are not equipped, and Level STM/NTC, when the tracks are equipped
with a national signalization system, e.g., German PZB/LZB, Dutch ATB or
French.

During a mission, a train can cross trackside sections equipped in different
levels, thus the on-board system shall manage the different levels in order to
manage correctly communication with trackside and apply the adapted supervi-
sion function.

Besides the levels, 17 modes are defined to identify the functional behavior of
the on-board system: some are related to nominal modes with execution of super-
vision functions, some are related to passive behaviors (for example for coupling
engines) or failure or dangerous behaviors. The current mode of the system is a
criteria to select activation or not of on-board functions (as supervision, driver
interface management, . . .).

4 Use of Systerel Smart Solver in the openETCS Project

4.1 Model Verification

At first, the formal verification of the model was used to find bugs in the devel-
oped model. This comprises two parts:

– A set of basic properties are automatically verified to check that the Scade
model is well defined as described in section 2.2.

3 See http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Current-Legal-
Reference.aspx for more details.

http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Current-Legal-Reference.aspx
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Current-Legal-Reference.aspx

Formal Verification of Industrial Critical Software 7

– Specific safety properties can be defined to complete this verification; Typi-
cally in our example, properties allow us to confirm the good implementation
of priority criteria in the selection of modes and levels.

4.2 Validation of Safety Properties

Then S3 can be used to validate the functional aspects of the model.
In our study we focused on validation, by an independent expert of functional

behavior specified in the informal input specification [15].
But as we are focusing on a sub-function it is difficult to identify safety prop-

erties to check on the whole model as described in section 2.3. An example of
such properties is that a safety failure detected by any other functions is im-
mediately taken into account: the software shall immediately switch in “Safety
Failure Mode”.

4.3 Functional Validation by Equivalence of Models

Thus we focus on validating informal specification description (for example as
flowchart) on our Scade model in an independent way: informal description
is specified in HLL and then equivalence of models is shown as described in
section 2.4.

Fig. 4. Start of mission in Level 0 in the Subset 26 input specification (§ 5.4.4)

For example, when a train starts a mission, the train is at standstill, on-board
system is in Stand-bymode (SB), and train data (identification numbers, length,..)
are validated.As soon as the driver pushes the start ofmissionbutton, the on-board

8 M. Petit-Doche et al.

system sends him a request for acknowledgment message, then waits reception of
this acknowledgment to switch to the appropriate mode. In Fig. 4, as level 0 is
selected, the on-board system shall switch to Unfitted mode (UN).

This expected scenario is described in figure 5.

Fig. 5. Start of mission in Level 0

For such a scenario, the Scade model to validate can not be considered as
a black-box, as for safety properties, but internal state shall be analyzed to
explicitly defined the equivalence between the Scade and the HLL models:

1. automatic translation of the Scade model (Fig. 6 for example) to an HLL
model;

2. specification of a scenario (for example the one described in Fig. 5) in aHLL
model (or in a Scade model translated in HLL);

3. specification in HLL of the equivalence between the states of the scenario
and the states of the Scade model (for example state “Level 0” in Fig. 6
shall correspond to state “S2” in Fig. 5);

4. proof of these equivalences with the S3 tool and analysis of counter-examples
if any.

A counter-example contains specific input values which lead to disprove the
equivalence. However, it can be due to unrealistic input values. In this case it is
possible to add constraints to our HLL model. In our example, we can assume
that during the mode management the level input value stays constant with
value ”L0” and that train data stay unchanged and valid.

Formal Verification of Industrial Critical Software 9

Fig. 6. Start of mission — Scade model — Zoom

In a verification process, adding constraints leads to add new properties to be
verified on another part of the system (i.e. the part which is connected to our
model inputs).

Other hypotheses can be integrated in the property to verify: the proof goal
P is replaced by the proof goal H ⇒ P where H are the hypotheses. Other
properties shall be introduced to cover the case where H is false, and no exter-
nal verification is required. Typically, these hypotheses are defined to eliminate
possible behaviors, not directly related to the topic of verification. In our exam-
ple, we assume that system failure is not detected in input of the models, and
then we do not consider all the behaviors which drive to system failure mode,
to check switch to unfitted mode. The occurrence of a system failure has been
covered by another properties.

In this context, proof shows, that under given constraints on inputs, and
hypotheses, behaviors of both state machines are equivalent.

Models in Scade and HLL and set of proofs are available for further analyses
on the openETCS website4.

4 In the modelisation repository for the Scade model
https://github.com/openETCS/modeling/tree/master/model/Scade/System/
ObuFunctions/ManageLevelsAndModes and in the validation repository for
the HLL proof files https://github.com/openETCS/validation/blob/master/
VnVUserStories/VnVUserStorySysterel/04-Results/e-Scade S3/Scade S3 VnV.pdf

https://github.com/openETCS/modeling/tree/master/model/Scade/System/ObuFunctions/ManageLevelsAndModes
https://github.com/openETCS/modeling/tree/master/model/Scade/System/ObuFunctions/ManageLevelsAndModes
https://github.com/openETCS/validation/blob/master/VnVUserStories/VnVUserStorySysterel/04-Results/e-Scade_S3/Scade_S3_VnV.pdf
https://github.com/openETCS/validation/blob/master/VnVUserStories/VnVUserStorySysterel/04-Results/e-Scade_S3/Scade_S3_VnV.pdf

10 M. Petit-Doche et al.

5 Discussion

Thanks to our experience in the railway industry, formal methods have been first
used to produce “correct-by-construction” software. Now, to open the market of
critical software products, they are also used to verify and validate, a posteriori,
configuration data [3] or software developed without formal methods as presented
in this paper.

Such an activity needs selection or development of tools, which respond to
certification criteria requested by standards such as [7,13]. Moreover, methods
and processes to use this tools in an industrial context shall be explicitly defined
in view to reinforce quality of critical systems.

Besides, in the context of the openETCS project, as described in this pa-
per, this SAT-based model checking solution has been shown to be particularly
efficient in proving the safety of the Computer Based Interlocking (CBI) or
Communication-Based Train Controler (CBTC) systems developed by the rail-
way industry. It had also been used to generate test cases for an aeronautic
subsystem and verify its parametrization process.

Benefits of formal methods in an a posteriori verification process of critical
systems has been recognized by our industrial customers:

– Contrarily to a human generated test-based verification solution, a formal
safety verification is intrinsically complete. It is equivalent to search for every
possible falsification.

– It clearly identifies the complete list of assumptions upon which the safety
relies.

– A certified solution allows for a reduction of the testing and review efforts
(only the generic safety specification has to be reviewed).

– The use of formal verification in the qualification of critical software sends a
strong and positive message to the market, and is sometime even a require-
ment for some customers.

References

1. Amla, N., Du, X., Kuehlmann, A., Kurshan, R.P., McMillan, K.L.: An analysis of
SAT-basedmodel checking techniques in an industrial environment. In: Borrione, D.,
Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 254–268. Springer, Heidelberg
(2005)

2. Badeau, F., Amelot, A.: Using B as a High Level Programming Language in an In-
dustrial Project: Roissy VAL. In: Treharne, H., King, S., C. Henson, M., Schneider,
S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 334–354. Springer, Heidelberg (2005)

3. Badeau, F., Doche-Petit, M.: Formal data validation with event-b. Proceeding of
DS-Event 2012, CoRR abs/1210.7039 (2012)

4. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: A successful application
of B in a large project. In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 369–387. Springer, Heidelberg (1999)

Formal Verification of Industrial Critical Software 11

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

6. Boulanger, J.L.: Safety Demonstration for a Rail Signaling Application in Nominal
and Degraded Modes Using Formal Proof (2014)

7. CENELEC–EN 50128: Railway applications –Communication, signalling and pro-
cessing system –Software for railway control and protecton system. DIN (October
2011)

8. Essamé, D., Dollé, D.: B in Large-Scale Projects: The Canarsie Line CBTC Ex-
perience. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355,
pp. 252–254. Springer, Heidelberg (2006)

9. European Union: Commission decision of 25 january 2012 on the technical specifica-
tion for interoperability relating to the control-command and signalling subsystems
of the trans- european rail system - 2012/88/EU, official journal of the european
union, pp. l51/1-l51/65 (2012)

10. Marielle Petit-Doche, WP7 participants: Report on all aspects of secondary tooling.
Report D7.2, openETCS (2014)

11. Jastram, M., Petit-Doche, M.: WP7 participants: Report on the Final Choice of
the Primary Toolchain. Report D7.1, openETCS (October 2013)

12. openETCS: Project Outline Full Project Proposal Annex openETCS open proofs
methodology for the european train control system. Requirements v2.2 (2011)

13. RTCA, EUROCAE: Software Considerations in Airborne Systems and Equipment
Certification. RTCA DO-178 (2011)

14. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

15. UNISIG: SUBSET-026 System Requirements Specification, version 3.3.0 (2012)

Applications

A Case Study on Formal Verification

of the Anaxagoros Hypervisor Paging System
with Frama-C

Allan Blanchard1,3(�), Nikolai Kosmatov1,
Matthieu Lemerre1, and Frédéric Loulergue2,3

1 CEA, LIST, Software Reliability Laboratory, PC 174, 91191,
Gif-sur-Yvette, France

{firstname.lastname}@cea.fr
2 Inria πr2, PPS, University Paris Diderot, CNRS, Paris, France

3 INSA Centre Val de Loire, University Orléans, LIFO EA, 4022, Orléans, France
{firstname.lastname}@univ-orleans.fr

Abstract. Cloud hypervisors are critical software whose formal verifi-
cation can increase our confidence in the reliability and security of the
cloud. This work presents a case study on formal verification of the vir-
tual memory system of the cloud hypervisor Anaxagoros, a microkernel
designed for resource isolation and protection. The code under verifica-
tion is specified and proven in the Frama-C software verification frame-
work, mostly using automatic theorem proving. The remaining properties
are interactively proven with the Coq proof assistant. We describe in de-
tail selected aspects of the case study, including parallel execution and
counting references to pages, and discuss some lessons learned, benefits
and limitations of our approach.

Keywords: Deductive verification · Interactive proof ·Cloud hypervisor ·
Frama-C · Specification · Concurrency

1 Introduction

Recent years have seen a huge trend towards mobile and Internet applications.
Well known applications are moving to the cloud to become “software as a
service” offers. At the same time, more and more of our data is in the cloud. It
is thus necessary to have reliable, safe and secure cloud environments.

Certification of programs in critical systems is an old concern, while a recent
trend in this area is to formally verify the programs, the tools used to produce
them [1,2] (and even the tools used to analyze them), and the operating system
kernel [3] used to execute them. This formal verification is mostly done using
interactive theorem provers, and sometimes automated provers.

This work has been partially funded by the CEA project CyberSCADA and the EU
FP7 project STANCE (grant 317753).

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 15–30, 2015.
DOI: 10.1007/978-3-319-19458-5_2

16 A. Blanchard et al.

Anaxagoros [4] is a secure microkernel that is also capable of virtualizing pre-
existing operating systems, for example Linux virtual machines, and can there-
fore be used as a hypervisor in a cloud environment. One distinctive feature of
Anaxagoros is that it is capable of securely executing hard real-time tasks or
operating systems, for instance the PharOS real-time system [5], simultaneously
with non real-time tasks, on a single chip or on a multi-core processor. Our goal
is to formally verify the prototype C implementation of Anaxagoros, starting
with its most critical components. In this paper we focus on the virtual mem-
ory system of Anaxagoros and use the Frama-C toolset [6] for conducting the
verification.

Frama-C is a platform for static analysis, deductive verification and testing
of critical software written in C. It offers a collection of plugins for source code
analysis. These plugins could be used in cooperation for a particular verification
task. They interact through a common specification language for C programs:
ACSL [6,7]. In this work, the specifications are written in ACSL, and the weak-
est precondition calculus plugin Wp of Frama-C together with SMT solvers
are used to provide automatic proof for most properties. Some remaining proof
obligations (that were not proven automatically) are proven in the interactive
proof assistant Coq [8].

The Contributions. of this paper include a case study on formal verification
of a critical module of a Cloud hypervisor. Assuming a sequentially consistent
memory model, we performed the verification for both sequential and concurrent
execution for one of the key parts of the virtual memory module related to
setting new page mappings. We show how a simulation-based approach allows
us to take into account concurrent execution using the Frama-C plugin Wp
that does not natively support parallel programs. One advantage of its usage is
the possibility to perform the proof for most specified properties automatically
with a very reasonable effort. Only a few lemmas in this case study have to be
proven manually, and Wp allows the user to conveniently complete their proofs
in the interactive proof assistant Coq, where the Coq statements to be proven
are automatically extracted based on the specified code.

Moreover, the verification in this case study can be considered completely
formal under the hypothesis that other functions do not interfere on the same
variables (memory page mappings) with the function that we verify. That is
realistic given that these mappings can be changed only by a couple of functions
that can be included into the case study. On the other hand, we argue that, even
seen as a partial formal verification, such a study of a critical module in isolation
can still be quite efficient to avoid security issues. Finally, we argue that, even
done under the assumption that the memory model is sequentially consistent,
the presented case study remains valid for weak memory models.

Outline. The paper is organized as follows. Section 2 presents the Anaxagoros
hypervisor and its virtual memory system. The verification of this system is de-
scribed in Section 3, where we detail particular issues of the case study including

A Case Study on Formal Verification 17

simulation of parallel execution (Section 3.1), counting references to pages (Sec-
tion 3.2), automatic proof with Frama-C (Section 3.3) and interactive proof
with Coq (Section 3.4). Section 4 provides a discussion of the approach, some
lessons learned and axes of improvement. Finally, Section 5 presents related
work, while Section 6 gives a conclusion and future work.

2 The Anaxagoros Virtual Memory System

Anaxagoros [4,9] is a secure microkernel and hypervisor developed at CEA LIST,
that can virtualize preexisting operating systems, for example, Linux virtual
machines. It puts a strong emphasis on security, notably resource security, so
it is able to provide both quality-of-service guarantees and an exact accounting
(billing) of CPU time and memory provided to virtual machines, thus satisfying
requirements of cloud users.

A critical component to ensure security in Anaxagoros is its virtual memory
system [9]. The x86 processor (as many other high-end hardware architectures)
provides a mechanism for virtual memory translation, that translates an address
manipulated by a program into a real physical address. One of the goals of
this mechanism is to help to organize the program address space, for instance,
to allow a program to access big contiguous memory regions. The other goal
is to control the memory that a program can access. The physical memory is
split into equally sized regions, called pages or frames. Pages can be of several
types: data, pagetable, pagedirectory. Basically, page directories contain
mappings (i.e. references) to page tables, that in turn contain mappings to data
pages. The page size is 4kB on standard x86 configurations.

Anaxagoros does not decide what is written to pages; rather, it allows tasks to
perform any operations on pages, provided that this does not affect the security
of the kernel itself, and of the other tasks in the system. To do that, it has to
ensure only two simple properties. The first one ensures that a program can only
change a page that it “owns”. The second property states that pages are used
according to their types.

Indeed, the hardware does not prevent a page table or a page directory from
being also used as a data page. Thus, if no protection mechanism is present, a
malicious task can change the mappings and, after realizing a certain sequence
of modifications, it can finally access (and write to) any page, including those
that it does not own.

The virtual memory module should prevent such unauthorized modifications.
It relies on recording the type of each page and maintaining counters of mappings
to each page (i.e. the number of times the page is referred to as a data page,
page table, or page directory). The module ensures that pages can be used only
according to their type. In addition, to allow dynamic reuse of memory, the
module should make it possible to change the type of a page. To avoid possible
attacks, changing the page type requires some complex additional properties.
(Simplified) examples of properties include: page contents should be cleaned
before any type change; still referred pages cannot be cleaned; the cleaning should

18 A. Blanchard et al.

1 int set_entry(int fn, int idx, int new){
2 // Step 1 -> read_map_new
3 int c_n = mappings[new];
4 // Step 2 -> test_map_new
5 if(c_n >= MAX) return 1;
6 // Step 3 -> CAS_map_new
7 if(!compare_and_swap(&mappings[new], c_n, c_n+1))
8 return 1;
9 // Step 4 -> EXCH_entry

10 page_t p = get_frame(fn);
11 int old = atomic_exchange(&p[idx], new);
12 // Step 5 -> test_map_old
13 if(!old) return 0;
14 // Step 6 -> FAS_map_old
15 fetch_and_sub(&mappings[old], 1);
16 return 0;
17 }

Fig. 1. Function set_entry writes page reference new into page fn at index idx

be correctly resumed after an interruption; the counters of mappings (references)
should be correctly maintained; cleaned pages are never referred to; etc.

For instance, in Anaxagoros, the function that sets a mapping to a page inside
a page table (illustrated in Fig. 1 and described below) has to update the counters
of mappings taking into account the ones it sets and removes. The counters are
maintained by an array storing the state of every page, including the number of
times it is mapped. The goal is to ensure that for every page, the real number of
mappings to it is at most equal to the value of the counter. Thus, checking if the
counter is equal to zero allows us to ensure that the page is no longer referred
to before it is cleaned and its type is changed. This prevents possible attacks.

The algorithm also has to take care of the memory management unit cache
called the translation lookaside buffer (TLB), which has to be flushed before
repurposing a page. Indeed, an entry left in this cache could allow a user program
to change a page after it has been cleaned by the kernel. As TLB flushes are
costly, the algorithm should avoid them whenever possible, i.e. when we can
ensure that there are no entries left in the TLB for a page. We have currently
excluded modeling of the TLB from the verification study.

This case study focuses on a simplified version of the virtual memory module
that includes most of its key aspects such as data pages and page tables used
with respect to the page type, setting new mappings to data pages, maintaining
correct counters of mappings and concurrent execution. Simplifications include
the replacement of bitfields used in page descriptors by a set of arrays of separate
variables, and the fact that we do not take into account the multiple levels of
hierarchy of pagetables in the considered properties. Another characteristic of
the simplified version is that it splits some functions into smaller ones, and
therefore allows to treat a more fine-grained concurrency than the original one.

3 Formal Verification

As any OS, Anaxagoros is inherently concurrent, so we have to deal with concur-
rency in this case study. Frama-C does not currently treat concurrency, and there

A Case Study on Formal Verification 19

are no concurrency primitives available in the considered version of C. Dealing
with concurrency becomes even more difficult nowadays because of weak memory
models. In this section, we assume a sequentially consistent memory model.

Since no concurrency primitives are available, we consider two classes of func-
tions. The first one is the low-level functions that are atomic, so we verify them
as sequential code. We specified all low-level functions of the virtual memory
module in acsl (15 functions, ≈500 lines of annotated C code) and successfully
proved them in Frama-C, with the Wp plugin and the SMT solvers Z3, CVC3
and CVC4. This proof is automatic and takes about 90 seconds. This part of
the case study was mostly standard and is not presented here in detail.

The second class is higher-order functions that are not atomic, so we decom-
pose them as sequences of atomic instructions for which we simulate concurrency.
We focus here on the most crucial function of the module that is in charge of
setting mappings between pages. The rest of this section presents how we simu-
late parallelism by modeling the execution context of each thread and creating
interleavings, introduces the main properties we want to verify, and describes
their proof.

3.1 Simulating Parallel Execution

To take into account parallel execution of code by several threads and to be able
to verify it in Frama-C, we simulate parallel execution by sequential code. Let
us illustrate it for the C function set_entry given at Fig. 1. It sets a mapping
(i.e. a reference) to a data page of index new into the element of index idx of the
page table of index fn, that can be seen as writing new into the corresponding
page table element. It has to maintain a correct number of mappings to new in
the counter mappings[new] to remain resistant to attacks. In addition, special care
must be taken in case of parallel execution by several threads.

At Step 1 (line 2–3 of Fig. 1), the current number of mappings to new is
stored in c_n. It must be less than the maximal value to avoid an overflow,
otherwise the operation is aborted (Step 2, line 4–5). At Step 3 (lines 6–8), the
counter is incremented, but only after checking that its value is the same as
the one previously read, using an atomic compare_and_swap (CAS) operation (note
that it could have been modified several times, the only thing that matters
is that it must be the same). Step 4 (lines 9–11) retrieves a pointer to the
page table of index fn (using get_frame function), then atomically, again to avoid
concurrent access issues, writes new into its element at index idx and stores the
old value in old. Step 5 (line 12–13) checks if the old value was a mapping, that is,
nonzero, and in that case Step 6 (line 14–15) atomically decrements the number
of mappings to old, since one mapping has now been replaced by a new one.
Notice that if new is equal to old, the same counter is first incremented and then
decremented, as the mapping actually remains the same.

For the sake of verification with Frama-C, we simulate parallel execution of
set_entry as shown in Fig. 2. Every single step is simulated by a separate simu-
lating function (cf. comments in Fig. 1) that takes a thread number, performs
the step for this thread and sets the number of the next step to be executed.

20 A. Blanchard et al.

1 #define NOF 2048 //nb of frames
2 #define THD 1024 //max nb of threads
3 #define MAX 256 //max nb of mappings
4 #define SIZE 1024 //size of a page
5 uint mappings[NOF];
6 uint new[THD], idx[THD], fn[THD];
7 uint old[THD], c_n[THD];
8 uint pct[THD];
9 //@ghost uint ref[THD];

10

11 page_t get_frame(uint fn);
12 void gen_args(uint th){ // Step 0
13 /* generate function args */
14 pct[th] = 1;
15 }
16 void read_map_new(uint th){ // Step 1
17 c_n[th] = mappings[new[th]];
18 pct[th] = 2;
19 }
20 void test_map_new(uint th){ // Step 2
21 pct[th] = (c_n[th] < MAX)? 3 : 0;
22 }
23 void CAS_map_new(uint th){ // Step 3
24 if(mappings[new[th]] == c_n[th]){
25 mappings[new[th]] = c_n[th]+1;
26 //@ghost ref[th] = new[th];
27 pct[th] = 4;
28 }
29 else pct[th] = 0;
30 }

31 void EXCH_entry(uint th){ // Step 4
32 page_t p = get_frame(fn[th]);
33 old[th] = p[idx[th]];
34 p[idx[th]] = new[th];
35 //@ghost ref[th] = old[th];
36 pct[th] = 5;
37 }
38 void test_map_old(uint th){ // Step 5
39 pct[th] = (!old[th])? 0 : 6;
40 }
41 void FAS_map_old(uint th){ // Step 6
42 mappings[old[th]]--;
43 //@ghost ref[th] = 0;
44 pct[th] = 0;
45 }
46 void interleave(){
47 while(true){
48 int th = choose_a_thread();
49

50 switch(pct[th]){
51 case 0 : gen_args(th); break;
52 case 1 : read_map_new(th); break;
53 case 2 : test_map_new(th); break;
54 case 3 : CAS_map_new(th); break;
55 case 4 : EXCH_entry(th); break;
56 case 5 : test_map_old(th); break;
57 case 6 : FAS_map_old(th); break;
58 }
59 }
60 }

Fig. 2. Simplified simulation of parallel execution for function set_entry of Fig. 1

Step 0 simply generates input values for the arguments being passed to set_entry

function. When the execution reaches the end of the function, we assume it goes
to Step 0 and can start again with new arguments. Error cases are treated in
the same way. Parallelism is simulated by an infinite loop (lines 47–59) that, at
each iteration, randomly selects a thread and makes it execute one step.

Values of input and local variables of different threads are kept in arrays
(fn, idx, new, c_n, old) that associate to each thread number the value of the
corresponding variable for this thread. The array pct stores the current step
(program counter) of each thread. Atomic instructions such as compare_and_swap,
atomic_exchange and fetch_and_sub can be simulated by standard C instructions in
the corresponding simulating functions (since each simulating function is already
supposed to be an atomic step in our simulation approach).

3.2 Counters of Mappings and Global Invariant

One of the key properties ensured by Anaxagoros states that the actual number
of mappings to any valid page p is at most the value of the corresponding counter
mappings[p]. Along with the property that this counter is under a certain limit,
it ensures that the real number of mappings is also under this limit. Notice that
we do not count mappings to the page 0 since, in this model, the value 0 in a
page table stands for the absence of mapping.

A Case Study on Formal Verification 21

Let Occva denote the number of occurrences of the value v in an array a (that
can be also a page), and Occv the number of occurrences of v in all page tables
in memory. We can formalize the global invariant in the following form:

∀e, validpage(e) ⇒ Occe ≤ mappings[e] ≤ MAX MAPPINGS.

But, while this property is easily proven as maintained by the set_entry function
after each instruction in monoprocess mode (as this function is not preemptible),
it is not precise enough to be used in a multi-threaded context. Indeed, this
invariant cannot easily ensure that before we decrement a counter (cf. Step 6 in
Fig. 1) it is always greater than 0.

To keep track of values more precisely, we use an invariant in the following
form:

∀e, validpage(e) ⇒ ∃k, 0 ≤ k ∧ Occe + k = mappings[e] ≤ MAX MAPPINGS,

where k can be defined as the gap between the real number of mappings to
(that is, occurrences of) e in page tables and the value indicated by its counter.
This gap comes from the mappings already counted but not yet effectively set
(between Steps 3 and 4 in Fig. 1), and from the valid mappings already removed
whose counter is not yet decremented (between Steps 4 and 6 in Fig. 1). In other
words, a thread executing set_entry creates a gap of 1 for the mappings to new

at Step 3, then Step 4 removes this gap and creates one for the mappings to old

(if old was a valid mapping, i.e. nonzero), and finally Step 6 removes the last
gap (if old was not a valid mapping, Step 5 exits the execution before this last
step). Therefore, any thread can only create a gap of at most 1 for at most one
mapping at the same time.

To model the gap in our simulation approach, we add a ghost array ref that
associates to each thread number the entry for which the thread creates a gap,
and 0 if the thread provokes no gap at the moment. This ghost array is updated
by ghost statements at lines 26, 35 and 43 in Fig. 2. This allows to ensure the
desired property for ref formalized by the acsl predicate of Fig. 5.

The precise definition for k is Occeref, and the final global invariant is

I : ∀e, validpage(e) ⇒ Occe +Occeref = mappings[e] ≤ MAX MAPPINGS.

To express and prove assertions invoking the number of occurrences of a value
e in memory pages, we define in acsl two logic functions with related axioms
to count occurrences of e over a range of indices [from,to[in one page referred
by t (Fig. 3), and over a range of page tables [from,to[(Fig 4). The left bound
of the range is included, while the upper bound is excluded. The label L defines
the program point where the values are considered. For example, the value Occe

at label L can be now expressed as occ_m{L}(e,0,NOF-1), where NOF denotes the
number of frames.

The axioms of Fig. 3 define the following cases: the range [from,to[is empty so
there are no occurrences (axiom end_occ_a), or it is non-empty and there are two
cases, the rightmost element contains e, so the result is one plus the number of

22 A. Blanchard et al.

axiomatic OccArray{
logic integer occ_a{L}(integer e, uint* t,

integer from, integer to);

axiom end_occ_a{L}:
\forall integer e, uint* t, integer from, to;

from >= to ==> occ_a{L}(e,t, from, to) == 0;
axiom iter_occ_a_true{L}:
\forall integer e, uint* t, integer from, to;

(from < to && t[to-1] == e) ==>
occ_a{L}(e,t,from,to) == occ_a{L}(e,t,from,to-1) + 1;

axiom iter_occ_a_false{L}:
\forall integer e, uint* t, integer from, to;

(from < to && t[to-1] != e) ==>
occ_a{L}(e,t,from,to) == occ_a{L}(e,t,from,to-1);

}

Fig. 3. Simplified logic function occ_a counting occurrences in a subarray

axiomatic OccMemory{
logic integer occ_m{L}(integer e,integer from,integer to);

axiom end_occ_m{L}:
\forall integer e, integer from, to;

from >= to ==> occ_m{L}(e, from, to) == 0;
axiom iter_occ_m_true{L}:
\forall integer e, integer from, to;

from < to && pagetable[to-1] == true ==>
occ_m{L}(e,from,to) == occ_a{L}(e,frame(to-1),0,SIZE)

+ occ_m{L}(e,from,to-1);
axiom iter_occ_m_false{L}:
\forall integer e, integer from, to;

from < to && pagetable[to-1] != true ==>
occ_m{L}(e,from,to) == occ_m{L}(e,from,to-1);

}

Fig. 4. Simplified logic function occ_m counting occurrences over a range of pages

occurrences over the reduced range [from,to-1[(axiom iter_occ_a_true), or it does
not, and this is simply the number of occurrences on the reduced range (axiom
iter_occ_a_false). Similarly, the axioms of Fig. 4 define how to count the number
of occurrences of e in all page tables, hence we need an additional condition: we
count occurrences in a page only if it is a page table.

3.3 Proof with the Wp Plugin of Frama-C

Wp [6] is a weakest precondition calculus plugin integrated to Frama-C. Given
a C program specified in acsl, Wp generates proof obligations in the Why3
language that can be discharged with automatic or interactive provers.

To useWp, we first write acsl annotations to define the contract of each func-
tion as well as a few lemmas (detailed in Sec. 3.4) to help automatic provers.
For the code of Fig. 2, our main goal is to ensure that for every simulating func-
tion, if the global invariant I holds before its execution, it is maintained after.

A Case Study on Formal Verification 23

predicate pct_imply_for_thread(integer th) =
(pct[th] <= 3 ==> ref[th] == 0) &&
(pct[th] == 4 ==> ref[th] == new[th]) &&
(pct[th] == 5 ==> ref[th] == old[th]) &&
(pct[th] == 6 ==> ref[th] == old[th] && old[th] != 0);

Fig. 5. Predicate defining the link between the program counter and the array ref

Thus, I is formalized as an acsl predicate that appears both in the precondition
and the postcondition of the contract.

Other clauses include some routine properties, for example, bounding local
variables to the range of authorized values, or defining the relationship between
ref and the thread’s program counter illustrated by the predicate in Fig. 5.

The verified prototype simulating parallel execution of the set_entry function
contains about 610 lines of code including 530 lines of acsl annotations. 140
lines are needed for the axioms and lemmas related to occurrence counting. We
also define some predicates to express the bounds of the different simulated
local variables (about 50 lines). The remaining lines contain function contracts
and some assertions necessary to guide the proof. In the function contracts, 200
lines are just duplicates of the actual invariant (about 10 lines), and could be
auto-generated (cf. Section 4.2).

The specification of this function, the adaptation of the invariant for the model
of concurrency, and the addition of the relation between the program counter
and the ghost variable, together with the determination of the assertion needed
to guide the proof took about a month for a junior verification engineer.

From the function contracts, Wp generates about 320 proof goals, including
190 for the interleaving loop. Except the lemmas, all generated goals are suc-
cessfully discharged by Z3 (v.4.3.1) or CVC4 (v.1.3) within about 65 sec. on
a QuadCore Intel Core i7-4800QM @2.7GHz. We have also investigated if the
constant values used for the size of a page (SIZE), the number of frames (NOF)
or the maximal number of threads (THD), have an impact on the time needed
to discharge the proof obligations. An experiment shows that this time does
not depend on these values. Indeed, the axiomatic definition of logical functions
prevents the provers from unrolling the recursion when properties involve the
number of occurrences of values in arrays.

3.4 Proof of Lemmas in Coq

To facilitate the proof of formulas using the logic functions of Fig. 3 and 4,
we state simple lemmas in acsl that express useful properties of these logic
functions. For each function, we have three lemmas that express the same idea
at the corresponding level: for a single page and for all page tables. The proof
of these lemmas requires careful induction, paying attention to the right usage
of the induction hypothesis and axioms, so they cannot be automatically proven
by Z3 and CVC4. Wp allows us to complete the proof of goals using Coq.

24 A. Blanchard et al.

lemma occ_a_separable{L}:
\forall integer e, uint* t, integer from, cut, to;

from <= cut <= to ==>
occ_a{L}(e,t,from,to) ==

occ_a{L}(e,t,from,cut)+occ_a{L}(e,t,cut,to);

Fig. 6. Example of a lemma in acsl for counting over two sub-ranges

So we first use Wp to automatically extract the goals for the lemmas from acsl
into the Coq format, and then perform their proof interactively in Coq.

A good example of a lemma about counting occurrences in a single array is
the property shown in Fig. 6. It states that we can split a range [from,to[of
page elements on which we want to count into two subranges [from,cut[and
[cut,to[, count separately on each of them, and then take the sum to obtain the
number of occurrences over the complete range. This is a very useful property
as it allows us to partition ranges in order to keep only smaller subranges that
changed between two points, saying that “all other elements did not change”.
The proof of this lemma consists in an induction on to compared to from and
a case analysis on cut, the most complex case being proven using the axioms
iter_occ_a_false and iter_occ_a_true.

Another interesting lemma says that if in a range of array elements, none of
them changed between two program points, then for any value, the number of
its occurrences over the range did not change. The proof is done by a simple
induction.

The last lemma says that if only one array element changed to a different value
between two labels, the number of occurrences decreases by 1 for the old value,
increases by 1 for the new value, and all other values have the same number of
occurrences. Its proof uses the two preceding lemmas. We use the first lemma
to separate the subrange that changed from those that did not. Then we use
the second lemma to prove that the number of occurrences did not change in
the unmodified subrange, and finally prove that at the modified location, the
number of occurrences respects the desired property.

For the level of all page tables (function occ_m), we define similar lemmas and
use similar proof ideas. The complete proofs totalize about 300 lines of Coq
code and took about 4 days to be written by a junior verification engineer.

4 Discussion

4.1 Weak Memory Model Compliance

The approach we applied to simulate concurrent execution of the function
set_entry is based on the assumption that it respects an interleaving semantics.
Actually, none of modern multi-processors respect this assumption, implementing
weak (or relaxed) memory models that authorize memory access reordering [10].
It can lead to “strange” behavior, like shown in Fig. 7 where “|” stands for parallel
composition of threads.

A Case Study on Formal Verification 25

1 R0 = R1 = [x] = [y] = 0
2

3 // Thread 1: Thread 2:
4 [x] <- 1 | [y] <- 1
5 R0 <- [y] | R1 <- [x]

Authorized behaviors :
R0 = 1 /\ R1 = 1
R0 = 0 /\ R1 = 1
R0 = 1 /\ R1 = 0
R0 = 0 /\ R1 = 0 (*)

Fig. 7. Example of a two-thread program and its possible weak memory behavior

Indeed, we cannot find an interleaving that exhibits the (*) behavior. However,
it can happen on weak memory for two possible reasons. First, as in the first
thread there is no dependency between the write of x (line 4) and the read of y

(line 5), these instructions could be reordered by the compiler or the processor
itself. A similar reordering can occur for the second thread. So the reads would
be performed before the writes, setting 0 to both R0 and R1. The second reason is
that memory writes are added into a store buffer before accessing the real shared
memory. So each thread could register its write in its buffer and then read the
global shared memory before the write of the other thread hits it, thus reading
0 instead of 1.

For a weak memory model, what is called the “Fundamental Property” by
Saraswat et al. [11], is the fact that any program whose sequentially consistent
executions do not have any data race must only have executions that are se-
quentially consistent. Any reasonable memory model should have this property.
It allows to reason about programs in a weak memory model using sequential
consistency. Of course this property should have been proved for the weak mem-
ory model, and indeed it has been done for most weak memory models (e.g. [12]).

A data race is a pair of conflicting operations, i.e. two accesses to the same
memory address, one of them being a write, that are concurrent, i.e. without any
temporal dependencies between them. There are several ways to formalize what
it means for two events to be concurrent. One of them is to use a happens-before
relation, which is a transitive, irreflexive partial order: one event happens-before
another one if they belong to the same thread, and synchronizations introduce
pairs in this relation for events in different threads. Concurrent events are events
that are not related with a happens-before relation. Thus, if we want to analyze
concurrent programs by generating interleavings, we first need to justify that
these programs are race-free.

There are several methods to ensure data-race freedom. For example by auto-
matic static analysis [13], or by respecting a programming discipline that adds to
a program the guarantee that its execution will respect sequentially consistent
behavior by construction [14]. One way to enforce such a programming disci-
pline is to prove the correctness of the program with a program logic such as
concurrent separation logic [15].

Actually, for the function set_entry of Fig. 1 such justification is trivial as
every shared memory access is performed by an atomic routine that flushes write
caches, thus introduces a synchronization: we use compare_and_swap to increment
the mapping counter, atomic_exchange to swap the page entry, and fetch_and_sub to
decrement the mapping counter. Thus, this program does not contain data-races.

26 A. Blanchard et al.

We can also justify an (almost) total ordering on the instructions. The function
call with argument passing (simulated by Step 0) comes necessarily first. Then,
the next three steps (read, test and CAS) are ordered by their control or data
dependencies. In the x86 model, the fence between the CAS (Step 3) and the
atomic exchange (Step 4) is implicit, while in a model that does not place this
fence (e.g. Power or ARM) we would need to add it explicitly. The test on old

(Step 5) is in data-dependency with the atomic exchange (Step 4). Finally, the
counter decrementation at Step 6 is control-dependent on the test at Step 5.

The read page_t p = get_frame(fn) is the only instruction that could be re-
ordered everywhere between the function call (Step 0) and the atomic exchange
(Step 4). Since it actually only depends on a static array (used in the imple-
mentation of get_frame) and the parameter fn which are never assigned after
the function call, possible reorderings of this read do not change anything in
the execution , so we chose to place it near the atomic exchange (cf. Step 4 in
Fig. 2).

Consequently, in this case, this simulation-based approach is sound and re-
mains valid for weak memory models. We aimed to know what can be done
for concurrent programs with Frama-C provided that they are correctly and
fully synchronized. Currently, ensuring that the programming discipline is re-
spected is not done by a dedicated tool, a future work would be to automate
this verification.

4.2 Lessons Learned, Benefits and Limitations of the Approach

This case study confirms that an obvious benefit of deductive verification based
on automatic theorem provers, combined when necessary with interactive proof,
is its cost efficiency. Indeed, most specified properties are proven automatically
by modern SMT solvers. The possibility to easily complete unsuccessful proofs
afterwards in the interactive proof assistant Coq offered by the Wp plugin ap-
pears to be very convenient and allows the verification engineer to focus on really
difficult properties, leaving routine proofs to automated tools. The time needed
to complete interactive proofs in this study appeared to be much less than the
overall effort of code specification.

Another lesson learned in this work is the ability of this approach to treat
concurrent code in Frama-C/Wp that originally does not offer this possibility.
Moreover, the effort needed to model concurrent context remains reasonable
against the specification effort, at least for short functions.

One could argue that this verification study remains valid only if this function is
the only one able to access and modify page tables and their properties. Actually,
another function, responsible for cleaning pages before changing their type, can
also modify them. Its algorithm is however very simple: “for any entry, replace
its value by null (we do not count references to the null page) and decrement the
counter for the old value”, so we can perform simulation for this part as we did for
the set_entry function. The proof can be performed in a similar way.

This work also suggests a generic verification approach that can be summed up
as follows. Given a concurrent program that respects an interleaving semantic,

A Case Study on Formal Verification 27

and a shared region of data that needs to respect a particular invariant, we
analyze in isolation the group of functions that might access it. We model every
local variable by an array associating to each thread the corresponding value,
while the position of each thread in its execution is modeled by an array of
program counters. Every single atomic action should be modeled by a separate
simulating function. The interleavings are modeled by a loop that randomly
executes a step of a thread. Finally, the global invariant is attached both to the
loop and the functions in their contracts.

Since writing the specified simulating program by hand is error-prone, the next
step is to make this approach automatic. The program transformation described
above is quite simple. Its automation would require to extend acsl in order
to allow more precise specification of concurrent properties (e.g. when some
part of the invariant depends on the position of some thread in its execution,
cf. the argument leading to the definition of I in Sec. 3.2) that could be then
translated into simulating function contracts and interleaving loop invariant in
the simulating program.

We expect this verification approach to have a limited scalability on com-
plete real-sized programs. Indeed, the interleaving loop is very short in our case.
Treating numerous functions can require to track a great number of local vari-
ables globally, that can make the automatic proof more difficult, typically for
the contract associated to the interleaving loop that would become much bigger.
Nevertheless, thanks to the automation perspective of the program transforma-
tion and the cost-efficiency of deductive verification, conducting in-depth verifi-
cation of critical algorithms by extracting the interesting part and analyzing it
in isolation can still be a practical approach to identify potential problems.

5 Related Work

Klein et al. [3] present formal verification for seL4, a microkernel allowing devices
running it to achieve the EAL7 level of the Common Criteria. Another formal
verification of a microkernel is described in [16]. Both projects take into ac-
count concurrency between the processor and the devices (represented by their
drivers), whereas our aim here is to treat the multi-processor concurrency of
a particular function. Their verification uses interactive, machine-assisted and
machine-checked proof with the theorem prover Isabelle/HOL.

Another recent work on verification of a virtual memory manager [17] relies
on the fact that virtual memory managers are constructed in layers, and uses
this to structure the proof by successive small refinements, making it easier to
achieve and to maintain. A framework is provided to lighten the work needed
for refinement and layers definition. The proof is also done interactively, with
the Coq proof assistant.

[18] presents a verification of a model of virtualization. Both implementation
and verification are done in Coq. Being relatively far from a real implementa-
tion, it allows reasoning about isolation between guests on an axiomatic basis
modeling hypervisor behavior including caches and TLB. In contrast, our work
is interested in low-level details of the real implementation.

28 A. Blanchard et al.

Unlike the aforementioned projects, we aim to maximize the amount of auto-
matic proof in our work.

The formal verification of a simple hypervisor [19] uses VCC, an automatic
first-order logic based verifier for C. The underlying architecture is precisely
modeled and represented in VCC, where the mixed-language system software is
then proven correct. Unlike [3] and [16], this technique is based on automated
methods. The verification consists in verifying that the invariant of the system
is respected by an infinite loop of steps. While VCC is intrinsically concurrent,
Frama-C is not. Our goal is to investigate what has to be done to achieve
concurrent program proof with Frama-C/Wp, in particular, in order to benefit
from the multiple analysis plugins available in the toolset.

In [20], Alkassar et al. report on verification of the translation lookaside buffer
(TLB) virtualization, a core component of modern hypervisors. As devices, like
memory management units (MMUs), run in parallel with software, they require
concurrent program reasoning even for single-threaded software. Their work gives
a general methodology for verifying virtual device implementations, and demon-
strates the verification of TLB virtualization code in VCC.

As we mentioned previously, [14] presents a programming discipline to write
concurrent programs that allow only sequentially consistent behaviors. [21] points
out that this method is not sufficient to deal with programs that edit their own
page tables and proposes an extension to complete the programming discipline.
Instead of considering a precise model of the x86 memory management unit
(MMU) [20], it proposes an abstract MMU model that allows to verify that the
MMU of a thread will not access page tables of another one. As we explained in
Section 2, our analysis does not yet consider the MMUs nor the TLB, and could
be extended with a similar approach.

Formal verification nowadays remains very expensive. [22] estimates that the
verification of the seL4 microkernel took around 25 person-years, and required
highly qualified experts. seL4 contains only about 10,000 lines of C code, and
verification cost is about $700 per line of code.

Our present work continues the previous efforts and presents a case study
on formal verification of a critical module of a hypervisor in Frama-C. To
minimize the verification cost, we use automatic theorem proving as much as
possible, complete it by interactive proof when necessary and apply a sound
simulation-based approach compliant with weak memory models to deal with
parallelism.

The only previous work [23] on verification of Anaxagoros presented partial
formal verification, completed by test generation for unproven functions, did not
consider parallel execution and did not use interactive proof.

6 Conclusion and Future Work

One of the most critical modules in the Anaxagoros hypervisor is its virtual
memory mechanism. We present here the formal verification of a slightly simpli-
fied version of it for a sequentially consistent memory model. In this component,

A Case Study on Formal Verification 29

the low-level functions are atomic and we verified them as sequential functions.
The acsl specifications were automatically proven in Frama-C using its weak-
est precondition calculus plugin Wp, and the proof obligations discharged by
Z3, CVC3 and CVC4.

Higher level functions are no longer atomic. To deal with concurrency we
simulated parallelism: the execution context of each thread and interleavings.
The verification of its key part, the function that sets mappings between pages,
has been performed using this technique. Again, the specifications were written
in acsl and the proofs conducted by Z3 and CVC4. However, in order to write
the specifications, we introduced axiomatized functions. Basic results about these
functions were needed to allow the SMT solver to conclude, but these lemmas
themselves cannot be proven by automatic provers. We used the proof assistant
Coq to prove them.

This case study illustrates formal verification of a critical module in isolation,
that can be still quite efficient to detect various functionality and security issues
such as the recent Heartbleed bug1 in OpenSSL. The main benefits of our ap-
proach include the possibility to conduct most proofs automatically, to reduce
interactive proof to a minimum, and to take into account parallel execution.

In order to prove the actual code of Anaxagoros, we should deal with bit
vectors. To avoid the need for a lot of interactive proofs, it would be interesting
to design a library of basic results for bit vectors that could be then used auto-
matically by automated provers. While the simulation approach was sufficient to
deal with this case study, we do not expect it to scale to the whole hypervisor.
Therefore, it would be interesting to be able to deal directly with parallelism in
Frama-C, in particular in the case of weak memory models.

Acknowledgment. The work of the first author was partially funded by a Ph.D.
grant of the French Ministry of Defence. The authors thank the Frama-C team for
providing the tools and support. Special thanks to François Bobot and Löıc Correnson,
the main author of Wp, for many fruitful discussions, suggestions and advice. Many
thanks to the anonymous referees for their helpful comments.

References

1. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reason-
ing 43(4), 363–446 (2009)

2. Leroy, X.: Verified squared: does critical software deserve verified tools? In: POPL
2011. ACM (2011)

3. Klein, G., Andronick, J., Elphinstone, K., Murray, T.C., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1) (2014)

4. Lemerre, M., David, V., Vidal-Naquet, G.: A communication mechanism for re-
source isolation. In: IIES 2009 (2009)

1 http://blog.regehr.org/archives/1125

http://blog.regehr.org/archives/1125

30 A. Blanchard et al.

5. Lemerre, M., Ohayon, E., Chabrol, D., Jan, M., Jacques, M.B.: Method and Tools
for Mixed-Criticality Real-Time Applications within PharOS. In: AMICS 2011
(2011)

6. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J.,
Yakobowski, B.: Frama-C: A software analysis perspective. In: Eleftherakis,
G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247.
Springer, Heidelberg (2012)

7. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language, http://frama-c.cea.fr/acsl.html

8. The Coq Development Team: The Coq Proof Assistant, http://coq.inria.fr
9. Lemerre, M., David, V., Vidal-Naquet, G.: A dependable kernel design for resource

isolation and protection. In: IIDS 2010 (2010)
10. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.

IEEE Computer 29(12), 66–76 (1996)
11. Saraswat, V.A., Jagadeesan, R., Michael, M.M., von Praun, C.: A theory of memory

models. In: PPoPP, pp. 161–172. ACM (2007)
12. Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In: POPL

2009 (2009)
13. Dabrowski, F., Pichardie, D.: A Certified Data Race Analysis for a Java-like

Language. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 212–227. Springer, Heidelberg (2009)

14. Cohen, E., Schirmer, B.: From total store order to sequential consistency: A prac-
tical reduction theorem. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 403–418. Springer, Heidelberg (2010)

15. Brookes, S.D.: A semantics for concurrent separation logic. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 16–34. Springer,
Heidelberg (2004)

16. Alkassar, E., Paul, W.J., Starostin, A., Tsyban, A.: Pervasive verification of an OS
microkernel. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010.
LNCS, vol. 6217, pp. 71–85. Springer, Heidelberg (2010)

17. Vaynberg, A., Shao, Z.: Compositional verification of a baby virtual memory man-
ager. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 143–159.
Springer, Heidelberg (2012)

18. Barthe, G., Betarte, G., Campo, J.D., Chimento, J.M., Luna, C.: Formally verified
implementation of an idealized model of virtualization. In: TYPES 2013(2013)

19. Alkassar, E., Hillebrand, M.A., Paul, W., Petrova, E.: Automated verification of a
small hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE
2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010)

20. Alkassar, E., Cohen, E., Kovalev, M., Paul, W.J.: Verification of TLB virtualization
implemented in C. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS,
vol. 7152, pp. 209–224. Springer, Heidelberg (2012)

21. Chen, G., Cohen, E., Kovalev, M.: Store buffer reduction with MMUs: Complete
paper-and-pencil proof. Technical report, Saarland University, Saarbrücken (2013)

22. Klein, G.: From a verified kernel towards verified systems. In: Ueda, K. (ed.)
APLAS 2010. LNCS, vol. 6461, pp. 21–33. Springer, Heidelberg (2010)

23. Kosmatov, N., Lemerre, M., Alec, C.: A case study on verification of a cloud
hypervisor by proof and structural testing. In: Seidl, M., Tillmann, N. (eds.) TAP
2014. LNCS, vol. 8570, pp. 158–164. Springer, Heidelberg (2014)

http://frama-c.cea.fr/acsl.html
http://coq.inria.fr

Intra-procedural Optimization

of the Numerical Accuracy of Programs

Nasrine Damouche1,2(�), Matthieu Martel1,2, and Alexandre Chapoutot3

1 University of Perpignan Via Domitia, DALI Team-Project, Perpignan, France
2 University of Montpellier II and CNRS, LIRMM, UMR, 5506, Montpellier, France

3 ENSTA ParisTech, Palaiseau, France
nasrine.damouche@univ-perp.fr

Abstract. Numerical programs performing floating-point computations
are very sensitive to the way formulas are written. These last years, sev-
eral techniques have been proposed concerning the transformation of
arithmetic expressions in order to improve their accuracy and, in this ar-
ticle, we go one step further by automatically transforming larger pieces
of code containing assignments and control structures. We define a set
of transformation rules allowing the generation, under certain conditions
and in polynomial time, of larger expressions by performing limited for-
mal computations, possibly among several iterations of a loop. These
larger expressions are better suited to improve the numerical accuracy
of the target variable. We use abstract interpretation-based static anal-
ysis techniques to over-approximate the roundoff errors in programs and
during the transformation of expressions. A prototype has been imple-
mented and experimental results are presented concerning classical nu-
merical algorithm analysis and algorithm for embedded systems.

Keywords: Program transformation · Floating-point numbers · Static
analysis · IEEE754 standard

1 Introduction

These last years, as the complexity of the floating-point computations [1,23] car-
ried out in embedded systems and elsewhere increased, numerical accuracy has
become a more and more sensitive subject in computer science. Due to the impor-
tant impact of accuracy on the reliability of embedded systems, many industries
and companies encourage research to validate [5,10,14,13] and improve [16,21]
their software in order to avoid failures and eventually disasters in aeronautics,
automotives, robotics, etc.

In this article, we focus on the transformation [6,8] of intra-procedural pieces
of code in order to automatically improve their accuracy. For automatic trans-
formation of single arithmetic expressions, several techniques have already been
proposed. We can mention [16] which introduces a new intermediary represen-
tation (IR) that manipulates in a single data structure a large set of equivalent
arithmetic expressions. This IR, called APEG [16,17] for Abstract Program Ex-
pression Graphs, succeeds to reduce the complexity of the transformation in

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 31–46, 2015.
DOI: 10.1007/978-3-319-19458-5_3

32 N. Damouche et al.

polynomial size and time. Starting from this state of the art, we aim at going
a step further by automatically transforming larger pieces of code. Our interest
is to transform automatically sequences of commands that contain assignments
and control structures in order to improve their numerical accuracy. This trans-
formation consists in optimizing a target variable with respect to some given
ranges for the input variables of the program. Accuracy bounds are computed
by abstract interpretation [7] techniques for the floating-point arithmetic [13].

We start by motivating our work with a case study concerning an algorithm
frequently used in robotics for odometry. We show how to rewrite it into another
program which is more accurate numerically but equivalent semantically (in the
sense that both programs compute the same function in exact arithmetic). This
transformation operates by simplifying and developing the expressions and in-
lining them into other expressions. This allows one to generate new formulas and
to reduce the number of operations in programs. We also rewrite the codes by
unfolding the body of loops, manner to have more computations on a single iter-
ation. The transformation of the odometry program and the rewriting rules used
to automatically rewrite codes are the main contribution of this article. These
rules are presented as sequents containing conditions under which the transfor-
mation may be applied without breaking the semantical equivalence between
the source and target programs. In addition, these rules are applied determin-
istically, yielding a polynomial time transformation. This work is completed by
experimental results involving the transformation of codes coming from multiple
domains of science.

This article is organized as follows. Section 2 is consecrated to our case study
about odometry and Section 3 introduces related work concerning the analy-
sis and transformation of arithmetic expressions. In Section 4, we give the set
of transformation rules for commands together with the conditions required to
conserve the semantical equivalence of programs. Section 5 presents experimen-
tal results and shows various experimentations obtained using our prototype.
Finally, Section 6 concludes.

2 Case Study: Odometry

In this section, we are interested in an example widely used in embedded sys-
tems, taken from robotics and whose code is given in Figure 2. It concerns the
computation of the position of a two wheeled robot by odometry. Given the
instantaneous rotation speeds sl and sr of the left and right wheels, we aim at
computing the position of the robot in a cartesian space (x, y). Let C be the
circumference of the wheels of the robot and L the length of its axle (see Fig-
ure 1). We assume that sl and sr are updated by the system, by side-effect. The
computation of the position is given by

x(t+ 1) = x(t) +Δd(t+ 1)× cos

(
θ(t) +

Δθ(t+ 1)

2

)
, (1)

y(t+ 1) = y(t) +Δd(t+ 1)× sin

(
θ(t) +

Δθ(t+ 1)

2

)
, (2)

Intra-procedural Optimization of the Numerical Accuracy of Programs 33

It x (Odometry1) x (Odometry2)

1 8.681698 8.444116
2 17.038230 16.589474
3 24.756744 24.147995
4 31.549016 30.852965
5 37.163761 36.469708
6 41.398951 40.806275
7 44.114126 43.724118
8 45.242707 45.148775

Fig. 1. Left: Parameters of the two-wheeled robot. Right: Values of x in Odometry1
and Odometry2 at the first iterations.

sl = [0.52,0.53]; sr = 0.785398163397;

theta = 0.0; t = 0.0; x = 0.0; y = 0.0; inv_l = 0.1; c = 12.34;

while (t < 100.0) do {

delta_dl = (c * sl) ;

delta_dr = (c * sr) ;

delta_d = ((delta_dl + delta_dr) * 0.5) ;

delta_theta = ((delta_dr - delta_dl) * inv_l) ;

arg = (theta + (delta_theta * 0.5)) ;

cos = (1.0 - ((arg * arg) * 0.5)) + ((((arg * arg)* arg)* arg) / 24.0);

x = (x + (delta_d * cos)) ;

sin = (arg - (((arg * arg)* arg)/6.0))

+ (((((arg * arg)* arg)* arg)* arg)/120.0);

y = (y + (delta_d * sin));

theta = (theta + delta_theta) ;

t = (t + 0.1) }

Fig. 2. Listing of the initial Odometry program.

with
θ(t+ 1) = θ(t) +Δθ(t), Δd(t) =

(
Δdr(t) +Δdl(t)

)× 0.5, (3)

Δθ(t) =
(
Δdr(t)−Δdl(t)

)× 1

L
, Δdl(t) = sl(t)×C, Δdr(t) = sr(t)×C. (4)

In equations (1) to (4), θ(t) is the direction of the robot, d(t) is the elementary
movement of the robot at time t and dl(t), dr(t) are the elementary movements
of the left and right wheels. We assume that cos and sin, not computed by a
library, are obtained by a Taylor Series development as shown in Equation (5).

cos(x) ≈ 1− x2

2! +
x4

4! , sin(y) ≈ x− x3

3! +
x5

5! . (5)

We aim at rewriting the initial program Odometry1 into a better program
Odometry2 which improves the numerical accuracy of the computed position.

34 N. Damouche et al.

sl = [0.52,0.53] ; theta = 0.0 ; y = 0.0 ; x = 0.0 ; t = 0.0 ;

while (t < 100.0) do {

TMP_6 = (0.1 * (0.5 * (9.691813336318980 - (12.34 * sl)))) ;

TMP_23 = ((theta + (((9.691813336318980 - (sl * 12.34)) * 0.1) * 0.5))

* (theta + (((9.691813336318980 - (sl * 12.34)) * 0.1) * 0.5))) ;

TMP_25 = ((theta + TMP_6)*(theta + TMP_6))*(theta

+ (((9.691813336318980 - (sl * 12.34)) * 0.1) * 0.5)) ;

TMP_26 = (theta + TMP_6) ;

x = ((0.5 * (((1.0 - (TMP_23 * 0.5)) + ((TMP_25 * TMP_26) / 24.0))

* ((12.34 * sl) + 9.691813336318980))) + x) ;

TMP_27 = ((TMP_26 * TMP_26) * (theta + (((9.691813336318980

- (sl * 12.34)) * 0.1) * 0.5))) ;

TMP_29 = (((TMP_26 * TMP_26) * TMP_26) * (theta + (((9.691813336318980

- (sl * 12.34)) * 0.1) * 0.5))) ;

y = (((9.691813336318980 + (12.34 * sl)) * (((TMP_26 - (TMP_27 / 6.0))

+ ((TMP_29 * TMP_26) / 120.0)) * 0.5)) + y) ;

theta = (theta + (0.1 * (9.691813336318980 - (12.34 * sl)))) ;

t = t + 0.1 ; }

Fig. 3. Listing of the transformed Odometry program.

The speed of the left wheel is assumed to belong to an interval of [0.52, 0.53]
radians per second. Our prototype develops and simplifies the expressions δd,
cos and sin and then inline them within the loop, in x and y. In addition, it
creates new intermediary variables, called TMP, in order to avoid to have too large
expressions. This process makes it possible to produce constant formulas and,
in the same time, reduces the number of operations in the program. Further-
more, the resulting expressions are rewritten using existing techniques for the
transformation of arithmetic expressions based on the use of Abstract Program
Equivalence Graphs [16,21]. We obtain the final program given in Figure 3. If
we compare the resulting values x1 and x2 of Odometry1 and Odometry2, we
observe that the transformation leads to a significant difference in the accuracy
of the program as shown in Figure 1. The results show an important difference
on the third or even on the second digit of the decimal values of the result. The
difference in the computed trajectory (x, y) of the robot is shown in Figure 4.

3 Transformation of Expressions

This section introduces related work concerning the static analysis of the accu-
racy and the transformation of expressions. The syntax of expressions is

Expr � e ::= id | cst | e+ e | e− e | e× e | e÷ e. (6)

Expressions in Equation (6) are made of variables id ∈ V with V a finite set,
constants cst ∈ F with F the set of floating-point numbers and of the four
elementary operations +, −, × and ÷.

Intra-procedural Optimization of the Numerical Accuracy of Programs 35

Fig. 4. Computed trajectories by the initial and the transformed odometry programs

3.1 Static Analysis of the Accuracy

In order to compute safe bounds on the accuracy of arithmetic expressions, an
abstract value is defined by a pair of intervals representing the range of the
floating-point value seen by the program and the range of the error i.e., the
difference between the floating-point and the exact value [22]. An abstract value
is denoted by (x�, μ�) ∈ E� where x� is the interval of values of the input and
μ� is the interval of errors on the input. It abstracts a set of concrete values
{(x, μ) : x ∈ x� and μ ∈ μ�} by intervals in a component-wise way. When
working with arithmetic expressions, the propagation of roundoff errors is given

by the following semantics. We denote by ↑�◦ (x�) the approximation of an interval
with real bounds by an interval with floating-point bounds. The bounds are
rounded to the nearest to reflect the fact this first interval corresponds to the
approximated values seen by the program.

↑�◦ [(x, x)] = [↑◦ (x), ↑◦ (x)] (7)

where ↑◦ (x) denotes the rounding of x in the IEEE754 Standard [1] rounding
mode ◦ ∈ {−∞, +∞, 0, ∼}.

Conversely, the function ↓�◦ abstracts the concrete function ↓◦ which computes
the exact error ↓◦ (x) = x− ↑◦ (x). That means that for all x ∈ [x, x] we have

↓◦ (x) ∈↓�◦ [(x, x)]. We have

↓�◦ [(x, x)] = [−y, y] with y =

{
1
2
ulp

(
max(|x|, |x|)) if ◦ =∼

ulp
(
max(|x|, |x|)) otherwise.

(8)

Note that the unit in the last place ulp(x) is the weight of the least significant
digit of the floating-point number x. A sample of the elementary operations over
E� are defined in equations (9) to (10), for other operations see [22].

(x�
1, μ

�
1) + (x�

2, μ
�
2) = (↑�◦ (x�

1 + x�
2), μ

�
1 + μ�

2+ ↓�◦ (x�
1 + x�

2)), (9)

36 N. Damouche et al.

2 a

×

+

b

□

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Fig. 5. APEG for the expression e =
(
(a+ a) + b

)× c

(x�
1, μ

�
1)×(x�

2, μ2,
�) = (↑�◦ (x�

1×x�
2), x

�
2×μ�

1+x�
1×μ�

2+μ�
1×μ�

2+ ↓�◦ (x�
1×x�

2)). (10)

For example, if we add two numbers, the errors on the operands are added to the
error due to the roundoff of the result. For the product, the semantic consists of
the development of (x�

1 + μ�
1) × (x�

2 + μ�
2).

Note that more efficient abstract domains exist, e.g., [5,14,13] as well as com-
plementary techniques [3,4]. Let us also mention that other methods exist to
transform, synthesize or repair arithmetic expressions in the integer or fixed
arithmetic [12,20].

3.2 Accuracy Improvement of Expressions

Here, we briefly present former work [16,21,24] to semantically transform arith-
metic expressions using Abstract Program Expression Graph (APEG). This data
structure remains in polynomial size while dealing with an exponential number
of equivalent expressions. To prevent any combinatorial problem, APEGs hold
in abstraction boxes many equivalent expressions up to associativity and com-
mutativity. A box containing n operands can represent up to 1×3×5...×(2n−3)
possible formulas. In order to build large APEGs, two algorithms are used (prop-
agation and expansion algorithms). The first one searches recursively in the
APEG where a symmetric binary operator is repeated and introduces abstrac-
tion boxes. Then, the second algorithm finds a homogeneous part and inserts a
polynomial number of boxes. In order to add new shapes of expressions in an
APEG, one propagates recursively subtractions and divisions into the concerned
operands, propagate products, and factorizing common factors. Finally, an ac-
curate formula is searched among all the equivalent formulas represented in an
APEG using the abstract semantics of Section 3.1.

Example 1. An example of APEG is given in Figure 5. When an equivalence
class (denoted by a dotted ellipse) contains many APEGs p1, . . . , pn then one
of the pi, 1 ≤ i ≤ n, may be selected in order to build an expression. A box

∗(p1, . . . , pn) represents any parsing of the expression p1 ∗ . . .∗pn. For instance,
the APEG p of Figure 5 represents all the following expressions:

A(p) =

⎧
⎪⎪⎨

⎪⎪⎩

(
(a + a) + b

) × c,
(
(a + b) + a

) × c,
(
(b + a) + a

) × c,(
(2 × a) + b

) × c, c× (
(a + a) + b

)
, c × (

(a + b) + a
)
,

c× (
(b + a) + a

)
, c × (

(2 × a) + b
)
, (a + a) × c+ b × c,

(2 × a) × c+ b × c, b × c + (a + a) × c, b × c+ (2 × a) × c

⎫
⎪⎪⎬

⎪⎪⎭

. (11)

Intra-procedural Optimization of the Numerical Accuracy of Programs 37

For this example, the last step of transformation would consist of evaluating all
the expressions in A(p) with the abstract semantics of Section 3.1 in order to
select the most accurate one. �

4 Transformation of Commands

In this section, we introduce the formal rules used to transform intra-procedural
pieces of code. The syntax of commands is given in Equation (12). It corresponds
to the core of an imperative language.

Com � c ::= id = e | c1 ; c2 | ifΦ e then c1 else c2 | whileΦ e do c | nop. (12)

The command language is made of assignments id = e, sequences of instructions,
the void operation nop, a conditional statement ifΦ b then c1 else c2 and a loop
statement whileΦ b do c. Programs are assumed to be written in SSA form [9]
and the Φ variables attached to conditional and while statements denote their
sets of Φ nodes. The Φ node Φ(id, id1, id2) is understood as an assignment of
form id = Φ(id1, id2) where Φ(id1, id2) = id1 or Φ(id1, id2) = id2 depending
on the control flow. The construction of Φ-nodes is classical and is left to the
reader [2,9].

The transformation defined by the rules of Figure 6 uses states of the form
〈c, δ, C, ν, β〉 where:
– c is a command, as defined in Equation (12),
– δ is an environment δ : V → Expr which maps variables to expressions. Intu-

itively, this environment, fed by Rule (A1), records the expressions assigned
to variables in order to inline them later on in larger expressions thanks to
Rule (A2),

– C ∈ Ctx is a single hole context [15] defined in Equation (13). It records the
program englobing the current expression to be transformed and which is
intended to fit in the hole denoted by [].

Ctx � C ::= [] | id = e | C1 ;C2 | ifΦ e then C1 else C2 | whileΦ e do C | nop. (13)

– let ν ∈ V denote the reference variable that we aim at optimizing.
– let β ⊆ V be a list of assigned variables that should not be removed from

the source program. Initially, β = {ν}, i.e., the target variable ν must not
be removed. The set β is modified by rules (C1), (C2), (C4) and (W2).

Let us now describe the rules of Figure 6. Rule (A1) allows one to discard an
assignment id = e by memorizing in δ the formal expression e in order to inline
it later, in a larger expression. The function V ar(e) returns the set of variables
occurring in the expression e while Dom(δ) denotes the domain of definition of
δ. When using Rule (A1), to get a semantically equivalent program, we must
respect some restrictions. The first one requires that the variables occurring in e
do not meet the domain of δ (otherwise we would break some data dependencies).
Finally, Rule (A1) requires that the transformation is done if the identifier id
does not belong to the set β of variables which may not be removed.

38 N. Damouche et al.

δ′ = δ[id �→ e] V ar(e) ∩Dom(δ) = ∅ id �∈ β

〈id = e, δ, C, ν, β〉 → 〈nop, δ′, β〉 (A1)

e′ = δ(e) σ� = [[C[c]]]�ι� 〈e′, σ�〉 � e′′

〈id = e, δ, C, ν, β〉 → 〈id = e′′, δ, β〉 (A2)

〈c , δ, C, ν, β〉 → 〈c′, δ′, β′〉
〈nop ; c , δ, C, ν, β〉 → 〈c′, δ′, β′〉 (S1)

〈c , δ, C, ν, β〉 → 〈c′, δ′, β′〉
〈c ; nop , δ, C, ν, β〉 → 〈c′, δ′, β′〉 (S2)

〈c1, δ, C
[
[]; c2

]
, ν, β〉 →∗ 〈c′1, δ′, β′〉 C′ = C[c′1; []]

〈c2, δ′, C′, ν, β′〉 →∗ 〈c′2, δ′′, β′′〉
〈c1 ; c2 , δ, C, ν, β〉 → 〈c′1 ; c′2, δ′′, β′′〉 (S3)

σ� = [[C[ifΦ e then c1 else c2]]]
�ι� [[e]]�σ� = true

β′ = β ∪Assigned(c1) 〈c1, δ,C, ν, β′〉 →∗ 〈c′1, δ′, β′′〉
〈ifΦ e then c1 else c2, δ, C, ν, β〉 → 〈c′1, δ′, β′′〉 (C1)

σ� = [[C[ifΦ e then c1 else c2]]]
�ι� [[e]]�σ� = false

β′ = β ∪Assigned(c2) 〈c2, δ, C, ν, β′〉 →∗ 〈c′2, δ′, β′′〉
〈ifΦ e then c1 else c2, δ, C, ν, β〉 → 〈c′2, δ′, β′′〉 (C2)

V ar(e) ∩Dom(δ) = ∅ β′ = β ∪ Assigned(c1) ∪Assigned(c2)
〈c1, δ, C, ν, β′〉 →∗ 〈c′1, δ1, β1〉 〈c2, δ, C, ν, β′〉 →∗ 〈c′2, δ2, β2〉δ′ = δ1 ∪ δ2

〈ifΦ e then c1 else c2, δ, C, ν, β〉 → 〈ifΦ e then c′1 else c′2, δ′, β′〉 (C3)

V = V ar(e) c′ = AddDefs(V, δ) δ′ = δ|Dom(δ)\V
〈c′; ifΦ e then c1 else c2, δ

′, C, ν, β ∪ V 〉 →∗ 〈c′′, δ′, β′〉
〈ifΦ e then c1 else c2, δ,C, ν, β〉 → 〈c′′, δ′, β′〉 (C4)

V ar(e) ∩Dom(δ) = ∅ C′ = C[whileΦ e do []] 〈c, δ, C′, ν, β〉 →∗ 〈c′, δ′, β′〉
〈whileΦ e do c, δ,C, ν, β〉 → 〈whileΦ e do c′, δ′, β′〉 (W 1)

V = V ar(e) ∪ V ar(Φ) c′ = AddDefs(V, δ) δ′ = δ|Dom(δ)\V
〈c′;whileΦ e do c, δ′, C, ν, β ∪ V 〉 →∗ 〈c′′, δ′, β′〉

〈whileΦ e do c, δ,C, ν, β〉 → 〈c′′, δ′, β′〉 (W 2)

Fig. 6. Transformation rules used to improve the accuracy of programs

Rule (A2) offers an alternative way of processing assignments, when the con-
ditions of Rule (A1) are not fulfilled. The action of substituting the variables of
e by their definitions in δ is denoted by δ(e). Rule (A2) transforms the expres-
sion e′ = δ(e) into an expression e′′ by a call 〈e′, σ�〉 � e′′ to the tool based
on APEGs and which transforms expressions, as described in Section 3. The
abstract environment σ� : V → E� used for this transformation results from a
static analysis using the domain E� also introduced in Section 3. As mentioned
earlier, in Rule (A2), ι� denotes the user-defined initial environment which binds
the free variables of the program to intervals. For example, in Section 2, the
variable sl is set to [0.52,0.53] in ι�. The program given to the static analyzer
is C[c], i.e. the program obtained by inserting the command c into the context
C. Accordingly to these notations, the expression e′ is transformed into an ex-
pression e′′ by 〈e′, σ�〉 � e′′ which transforms the source expression into a more

Intra-procedural Optimization of the Numerical Accuracy of Programs 39

accurate one for the environment σ. In our implementation this corresponds to
a call to the APEG tool [16,17]. The returned expression e′′ is inserted in the
new assignment id = e′′.

Remark that by inlining expressions in variables when transforming programs,
we create large formulas. In our implementation, in order to facilitate their ma-
nipulation, we slice these formulas at a defined level of the syntactic tree on
several sub-expressions and we assign them to intermediary variables. Finally,
we inject these new assignments into the main program.

Example 2. To explain the use of rules (A1) and (A2), let us consider the ex-
ample of Equation (14) in which three variables x, y and z are assigned. In
this example, ν consists of the variable z that we aim to optimize and a = 0.1,
b = 0.01, c = 0.001 and d = 0.0001 are constants.

〈x = a+ b;y = c+ d;z = x+ y, δ, [], ν, ∅〉
−→
(A1)

〈nop;y = c+ d;z = x+ y, δ′ = δ[x �→ a+ b], [], ν, ∅〉
−→
(A1)

〈nop;nop;z = x+ y, δ′′ = δ′[y �→ c+ d], [], ν, ∅〉
−→
(A2)

〈nop;nop;z = ((d+ c) + b) + a, δ′′, [], ν, ∅〉

(14)

In Equation (14), initially, the environment δ is empty. If we apply the first
rule (A1), we may remove the variable x and memorize it in δ. So, the line corre-
sponding to the variable discarded is replaced by nop and the new environment
is δ = [x �→ a+b]. We then repeat the same process by using (A1) on the variable
y. For the last step, we may not apply (A1) to z because the condition is not
satisfied (z = ν). Then we use (A2), we substitute x and y by their value in δ
and we transform the expression. �

Rules (S1) to (S3) deal with sequences. Rules (S1) and (S2) are special cases
enabling the system to discard the nop statements while the general rule for
sequences is (S3). The first command c1 is transformed into c′1 in the current
environment δ, C, ν and β and a new context C′ is built which inserts c′1 inside
C. Then c2 is transformed into c′2 using the context C[c′1; []], the formal envi-
ronments δ′ and the list β′ resulting from the transformation of c1. Finally, the
state 〈c′1 ; c′2, δ

′′, β′′〉 is returned.
Rules (C1) to (C4) concern conditionals. The first two rules correspond to a par-

tial evaluation of the program [18], when the test evaluates to true or false in the en-
vironmentσ�which is computedbystaticanalysis,σ� = [[C[ifΦ e then c1 else c2]]]

�ι�.
In rules (C1) and (C2), the conditional is replaced by the branch c1 or c2. In this
case, the reference variable ν does not appear necessarily in c1 or c2 but the vari-
ables assigned in these branches are used in the Φ nodes. Consequently, they may
not be removed from c1 or c2 and we have to transform the command with β′ =
β ∪ Assigned(ci), for i = 1 or 2. Here, Assigned(c) denotes the set of identifiers
assigned in the command c.

40 N. Damouche et al.

Example 3. Let us consider the program, in SSA form.

x1 = 0; ifΦ(x3,x1,x2) cond then x2 = a+ b else y1 = c+ d; ν = x3. (15)

Depending on the value of the test, we transform this program into
{
ν = a+ b if cond,

ν = 0 if ¬cond. (16)

However, when cond is true, without the blacklist, Rule (A1) would store x2 in
δ during the transformation of the branch. The Φ-node Φ(x3, x1, x2) would be
wrong. �

Rule (C3) is the general rule for conditionals. The then and else branches
are transformed, assuming that the variables of the condition do not meet the
variables of δ. As for rules (C1) and (C2), the variables assigned in the branches
have to be added to β and the environment δ′ resulting from the transformation
joins the environments of both branches (note that thanks to the SSA form, the
variables assigned in both branches are distinct). Finally, Rule (C4) is used when
the conditions for Rule (C3) do not hold. In this case, V ar(e) ∩ Dom(δ) �= ∅
and we need to reinsert the common variables into the source code. Let V ar(e)
be the list of variables occuring in the expression e. Firstly, a new command c′

corresponding to sequences of assignments of the form id = δ(id) is built for
all the variables id ∈ V ar(e) by AddDefs(V, δ) and, secondly, the variables of
V ar(e) are removed from the domain of δ, yielding δ′. The resulting command
is the command c′′ obtained by transforming c′; ifΦ e then c1 else c2 with δ′ and
β ∪ V ar(e).

Example 4. Let us take another example to explain the Rules (C3) and (C4).

x1 = 0; ifΦ(y3,y1,y2) x1 > 1 then y1 = x1 + 2; else y2 = x1 − 1; ν = y3. (17)

By rule (A1), x1 is stored in δ. Then, we transform recursively the new program

ifΦ(y3,y1,y2) x1 > 1 then y1 = x1 + 2; else y2 = x1 − 1; ν = y3. (18)

This program is semantically incorrect since the test is undefined. However,
V ar(e)∩Dom(δ) �= ∅ and we cannot apply Rule (C3). Instead Rule (C4) is used
to reinject the statements x1 = 0 in the program and to add x1 to the blacklist
β in order to avoid an infinite loop in the transformation. �

The last two rules (W1) and (W2) are for the while statements. Rule (W1)
makes it possible to transform the body c of the loop assuming that the variables
of the condition e have not been stored in δ. In this case, c is optimized in the
context C[whileΦ e do []] where C is the context of the loop. Rule (W2) first
builds the list V = V ar(e) ∪ V ar(Φ) where V ar(Φ) is the list of variables read
and written in the Φ nodes of the loop. The set V is used to achieve two tasks:
firstly, it is used to build a new command c′ corresponding to the sequence of
assignments id = δ(id), for all id ∈ V (as for Rule (C4)). Secondly, the variables

Intra-procedural Optimization of the Numerical Accuracy of Programs 41

of V are removed from the domain of δ and added to β. The resulting command
is the command c′′ obtained by transforming c′;whileΦ e do c with δ′ and β ∪V .

We end this section with complexity considerations. At each step of the trans-
formation of a program p, only one rule of Figure 6 can be selected. Consequently,
the transformation would be linear in the size n of the program if we would not
reinject assignments. However, a given assignment cannot be removed twice, so
the transformation is quadratic. Finally, the entire transformation of a program
p is repeated until nothing changes, that is at most n times. Hence, the global
complexity for the transformation of a program of size n is O(n3).

5 Experimental Results

In this section, we evaluate the efficiency of the transformation presented in
Section 4 through a series of experiments using our prototype. We have chosen
several algorithms coming from various application fields (avionics, chemistry,
mathematics, etc.) In each case, we compare the numerical accuracy of the sam-
ple program with the accuracy of the generated code. The upper bounds on the
rounding errors are computed as in Section 3.1. We optimize the value of the
reference variable, named ν in Section 4. The original and the transformed codes
are shown in Figure 9 and their accuracy is given in Figure 8. This transforma-
tion is achieved almost instantaneously (less than one second) on a standard
laptop (Intel Core i5 with 4 Go memory).

5.1 Control Algorithms

In this section, we consider three classical algorithms from control theory, namely
a PID Controller, Lead-Lag Compensator and the running example of Odometry.

PID. The PID Controller [6] is an algorithm widely used in embedded and crit-
ical systems, like aeronautic and avionic systems. It keeps a physical parameter
at a specific value known as the setpoint. In other words, it tries to correct a
measure by maintaining it at a defined value. To compute this correction, the
controller incorporates three terms: the integral term i and the derivative term
d of the error, as well as a proportional error term p. The error e is the difference
between the setpoint c and the measure m. We have e = c−m,

p = kp × e, i = i+ ki × e× dt and d = kd × (e− eold)× 1

dt
.

The weighted sum of these terms contributes to improve the reactivity, the ro-
bustness and the speed of the program. We assume that m ∈ [4.5, 9.0].

Lead-Lag System. A second test has been performed on a dynamical system
illustrated in Figure 7. This system includes a single mass and a single spring and
is governed by an automatically synthesized controller [11] which tries to move
the mass from the initial position y to the desired one yd. The main variables
in this algorithm are: xc consists of the discrete-time controller state, yc is the
bounded output tracking error and u presents the mechanical system output.
We assume that the position y of the mass m ∈ [2.1,17.9].

42 N. Damouche et al.

yc = max(min(y − yd, 1),−1);
u = Cc ∗ xc+Dc ∗ yc;
xc = Ac ∗ xc+Bc ∗ yc;
receive(y, 2);
receive(yd, 3);

Fig. 7. Left: The lead-lag system of section 5.1. Right: Parameters of the system.

5.2 Numerical Algorithms

Runge-Kutta Methods. This example concerns Runge-Kutta methods [19]. We
consider an order 2 and an order 4 method. They are employed to solve the
equation describing the dynamics of a chemical reaction A+B → C. The order
2 method integrates a differential equation whose solution is y(t). The second
order method uses the derivative on the starting point xi in order to find the
intermediary point. Then, it uses this intermediary point to have the next value
of the function. The derivative of y(x) at the points xi and xi +

h
2 are

k1 = (
dy

dx
) = h× f(xi, yi) and k2 = (

dy

dx
) = h× f(xi +

h

2
, yi +

h

2
). (19)

Finally, we have yi+1 = yi+k2+O(h3). We assume that initially, y0∈ [−10.1, 10.1].
For the order 4 method, we obtain as final formula:

yi+1 = y1 +
1
6
[k1 + 2× k2 + 2× k3 + k4]× h. (20)

The Trapezoidal Rule. This example concerns with an algorithm for the trape-
zoidal rule [19], well known in numerical analysis to approximate the definite

integral
∫ b

a f(x) dx. This trapezoidal rule works by approximating the region
between x and x + h under the graph of the function f(x) as a trapezoid and

calculates its area. Here, we compute the integral
∫ 5000

0.25
g(x)dx of some function:

Code Initial Error New Error s %

PID 0.453945103062736 ×10−14 0.440585745442590 ×10−14 5 2.94

Odometry 0.106578865995068 ×10−10 0.837389354639250 ×10−11 5 21.43

RK2 0.750448486755706 ×10−7 0.658915054553695 ×10−7 5 12.19

RK4 0.201827996912328 ×10−1 0.169791306481639 ×10−1 5 15.87

Lead-Lag 0.294150262243136 ×10−11 0.235435212105148 ×10−11 10 19.96

Trapezoid 0.536291684923368 ×10−9 0.488971110442931 ×10−9 20 8.82

Fig. 8. Initial and new errors on the examples programs of Section 5

Intra-procedural Optimization of the Numerical Accuracy of Programs 43

g(x) =
u

0.7x3 − 0.6x2 + 0.9x− 0.2
. (21)

We assume that u is a user defined parameter in the range [1.11, 2.22]. In addi-
tion, we have unfold the body of the loop twice to obtain better results with our
prototype.

Code Source Code Optimized Code

PID
ν = m

m = [4.5,9.0]; ki = 0.69006; kp = 9.4514;
kd = 2.8454; t = 0.0; i = 0.0; c = 5.0;
dt = 0.2; invdt = 5.0; eold = 0.0;

while (t < 20.0) do {
e = c - m ;
p = kp * e ;
i = i + ((ki * dt) * e) ;
d = ((kd * invdt) * (e - eold)) ;
r = ((p + i) + d) ;
m = m + (0.01 * r) ;
eold = e ; t = t + dt }

m = [4.5,9.0]; t = 0.0; eold = 0.0;
i = 0.0;

while (t < 20.0) do {
i = (i + (0.138012 * (5.0 - m))) ;
eold = (5.0 - m) ;
m = (m + (0.01 * ((((5.0 - m)

* 9.4514) + i) + (((5.0 - m)
- eold) * 14.227)))) ;

t = t + 0.2 }

Lead-
Lag
ν = xc1

y = [2.1,17.9] ; xc0 = 0.0 ; xc1 = 0.0
; t = 0.0 ; yd = 5.0; Ac00 = 0.499;
Ac01 = -0.05; Ac10 = 0.01; Ac11 = 1.0;
Bc0 = 1.0; Bc1 = 0.0; Cc0 = 564.48;
Cc1 = 0.0; Dc = -1280.0;

while (t < 5.0) do {
yc = (y - yd) ;
if (yc < -1.0) then {yc = -1.0} ;
if (1.0 < yc) then {yc = 1.0} ;
xc0 = (Ac00*xc0)+(Ac01*xc1)+(Bc0*yc);
xc1 = (Ac10*xc0)+(Ac11*xc1)+(Bc1*yc);
u = (Cc0* xc0)+(Cc1* xc1)+(Dc* yc);
t = (t + 0.1) }

y = [2.1,17.9]; t = 0.0; xc1 = 0.0;
xc0 = 0.0;

while (t < 5.0) do {
yc = (-5.0+y) ;
if (yc < -1.0) then {yc = -1.0} ;
if (1.0< yc) then {yc = 1.0} ;
u = (((564.48*xc0)+(0.0*xc1))

+(-1280.0*yc)) ;
xc0 = (((-0.05*xc1)+(1.0*yc))

+(0.499*xc0)) ;
xc1 = (((0.01*xc0)+(0.0*yc))

+(1.0*xc1)) ;
t = (t + 0.1) }

Fig. 9. Original and optimized codes for the examples of Section 5.1

5.3 Results

Our prototype consists of an implementation of the rules described in Section 4
coupled to the APEG tool for the transformation of expressions. For the demon-
stration of its efficiency, we evaluate through it the examples described previously
in this section. Our tool takes as input an initial program and intervals for some
parameters and returns another program mathematically equivalent but numer-
ically more accurate as long as the parameters remain in the given ranges. We
compare then the initial error and the new error of each program before and
after transformation. Figures 9 and 10 show the source and target program as
well as how much our tool improves the numerical accuracy of these programs.
For example, if we take the case of odometry, we observe that we optimize it by
21.43%. If we compare the implementation of Runge-Kutta method, we remark
that the order four methods is improved of 15.87%. The Lead-Lag system is
optimized by 19.96%. The improvement of the error is given in Figure 8, where

44 N. Damouche et al.

Code Source Code Optimized Code

RK4
ν =
yn+1

yn = [-10.1,10.1]; t = 0.0; k = 1.2;
c = 100.1; h = 0.1;

while (t < 1.) do {
k1 = (k*(c-yn))*(c-yn) ;
k2 = (k*(c-(yn+((0.5*h)*k1))))

*(c-(yn+((0.5*h)*k1)));
k3 = (k*(c-(yn+((0.5*h)*k2))))

*(c-(yn+((0.5*h)*k2)));
k4 = (k*(c-(yn+(h*k3))))

*(c-(yn+(h*k3)));
yn+1 = yn+((1/6*h)*(((k1+(2.0*k2))

+(2.0*k3))+k4));
t = (t + h) }

yn = [-10.1,10.1] ; t = 0.0 ;

while (t < 1.0) do {
TMP_7 = (1.2 * (100.099 - yn)) ;
TMP_8 = (100.099 - yn) ;
TMP_13 = (1.2*(100.099-(yn+(0.05*((1.2

* (100.099-(yn+(0.05*(TMP_7*TMP_8)))))
* (100.099-(yn+(0.05*((1.2*TMP_8)
* (100.099-yn)))))))))) ;

TMP_14 = (100.099-(yn+(0.05*((1.2*(100.099
- (yn+(0.05*(TMP_7*TMP_8)))))*(100.099
- (yn+(0.05*((1.2*TMP_8)*(100.099-yn));

TMP_18 = (yn+(0.05*((1.2*(100.099-(yn+(0.05
* (TMP_7*TMP_8)))))*(100.099-(yn+(0.05
* ((1.2*TMP_8)*(100.099-yn))))))));

TMP_28 = ((1.2*(100.099-(yn+(0.05*(TMP_7
* TMP_8)))))*(100.099-(yn+(0.05*((1.2
* TMP_8)*(100.099-yn))))));

TMP_38 = ((TMP_14*TMP_13)*0.1) + yn ;
TMP_40 = 0.1*((1.2*TMP_14)*(100.099-TMP_18));
yn_plus_1 = (yn+(0.016666667*((((TMP_7*TMP_8)

+ (2.0*TMP_28))+(2.0*(TMP_13*TMP_14)))
+((1.2*(100.099-TMP_38))*(100.099-(yn
+TMP_40)))))); + [...] ;

t = (t + 0.1) }

Trapeze
ν = r

u = [1.11, 2.22]; a = 0.25; b = 5000.0;
n = 25.0 ; r = 0.0 ; xa = 0.25 ;
h = ((b - a) / n) ;

while (xa < 5000.0) do {
xb = (xa + h) ;
if (xb > 5000.) then { xb = 5000.0 };
gxa = (u / ((((((0.7 * xa) * xa) * xa)

- ((0.6*xa) * xa))+(0.9*xa))-0.2));
gxb = (u / ((((((0.7 * xb) * xb) * xb)

- ((0.6*xb)* xb))+(0.9*xb))-0.2));
r = (r + (((gxb + gxa) * 0.5) * h));
xa = (xa + h) }

u = [1.11, 2.22] xa = 0.25; r = 0.0;

while (xa < 5000.) do {
TMP_1 = (0.7 * (xa + 199.99)) ;
TMP_2 = (xa + 199.99) ;
TMP_9 = ((((0.7*xa)*xa)*xa)-((0.6*xa)*xa))
+ (0.9*xa);

TMP_11= (((199.99+xa)*(TMP_2*TMP_1))-((199.99
+ xa)*(TMP_2*0.6)))+(0.9*TMP_2);

r = (r +((((u/(TMP_11-0.2))+(u/(TMP_9-0.2)))
* 0.5)*199.99));

xa = (xa + 199.99)
}

Fig. 10. Original and optimized codes for the examples of Section 5.2

s is the slice size, i.e., the parameter defining at which height of the syntactic
tree we cut the expressions.

6 Conclusion

In our search for automatic transformation of programs, we have developed a
tool which rewrites codes to improve their numerical accuracy. More precisely, we
have shown how to perform intra-procedural rewritings of commands and how
to transform assignments. In the rules of Figure 6, correctness conditions have
been defined to guarantee that the dependencies are respected and to ensure the
correctness of the rewritings in conditions and loops. In order to validate our
tool, we have chosen a set of representative programs taken from various fields of
science and engineering. We have automatically tuned them and analyzed their
accuracy before and after transformation.

The further research directions consists of generalizing our techniques to other
kinds of programming patterns like for loops, arrays and, specially functions

Intra-procedural Optimization of the Numerical Accuracy of Programs 45

in order to obtain an intra-procedural program transformation with function
refactoring and specialization with respect to the values of arguments. Another
extension looks at extending our approach to optimize several reference vari-
ables simultaneously. A difficulty is that the optimization of one variable may
decrease the accuracy of other variables. Compromises have to be done. Finally,
our transformation relies on a static analysis of the source codes. Indeed, we
select the optimized program by using the abstract semantics in Section 3.1, we
compute certified error bounds which can be over-approximated. We would like
to improve it by using more accurate relational domains in order to obtain finer
error bounds completed by statistical results on the actual accuracy gains on
concrete executions.

References

1. ANSI/IEEE. IEEE Standard for Binary Floating-Point Arithmetic. SIAM (2008)
2. Appel, A.-W.: Modern Compiler Implementation in ML. Cambridge University

Press (1998)
3. Barr, E.-T., Vo, T., Le, V., Su, Z.: Automatic detection of floating-point exceptions.

In: Symposium on Principles of Programming Languages, POPL 2013, pp. 549–560.
ACM (2013)

4. Benz, F., Hildebrandt, A., Hack, S.: A dynamic program analysis to find floating-
point accuracy problems. In: Programming Language Design and Implementation,
PLDI 2012, pp. 453–462. ACM (2012)

5. Bertrane, J., Cousot, P., Cousot, R., Feret, F., Mauborgne, L., Miné, A., Rival,
X.: Static analysis by abstract interpretation of embedded critical software. ACM
SIGSOFT Software Engineering Notes 36(1), 1–8 (2011)

6. Chapoutot, A., Damouche, N., Martel, M.: Automatic transformation of a PID
controller. In: International Workshop on Numerical Software Verification (2014)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, pp. 238–252 (1977)

8. Cousout, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: Principles of Programming Languages, pp. 178–190.
ACM (2002)

9. Cytron, R., Gershbein, R.: Efficient accomodation of may-alias information in SSA
form. In: Programming Language Design and Implementation (PLDI), pp. 36–45.
ACM (1993)

10. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards
an industrial use of FLUCTUAT on safety-critical avionics software. In: Alpuente,
M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer,
Heidelberg (2009)

11. Feron, E.: From control systems to control software. IEEE Control Systems Mag-
azine 30(6), 50–71 (2010)

12. Gao, X., Bayliss, S., Constantinides, G.-A.: SOAP: structural optimization of arith-
metic expressions for high-level synthesis. In: Field-Programmable Technology,
FPT, pp. 112–119. IEEE (2013)

13. Goubault, E.: Static analysis by abstract interpretation of numerical programs and
systems, and FLUCTUAT. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS,
vol. 7935, pp. 1–3. Springer, Heidelberg (2013)

46 N. Damouche et al.

14. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer, Heidelberg
(2011)

15. Hankin, E.: Lambda Calculi A Guide For Computer Scientists. Clarendon Press,
Oxford (1994)

16. Ioualalen, A., Martel, M.: A new abstract domain for the representation of mathe-
matically equivalent expressions. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS,
vol. 7460, pp. 75–93. Springer, Heidelberg (2012)

17. Ioualalen, A., Martel, M.: Synthesizing accurate floating-point formulas. In:
Application-Specific Systems, Architectures and Processors, ASAP, pp. 113–116
(2013)

18. Jones, N.-D.: An introduction to partial evaluation. ACM Computing Sur-
veys 28(3), 480–503 (1996)

19. Kendall, A.: An Introduction to Numerical Analysis. John Wiley & Sons (1989)
20. Logozzo, F., Ball, T.: Modular and verified automatic program repair. In: Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA, pp. 133–146. ACM (2012)

21. Martel, M.: Accurate evaluation of arithmetic expressions (invited talk). Electr.
Notes Theor. Comput. Sci. 287, 3–16 (2012)

22. Martel, M.: Semantics of roundoff error propagation in finite precision calculations.
Higher-Order and Symbolic Computation 19(1), 7–30 (2006)

23. Muller, J.-M., Brisebarre, N., De Dinechin, F., Jeannerod, C.-P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser (2010)

24. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: A new approach
to optimization. Logical Methods in Computer Science 7(1) (2011)

Formal Analysis and Testing of Real-Time

Automotive Systems Using UPPAAL Tools

Jin Hyun Kim1(�), Kim G. Larsen2, Brian Nielsen2, Marius Mikučionis2,
and Petur Olsen2

1 INRIA/IRISA, Rennes Cedex, France
jin-hyun.kim@inria.fr

2 Department of Computer Science, Aalborg University, Aalborg, Denmark

Abstract. Many safety-concerned standards and regulations for real-
time embedded systems, e.g., ISO 26262 for automotive electric/elec-
tronic systems, recommends the use of formal techniques to achieve the
required safety level. This paper presents a method for formal analysis
of real-time embedded systems. The method allows properties to be sta-
tistically checked early and quickly with high confidence, and may also
produce a formal proof when required. This environment exploits Up-
paal tools consisting of a symbolic model checker (Uppaal MC) and
a statistical model checker (Uppaal SMC), and a model-based testing
environment (Uppaal Yggdrasil), all of which are based on a formal
model in timed automata. We demonstrate our method on an industrial
case, an automotive Turn Indicator System, showing how the design of
the system at the early phase of system development may be efficiently
checked against the defined system requirements.

1 Introduction

Embedded and cyber-physical systems must implement an ever increasing num-
ber of increasingly advanced and intelligent features that are distributed onto
a larger number of hardware and software components. A typical example is
found in automotive systems where not only novel individual electric/electronic
components are supplied at a rapid race, but also advanced driver assistance sys-
tems are added—heading towards autonomous driving systems in the foreseeable
future. Unfortunately existing industrial verification and validation techniques
(primarily testing based) does not scale with this increase in functionality and
system environments and usage scenarios. Consequently it is getting more diffi-
cult and costly to guarantee their correctness, including safety and reliability.

For this reason, standards such as ISO 26262 [13] and IEC 615087 [12] for
automotive electric/electronic systems require the analysis of the components
and system corresponding to their Safety Integrity Level (SIL). In particular,
ISO 26262 recommends the use of formal analysis techniques for development of
a component that should meet the highest SIL standard.

The research presented in this paper has been partially supported by EU Artemis
Projects CRAFTERS and MBAT.

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 47–61, 2015.
DOI: 10.1007/978-3-319-19458-5_4

48 J.H. Kim et al.

Techniques, methods, and tools for model-based development and formal anal-
ysis have progressed significantly during the last decade. In addition to advancing
classical modeling, symbolic model-checking (MC), and simulation techniques
also novel techniques like statistical model-checking (SMC) and model-based
test generation (MBT) have emerged.

This paper presents our recent progress in developing a method and sup-
porting integrated tool environment for formal modeling and analysis of criti-
cal embedded real-time systems. Our work is based on the Uppaal tool which
has unique support for analysis of real-time properties of behavioral models
described as extended timed automata (TA). It offers a graphical editor for Up-
paal timed automata and accompanying a symbol and concrete state animator,
a symbolic model checker (Uppaal MC), an SMC facility (Uppaal SMC), and
a model-based test generator (Uppaal Yggdrasil). SMC and Yggdrasil are novel
additions that recently have been integrated into the main tool and made acces-
sible via their own tab in the GUI, making them easier to access for industrial
users. Through this integration and our method for using them together, formal
analysis becomes easier to use by industrial engineers and fits better to their
way of working where simulations, visualizations, and light verification are used
intensively in the beginning prior to time consuming exhaustive analysis.

As requirements are formalized and as the first models are constructed, our
method emphasize early and quick verification by exploiting SMC to generate
and visualize system runs and perform sound probabilistic verification of the
required properties. Once the formulated properties and models have stabilized,
critical requirements may be fully model-checked. When the model has been
thoroughly analyzed, it may be used for system construction, test-case genera-
tion, or additional performance analysis or design space exploration.

The main contributions of the paper are

– We outline a method describing how our integrated Uppaal environment
for model-based analysis and testing may be efficiently employed for early
formal analysis of embedded real-time systems.

– We illustrate the analysis method and Uppaal tool environment on an au-
tomotive subsystem, a Turn Indication System.

The rest the paper is organized as follows: Section 2 introduces MC, SMC and
MBT using the Uppaal environment. Section 3 presents our analysis method.
Sections 4, 5, and 6.1 introduce the case study and apply our method and tools.
Finally, Section 7 compares with related work, and Section 8 concludes.

2 Background

2.1 Uppaal Symbolic Model Checking

Uppaal symbolic model checking (MC) uses symbolic reachability analysis to
check whether a system model (represented as a network of timed automata[3])
satisfies temporal properties (represented as Timed-CTL (Computational Tree
Logic)).

Formal Analysis and Testing of Real-Time Automotive Systems 49

Uppaal MC explores all states of a system in a model to determine if a
property to be analyzed is satisfied by the model all the time. If any undesirable
state is identified, Uppaal MC generates a trace i.e. a counterexample that leads
the system to the undesirable state, so that the model can be corrected based
on the counterexample.

2.2 Uppaal Statistical Model Checking

Uppaal SMC (SMC) [10] exploits the statistics theory to give a statistically
quantitative proof that a system satisfies a specified property [7][9]. The SMC
returns the analysis results in less time relative to the symbolic model checking
technique and produces the result even though it does not guarantee a property
of a system with the 100% certainty [15].

Fig. 1. Uppaal SMC

As shown in Fig. 1, Uppaal SMC reads a network of timed automata and
probabilistic property specification, similar with CTL but including a probability
quantifier, as inputs. Differently from MC, SMC returns a probability regarding
a property in a specific certainty. Uppaal SMC supports five different analysis
methods: Hypothesis testing, Probability evaluation, Probability comparison, Ex-
pected value, and Simulations. Below we use N to denote a natural number, P to
denote a probability, and expr to denote an expression.

– Statistical Evaluation: SMC estimates the probability of the state prop-
erty being satisfied. For instance, the following query computes a probability
confidence interval where simulation time is limited up to N time units:

Pr[<=N](<> expr) (1)

– Hypothesis Testing: SMC checks if the property is satisfied within a cer-
tain probability. For instance, the query

Pr[<=N](<> expr) >= P (2)

asks whether the probability of meeting the state property “expr” is greater
than or equal to given probability value P while checking (simulating) the
system under analysis up to N time units. This type of query yields less infor-
mation than an estimated confidence interval above, but it is more efficient
as it requires fewer simulation runs.

50 J.H. Kim et al.

– Statistical Comparison: SMC compares the satisfaction possibilities over
two properties. For instance, the query can be in the form of

Pr[<=N_1](<> expr1) >= Pr[<=N_2](<> expr2) (3)

– Expected Value: SMC computes the maximal or minimal value of a certain
variable while checking the system. For instance, the query

E[<=N; M](min: expr) (4)

asks what the average of the minimal values of the variable in “expr” is when
simulating the system up to N time units by M rounds.

– Simulations: SMC simulates a system multiple times and computes trajec-
tories of specified expressions over time. Query

simulate M [<=N] {expr_1, expr_2} (5)

requires Uppaal SMC to show the values of “expr_1,” and “expr_2” expres-
sions over time when running M simulations up to N time units.

2.3 Uppaal Yggdrasil

Uppaal Yggdrasil is an off-line test case generator. The tool takes models cre-
ated in Uppaal and creates a suite of test cases that aim at covering all syntactic
transitions in the model (edge coverage). By using a special syntax within Up-
paal that allows user defined code to be output upon transition execution, and
location entry or exit, the generated test suite can take the format of a test
script in any desired language that can be used as input to test execution en-
gines. The user defined code can both be used for stimuli generation and for
checking functions defining the test oracle.

The test generation procedure progresses in three phases, each adding to the
coverage achieved in preceding phases. For phase one, the test engineer may (op-
tionally) formulate requirements based test-purposes for which a test case must
be generated. The test purposes are formulated as Uppaal reachability proper-
ties. During phase two the procedure automatically generates random test cases
to improve coverage. The user must set a parameter defining the desired test
case length. As a heuristic for when to stop generating test cases, the procedure
continues until a new test case does not add new coverage. Finally, phase three
tries to create a single test case for each of the coverage items that might still
be uncovered. For phases one and three the algorithm uses the normal Uppaal
search and for phase two a random depth-first search algorithm is used.

Yggdrasil generates symbolic test cases in terms of Uppaal traces. Concrete
test cases are created by annotating the model with test code. Since these an-
notation are plain text, any test execution back-end can be used.

Yggdrasil has been integrated into the Uppaal GUI. A new tab has been
made available with the features of Yggdrasil. A list of generated traces is shown.
Selecting a trace will show the statistics of that trace. Double clicking a trace
will load it in the simulator for inspection. The statistics for the total coverage
can be viewed and uncovered edges are available.

Formal Analysis and Testing of Real-Time Automotive Systems 51

3 Formal Analysis Framework

In this paper, a real-time embedded software system is analyzed by our method-
ology using the Uppaal environment, as depicted in Fig. 2. A model of the sys-
tem is created as a network of timed automata (TA) model using the Uppaal
environment. A network of TA consists of multiple TA templates, each of which
is instantiated as a concurrent process. A concurrent process may communicate
using 1-to-1 synchronization channels or broadcast channels [5][6]. In Uppaal,
timed automata are enriched with C-syntax like data declarations, expressions,
and user defined functions.

We propose to first analyze a TA model by using Uppaal SMC w.r.t. prop-
erties that have been formulated based on the requirements of the system. By
simulation, a model is validated to see if it produces correct outputs correspond-
ing to inputs. For this purpose, a SMC query in the form in (5) is used. Also at
the initial stage, a number of basic consistency checks should be performed to
exclude modeling mistakes, including checking that all edges or locations are in
fact reachable, (absence of “dead-code”), and absence of dead- and time-locks.

Second, we statistically verify the model w.r.t. a property. For this purpose, a
SMC query in one of the forms in (2), (1), and (3) that requires SMC to estimate
a probability that a property is satisfied by a created model. A SMC query in
the form of (4) may also be used to find an average of maximum or minimum
values of a variable while a model runs up to a specific time limit by a specific
number of rounds.

For some properties, we propose to use Uppaal MC to obtain the 100%
certainty of the analysis. Compared to Uppaal SMC, Uppaal MC usually con-
sumes much more time and memory for verification, since the underlying state-
space grows exponentially in the number system components. Thus, MC should
be applied to a model after a considerably high probability regarding a property
of the model is obtained by Uppaal SMC.

Finally, the verified model may be used in Uppaal Yggdrasil to generate
test cases that can be executed on an actual system implementation to check
that its behavior conforms to that specified by the model. If faults are found in

Fig. 2. Analysis adopting Uppaal environment

52 J.H. Kim et al.

the requirements or design which require the models to be updated, test case
generation can be re-run automatically to generate new test cases.

3.1 Analysis Properties

Basically, safety [17] and liveness [16,17] are representative properties for re-
active systems in formal analysis. In addition, in terms of timing, this paper
divides timing requirements into two classes: function-oriented and non-function-
oriented timing requirements. Similarly to functional requirements, a function-
oriented timing requirement should be implemented. A non-function-oriented
timing requirement should satisfied by the implemented system in actual oper-
ation. The following are the TI system properties to be analyzed:

– Functional Property (FP) relates to the functionality that the develop-
ment system implements.

– Timing Property (TP) is relevant for timing requirement. A timing prop-
erty can be either of function-oriented TP (FTP) or non-function-oriented
TP (NFTP). This paper focuses on function-oriented timing property which
should be satisfied in terms of functionality.

– Universal Properties (UP) refers to a property that the system should
satisfy in general, such as absence of deadlocks.

4 Turn Indication Systems

A Turn Indicator (TI) subsystem is an automotive component that signals a
car’s direction when the driver intends to change the direction. The subsystem
is also used to indicate emergency situations and the status of door lock/unlock
operations. The TI-Case is an industrial case study raised in the EU Artemis
Project MBAT. While it superficially viewed appears to be a basic component,
it is a central part of the cars functionality and safety. It furthermore has several
timing requirements and interactions that warrants formal analysis.

4.1 Functional Requirements

Fig. 3(a) shows a typical turn indicator system. The TI lamps are divided into
two groups: left and right indicator groups. Indication lamps in the same group
are supposed to flash synchronously. The commands for turn indications are in-
stantiated by one of three external components: Steering Column Switch (SCS),
an Emergency (warning) Control Switch, and a Door lock/unlock Control Unit.

Fig. 3(b) shows a typical SCS generating two types of TI command signals:
normal TI and Tip blinking commands. The two commands are distinguished
by the position of lever in SCS and by a specific timing requirement within
TI control system. Using these external components, TI systems provides the
following 4 main and 2 auxiliary functions as follows:

– Normal turn indication mode flashes the same group of turn indicator
lamps synchronously according to a direction commanded by the driver.
Then, the other group of indicator lamps must be silent.

Formal Analysis and Testing of Real-Time Automotive Systems 53

(a) (b)

Fig. 3. General turn indicator and Steering Column Switch (SCS)

– Tip blinking mode differs from the normal turn indication mode in that
it has a limited flashing count, e.g. 3 flashes.

– Emergency mode is initiated by the driver so that all indicator lamps
flash simultaneously as long as the mode is on. Emergency mode prevails the
other modes so that any turn indication mode under operation is ignored or
delayed when operating in Emergency mode.

– Door lock/unlock flashing mode also operates all indicator lamps to
indicate the status of door lock/unlock operation status.

– TI system should be able to detect a defect in turn indicator lamps.
– TI system is used to flash indicator lamps by a ON/OFF duty cycle. The

duty cycle is the percentage of one period in which a signal is active. A
period is the time it takes for a signal to complete one on-and-off cycle.

4.2 Analysis Properties

We identified and categorized the following central properties:

Functional Properties (FP):

– (FP.001.) Normal TI Flashing: If a normal TI command is triggered by the
driver, the corresponding left or right TI lamp groups shall flash according
to a specific On/Off duty cycle, then the other group shall be silent.

– (FP.002.) Tip Blinking: If a Tip blinking is commanded for a direction,
either left or right, the corresponding TI group lamps exclusively shall flash
only 3 times.

– (FP.003.) Emergency Flashing: When the emergency command is triggered,
all TI lamps shall flash until the emergency command is canceled. If a normal
or Tip blinking mode is in operation, it shall be ignored, and when the
emergency command is canceled, the previous TI mode which might have
operated before the emergency mode may be recovered.

Timing Properties (TP):

– (FTP.001.) TI command delay for Tip Blinking: TI requirements specifies
that Tip blinking command is distinguished from a normal TI command by

54 J.H. Kim et al.

a timing requirement. If a TI command is fired by driver and the command
signal disappears within 800 ms, then the command is regarded as a Tip
blinking command for either left or right direction. Otherwise, it is regarded
as a normal TI command.

– (FTP.002.) On-Off Duty Cycle: The TI system are operated to flash indi-
cation lamps by a ON/OFF duty cycle. The duty cycle is the percentage of
one period in which a signal is active. A period is the time it takes for a
signal to complete an on-and-off cycle. As a formula, a duty cycle may be
expressed as: D = T

P × 100, where D is the duty cycle, T is the time the
signal is active, and P is the total period of the signal.

Universal Properties (UP):

– (UP.001.) TI system should be free from deadlock, i.e., the TI system should
always be responsive to legal TI commands.

Safety Properties (SP):

– (SP.001.) TI system that only one group of TI lamps of the commanded
direction should flash when a normal and Tip blinking modes are engaged.
The opposite group of TI lamps must not flash then as long as the emergency
mode is not engaged.

Liveness Properties (LP):

– (LP.001.) The TI system must eventually switch on/off one of the indicator
lamp groups on the direction designated by the driver’s flash command.

5 Formal Modeling of TI system

We capture a functional model of the TI system using Uppaal TA with user
defined functions to do most of the data-manipulations.

5.1 Data and Event Flows of TA Models for TI System

The Uppaal model consists of nine timed automata (TA) templates which are
instantiated as individual processes. In addition, it consists of 10 channels, 11
clocks, 25 global discrete data variables and 5 local ones. We decompose the
functionality of the TI system by considering the independence of computation
and communication. The processes communicate by processing driver’s turn in-
dication commands and signaling control indication lamps.

Figure 4 shows the data and event flow between Uppaal processes. Solid
arrows indicate data flow, and dotted arrows indicate event (channel) signaling.
The Uppaal TI model consists of 3 main parts: Input, Control, and Output,
of which each is composed of multiple TA processes.

Figure 5 shows the TA process template and user-defined functions of the
TI command handler, which responds to TI commands from SCS and deter-
mines which TI mode to activate. The TI system initiates the handler when the

Formal Analysis and Testing of Real-Time Automotive Systems 55

Fig. 4. Overview of the TI-system model: Uppaal processes, and data and event flows

1 ti_cmd_t tempCMD;
2 void SetNormalFlash(ti_cmd_t ticmd){
3 if (ticmd == CMD_RF) {
4 driver_ti_cmd = STAT_NRF;
5 } else if (ticmd == CMD_LF) {
6 driver_ti_cmd = STAT_NLF;
7 } else {
8 driver_ti_cmd = STAT_TI_OFF;
9 }

10 }

11 void SetTipFlash(ti_cmd_t ticmd){
12 if (ticmd == CMD_RF) {
13 driver_ti_cmd = STAT_TRF;
14 } else if (ticmd == CMD_LF) {
15 driver_ti_cmd = STAT_TLF;
16 } else {
17 driver_ti_cmd = STAT_TI_OFF;
18 }
19 }

Fig. 5. ReadTICmdSig: TI command handler Uppaal TA and declarations

event ign_cmd_sig[GIN_ON] is received. Then, the TI command handler is able
to respond to three TI commands from SCS, ti_cmd_sig[i], where 0 ≤ i ≤ 2
and 0 stands for CMD_TI_OFF, 1 for CMD_TI_RF, and 2 for CMD_TI_LF. If either
ti_cmd_sig[CMD_TI_RF] or ti_cmd_sig[CMD_TI_LF] arrive, the TI command han-
dler moves to location WaitNextCmd. At this location, the TI command handler
makes the decision whether the TI command is a Tip blinking or a normal
blinking for each input direction: If the event ti_cmd_sig[CMD_TI_OFF] arrives
within 8 time units (one time unit is 100 ms), the TI system shall operate a Tip
blinking according to the input direction. Otherwise, it enters a normal flashing

56 J.H. Kim et al.

operation. Afterwards, the TI command handler sets the determined operation
mode to a shared variable driver_ti_cmd using functions SetNormalFlash() or
SetTipFlash(), so that the determined mode is passed to the associated pro-
cess. Then, the event chkin_Ctrl is triggered to call the associated process
CheckEmgSig. In this TA specification, the timing requirement to initiate Tip
blinking mode is supposed to be implemented with the associated functionality,
thus it is a typical function-oriented timing requirement.

6 Formal Analysis of TI system

6.1 Validation with SMC

Given a model, we applyUppaal SMC to validate whether the model is correctly
constructed according to given requirements. First, Uppaal SMC simulates a
model for a bounded time by a specific round, and plots the change of values of
given variables.

Validation of FP.001, FP.002, FP.003, FTP.001, and FTP.002. In order
to check the TI model against functional properties FP.001, FP.002, and FP.003,
we formulate a Uppaal SMC query as follows:

simulate 1 [<=1000] { ti_cmd, 3+F_FRA_Left_ON, 5+F_FRA_Right_ON }

This query asks Uppaal SMC to generate a trace of the TI system’s model and
plot the changes of the variables ti_cmd, F_FRA_Left_ON, and F_FRA_Right_ON. The
simulation is conducted for 1000 time units by 1 round.

For validation of FP.001, a TA environment model which generates TI com-
mands according to a scenario is made as shown in Fig. 6: it ignites the TI
system, triggering the event ign_cmd_sig[IGN_TURN_ON]. After 200 time units, it
triggers one event of ti_cmd_sig[CMD_TI_LF] or ti_cmd_sig[CMD_TI_RF]. Then, it
fires ti_cmd_sig[CMD_TI_OFF] to stop TI system after 200 time units. The plot in
Fig. 6 displays the triggered TI commands and the corresponding reactions of the
TI system. It validates that the correct direction of turn indication lamps flash.
Also, it validates the timing property FTP.002 that is concerning a NO/OFF

Fig. 6. TA environment model for normal TI flashing and analysis results

Formal Analysis and Testing of Real-Time Automotive Systems 57

(a) FP.002 (b) FP.002

Fig. 7. Analysis results of Tip and emergency blinking modes

duty cycle, displaying that the duration of On and Off on the graphs for variables
F_FRA_Left_ON F_FRA_Right_ON are varying by a specified NO/OFF cycle.

The graph in Fig. 7(a) validates the property FTP.002 that states the delay
for the beginning of Tip blinking mode, showing that either one of right or left
direction lamps flashes only 3 times when the duration less than 8 time units
between the TI-OFF command ti_cmd[CMD_TI_OFF] and either of TI commands,
ti_cmd[CMD_TI_RIGHT] or ti_cmd[CMD_TI_LEFT], leads to TI blinking mode.

The graph in Fig. 7(b) shows that both flashing lamps, right and left directions
(the first and second graph), flash whenever an emergency command (the third
graph) is engaged, validating the property FP.003.

6.2 Verification with MC

For the safety and liveness analysis for TI system, we need an environment model
that drives TI model. Fig 8(a) gives an environment model, which triggers any
possible event for TI model at any time. The analysis for safety and liveness
below are conducted together with this environment model.

Safety Analysis for FP.001, FP.002, and UP.001. Before verifying spe-
cific properties it is important to ensure that there are no deadlocks. Property
UP.001 in Table. 1 is formulated for that purpose: it checks that the model of
TI is free from deadlocks under such an extreme environment.

The analysis of properties FP.001 and FP.002 impose a specific constraint
on the TI system that only one group of TI lamps of an ordered direction should
flash when normal and Tip blinking modes are engaged. The opposite group
must be silent as long as the emergency mode is not engaged.

For the analysis of the above constraint, the observer TA template in Fig. 8(b)
specifies the following cases on individual transitions: First, the guard on tran-
sition leading to location SReq001_1 specifies that the TI command for the right
direction indication is released, but both directions of TI lamps are operated at
the same time. Second, the guard on the transition going to location SReq001_3

specifies the case where the emergency command is released but neither the
right direction lamp nor the left direction lamp operates. The Property IDs
SP.001.01, SP001.02, and SP.001.03 in Table. 1 question whether or not those
locations, SReq001_1, SReq001_2, and SReq001_3 are reachable.

58 J.H. Kim et al.

(a) Environment model for TI model (b) TA property model for safety

Fig. 8. TA templates of property specification

Table. 1 states the verification results using Uppaal MC. The answer to the
first query is satisfied, proving that TI system will never deadlock. The following
three queries are proved to be false, showing that no location among SReq001_1,
SReq001_2, and SReq001_3 is reachable. Consequently, we obtain proofs that sole
group of indication lamps for an ordered direction flash and the other group re-
mains silent when TI system carries out the normal and Tip blinking operations.
Table. 1 shows the analysis time for individual analysis. The verification using
MC was performed with Intel CPU 2.9 GHz using 8GB memory.

Fig. 9. TA property model for liveness

Liveness Analysis. The liveness of TI
system is that the system eternally reacts
to any TI commands and results in any
flashing of indication lamps. For the live-
ness analysis, we create an observer TA
process as shown in Fig. 9. It describes
that a group of indication lamps flash cor-
responding to normal TI commands and
the emergency command.

MC is fed with CTL properties,
LP.001.01, LP.001.01, and LP.001.03,
in Table 1 and the TA process in
Fig. 9. The queries question whether the

Table 1. Safety analysis: CTL property checking and results

Property ID CTL Results
Analysis Time

(Second)

UP.001 A[] not deadlock Satisfied 1.05
SP.001.01 A[] not FailSafetyReq001.SReq001_1 Satisfied 0.29
SP.001.02 A[] not FailSafetyReq001.SReq001_2 Satisfied 0.30
SP.001.03 A[] not FailSafetyReq001.SReq001_3 Satisfied 0.75
LP.001.01 E<> LivenessReq001.LReq001_1 Satisfied 0.02
LP.001.02 E<> LivenessReq001.LReq001_2 Satisfied 0.01
LP.001.03 E<> LivenessReq001.LReq001_3 Satisfied 0.02

Formal Analysis and Testing of Real-Time Automotive Systems 59

locations LReq001_1, LReq001_2, and LReq001_3 are reachable. We could verify
that every location is reachable and prove that the system reacts to any TI
commands.

6.3 Test-Case Generation with Yggdrasil

Once the model is verified it may be used to generate symbolic test cases. For
phase one, the LP queries in Table 1 are used to generate test cases that targets
each of these central test purposes. This produces three test cases with length
12, 59, and 203 steps respectively, with a generation time of 89ms1.

For phase two, a trace length of 50 was selected. This generated on average
three traces with and average generation time of 105ms. The selected length
affects the number of traces generated. While longer traces will get better cover-
age, they take longer to generate and might affect the execution time of the test
case. Too short traces will not generate enough coverage and require too many
single trace to be generated in phase three (which is generally slower). A length
of 50 showed a good balance between improving coverage and reducing number
of tests in this case.

Phase three on average generated three traces with lengths 1278, 3, and 3487,
in 1280ms. This is significantly slower than the other phases since this is often
corner-cases which are unlikely to occur in random runs. The short trace is due
to a special interaction which has to occur at the beginning of the trace.

7 Related Work

ISO 26262[13], a functional safety standard adopting IEC 61508 [12], classifies the
level of integrity of Electric/Electronic control systems. It recommends applying
of formal analysis techniques for requirements and designs on ASIL (Automotive
Safety Integrity Level) C to D and the use of formal notations for requirements
and designs over all integrity levels [13]. For the compliance with such a recom-
mendation, AUTOSAR [1] and AADL [2], a standardized software architecture
and methodology, are standardized as open and software architecture supporting
specification methods for various level of software systems. However, they do not
recommend any analysis and testing methods.

Many formal approaches, such as [4,11,14,8], to automotive software demon-
strate the analyze by model-based approaches and formal analysis techniques.
Their approaches are limited to some specific properties, and do not collaborate
with testing methods.

MATLAB/Simulink is a common tool suite for model-based development of
embedded system [8]. Model-validation is primarily achieved using traditional
simulation techniques. A main difference to our approach is that our whole
methodology is based on models with a formal semantics. In addition we of-
fer integrated SMC, MC, and MBT. For (subsets of) Simulink models, MC and

1 All test case generation experiments are run on a modern i7 laptop. All experiments
are run several times and average values are reported.

60 J.H. Kim et al.

MBT are available only from third parties2, and to our knowledge no commercial
SMC facility is available.

With respect to model-based test, the study by Tekaya et al. [18] is one of
most recent methods for automotive systems. It proposes a tool to generate
test cases from Simulink models using SLDV (Simulink Design Verifier) model
checker. However, it is limited on relatively small models within the capability
of symbolic model checkers.

Compared to the previous work, we approach the analysis of models through
multidimensional techniques for multiple analysis purposes, i.e validation, ver-
ification, and testing. Thus, we demonstrated gradual use of formal techniques
exploiting the same model. In addition, the model beyond the number of states
that symbolic model checker can handle may still be subjected to formal statis-
tical analysis to produce quantified analysis proof.

8 Conclusions

This paper demonstrated how to perform model-based analysis and testing of a
small but non-trivial and representative industrial case using the Uppaal tool.
By combining statistical and symbolic model-checking we enable fast early vali-
dation of system design models prior to e.g., test case generation or performance
analysis, allowing the user to control the required level of confidence, including
exhaustive model-checking for critical properties.

During collaboration with industrial partners we have experienced that mod-
eling using timed automata in the Uppaal environment is feasible with an ac-
ceptable amount of training, however, many industrial users have difficulty in
writing the formal CTL properties to be checked. As future work we therefore in-
vestigate how to ease this through e.g., using property-templates or boiler-plates,
or graphical specifications like live sequence charts.

References

1. AUTOSAR: Technical Overview. Standard, http://www.autosar.org
2. SAE International Architecture Analysis & Design Language (AADL) Standard,

http://www.aadl.info/aadl/currentsite/
3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)
4. Arun Chakrapani Rao, M.G.D., Sethu, R.: Formal requirements analysis tech-

niques for software-intensive automotive electronic control systems. Technical re-
port (2011)

5. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

6. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004)

2 Resp. BTC EmbeddedValidator, and Reactis Tester.

http://www.autosar.org
http://www.aadl.info/aadl/currentsite/

Formal Analysis and Testing of Real-Time Automotive Systems 61

7. Bulychev, P.E., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: Uppaal-smc: Statistical model checking for priced timed automata. In:
Wiklicky, H., Massink, M. (eds.) QAPL. EPTCS, vol. 85, pp. 1–16 (2012)

8. Cleaveland, R.: Model-based verification of automotive control software. In: Cofer,
D., Fantechi, A. (eds.) FMICS 2008. LNCS, vol. 5596, p. 2. Springer, Heidelberg
(2009)

9. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of herschel-planck
revisited using statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part II. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012)

10. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal smc
tutorial. International Journal on Software Tools for Technology Transfer, 1–19
(2015)

11. Frehse, G., Hamann, A., Quinton, S., Wöhrle, M.: Formal Analysis of Timing
Effects on Closed-loop Properties of Control Software. In: 35th IEEE Real-Time
Systems Symposium 2014 (RTSS), Rome, Italy (December 2014)

12. IEC 61508: Functional Safety of Electrical/Electronic/Programmable Electronic
Safety Related Systems. Standard, International Organization for Standardization,
Geneva, CH (2010)

13. ISO 26262-6: Road vehicles – Functional safety – Part 6: Product development
at the software level. Standard, International Organization for Standardization,
Geneva, CH (2011)

14. Jersak, M., Richter, K., Ernst, R., Braam, J.-C., Jiang, Z.-Y., Wolf, F.: Formal
methods for integration of automotive software. In: Design, Automation and Test
in Europe Conference and Exhibition, pp. 45–50 (2003)

15. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010)

16. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM
Trans. Program. Lang. Syst. 4(3), 455–495 (1982)

17. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Asp. Com-
put. 6(5), 495–512 (1994)

18. Tekaya, M., Bennani, M.T., Youssef, A.: Test case generation for automotive
applications. In: 2014 World Symposium on Computer Applications Research
(WSCAR), pp. 1–6 (January 2014)

Successful Use of Incremental BMC
in the Automotive Industry

Peter Schrammel1, Daniel Kroening1, Martin Brain1, Ruben Martins1(�),
Tino Teige2, and Tom Bienmüller2

1 University of Oxford, Oxford, England
2 BTC Embedded Systems AG, Oldenburg, Germany

ruben.martins@cs.ox.ac.uk, {first.lastname}@cs.ox.ac.uk,
{first.lastname}@btc-es.de

Abstract. Program analysis is on the brink of mainstream usage in embedded
systems development. Formal verification of behavioural requirements, finding
runtime errors and automated test case generation are some of the most common
applications of automated verification tools based on Bounded Model Check-
ing (BMC). Existing industrial tools for embedded software use an off-the-shelf
Bounded Model Checker and apply it iteratively to verify the program with an in-
creasing number of unwindings. This approach unnecessarily wastes time repeat-
ing work that has already been done and fails to exploit the power of incremental
SAT solving. This paper reports on the extension of the software model checker
CBMC to support incremental BMC and its successful integration with the indus-
trial embedded software verification tool BTC EMBEDDEDTESTER. We present
an extensive evaluation over large industrial embedded programs, mainly from
automotive industry. We show that incremental BMC cuts runtimes by one order
of magnitude in comparison to the standard non-incremental approach, enabling
the application of formal verification to large and complex embedded software.

1 Introduction

Recent trend estimation [14] in automotive embedded systems revealed ever growing
complexity of computer systems, providing increased safety, efficiency and entertain-
ment satisfaction. Hence, automated design tools are vital for managing this complexity
and supporting the verification processes in order to satisfy the high safety requirements
stipulated by safety standards and regulations. Similar to the developments in hardware
verification in the 1990s, verification tools for embedded software are becoming in-
dispensable in industrial practice for hunting runtime bugs, checking functional prop-
erties and test suite generation [13]. For example, the automotive safety standard ISO
26262 [22] requires the test suite to satisfy modified condition/decision coverage [18]
– a goal that is laborious to achieve without support by a model checker that identifies
unreachable test goals and suggests test vectors for difficult-to-reach test goals.

In this paper, we focus on the application of Bounded Model Checking (BMC) to
this problem. The technique is highly accurate (no false alarms) and is furthermore able

The research leading to these results has received funding from the ARTEMIS Joint Undertaking
under grant agreement number 295311 “VeTeSS” and ERC project 280053 “CPROVER”.

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 62–77, 2015.
DOI: 10.1007/978-3-319-19458-5_5

http://vetess.eu/

Successful Use of Incremental BMC in the Automotive Industry 63

to generate counterexamples that aid debugging and serve as test vectors. The spiralling
power of SAT solvers has made this technique scale to reasonably large programs and
has enabled industrial application.

In BMC, the property of interest is checked for traces that execute loops up to a
given number of times k. Since the value of k that is required to find a bug is not known
a-priori, one has to try increasingly larger values of k until a bug is found. The analysis
is aborted when memory and runtime limits are exceeded.1

Industrial verification tools based on BMC, such as BTC EMBEDDEDTESTER, use
an off-the-shelf Bounded Model Checker and, without additional information about the
program to be checked, apply it in an iterative fashion:

k=0
while true do

i f BMC(program , k) f a i l s then
return counterexample

f i
k++

od

This basic procedure offers scope for improvement. In particular, note that the Boun-
ded Model Checker has to redo the work of generating and solving the SAT formula for
time frames 0 to k when called to check time frame k + 1. It is desirable to perform
the verification incrementally for iteration k + 1 by building upon the work done for
iteration k.

Incremental BMC has been applied successfully to the verification of hardware de-
signs, and has been reported to yield substantial speedups [33,11]. Fortunately, the typ-
ical control-loop structure of embedded software resembles the monolithic transition
relation of hardware designs, and thus strongly suggests incremental verification of suc-
cessive loop unwindings. However – to our knowledge – none of the software model
checkers for C programs that have competed in the TACAS 2014 Software Verifica-
tion Competition implement such a technique that ultimately exploits the full power of
incremental SAT solving [35,10].

Contributions. The primary contribution of this paper is experimental. We quantify
the benefit of incremental BMC in the context of the verification of industrial embedded
software. To this end,

(1) we survey the requirements for state-of-the-art embedded software verification tools,
briefly summarise the underlying theory of the used techniques, and highlight the
challenges faced when applying them to industrial code;

(2) we present the first industrial-strength implementation of incremental BMC in a
software model checker for ANSI-C programs combining symbolic execution, slic-
ing and incremental SAT solving;

(3) we report on the successful integration of our incremental Bounded Model Checker
in the industrial embedded software verification tools BTC EMBEDDEDTESTER

1 One can stop unwinding when the completeness threshold [24] of the system is reached, but
this threshold is often impractically large.

64 P. Schrammel et al.

and EMBEDDEDVALIDATOR where it is used by several hundred industrial users
since version 3.4 and 4.3, respectively; and

(4) we give a comprehensive experimental evaluation over a large set of industrial em-
bedded benchmarks, from mainly automotive origin, that quantify the performance
gain due to the incremental approach in a BMC-based tool: incremental BMC out-
performs the winner of the TACAS 2014 Software Verification Competition [25]
by one order of magnitude.

2 Verification of Model-Based Embedded Software

Recent safety standards, e.g. ISO-26262 [22]), cover model-based development and
testing techniques for early simulation, testing and verification, and recommend back-
to-back testing for showing simulation equivalence between a high-level model and
corresponding production code. In the automotive industry, model-based development
including automatic code generation is well-established. In particular, SIMULINK for
functional modelling and TARGETLINK2 for automatic code generation from these
models are prominent representatives. SIMULINK DESIGNVERIFIER,3 BTC EMBED-
DEDTESTER,4 REACTIS,5 and RT-TESTER6 are examples of tools that complement the
software development tool chain for formal verification of safety requirements against
design models. These tools are also used for testing, namely, requirement-based and
back-to-back testing, including automatic test vector generation for structural coverage
criteria.

2.1 Requirements and Challenges

In the above setting, embedded software verification tools have two main applications:
(1) proving/disproving safety properties, and (2) covering test goals or proving their
unreachability. BMC-based verification engines are a perfect fit for both applications
because they can be used to find counterexamples and prove properties by k-induction.

Embedded C code has to meet many conflicting requirements like real-time con-
straints, low memory footprint and low energy consumption. Code generators offer op-
tions to perform certain optimisations towards these goals, often to the detriment of
code size (and also readability for humans). The observer instrumentation7 to encode
properties and identify the test goals corresponding to code-coverage criteria such as
MC/DC [18] produces a non-negligible overhead in the size of the code but introduces
little semantic complexity. When using BMC, the size of the SAT formula built from
a program further increases whenever internal loops need to be unwound. File sizes
of 10 MB and more are common, which poses difficulties to many tools already when

2 http://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm
3 http://uk.mathworks.com/products/sldesignverifier
4 http://www.btc-es.de/index.php?lang=2
5 http://www.reactive-systems.com
6 https://www.verified.de/products/rt-tester
7 The observer instrumentation consists of adding a series of flags to the original source code

that enables the analysis tool to determine exactly what parts of the code are exercised.

http://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm
http://uk.mathworks.com/products/sldesignverifier
http://www.btc-es.de/index.php?lang=2
http://www.reactive-systems.com
https://www.verified.de/products/rt-tester

Successful Use of Incremental BMC in the Automotive Industry 65

parsing the source code and encoding the program into a SAT formula, mostly due
to inefficient data structures. Incremental BMC helps reducing formula sizes and peak
memory consumption (see Sec. 4.2) by incremental formula generation and solving.

In practice, many loop unwindings may be needed to detect errors and reach certain
tests goals (more than 100 for some of our industrial benchmarks, see Sec. 4.2). Non-
incremental bounded model checking repeats work such as file parsing, loop unwinding,
SAT formula encoding and discards information learnt in the SAT solver every time it is
called and so gives away an enormous amount of performance. This effect exacerbates
the cost of large unwinding limits that may be needed.

The main challenge addressed by this paper is to exploit all the benefits of incre-
mentality in BMC and to significantly enhance performance of its integration with an
industrial-strength embedded verification and test-vector generation tool, namely BTC
EMBEDDEDVALIDATOR and EMBEDDEDTESTER. The impact of this successful tech-
nology transfer is demonstrated on original industrial embedded software.

2.2 Case Study: Fault-Tolerant Fuel Control System

In this paper, we focus on the verification of C code generated from SIMULINK models.
To this end, we illustrate the characteristics of this verification problem with the help
of a well-known case study and explain the workflow and principal techniques that a
state-of-the-art embedded software verification tool uses.

The Fault-Tolerant Fuel Control System8 (FUELSYS) for a gasoline engine is repre-
sentative of a variety of automotive applications as it combines discrete control logic
with continuous signal flow and thus establishes a hybrid discrete-continuous system.
More precisely, the control logic of FUELSYS is implemented by six automata with two
to five states each, while the signal flow is further subdivided into three subsystems with
a rich variety of SIMULINK/TARGETLINK blocks involving arithmetic, lookup tables,
integrators, filters and interpolation (Fig. 1). The system is designed to keep the air-fuel
ratio nearly constant depending on the inputs given by a throttle sensor, a speed sensor,
an oxygen sensor (EGO) and a pressure sensor (MAP). Moreover it is tolerant to indi-
vidual sensor faults and is designed to be highly robust, i.e. after detection of a sensor
fault the system is dynamically reconfigured.

Properties of Interest. The key functional property for FUELSYS is how the air-fuel
ratio evolves for each of the four sensor-failure scenarios. Simulation-based approaches
show that FUELSYS is indeed fault-tolerant in each case of a single failure: the air-fuel
ratio can be regulated after a few seconds to about 80% of the target ratio. In addition to
functional testing of industrial embedded software, safety standards call for structural
testing of the production code before release deployment.

2.3 Structure of Generated Code

Many modelling languages follow the synchronous programming paradigm [17], which
is well-suited for modelling time-triggered systems, in which tasks (subsystems of the

8 http://www.mathworks.co.uk/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-
system.html

http://www.mathworks.co.uk/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://www.mathworks.co.uk/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html

66 P. Schrammel et al.

sensor correction airflow computation fuel computation

throttle • throttle throt est throt est
speed • speed speed est speed est air flow est air flow est
EGO • EGO EGO est EGO est
press • press

fail throt
fail speed
fail O2 fuel rate fuel rate

control logic fail press MAP est MAP est

throttle fail throt
speed fail speed fuel mode feedback corr feedback corr
EGO fail O2 • • fail O2
press fail press

clock clock fuel mode • fuel mode
fail O2

Fig. 1. The SIMULINK Diagram for the Fault-Tolerant Fuel Control System (without the plant
model)

model) execute at given rates. Code generation for such languages produces a typi-
cal code structure, which corresponds essentially to a non-preemptive operating system
task scheduler. Most code generators provide the scheduler for time-triggered execu-
tion or code to interface with popular real-time operating systems. In either case, the
functionality corresponds to the following pseudo code:

1 void main () {
2 s t a t e s ; inputs i ; outputs o ;
3 i n i t i a l i z e (s) ;
4 while (t rue) { / / main l o o p
5 i = read inputs () ;
6 (o , s) = compute step (i , s) ;
7 wri te outputs (o) ;
8 wait () ; / / wa i t f o r t i m e r i n t e r r u p t
9 }

10 }

The distinguishing characteristic of such a reactive program is its unbounded main
loop, which we will analyse incrementally. All other loops contained within that loop,
e.g. to iterate over arrays or interpolate values using look-up tables, have a statically
bounded number of iterations and can be fully unwound.

2.4 Analysis with BMC and k-Induction

Property Instrumentation. Formal verification requires formalisations of high-level
requirements, often using observer Büchi automata with a dedicated ‘error state’ gener-
ated from temporal logic descriptions. Test vector generation is done for code-coverage
criteria such as branches, statements, conditions and MC/DC of the production C code.
For FUELSYS, for example, MC/DC instrumentation yields 251 test goals. The proper-
ties to be verified or tested have in common that they can be reduced to a reachability
problem. In formal verification of safety properties, we prove that the error state is
unreachable, whereas the aim of test vector generation is to obtain a trace that demon-
strates reachability of the goal state.

To validate whether the air-fuel ratio in the FUELSYS controller is regulated after
a few seconds to be within some margin of the target ratio, one has to instrument the

Successful Use of Incremental BMC in the Automotive Industry 67

reactive program, as sketched above, with an observer implementing the asserted prop-
erty. For instance, consider the requirement “If some sensor fails for the first time then
within 10 seconds the air-fuel ratio will keep in between the range of 80% to 120% of
the target ratio forever.” The code fragment for an observer for this requirement may
look as follows:

1 / / d e t e c t i o n o f f i r s t s e n s o r f a i l u r e
2 i f (s e n s o r f a i l == 1 && o b s e r v e r a t i o == 0) {
3 / / i n i t i a l i z e o b s e r v e r v a r i a b l e s
4 o b s e r v e r a t i o = 1 ;
5 counter = 0 ;
6 v i o l a t e d = 0 ;
7 }
8 i f (o b s e r v e r a t i o == 1) { / / o b s e r v a t i o n mode
9 i f (counter >= 10 &&

10 (a i r f u e l r a t i o < 0 . 8∗ t a r g e t r a t i o | |
11 a i r f u e l r a t i o > 1 . 2∗ t a r g e t r a t i o))
12 v i o l a t e d = 1 ;
13 counter ++;
14 }
15 a s s e r t (v i o l a t e d == 0) ; / / s a f e t y p r o p e r t y

In order to verify that the above property actually holds, one has to show that the
assertion in the observer code is always satisfied. We use BMC for refutation of the
assertion, and k-induction for proving it.

Bounded Model Checking. BMC [2] can be used to check the existence of a path π =
〈s0, s1, . . . , sk〉 of length k between two states s0 and sk belonging to sets respectively
described by φ andψ. This check is performed by deciding satisfiability of the following
formula using a SAT or SMT solver:

φ(s0) ∧
∧

0≤j<k

T (sj , ij, sj+1) ∧ ψ(sk) (1)

If the solver returns the answer “satisfiable”, it also provides a satisfying assignment to
the variables (s0, i0, s1, i1, . . . , sk−1, ik−1, sk). The satisfying assignment represents
one possible path π = 〈s0, s1, . . . , sk〉 from φ to ψ and identifies the correspond-
ing input sequence 〈i0, . . . , ik−1〉. Hence, BMC is useful for refuting safety properties
(where φ gives the set of initial states and ψ defines the error states) and generating test
vectors (where ψ defines the test goal to be covered).

Unbounded Model Checking by k-Induction. BMC can prove reachability, whereas
unreachability can be shown using k−induction [31,11,16,7]. The predicate ¬ψ is an
(inductive) invariant, i.e., it holds in all reachable states, if each of the following two
formulae, base case (BC) and induction step (SC), are unsatisfiable for a given k (as-
suming that we have already checked for up to k − 1):

(BC) φ(s0) ∧
∧

0≤j<k ¬ψ(sj) ∧ T (sj, ij , sj+1) ∧ ψ(sk)

(SC)
∧

0≤j≤k ¬ψ(sj) ∧ T (sj , ij, sj+1) ∧ ψ(sk+1)
(2)

The base case checks if the formula is unsatisfiable, when this occurs we say that ¬ψ
holds in the first k steps. The induction step checks if we can conclude from the invariant
holding over any k consecutive steps that it holds for the (k+1)st step. If the base step

68 P. Schrammel et al.

fails, i.e. above formula is satisfiable and a counterexample is given, we have refuted
the property. If it holds and the induction step fails, we do not know whether ¬ψ is
invariant. Only if both formulae hold we have proved that ¬ψ is invariant.

Both base step and induction step are essentially instances of BMC: starting from the
initial state φ for the base case, and starting from any state for the induction step. Thus,
similar to BMC, k-induction can be applied by using a sequence of increasing values
for k.

3 Incremental BMC

In this section, we explain the technical background of incremental SAT solving and
how it is employed in our implementation of incremental BMC.

3.1 Incremental SAT Solving

The first ideas for incremental SAT solving date back to the 1990s [21,32]. The question
is how to solve a sequence of similar SAT problems while reusing effort spent on solving
previous instances, i.e. reusing the internal state and learnt information of the solver.
Incremental SAT solving is easy as long as formulas are growing monotonically, i.e.
clauses are added to the formula. Removing clauses is trickier and requires additional
solver features like solving under assumptions [11], which is the most popular approach
to incremental SAT solving: assumptions are temporary assignments to variables that
hold solely for one specific invocation of the SAT solver. In Sec. 3.2, we will explain
how SAT solving under assumptions allows us to emulate the removal of clauses.

An alternative approach is to use SMT solvers. SMT solvers offer an interface for
pushing and popping clauses in a stack-like manner. Pushing adds clauses, popping
removes them from the formula. This makes the modification of the formula intuitive to
the user, but the efficiency depends on the underlying implementation of the push and
pop operations. For example, in [15] it was observed that some SMT solvers (like Z3)
are not optimised for incremental usage and hence perform worse incrementally than
non-incrementally.

Since CBMC itself implements powerful bitvector decision procedures, we use the
SAT solver MINISAT2 [10] as a backend solver, and focus on solving under assump-
tions in the sequel.

3.2 Incremental BMC

We will now discuss which aspects have to be taken into account when implementing an
incremental approach in a software Bounded Model Checker. We will show that sym-
bolic execution and slicing can be performed without interfering with the requirement
of monotonic formula construction for incremental SAT solving, whereas incremental
unwinding and transition function refinements require solving under assumptions.

Following the construction in [11] for finite state machines, incremental BMC can
be formulated as a sequence of SAT problems Φ(k) that we need to solve:

Φ(0) := φ(s0) ∧ (Ψ(0) ∨ α0)
Φ(k + 1) := Φ(k) ∧ T (sk, ik, sk+1) ∧ αk ∧ (Ψ(k + 1) ∨ αk+1)

(3)

Successful Use of Incremental BMC in the Automotive Industry 69

where Ψ(k) is the disjunction
∨

0≤j≤k ψ(sj) of error states ψ to be proved unreachable
up to iteration k. This means that the verification fails if at least one of the error states
is reachable. Since the set of ψjs grows in each iteration, our problem is not monotonic:
one has to remove Ψ(k) when adding Ψ(k + 1) because Ψ(k) subsumes Ψ(k + 1).

Here, solving under assumptions comes to rescue. In iteration k, the αk is assumed
to be false, whereas it is assumed true for iterations k′ > k. This has the effect that
in iteration k′ the formula (Ψ(k) ∨ αk) becomes trivially satisfied. Hence, it does not
contribute to the (un)satisfiability of Φ(k′), which emulates its deletion.9

Symbolic Execution. For software (3) results in large formulae and would be highly
inefficient for the purpose of BMC. In practice, software model checkers use symbolic
execution in order to exploit, for example, constant propagation and pruning branches
when conditionals are infeasible, while generating the SAT formula and thus reducing
its size. This means that the formula describing T is the result of symbolic execution,
and that formulae T and Ψ are actually dependent on k. Fortunately, this does not affect
the correctness of above formula construction and we can replace T by Tk in (3) and ψ
by ψk in the definition of Ψ(k). Tk denotes the transition formula obtained by symbolic
execution of the kth time frame (i.e. unwinding), and ψk the assertions collected for this
time frame.

Slicing. Another feature used by state-of-the-art software model checkers is slicing:
The purpose of slicing is, again, reducing the size of the SAT formula by removing (or
better: not generating) those parts of the formula that have no influence on its satisfia-
bility. There are many techniques how to implement slicing with the desired trade-off
between runtime efficiency and its formula pruning effectiveness [34].

Slicing is performed relative to Ψ(k). We said that the number of disjuncts ψj in Ψ
is growing monotonically with k. Hence, we will show that, assuming that our slicing
operator is monotonic, we obtain a monotonic formula construction:

The transition formula for each time frame Tk obtained by symbolic execution is
a conjunction

∧
τ∈M τ of subrelations τ (e.g., formulae corresponding to program in-

structions). The slicing operator slice selects a subset of M . The operator slice is mono-
tonic iff M ⊆ M ′ =⇒ slice(M) ⊆ slice(M ′).

We can then view the conjunction of transition relations for k time frames T̂ (k) =
∧

0≤j≤k Tj as
∧

τ∈Mk
τ . A slice T̂ sliced(k) of T̂ (k) is

∧
τ∈M ′

k
τ where M ′

k ⊆ Mk.

An incremental slice is then defined as the difference between T̂ sliced(k + 1) and
T̂ sliced(k): T sliced

k+1 =
∧

τ∈M ′
k+1\M ′

k
τ .

Monotonicity of formula construction follows from M ′
k+1 ⊆ Mk+1 and the assumed

monotonicity M ′
k ⊆ M ′

k+1 of the slicing operator. We can thus replace T by T sliced
k in

(3). Mind that T sliced
k contains also subrelations τ for time steps k′ < k.

Our slicing operator computes the (syntactic) variable dependency graph for T̂ (k+1)
and obtains M ′

k+1 as the set of all τ which Ψ(k + 1) depends on. Then only those τ

9 For a large number of iterations k, such trivially satisfied subformulas might accumulate as
“garbage” in the formula and slow down its resolution. Restarting the solver at appropriate
moments is the common solution to this issue.

70 P. Schrammel et al.

in M ′
k+1 are added to the formula that have not been in the slice for the previous time

frame, resulting in T sliced
k+1 .

Refinements. Incremental SAT solving is also used for incremental refinements of the
transition relation T for bitvectors [4,8] and arrays [28], for example. Applying bitvec-
tors and arrays refinements inside an incremental software Bounded Model Checker
requires using several incremental formula encodings for (in general, non-monotonic)
refinements. These refinements are global over all unwindings, so that in iteration k we
have to further refine transition relations Tk′ from earlier iterations k′ < k. For de-
tails on the formula construction for refinements inside an incremental Bounded Model
Checker we refer to the extended version of the paper [30].

4 Experimental Evaluation

We present the results of our experimental evaluation of incremental BMC and incre-
mental k-induction on industrial programs from mainly automotive origin. The goal of
this evaluation is to quantify the benefit from an incremental approach in a BMC-based
tool infrastructure.10 The experiments for this study were performed on a 3.5 GHz Intel
Xeon machine with 32 GB of physical memory running Windows 7 with a time limit
of 3,600 seconds.

4.1 Implementation

We have implemented our extension11 for incremental BMC in the Bounded Model
Checker for ANSI-C programs CBMC [6] using the SAT solver MINISAT2 [10]. In-
cremental CBMC can be used with specific options that enables extra features, namely:
(i) slicing, (ii) preprocessing, and (iii) formula-level refinements. The goal of these tech-
niques is to reduce the size of the SAT formula that is being generated. Slicing reduces
the size of the SAT formula by eliminating irrelevant paths of the program. Prepro-
cessing through the MINISAT2 simplifier reduces the size of the SAT formula after
it has been generated, and formula-level refinements performs an incremental build of
the SAT formula. For information regarding the command line options of incremental
CBMC we refer to the CPROVER wiki page.12

In the integration of CBMC with BTC EMBEDDEDTESTER and EMBEDDEDVALI-
DATOR, a master routine selects the next verification/test goal to be analysed starting
from instrumented C code. After some preprocessing like source-level slicing and
internal-loop unwinding the resulting reachability task is given to CBMC. If CBMC is
able to solve the problem within the user-defined time limit, the result, i.e. bounded or
unbounded unreachability, or a counterexample in case of reachability, is reported back

10 For a comparison with alternative verification approaches, we kindly refer to the results of
the Software Verification Competition (http://sv-comp.sosy-lab.org), where BMC-based tools
rank in the top 3 every year.

11 Source code available from http://www.cprover.org/svn/cbmc/branches/peter-incremental-un
winding

12 http://www.cprover.org/wiki/doku.php?id=how to use incremental unwinding

http://sv-comp.sosy-lab.org
http://www.cprover.org/svn/cbmc/branches/peter-incremental-unwinding
http://www.cprover.org/svn/cbmc/branches/peter-incremental-unwinding
http://www.cprover.org/wiki/doku.php?id=how_to_use_incremental_unwinding

Successful Use of Incremental BMC in the Automotive Industry 71

Table 1. Benchmark characteristics from industrial programs

operators input variables state variables observer
LOC cond mul div/rem bool int float bool int float bool unwindings

SAT
max 31222 17103 669 75 688 477 189 3876 750 107 22 106
average 7572 4306 188 9 103 79 19 583 136 15 9 22

UNSAT
max 23014 49530 567 37467 212 282 188 708 663 32 22 10
average 4854 6014 160 1257 30 51 9 163 73 3 7 10

to the master process. Otherwise, i.e. in case of a timeout, CBMC is killed but information
about the solved unwindings of the reactive main loop is given back, which frequently
is a useful result for the user since it may indicate the absence of shallow bugs.

To prove unreachability of verification/test goals (properties), k-induction is per-
formed (see Sec. 2.4). For this purpose BTC EMBEDDEDTESTER generates two source
files, one containing the base case, which is a normal BMC problem with the property
given as assertion (cf. Equ. (2) (BC)); the file for the step case havocs variables modi-
fied in the loop and the invariant property is assumed at the beginning of the loop and
asserted at the end of the loop (cf. Equ. (2) (SC)). To check the step case, we require
a reversed termination behaviour of CBMC, i.e. it continues unwinding as long as the
problem is SAT and stops as soon as it is UNSAT.

4.2 Incremental BMC for Embedded Software

We report results on industrial programs for the integration of CBMC with BTC EM-
BEDDEDTESTER and EMBEDDEDVALIDATOR. For these experiments, we used 60 in-
dustrial benchmarks, which are original, unmodified code from BTC customers, mainly
from automotive applications. Unfortunately, software in the automotive domain is
closed source, and hence, being subject to NDAs, these benchmarks cannot be made
public.13 These benchmarks have the property of having only one unbounded loop.
Half of the benchmarks are bug-free (UNSAT instances), half contain a bug (SAT in-
stances). This benchmark suite is an indicator for performance of model checking tools
in an industrial setting as it covers a representative spectrum of embedded software.

A summary of the benchmark characteristics is listed in Table 1. Besides the num-
ber of lines of code, we give the number of conditional operators, multiplications and
divisions or remainder operations, which are a good indicator for the difficulty of the
benchmark, because they generate large formulae — recall that for each “/” occurring
in the program, CBMC has to generate a divider circuit. The surprisingly high number
of conditional operators in most of the benchmarks is due to the preprocessing of condi-
tional assignments by BTC EMBEDDEDTESTER and hints at the amount of branching
in these benchmarks. Moreover, we list the number of input and state variables, and the
variables introduced by the observer instrumentation.

Runtimes. We compared the incremental (i) with the non-incremental (ni) approach
and evaluated the impact of slicing (s), SAT preprocessing (p) and bitvector refinement
(r).14 The incremental and non-incremental approaches were compared by activating

13 To mitigate this problem, we present a detailed summary of the benchmark characteristics in
the extended version of the paper [30].

14 Array refinement is not used because the benchmarks do not contain arrays.

72 P. Schrammel et al.

 0

 1

 2

 3

 4

 5

ni

ni
+

s

ni
+

s+
p

ni
+

s+
p+

r i

i+
s

i+
s+

p

i+
s+

p+
r

av
er

ag
e

sp
ee

du
p

(a) Effect of slicing, SAT formula prepro-
cessing and bitvector refinement

10-1

100

101

102

103

104

10-1 100 101 102 103 104

ni
+

s+
p

i+s+p

10
x s

pe
ed

up

10
x s

low
do

wn

3600 sec. timeout

36
00

 s
ec

. t
im

eo
ut

(b) Comparison between ni+s+p and i+s+p
(+ SAT instances; � UNSAT instances)

Fig. 2. Incremental vs. non-incremental BMC

none of the three techniques, with slicing only (+s), with slicing and preprocessing
(+s+p), and with all three options activated (+s+p+r). The maximum number of loop
unwindings was fixed to 10 for the UNSAT instances in order to balance a significant
exploration depth with reasonable analysis runtimes. For SAT instances, a maximum
number of loop unwindings was not fixed since the incremental and non-incremental
approaches are bound to terminate when the unwinding depth reaches the depth of the
bug. The number of unwindings are listed in the last column in Table 1.

Fig. 2 shows the comparison between the incremental and non-incremental
approaches and the impact of each tool option on their performance. Fig. 2a shows the
average geometric mean [12] speedup of instances that were solved by all approaches.
We consider as baseline the (ni+s+p) approach since it was the best non-incremental
approach. Each bar shows the average geometric mean speedup of each approach when
compared to (ni+s+p). For example, (ni) has a speedup of 0.77, i.e. (ni) is on average
0.77× slower than (ni+s+p). On the other hand, all incremental versions are much faster
than the non-incremental versions. For example, (i) is on average over 3.5× faster than
(ni+s+p) and (i+s+p) is on average over 5× faster than (ni+s+p). We observe the fol-
lowing effects of the tool options: (i) slicing shows significant benefits overall (also on
peak memory consumption); (ii) not using formula preprocessing is a bad idea in gen-
eral; and (iii) bitvector refinement shows benefits for UNSAT instances, but produces
overhead for SAT instances which deteriorates the overall performance of the tool (see
the extended version of the paper [30] for more details). Even though the tool options
have some positive effects, they are rather minor in comparison to the performance
gains from using an incremental approach.

Since the best incremental and non-incremental approaches were obtained with the
configuration (+s+p), we will use this configuration for both approaches on the results
described in the remainder of the paper.

Successful Use of Incremental BMC in the Automotive Industry 73

Fig. 2b shows a scatter plot with runtimes of the best non-incremental (ni+s+p)
and incremental (i+s+p) approaches. Each point in the plot corresponds to an instance,
where the x-axis corresponds to the runtime required by the incremental approach and
the y-axis corresponds to the runtime required by the non-incremental approach. If an
instance is above the diagonal, then it means that the incremental approach is faster
than the non-incremental approach, otherwise it means that the non-incremental ap-
proach is faster. SAT instances are plotted as crosses, whereas UNSAT instances are
plotted as squares. Incremental BMC significantly outperforms non-incremental BMC.
For SAT instances, the advantage of incremental BMC is negligible for the easy in-
stances, whereas speedups are around a factor of 10 for the medium and hard instances.
For UNSAT instances, speedups are also significant and most instances have a speedup
of more than a factor of 5.

Solving vs. Overall Runtime. Since CBMC is used as a black-box with BTC EM-
BEDDEDTESTER and EMBEDDEDVALIDATOR, the non-incremental approach has to
re-parse files in each iteration. One might argue that removing this overhead is the
main reason for the speedup observed. However, the overhead for parsing files, sym-
bolic execution and slicing when compared to generating and solving SAT formula is
similar for the incremental and non-incremental approach. The incremental approach
spends 27% of its time solving the SAT formula (582 out of 2,151 seconds), whereas
the non-incremental approach spends 28% of its time (3,317 out of 11,811 seconds).
Unsurprisingly, solving the instance for the largest k in the non-incremental approach
takes a considerable amount of time (around 24%), when compared to the total time for
solving the SAT formulae for iterations 1 to k (784 out of 3,317 seconds).

An explanation for these speedups might be the size of the queries issued in both ap-
proaches. The average number of clauses per solver call is halved from 1,367k clauses
for the non-incremental approach to 709k clauses for the incremental approach. Simi-
larly, the average number of variables is less than a third in the incremental approach
when compared to the non-incremental approach, being 217k and 746k respectively.

Smaller query sizes also have an effect on peak memory consumption which is re-
duced by 30% for UNSAT benchmarks; for SAT benchmarks, however, we observed a
10% increase.

4.3 Code Coverage on FUELSYS Using BTC EMBEDDEDTESTER

As reported in the previous section, enabling CBMC to work incrementally led to tremen-
dous performance gains. In order to assess whether these improvements have practical
impact in the integration of CBMC with an industrial-strength test-vector generation tool,
we compared the performance of BTC EMBEDDEDTESTER with the incremental fea-
ture of CBMC being disabled and enabled. The time limit per subtask was 10 minutes
and the unwinding depth for all internal loops was 50. For unwinding depth 10 of the
main loop, the incremental feature improves the overall runtime from 152.3 to 70.4min-
utes, i.e. more than 2× faster, and for unwinding depth 50 from 377.4 to 108.5 minutes,
i.e. more than 3× faster.

74 P. Schrammel et al.

4.4 Incremental k-Induction for Embedded Software

10-2

10-1

100

101

102

10-2 10-1 100 101 102

N
on

-I
nc

re
m

en
ta

l
Incremental

Fig. 3. Incremental k-induction
(+ BC instances; � SC instances)

To compare the performance of incre-
mental and non-incremental approaches
for k-induction, we considered the sub-
set of UNSAT benchmarks for which
k-induction required more than 1 itera-
tion (see the extended version of the pa-
per [30] for more details). Note that when
k-induction requires only 1 iteration, the
performance of both approaches is simi-
lar.

Fig. 3 shows a scatter plot with the
runtimes of incremental and non-incre-
mentalk-induction using the tool options
(+s+p). Instances that correspond to the
base case are plotted as crosses, whereas
instances that correspond to the step case
are plotted as squares. The runtimes for
both incremental and non-incremental checking are relatively small. These are due to
the small number of iterations required by k-induction to prove the unreachability of
the properties present on these benchmarks (between 2 and 4 iterations with an aver-
age of 2.4 iterations per instance). Incremental checking is on average 2× faster than
non-incremental checking, on both base and step cases.

5 Related Work

Most related is recent work on a prototype tool NBIS [15] implementing incremental
BMC using SMT solvers. They show the advantages of incremental software BMC.
However, they do not consider industrial embedded software and have evaluated their
tool only on small benchmarks that are very easy for both, incremental and non-incre-
mental, approaches (runtimes <1s).15

Bit-precise formal verification techniques are indispensable for embedded system
models and implementations, that have low-level, i.e. C language, semantics like discre-
te-time SIMULINK models. The importance of this topic has recently attracted attention
as shown by publications on verification using SMT Solving [19,26], test case genera-
tion [27], symbolic analysis for improving simulation coverage [1], and directed random
testing [29]. Yet, all these works have not exploited incremental BMC.

The test vector generation tool FSHELL [20] uses incremental SAT solving to check
the reachability of a set of test goals. However, it assumes a fixed unwinding of the loops.
There is no reason why incremental BMC should not boost its performance when increas-
ing loop unwindings need to be considered. Test vector generation tools like KLEE [5]
use incremental SAT solving to extend the paths to be explored. However, they consider
only single paths at a time, whereas BMC explores all paths simultaneously.

15 Unfortunately, a working version of the tool was not available at time of submission.

Successful Use of Incremental BMC in the Automotive Industry 75

Incremental SAT solving has important applications in other verification techniques
like the IC3 algorithm [3,9] and incremental BMC is standard for hardware verifica-
tion [23,36]. We show that the speedups of incremental SAT solving reported in [11]
regarding k-induction on small HW circuits carry over to industrial embedded software.

6 Conclusions

We claim that incremental BMC is an indispensable technique for industrial embedded
software verification based on BMC. To underpin this claim, we report on the successful
integration of our incremental extension of CBMC into an industrial embedded software
verification tool. Our experiments demonstrate one-order-of-magnitude speedups from
incremental approaches on industrial embedded software benchmarks for BMC and k-
induction. These performance gains result in faster property verification and higher test
coverage, and thus, a productivity increase in embedded software verification.

Incremental BMC is effective on embedded software because of its specific proper-
ties (one big unbounded loop, whereas other loops are bounded). Nonetheless, we can
also expect benefits for general software where loops and control structures are more
irregular. A preliminary report on incremental BMC for programs with multiple loops is
presented in the extended version of the paper [30]. Even though the current approach
for multiple loops can still be improved, we already observe significant speedups that
show the applicability of incremental BMC beyond embedded software.

References

1. Alur, R., Kanade, A., Ramesh, S., Shashidhar, K.C.: Symbolic analysis for improving simu-
lation coverage of Simulink/Stateflow models. In: EMSOFT, pp. 89–98 (2008)

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

3. Bradley, A.R.: IC3 and beyond: Incremental, Inductive Verification. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, p. 4. Springer, Heidelberg (2012)

4. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.A.: Deciding
Bit-Vector Arithmetic with Abstraction. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)

5. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In: OSDI, pp. 209–224 (2008)

6. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K.,
Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)

7. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software Verification Using k-
Induction. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 351–368. Springer,
Heidelberg (2011)

8. Eén, N., Mishchenko, A., Amla, N.: A single-instance incremental SAT formulation of proof-
and counterexample-based abstraction. In: FMCAD, pp. 181–188 (2010)

9. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property directed reach-
ability. In: FMCAD, pp. 125–134 (2011)

76 P. Schrammel et al.

10. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. ENTCS 89(4),
543–560 (2003)

12. Fleming, P., Wallace, J.: How Not To Lie With Statistics: The Correct Way To Summarize
Benchmark Results. CACM 29(3), 218–221 (1986)

13. Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey. STVR 19(3),
215–261 (2009)

14. Gunnarsson, D., Kuntz, S., Farrall, G., Iwai, A., Ernst, R.: Trends in automotive embedded
systems. In: CODES+ISSS, pp. 9–10 (2012)

15. Günther, H., Weissenbacher, G.: Incremental bounded software model checking. In: SPIN,
pp. 40–47 (2014)

16. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with SMT-based
techniques. In: FMCAD, pp. 1–9 (2008)

17. Halbwachs, N.: Synchronous programming of reactive systems. Kluwer (1993)
18. Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K.: A practical tutorial on mod-

ified condition/decision coverage. Tech. rep., NASA (May 2001)
19. Herber, P., Reicherdt, R., Bittner, P.: Bit-precise formal verification of discrete-time MAT-

LAB/Simulink models using SMT solving. In: EMSOFT, pp. 1–10 (2013)
20. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program testing. In:

Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 151–166. Springer,
Heidelberg (2009)

21. Hooker, J.N.: Solving the incremental satisfiability problem. JLP 15(1&2), 177–186 (1993)
22. ISO 26262: Road vehicles – Functional safety (2011)
23. Jin, H., Somenzi, F.: An incremental algorithm to check satisfiability for bounded model

checking. ENTCS 119(2), 51–65 (2005)
24. Kroning, D., Strichman, O.: Efficient computation of recurrence diameters. In:

Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 298–309. Springer, Heidelberg (2002)

25. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker – (competition contribu-
tion). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391.
Springer, Heidelberg (2014)

26. Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step towards verification and synthesis
from Simulink/Stateflow models. In: HSCC, pp. 317–318 (2011)

27. Peranandam, P., Raviram, S., Satpathy, M., Yeolekar, A., Gadkari, A.A., Ramesh, S.: An in-
tegrated test generation tool for enhanced coverage of Simulink/Stateflow models. In: DATE,
pp. 308–311 (2012)

28. Pnueli, A., Strichman, O.: Reduced functional consistency of uninterpreted functions.
ENTCS 144(2), 53–65 (2006)

29. Satpathy, M., Yeolekar, A., Ramesh, S.: Randomized directed testing (REDIRECT) for
Simulink/Stateflow models. In: EMSOFT, pp. 217–226 (2008)

30. Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmüller, T.: Incremental
bounded model checking for embedded software (extended version). CoRR abs/1409.5872
(2014), http://arxiv.org/abs/1409.5872

31. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-
solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 108–125.
Springer, Heidelberg (2000)

http://arxiv.org/abs/1409.5872

Successful Use of Incremental BMC in the Automotive Industry 77

32. Silva, J.M., Sakallah, K.A.: Robust search algorithms for test pattern generation. In: FTCS,
pp. 152–161 (1997)

33. Shtrichman, O.: Pruning techniques for the SAT-based bounded model checking problem. In:
Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 58–70. Springer,
Heidelberg (2001)

34. Tip, F.: A survey of program slicing techniques. Tech. rep., CWI-Amsterdam (1994)
35. Whittemore, J., Kim, J., Sakallah, K.A.: SATIRE: A new incremental satisfiability engine.

In: DAC, pp. 542–545 (2001)
36. Wieringa, S.: On incremental satisfiability and bounded model checking. In: Design & Impl.

of Formal Tools & Sys., pp. 46–54 (2011)

Protocols

Colored Petri Net Modeling

of the Publish/Subscribe Paradigm
in the Context of Web Services Resources

Valentin Valero, Hermenegilda Macià(�), Gregorio Dı́az,
and M. Emilia Cambronero

School of Computer Science, University of Castilla-La Mancha,
02071 Albacete, Spain

{Valentin.Valero,Hermenegilda.Macia,Gregorio.Diaz,
MEmilia.Cambronero}@uclm.es

Abstract. In this paper a Prioritized-Timed Colored Petri Net model
for the Publish/Subscribe paradigm in the context of Web services dis-
tributed resources is considered. We present a generic CPN model for
publishing and managing WS-resources, which includes operations for
clients to subscribe to these resources, with the intention of being noti-
fied when the resource property values fulfill certain conditions. We use
CPN Tools to check and validate the model, and a case study is presented
to illustrate how this CPN model works.

Keywords: Publish/Subscribe · Distributed systems · Formal model-
ing · Petri nets

1 Introduction

The publish/subscribe paradigm has received considerable attention in the last
years. It provides a loosely coupled form of interaction in large scale settings,
where subscribers register their interest in a topic or a pattern of events and then
receive asynchronously the notification messages corresponding to the events
that match their interest. A taxonomy of Publish/Subscribe systems, with a
comparison between the different alternatives has been made by Eugster et al.
[6] and also by Lin and Plade [11]. The most popular division of these systems
considers two categories, the subject-based vision, and the content-based sys-
tems. In the subject-based systems the clients join to groups of interest, and
all of them are notified of the events related to that group. In content-based
systems, in contrast, the subscriber indicates a query or predicate related to the
resource contents, and she is only notified when this predicate becomes true. In
this paper we consider the contents-based approach, so that subscriptions will
have a predicate associated, related to the WS-resource property values, and

This work has received financial support from the Spanish Government (cofinanced
by FEDER funds) through the TIN2012-36812-C02-02 Project.

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 81–95, 2015.
DOI: 10.1007/978-3-319-19458-5_6

82 V. Valero et al.

notifications will immediately be sent when the resource state makes true this
predicate.

Some formalizations have been made of the Publish/Subscribe paradigm, but
most of them focus on subject-based systems. Baldoni et al. [2] have defined
a formalization based on the following process operations: publish, notify, sub-
scribe and unsubscribe. They establish several information availability models,
proving completeness and minimality for the computations they produce. They
consider the subject-based approach, so no predicates are considered for notifi-
cations, which occur when items are published. The subject-based approach is
also considered by Zanolin et al. [16]. In this case, the application-specific com-
ponents are modeled as UML statechart diagrams and the middleware in charge
of publication and notification of events is supplied as a configurable predefined
component. The SPIN model-checker is then used to verify the properties of in-
terest. This work was later extended [3], by including some additional features,
such as message reliability, message ordering, message priorities, etc.

Garlan et al. [7] have also applied model-checking techniques for the analysis
of a generic Publish/Subscribe framework. They have built a tool that works on
a parameterized state machine model, which accepts as input a set of component
descriptions together with a set of properties, thus producing a model that can
be checked with the Cadence SMV model checker.

More related to our work, L. Abidi et al. [1] have developed a CPN model
for the Publish/Subscribe paradigm, in this case in the context of a specific
Grid protocol (BonjourGrid middleware), which supports resource discovery and
coordination in a desktop Grid computing environment. However, they do not
use Web Services, Web Service Publishing or Web Service Discovery standards
in their work, since it is focused on a specific application. Our work in this
paper, in contrast, is focused on providing a rigorous CPN model capturing the
main elements for the publishing, discovery and management of WS-resources
on the basis of Web Services standards, such as UDDI (Universal Description
Discovery and Integration) [14], WSRF (Web Services Resource Framework)
[15] and WSN (Web Services Notifications) [13]. There is another standard for
Web services notifications from the W3C, namely WS-Eventing [4], which has
many similarities with WSN, so any of them could be considered as reference
for the subscribe/notify operations. Another Colored Petri Net representation of
the basic operators of WS-BPEL and WS-RF standards has been presented by
Mateo et al. in [12], where the main focus was to study the WS-BPEL operations
together with some of the WS-RF operators, but excluding the publish/discovery
process.

Another Petri net representation of the subject-based Publish/Subscribe sys-
tems was made by Hens et al. [8]. In this case time restrictions are not included
in the model, and thus an ordinary Petri net model establishes the connection
between the publishers and subscribers, in order to send the corresponding no-
tifications when the events are published.

From all these works it becomes obvious that the way in which the pub-
lish/subscribe systems are modeled varies considerably depending on the specific

Colored Petri Net Modeling of the Publish/Subscribe Paradigm 83

model goals. In this paper, a mechanism to publish distributed resources identi-
fied by a textual name is introduced, as well as a mechanism to allow clients to
discover these resources, by using these names. We omit a discussion about rules
or policies to resolve the discovery problem, since for our purposes any resource
whose identifier matches the given name will be valid.

Discovery of resources provides the clients with the required EPRs (End Point
References) to access and manipulate these resources. They can read or modify
the resource property values, as well as the resource expiration time (lifetime).
Clients can also subscribe to resources, indicating a predicate that depends on the
resource property values, with the purpose of being notified when the predicate
becomes true. These subscriptions have also a lifetime associated, which means
that once this time has elapsed, the corresponding subscription is canceled if it
has not been notified before.

The rest of the paper is organized as follows. A background about WSRF, the
Publish/Subscribe paradigm and Prioritized-Timed Colored Petri Nets is shown
in Section 2. The Publish/Subscribe CPN-model is introduced by parts in Section
3, and a case study showing the complete PTCPN in Section 4. Section 5 finishes
the paper, giving some conclusions and the possible lines of future work.

2 Background

In this section we establish the required background for both the WS-resource
contents-based Publish/Subscribe paradigm and the prioritized-timed colored
Petri net formalism that we use for the modeling of these systems.

2.1 WSRF and the Publish/Subscribe Paradigm

The Web Services Resource Framework (WSRF) [15] is an OASIS standard (Or-
ganization for the Advancement of Structured Information Standards), which
defines a framework for modeling and accessing persistent resources using Web
services. This approach consists of a set of specifications that define the represen-
tation of WS-resources manipulated byWeb services. WS-resources are described
by the so-called Resource Properties Documents , which are XML specifications
that contain all the relevant resource information, such as the resource properties
and the way the requestors can query or update its property values. This docu-
ment is a projection of the actual state of the WS-resource and serves to define
the structure upon which query and update messages are directed. Thus, any
operation that manipulates a resource property via the WS-resource properties
document must be reflected in the actual implementation of the WS-resource’s
state.

The WSRF standard provides us with operations to read or modify the re-
source properties (getProp and setProp, respectively), as well as to obtain or
modify the resource lifetime (getTime and setTime, respectively), but no indica-
tion is made about the way in which resources are created and made visible. It is
assumed that WS-resources are created by some external mechanism or through

84 V. Valero et al.

the use of a WS-resource factory, which creates the resource and establishes an
association with a Web service, returning an endpoint reference (EPR), which
can thereafter be used to direct requests to the WS-resource.

We then enrich our model with publish/discovery registry-based mechanisms.
We consider two operations,Publish andDiscover which resemble the save service
and find service operations of UDDI [14]. A Publish operation is then provided
to publish a WS-resource, indicating its EPR, tag (textual resource type iden-
tifier), initial value and initial lifetime. Notice that there can be several distinct
implementations of a WS-resource (e.g., a printing service may be offered using
different printers), so the discovery mechanism will only return the EPR of one
of them. Thus, a Discover operation is also provided, which allows us to obtain a
WS-resource from the Registry, according to a given tag.

Resources can be destroyed either by invoking the operation Destroy or be-
cause their lifetime has expired. The Destroy operation is equivalent to reas-
signing the resource lifetime to zero, so we can use this operation as a way to
destroy resources.

WSRF can be complemented with WSN (Web Services Notifications) [13],
which defines a set of specifications to standardize the Subscription/Notification
mechanism, with the purpose of allowing clients to subscribe to WS-resources
and be notified about specific changes in the resource state. A Subscribe opera-
tion is therefore provided, in which the client indicates the EPR of the resource
and the TopicExpression that indicates the condition upon which the notifica-
tion must be sent. In addition, subscriptions may have a finite duration, after
which the subscription is canceled.

There are some other features of WSRF that will not be considered in this
paper, such as the insertion and deletion of properties for existing WS-resources,
the aggregation of multiple WS-resources or Web services into ServiceGroups,
or the fault handling mechanisms.

2.2 Prioritized-Timed Colored Petri Nets

We use prioritized-timed colored Petri nets (PTCPNs), which are a prioritized-
timed extension of colored Petri nets [9,10], the well-known formalism supported
by CPN Tools [5], developed by the CPN group at the University of Aarhus. We
specifically use a discrete time model, with a direct control of time elapsing,
which is required for the correct reevaluation of the transition guards as time
elapses. The technical problem here becomes from the fact that CPN Tools only
reevaluates the guards when new tokens are produced.

A Petri Net (PN) is a directed graph, which consists of places (circles), tran-
sitions (rectangles) and arcs connecting places and transitions and viceversa. In
colored PN (CPN) places have an associated color set (a data type), which speci-
fies the set of allowed token colors at this place. Each token then has an attached
data value, a color, which belongs to the corresponding place color set. The set of
all tokens in a place specifies the multiset of colors associated to this place, that
is, its marking. Furthermore in timed CPN (TCPN), tokens have a timestamp
associated, which is a non-negative integer number, indicating the time at which

Colored Petri Net Modeling of the Publish/Subscribe Paradigm 85

they will be available for the firing of transitions. There is a discrete global clock
that represents the total time elapsed in the system model.

Arcs can have inscriptions (arc expressions), constructed using variables, con-
stants, operators and functions. The arc expressions must evaluate to a color or
multiset of colors in the color set of the attached place. A transition is binding
enabled if there is a binding such that each input arc expression is associated
to one or more colors in the corresponding input place.

Transitions can also have guards that can restrict their firing, as well as prior-
ities. Guards are predicates constructed by using the variables, constants, opera-
tors and functions of the model, and they must evaluate to true with the selected
binding for the transition to be fireable. We also use priorities to establish an
order of firing, and specifically we use 4 levels of priority, from P1 to P4 where
the highest priority corresponds to P1.

In TCPN we can also include delays associated to output arcs (or to tran-
sitions, as a shorthand notation, when all the output arcs have the same delay
inscription), which are used to age the timestamps of the tokens produced at
the output places with respect to the current time. Hence, in a TCPN model
an enabled transition must be binding, enabled, its guard must evaluate to true
with the selected binding, the timestamp of the selected tokens in its precondi-
tions must be less than or equal to the global clock value and there is no other
transition with a greater priority fulfilling these conditions.

When an enabled transition is fired, new tokens are generated at the output
places, with colors according to the corresponding output arc expressions, and
the selected tokens for its firing (from the binding) are removed from its input
places. Notice that in TCPN tokens are only available at the time they have
attached. This time will therefore determine the instant at which a transition
will be able to use this token for its firing. When there is no enabled transitions
at the current instant, the global clock is aged to the earliest time at which a
transition is enabled.

We have presented an informal description of PTCPNs, a complete and formal
definition of the formalism can be found in [10].

Example 1. Let us consider the marked PTCPN depicted in Figure 1, obtained
from CPN Tools.

Tokens in CPN Tools are drawn using the notation n‘v@s, meaning that we
have n instances of a token with color value v and timestamp s. Besides, the
symbol ‘++’ is used to represent the union of timed multisets in CPN Tools.

All places in the example have as color set INTT (int timed), and the variables
x, y, z, w are integers. Transitions are labeled with their associated guard, time
delay and priority information, and arcs are labeled with the corresponding
expressions. Empty guards are always evaluated to true and empty delays are
considered as @ + 0 to specify instantaneous transitions.

From the initial marking shown in Figure 1 we can see that only transition t1
can be fired (at instant 0), and any token of those in p1 can be used for its firing
(the binding can be either x = 3 or x = 5). Taking the binding x = 5, which
fulfills the transition guard (x < 7), we get 5@0 on p1. The firing of t1 with this

86 V. Valero et al.

p1

INTT

t1

p2

INTT

2*x

2`3@0
++1`5@0

x
@+3

[x<7]

t2

p3

INTT

5@0

z

t3

P1

y

w z+1

p4

INTT

p5

INTT

0

1

[y<8] @+2

P2
P3

Fig. 1. Graphical view of a PTCPN

binding removes the token 5@0 from p1, and produces a new token on p2 with a
timestamp 3. Thus, considering the output arc inscription, we get a token 10@3
on p2. The transition t1 must fire again twice (until p1 becomes empty), because
the new token on p2 will not be available until instant 3. As a result we obtain
in p2 the following marking {1‘10@3, 2‘6@3}, and the global clock value is 3, so
that no more transitions can be fired until instant 3.

At instant 3, there are two enabled transitions t2 and t3, since for both transi-
tions we have bindings allowing its firing ({y = 6} for t3 and {z = 10, w = 5} or
{z = 6, w = 5} for t2) and the guards are satisfied (y < 8 and True (empty) for
t3 and t2 respectively). Since t3 has a higher priority (P1 vs. P2), this transition
must be fired, producing a new token 1@5 on p5. Next, the only transition that
can be fired is t3 again, and the other instance of the token 6@3 on p2 is used
to produce another instance of 1@5 on p5. Then, the next fired transition is t2,
since it is the only binding enabled transition and its guard is empty, despite its
lower priority. The firing of t2 produces the tokens 11@3 at p3 and 0@3 at p5.
Token 5@0 is replaced by 11@3 at p3 with this firing.

Finally, p1 and p2 are both empty after the firing of all the enabled transitions,
p3 has one token 11@3, p4 one token 0@3 and p5 two instances of 1@5. The final
value for the global clock is 3. �

3 PTCPN Modeling of Publish/Subscribe

In this section, we describe the PTCPN model for the WS-resources and the
Publish/Subscribe mechanism. We present and validate the model by parts.
Thus, we first present the PTCPN for the publishment and basic management
of WS-resources, after which the discovery and subscription mechanisms are
modeled, and finally, notifications are included in the model. The analysis of

Colored Petri Net Modeling of the Publish/Subscribe Paradigm 87

Resources

REC

PosRec

Resource
Registry

REC

Expired
Resources

REC

Time
Control

INTT

0

RV

INT2

RLT

INT2

Publish_ok

P4

Publish_fail

[EPR=EPR1]

P2

Set Time

P4

Resource
Expire

[n>cr]

P2

Time
Step

@+1

P4

Set Prop

P4

Get Prop

P4

Get Time

P4

Set Prop
Fail

P4

Get Prop
Fail

P4

Set Time
Fail

P4

Get Time
Fail

P4

(EPR,R,v,t)
(EPR,R,v,intTime()+t)

(EPR1,R,v,cr)
(EPR,R,v,t) (EPR,R,v,nT()+intTime())

(EPR,R,v,cr)

(EPR1,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

n+1

n

n

n

(EPR,R,nV(),cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,v)

(EPR,R,v,cr)

(EPR,R,v,cr)
(EPR,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

colset INTT = INT timed;

colset INT2 = product INT*INT timed;

colset REC = product INT*STRING*INT*INT timed;

colset V0m1 = int with 0..m1;

colset V0m2 = int with 0..m2;

var n,EPR,EPR1,v,t,cr:INT;

var R:STRING;

fun intTime() = IntInf.toInt(time());

fun nV() = V0m1.ran();

fun nT() = V0m2.ran();

Fig. 2. WS-resource Modeling

the complete model is accomplished in the next section, by using a specific case
study.

3.1 WS-resource Modeling

Figure 2 shows the basic WS-resource modeling. The place Resources initially
contains all the colored tokens representing potential resources in the system
(PosRec), which will eventually be published. The information attached to each
one of these tokens is a tuple (EPR, R, v, t), where EPR is the End Point Refer-
ence of the WS-resource 1, R is a textual tag identifying the resource type, v is
the initial value, and t its initial lifetime.

Resources are published by firing the transition Publish ok, but notice that
in the event that there exists an already published resource in the Registry with
the same EPR, the transition Publish fail will instead be fired (it has greater
priority), indicating a failure in the resource publishment. We use the CPNTools
function intTime(), which provides us with the current clock value, so the tokens

1 We use non-negative integer numbers as EPRs, and also as WS-resource values.

88 V. Valero et al.

produced in the Registry place will only be available until the time indicated in its
last component: intTime()+t. Time elapsing is modeled by transition TimeStep,
which updates the value of the token on the place TimeControl, which is initially
marked with one token with value 0, and represents the current model time.
Transition TimeStep is required for technical reasons, for the reevaluation of
the guards, because otherwise CPN Tools do not reevaluate the guards as time
elapses. Thus, we can check if a resource has expired, represented by the guard
[n > cr], where n is the current model time and cr the resource expiration time.
This transition has the lower priority, since we only allow time elapsing when
there is no transition that can be fired at the current model time.

Transition ResourceExpire will be fired when some token on the Registry has
a lifetime value (cr) smaller than the token value on the place TimeControl,
i.e., resources are unpublished when their lifetime has expired. The firing of
ResourceExpire is enforced by its priority, and the corresponding resource token
is moved to the place ExpiredResources.

The remaining transitions model the basic operations on WS-resources: Set-
Prop, GetProp, SetTime and getTime. We use in this generic model a function
nV() for SetProp (resp. nT() for SetTime) in order to assign a new value 2 for the
resource (resp. for its lifetime). Notice also that we have included Fail-labeled
versions of these transitions, in order to capture what happens when a client
invokes one of these operations over an expired WS-resource.

Validation: This part has been validated with CPNTools, by assigning an initial
marking to the place Resources and the initial token on the place TimeControl,
but we have needed to restrict the possible infinite behaviors by including a
control place that feeds the transitions for the WS-resource operations GetProp,
SetProp, GetTime, SetTime and their Fail-versions, thus limiting their maxi-
mum number of firings. We have also included a guard in TimeStep to limit the
maximum model time, otherwise TimeStep will continue to fire indefinitely. This
maximum time must be big enough to allow the resources to be published and
expire.

The analysis with CPNTools allows us to conclude that resources were pub-
lished in their correct times, they also expired according to their lifetimes, and
any attempt to republish a resource fails. The operations Getprop, SetProp, Set-
Time, GetTime and their Fail-versions were also performed. The state space
analysis with a big enough maximum model time allows us to conclude that all
the obtained dead (terminating) markings correspond to a situation in which all
the resources have expired.

3.2 Discovery and Subscription Modeling

The WS-resource discovery and subscription part is modeled as indicated in
Figure 3. The potential subscribers and the resources they intend to subscribe
are represented by the tokens on the place3 Roles (marking PosCli in Figure

2 This value is randomly selected in this generic framework.
3 This initial marking can be updated to adapt the model to a specific case study.

Colored Petri Net Modeling of the Publish/Subscribe Paradigm 89

Roles

CLI

PosCli

Resource
Registry

REC

PosRR

Expired
Resources

REC

PosER

Subscription
Requests

ECLI

Subscription
Registry

ECLIR

Fail
subscrition
Requests

ECLI

Fail
Roles

CLI

Discover

P2

Subscribe

P4

Re-Subscribe

[C=C1]

P2

Fail
Subscribe

P4

Fail
Discover

P4

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(C,R,condv1,condv2,condt)

(EPR1,R,C,condv1,condv2,condt)

(EPR1,R,C,condv1,condv2,condt)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,C,condv1,condv2,condt+intTime())

(EPR1,R,C,condv1,condv2,condt)

(EPR1,R,C,condv1,condv2,condt+intTime())

(EPR1,R,C,condv1,condv2,cc)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,C,condv1,condv2,condt)(EPR1,R,v,cr)

(EPR1,R,C,condv1,condv2,condt)

(C,R,condv1,condv2,condt)

(C,R,condv1,condv2,condt)

(EPR1,R,v,cr)

colset CLI=product STRING *STRING*INT*INT*INT timed;

colset ECLI=product INT*STRING*STRING*INT*INT *INT timed;

colset ECLIR=product INT*STRING *STRING*INT*INT*INT timed;

var C:STRING;

var condv1,condv2,condt,cc:INT;

Fig. 3. Discovery and Subscription Modeling

3). These tokens have as colors tuples indicating the client name (C), a re-
source tag (R), two integer values (condv1,condv2) defining an interval and a
subscription lifetime (condt). They have as timestamp the time instant at which
the corresponding client intends to perform the discovery and subsequently the
subscription at the obtained WS-resource.

The transition Discover obtains one of the tokens in the place Resource Reg-
istry (already introduced in Figure 2) that matches with the indicated tag, pro-
ducing a token in the place SubscriptionRequests, labeled with the corresponding
EPR, in order to activate the subscription (transition Subscribe). Clients are also
allowed to resubscribe to a resource, in this case, the transition Re-Subscribe is
fired, which replaces the old interval and subscription lifetime with new values.

A WS-resource discovery fails when there is no published resource with the
indicated tag. The transition FailDiscover has been therefore included for this
purpose, but notice that it has less priority than Discover, in order to enforce
the firing of Discover when there is some published resource with the indicated
tag. Furthermore, a subscription can fail when the corresponding resource has
expired, so we have included a FailSubscribe transition that will be fired in that
case (the place Expired Resources connected with this transition was already
introduced in Figure 2).

90 V. Valero et al.

Resource
Registry

REC

PosRR

Expired
Resources

REC

Subscription
Registry

ECLIR

PosSR

Notifications

CL

Time
Control

INTT

0

Expired
Control

INT

Subscritions
Time-Out

ECLIR

Subscriptions
Removed

ECLIR

Resource
Expire

[n>cr]

P2

Notify

[v<=condv2,v>=condv1]

P1

Subscription
Time-out

[cc < n]

P2

Time
Step

@+1

P4

Remove
Subscription

[EPR=EPR1]

P2

Empty
P3

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR1,R,C,condv1,condv2,cc)

(EPR1,R,C,condv1,condv2,cc)

(EPR1,R,v,cr)

(EPR1,R,C,v,cc)

(EPR1,R,v,cr)

n+1n

n
n

n

EPR

EPR

(EPR1,R,C,condv1,condv2,cc)EPR

n

EPR

(EPR1,R,C,condv1,condv2,cc)

(EPR1,R,C,condv1,condv2,cc)

Fig. 4. Notification and Subscription Time-Out Modeling

Validation: The validation of this part has been made by assigning an initial
marking to the places Roles, ExpiredResources and ResourceRegistry. We have
checked the discovery of resources, subscriptions, resubscriptions, failed subscrip-
tions and that a discover on a non-published tag produces a failure (transition
FailDiscover).

The state space analysis has also been made for this part of the model
by assigning an initial marking capturing the different actions related to this
part. Thus, the places Roles, ResourceRegistry and ExpiredResources are initially
marked and we have concluded that the final markings include the published and
expired resources indicated in the initial marking, and also the failing discovery
actions and the registered subscriptions.

3.3 Notification and Subscription Time-Out Modeling

Figure 4 shows the notification and subscription time-out modeling parts. Tran-
sition Notify must be be fired when a subscription condition is satisfied for some
published WS-resource, which is actually enforced by assigning the maximum
priority to this transition (P1). Notification conditions are here represented by
intervals, i.e., the resource value must be in the interval defined by condv1,
condv2 in order to send the notification. From the generic modeling viewpoint,
notifications are saved into the place Notifications, and the corresponding sub-
scriptions are removed from the place SubscriptionRegistry.

In the left-hand side of Figure 4 we can see again the transition Resource-
Expire and its associated places and transitions for the time control as ex-
plained above, whose firing produces one token on the place ExpiredControl,

Colored Petri Net Modeling of the Publish/Subscribe Paradigm 91

whose color is the EPR of the expired resource. This token is used to remove all
the pending subscriptions to this resource in the place SubscriptionRegistry, by
firing the transition RemoveSubscription until no more tokens with this EPR are
available on this place. Transition Empty can then be fired (it has less priority
than RemoveSubscription) to remove this token on ExpiredControl. The priority
assigned to Empty guarantees us that this transition must be fired before a new
publication is made, to avoid that this same resource be published again without
this token being previously removed from this place.

Finally, the transition SubscriptionTimeOut must be fired when a subscription
expires, removing the corresponding subscription token from the place Subscrip-
tionRegistry and putting it on the place SubscriptionsRemoved. This firing is
enforced by its high priority (P2), but notice that in the event that several of
these transitions, Notify, SubscriptionTimeOut and RemoveSubscription are si-
multaneously enabled, Notify will always win (if enabled) to any of them, so
we are giving more importance to notifications than subscription time-outs or
resource lifetime expiration.

Validation: This part has been validated by assigning an initial marking to the
places ResourceRegistry, SubscriptionRegistry and TimeControl, respectively in-
dicating the published resources, current subscriptions and current model con-
trol time. We have checked that resources expire according to their remaining
lifetimes, and that in this case all the pending subscriptions to these expired
resources are canceled. We have also checked that notifications occur if the cor-
responding conditions hold, and that subscriptions expire according to their
indicated lifetimes.

In order to obtain the state space of this part of the model we consider again
a guard on the transition TimeStep, which restricts the maximum model time.
The places that must be initially marked for this part of the model are Re-
sourceRegistry, SubscriptionRegistry and TimeControl. Thus, we have obtained
that for all the final markings the only marked places correspond to the expired
resources and subscriptions, notifications, removed subscriptions and the token
on the place TimeControl.

4 Case Study

The complete PTCPN for the Publish/Subscribe paradigm is shown in Figure
5, where we have introduced a place named OpControl in order to restrict the
instants at which the operations SetTime, SetProp, GetTime or GetProp can be
performed, thus avoiding infinite behaviors. We could even introduce colors in
this place and guards in these operations in order to establish which operation
is specifically performed at each of these instants, and over which WS-resource.
However, we have decided just to introduce the place OpControl to avoid the
infinite behaviors, and keep this non-determinism in the specific operation per-
formed, as well as about the value or time assigned in the case of a SetProp or
GetProp operation.

92 V. Valero et al.

Resources

REC

PosRec

Roles

CLI

PosCli

Resource
Registry

REC

Expired
Resources

REC

Subscription
Requests

ECLI

Subscription
Registry

ECLIR

Notifications

CL

Time
Control

INTT

0

Expired
Control

INT

Fail
subscrition
Requests

ECLI

Fail
Roles

CLI

Op
Control

INTT

count

Subcriptions
Removed

ECLIR

Subscriptions
Time-Out

ECLIR

Publish_ok

P4

Publish_fail[EPR=EPR1]

P2

Set Time

P4

Resource
Expire

[n>cr]

P2

Discover

P2

Subscribe

P4

Notify

[v<=condv2,v>=condv1]

P1

Subscription
Time-out

[cc < n]

P2

Re-Subscribe

[C=C1]

P2

Time
Step

@+1

P4

Remove
Subscription

[EPR=EPR1]

P2

Empty

P3

Set Prop

P4

Fail
Subscribe

P4

Fail
Discover

P4

Get Prop

P4

Get Time

P4

Set
Prop
Fail

P4

Get Prop
Fail

P4

Set Time
Fail

P4

Get Time
Fail

P4

(EPR,R,v,t)
(EPR,R,v,intTime()+t)

(EPR1,R,v,cr)

(EPR,R,v,t)

(EPR,R,v,nT()+intTime())

(EPR,R,v,cr)

(EPR1,R,v,cr)

(EPR,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(C,R,condv1,condv2,condt)

(EPR1,R,C,condv1,condv2,condt)

(EPR1,R,C,condv1,condv2,condt)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR1,R,C,condv1,condv2,condt+intTime())

(EPR1,R,C,condv1,condv2,cc)

(EPR1,R,C,condv1,condv2,cc)

(EPR1,R,v,cr)

(EPR1,R,C,v,cc)

(EPR1,R,C,condv11,condv22,condtt)

(EPR1,R,C,condv11,condv22,condtt+intTime())

(EPR1,R,C,condv1,condv2,cc)

(EPR1,R,v,cr)

(EPR1,R,v,cr)

(EPR,R,v,cr)

(EPR1,R,v,cr)

n+1n

n

n

n

EPR

EPR

(EPR1,R,C,condv1,condv2,cc)

EPR

n

EPR

(EPR,R,nV(),cr)

(EPR,R,v,cr)

(EPR1,R,C,condv1,condv2,condt)

(EPR1,R,v,cr)

(EPR1,R,C,condv1,condv2,condt)

(C,R,condv1,condv2,condt)

(C,R,condv1,condv2,condt)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

(EPR,R,v,cr)

1

1

1

1

1

1

1

1

(EPR1,R,v,cr)

(EPR1,R,C,condv1,condv2,cc)

(EPR1,R,C,condv1,condv2,cc)

RLT

INT2

(EPR,cr)

RV

INT2
(EPR,v)

Fig. 5. PTCPN for the Publish/Subscribe Paradigm

In table 1 we show the initial marking for the scenario that we have considered,
which illustrates the complete PTCPN functionality. Two printers and one tablet
are published, their respective values could be for instance their prices, so the
potential clients can be interested in them according to their current prices. Two
tokens corresponding to a printer with EPR 1 are available at time 0, which
means that only one of them will be published, and the other one produces a
failure when attempting to publish the printer twice. The potential clients are
Alice, Bob and Carla. For instance, Alice intends to discover and subscribe to a
printer at instants 0 and 1. According to our model, subscriptions are performed

Colored Petri Net Modeling of the Publish/Subscribe Paradigm 93

immediately after the resource discovery, but this model could be easily modified
in order to include an additional time in the tokens on the place Roles, indicating
the time at which the subscription must be requested. Notice that it is possible
for a resource to expire between the discovery and the subscription (in time zero),
in particular due to the higher priority (P2) of transition ResourceExpire with
respect to Subscribe, which has a lower priority (P4). For instance, this scenario
occurs when Alice discovers at time 1 the printer with EPR 1, whose initial
lifetime was 2, but as a consequence of a SetTime operation with argument 0 it
is unpublished at time 1, causing the failure of the subscribe operation.

Table 1. Initial Marking for the PTCPN

PLACE INITIAL MARKING

Resources
2‘(1,”PRINTER”,2,2)@0++1‘(2,”PRINTER”,2,1)@2++
1‘(3,”TABLET”,3,1)@2

Roles
1‘(”Alice”,”PRINTER”,0,1,2)@0++1‘(”Alice”,”PRINTER”,0,2,1)@1++
1‘(”Bob”,”PRINTER”,2,3,1)@2++1‘(”Carla”,”TABLET”,1,2,1)@1

OpControl 2‘1@0++1‘1@1++1‘1@2

TimeControl 0

For this initial marking we have obtained a state space consisting of 49103
nodes, 102857 arcs and 2224 dead (final) markings. These terminating markings
correspond to all the possible terminating executions of the system, once the
maximum model time was reached. Notice that this number of final markings
is also a consequence of the way we generate the values and lifetimes for the
resources, which are randomly generated.

We can still check that these dead markings are really the expected, just
by including some transitions in order to remove the tokens on the places Fail-
SubscriptionsRequests, FailRoles, Notifications, SubscriptionTimeOut, Subscrip-
tionsRemoved, and another transition (with the lowest priority) for removing the
final tokens of the place ExpiredResources. With these changes we have obtained
that there is only one dead marking, in which only the place TimeControl is
marked with one token, which means that all resources were either published
or their publishment failed, and those but were published were finally unpub-
lished when their lifetime expired. Furthermore, the client’s requests were all
processed, some subscriptions were notified, and those that were active when
the corresponding resource was unpublished were removed.

5 Conclusions and Future Work

In this paper we have presented a generic Colored Petri Net modeling of the
WS-resource contents-based Publish-Subscribe paradigm. We have therefore es-
tablished a generic framework for the modeling of WS-resource interactions, pro-
viding a set of operations that match with the standards related to WS-resource

94 V. Valero et al.

management (WSRF), publish and discovery of services (UDDI), and Web Ser-
vices Notifications (WSN). The main benefit from this Publish/Subscribe
PTCPN model is that we can use CPNTools in order to simulate and ana-
lyze the specific systems modeled, so we can predict their behavior, and we can
discover potential problems before the implementation.

This generic model can be easily modified to introduce the specific behavior of
clients, who may change their behavior in accordance with the values obtained
from the resources, or as response to the received notifications. However, our
goal has been to provide a generic model that can be easily applied to a great
variety of systems.

The validation of the Publish/Subscribe model presented in this paper has
been made by considering several specific initial markings that capture samples
of all the possible behaviors. We intend to extend this work by defining a formal
set of properties that a Publish/Subscribe model must fulfill, and then use the
CTL-like temporal logic model-checker provided by CPN Tools in order to check
if these properties are satisfied in our framework.

As another future work in this area, we are planning to define a complete
formalism to manage WS-resources in the framework of composite Web services.
Thus, we plan to integrate this generic model into a more general formalism, with
the purpose to capture the broader interrelations among the different parties
involved in a Web service composition using WS-resources.

References

1. Abidi, L., Cérin, C., Evangelista, S.: A Petri-Net Model for the Publish-Subscribe
Paradigm and its Application for the Verification of the BonjourGrid Middleware.
In: Proc. 2011 IEEE International Conference on Services Computing, pp. 496–503
(2011)

2. Baldoni, R., Contenti, M., Tucci, S., Virgilio, A.: Modelling Publish/Subscribe
Communication Systems: Towards a Formal Approach. In: Proc. 8th IEEE Interna-
tional Workshop on Object-Oriented Real-Time Dependable Systems, pp. 304–311
(2003)

3. Baresi, L., Ghezzi, C., Mottola, L.: On Accurate Automatic Verification of Pub-
lish/Subscribe Architectures. In: Proc. 29th International Conference on Software
Engineering (ICSE 2007), pp. 199–208 (2007)

4. Box, D., et al.: Web Services Eventing (WS-Eventing). W3C Member Submission
(March 2006), http://www.w3c.org/submission/ws-eventing

5. CPN Tools homepage, http://www.cs.au.dk/CPNTools
6. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The Many Faces of

Publish/Subscribe. ACM Computing Surveys 35(2) (2003)
7. Garlan, D., Khersonsky, S., Kim, I.: Model Checking Publish-Subscribe Systems.

In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 166–180.
Springer, Heidelberg (2003)

8. Hens, P., Snoeck, M., Poels, G., Backer, M.: A Petri Net Formalization of a Publish-
Subscribe System. Int. report, Faculty of Business and Economics, Katholieke Univ.
Leuven, http://dx.doi.org/10.2139/ssrn.1886198

9. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science. Springer (1997)

http://www.w3c.org/submission/ws-eventing
http://www.cs.au.dk/CPNTools
http://dx.doi.org/10.2139/ssrn.1886198

Colored Petri Net Modeling of the Publish/Subscribe Paradigm 95

10. Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Modelling and Validation of
Concurrent Systems. Springer (2009)

11. Lin, Y., Plade, B.: Survey of Publish-Subscribe Event Systems. Computer Science
Department, Indiana University. Technical Report, vol. 16 (2003)

12. Mateo, J.A., Valero, V., Macià, H., Dı́az, G.: A Coloured Petri Net Approach
to Model and Analyse Stateful Workflows Based on WS-BPEL and WSRF. In:
Canal, C., Idani, A. (eds.) SEFM 2014 Workshops. LNCS, vol. 8938, pp. 389–404.
Springer, Heidelberg (2015)

13. Niblett, P., Graham, S.: Events and Service-Oriented Architecture: The OASIS
Web Services Notification Specifications. IBM Systems Journal 44(4), 869–886
(2005)

14. OASIS. UDDI Version 3.02 API Specification (2005),
https://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

15. OASIS. OASIS Web Services Resource Framework (WSRF), v1.2 (2006),
https://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf

16. Zanolin, L., Ghezzi, C., Baresi, L.: An Approach to Model and Validate Publish/
Subscribe Architectures. In: Proc. of the SAVBS 2003 Workshop, pp. 35–41 (2003)

https://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

Model Checking a Server-Side

Micro Payment Protocol

Kaylash Chaudhary(�)and Ansgar Fehnker

School of Computing, Information and Mathematical Sciences,
University of the South Pacific, Suva, Fiji

kaylash.chaudhary@usp.ac.fj

Abstract. Many virtual payment systems are available on the world
wide web for micropayment, and as they deal with money, correctness
is important. One such payment system is Netpay. This paper examines
the server-side version of the Netpay protocol and provides its formal-
ization as a CSP model. The PAT model checker is used to prove three
properties essential for correctness: impossibility of double spending, va-
lidity of an ecoin during the execution and the absence of deadlock. We
prove that the protocol is executing according to its description based on
the assumption that the customers and vendors are cooperative. This is
a very strong assumption for system built to prevent abuse, but further
analysis suggests that without it the protocol does no longer guarantee
all correctness properties.

Keywords: Model checking · Verification · CSP · Micropayment
protocols · Virtual payment systems · PAT

1 Introduction

The Internet has grown into a virtual market where the exchange of a wide range
of goods is everyday practice. For many payments users have to use their credit
cards, even though the transaction costs are significant for small transactions.
To facilitate payment of smaller amounts micro-payment technologies emerged
[7]. With the increase of paid services and content on the Internet, these online
payment system promise the ease of using cash. There are many micro-payment
systems available for users to buy goods online such as Netpay [7], Millicent
[8], Micro-mint [12], Payword [12], MiniPay [10], Micro-iKP [9] and POPCORN
[11]. There are also many micro-payment systems proposed for content sharing
in peer to peer networks [1] [2], [14], [15] and [16].

Every payment protocol should guarantee certain essential properties of cor-
rectness. In this paper we will model one such system, Netpay, formally, and
show that it satisfies essential properties. This paper considers a variant called
server-side Netpay in which the e-coins are kept by trusted brokers and vendors,
while the customer will only have access to the e-coin ID. This is in contrast
to the so-called client-side Netpay protocol in which e-coins are kept by the
customers. Previous work considered the correctness of client-side Netpay [3].

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 96–110, 2015.
DOI: 10.1007/978-3-319-19458-5_7

Model Checking a Server-Side Micro Payment Protocol 97

This paper models the server-side Netpay using CSP [13]. The model in this
paper covers the handling of e-coins, and omits the parts of the protocol that
are concerned with redeeming e-coins, and digital signatures of e-coins. It is
assumed that the correctness of these are guaranteed independently, especially
the correctness of the used cryptographic hash functions. Instead, we prove that
the protocol can guarantee that a trusted broker will correctly track an e-coin,
even though it will be passed from vendor to vendor, that at any time only one
vendor will have a copy of the e-coin, that the customer can not spend more than
the e-coin is worth. Finally, we considered whether the system was deadlock free
and discovered that some arguably strong assumptions are necessary to ensure
correctness. If customers do not cooperate they can get the system into a state
where deadlock is possible. We also analysed a design alternative that does not
have this problem.

Section 2 introduces the server-side Netpay protocol. Section 3 shows the
description of the Netpay protocol using the CSP language. Correctness of this
protocol is discussed in Section 4. This paper concludes with discussion for future
research in section 5.

2 The Netpay Protocol

The Netpay protocol with server-side e-wallet was proposed by Dai et.al. [5]. It
has three types of e-wallets: client side, server-side and cookie-based e-wallet [6].
There are three parties involved in this protocol; customer, vendor and broker.
It is assumed that the broker and vendors are honest and are trusted by the cus-
tomers who may not be honest. To use the protocol, the customers and vendors
need to register by opening an account and depositing funds with the broker.
The broker is responsible for registration, e-coin generation, debiting and cred-
iting accounts for customers and vendors respectively. The payment is between
customers and vendors. Previous work has modeled and verified some properties
of client-side Netpay [3]

Netpay uses a number of cryptography and micro-payment terminologies such
as:

– One-way Hash Function: Netpay uses this function to generate and verify
e-coins. In [6] MD5 was used, but it could be replaced by more secure SHA-1.

– E-coin: The one-way hash function is applied repeatedly to a seed to gen-
erate a series of paywords called e-coin. The paywords are represented in
reverse order with the seed at the end. The length of the e-coin determines
its value.

– E-wallet: An e-wallet is a database to store e-coins.
– Seed: It is a randomly selected value used for e-coin generation.
– Touchstone: This is the first payword of the e-coin. It is used to verify
e-coins.

Using the one way hash function h, an e-coin W1, ...,Wn is constructed by
applying the hash function n + 1 times to a seed i.e. W0 = h(W1),W1 =
h(W2), ...,Wn = h(Wn+1) where Wn+1 is the seed, and W0 the touchstone.

98 K. Chaudhary and A. Fehnker

The remainder of this section will describe the four basic types of transactions
in this protocol. It is assumed that each customer and vendor have a unique ID.

Customer-Broker Transaction. The customer sends an e-coin request with
parameter n to the broker, who generates e-coins of length n. Each chain
has a unique e-coin ID. The broker stores this information in its database,
and sends the e-coin ID to the customer.

Customer-Vendor Transaction. If a customer wishes to buy something from
the vendor, the customer sends an e-coin ID. The vendor checks if it has
the e-coin and verifies it. If the verification is successful, the customer is
notified. If the vendor does not have the e-coin, it requests the location from
the broker. The broker will reply with the location of the e-coin, the vendor
requests this e-coin from that vendor or broker. Initially, the broker will have
the e-coin and after that it will be transferred from one vendor to another.

Vendor-Vendor Transaction. This transaction occurs when one vendor re-
quests an e-coin from another vendor.

Vendor-Broker Transaction. Vendors need to redeem the e-coins spent by
customers. The vendor sends the e-coin IDs, touchstones, customer IDs, ven-
dor ID, e-coins and amount to the broker. The broker will verify e-coins and
credit the corresponding amount to the vendors account if the spent e-coins
are valid. This paper focuses on the spending of e-coins, and omits redemp-
tion of e-coins from the model.

Properties of the Netpay Protocol. This paper considers three important prop-
erties. The first is on the validity of e-coins. Since there will be transfer of an
e-coin from one vendor to another, an e-coin should remain valid in this chain of
transfer. The second is on preventing double spending. This protocol prohibits
a customer to double spend an e-coin at a different or same vendor. The last
property is to show absence of deadlocks.

3 Description of Netpay Protocol Using CSP

This section provides models and description for the Server-Side Netpay proto-
col. The three parties of the protocol: customer, vendor and broker have been
modeled as one process each. For simplicity we assume that there is only one
broker, while there can be many customers and vendors.

3.1 Customer Process

Table 1 shows the Customer(Cid) process for the customer Cid. This process
has three possible statuses: Idle, BuyCoin or Spending. Variable status c
keeps track of the status of a customer.

The customer database is stored in variable db c. It contains e-coin ID’s and
amounts. Recall, that an e-coin is constructed by applying hash function to a
seed. Each payword in Netpay is accompanied by an index to record number of

Model Checking a Server-Side Micro Payment Protocol 99

Table 1. Customer Process

Customer(CID) =

[STATUS_C[CID] == IDLE && (||y:{0..(MAXCOINS-1)}@(DB_C[CID][y][0] == -1))]

BuyCoin!CID

5 {STATUS_C[CID] = BUYCOIN;} ->Customer(CID)

[][STATUS_C[CID] == BUYCOIN]

SellCoin[CID]?id

{

var index = 0;

10 while(index < MAXCOINS)

{

if (DB_C[CID][index][0] == -1)

{

DB_C[CID][index][0] = id ;

15 DB_C[CID][index][1] = ISPOSITIVE;

index = MAXCOINS;//break the loop

}

index = index + 1;

}

20

STATUS_C[CID] = IDLE} -> Customer(CID)

[]([]x:{0..(VENDORS-1)};y:{0..(MAXCOINS-1)}@([STATUS_C[CID] == IDLE

&& DB_C[CID][y][0] != -1]

Spend[x]!CID.DB_C[CID][y][0].DB_C[CID][y][1]

25 {STATUS_C[CID] = SPENDING;} ->Customer(CID)))

[][STATUS_C[CID] == SPENDING]

Approval[CID]?eid1.amt

{

if (amt == ISZERO)

30 {

var index = 0;

while(index < MAXCOINS)

{

if(DB_C[CID][index][0]==eid1)

35 {

DB_C[CID][index][0] = -1;

DB_C[CID][index][1] = -1;

}

index = index + 1;

40 }

}

STATUS_C[CID] = IDLE;} ->Customer(CID)

[][STATUS_C[CID] == SPENDING]

Disapproval[CID]?vid

45 {STATUS_C[CID] = IDLE;} ->Customer(CID)

unspent paywords; the amount. The amount will be abstracted in this paper as
either IsPositive or IsZero. This is because the properties shown in this paper
are independent of hash function and the exact amount.

100 K. Chaudhary and A. Fehnker

Initially, the customer will have no e-coin ID stored in db c. The only enabled
event is to buy e-coins on the BuyCoin channel with parameter cid, which
is the customer ID. Events that use the BuyCoin channel have precondition
status c[Cid] == Idle i.e. the customer should be Idle in order to send a
message on this channel. After sending the message to the broker, the customer
will change to theBuyCoin state. The broker can reply on the SellCoin channel,
since the condition status c[Cid] == BuyCoin for the customer is met. The
customer adds the e-coin ID and the amount to db c, and changes to Idle.

If customer has e-coins and is in the Idle state, it can buy goods from a vendor
on channel Spend, which will synchronize with one of the vendors. The channel
has two parameters: e-coin ID and amount. After this event, the customer will
change the state to Spending. The vendor will reply on channel Approval or
Disapproval, depending on whether the payment was accepted or not. In either
case, the customer’s state will change to Idle.

There is not much processing done by the customer side compared to the
Client-Side Netpay protocol [3]. Most processing is done by the vendor. Note,
that the customer can try spending an e-coin as often as it wants. It is up to the
vendors and brokers to prevent double spending.

3.2 Broker Process

The process Broker(Bid) in Table 2 and Table 3 models the broker with unique
broker ID Bid. The broker has a database db b to store all generated e-coins. In
addition it has a database lookup that maps an e-coin ID to a vendor or broker.
The broker can have status Idle, BuyCoin, ReqLoc or ReqCoin. Variable
status b is used for tracking the status. Variables vid B, eloc B, cid B, eid B
and amount B are used to store intermediate results while generating e-coins or
replying to request from customers or vendors.

This process models three tasks for the broker. The first task is the generation
of new e-coins, lines 6 - 15 of Table 2. A customer requests a new e-coin on channel
BuyCoin with parameter cid, the ID of the requesting customer. This event is
guarded by the expression status b == Idle. The event changes the status
to BuyCoin. The broker replies to the customer on channel SellCoin with two
parameters, an e-coin id and the amount of coins. The broker then updates the
two databases (Table 2, lines 26 - 29). The status of the process changes to Idle.

The next task is to pass new e-coins to vendors upon request. The request by
a vendor is modeled by the channel ReqCoin[Bid]. The model uses an array of
channel ReqCoin, one channel for each vendor. The vendor vid is requesting the
broker Bid to send the e-coin eid1 on channel ReqCoin[Bid] with parameters
vid and eid1. It is enabled if the status is Idle. This event will change the status
to ReqCoin and the variables eid B, amount B and vid B will store the e-coin
ID, the amount, and the ID of the requesting vendor respectively. These will be
used by the broker to send the e-coin to the requesting vendor Bvid on channel
SendCoin[Bvid]. This event is enabled, if the status is ReqCoin. The status
will then change to Idle.

The final task keeps track of the e-coin location and responds to the location
request by vendors. The channel ReqLoc is used for requests from vendors vid

Model Checking a Server-Side Micro Payment Protocol 101

Table 2. Broker Process

Broker(BID) =

[STATUS_B == IDLE && (||x:{0..(BROKER_SIZE-1)}@(DB_B[x][0]==-1))]

BuyCoin?cid

5 {

cid_B = cid;

var index = 0;

while(index < BROKER_SIZE)

{

10 if (DB_B[index][0] == eid)

{

eid = (eid+1)%MAXEID;

index = BROKER_SIZE;

}

15 index = index + 1;

}

STATUS_B = BUYCOIN;} -> Broker(BID)

[][STATUS_B == BUYCOIN]

SellCoin[cid_B]!eid

20 {

var index = 0;

while(index < BROKER_SIZE)

{

if (DB_B[index][0] == -1 && DB_B[index][1] == -1)

25 {

DB_B[index][0] = eid;

DB_B[index][1] = ISPOSITIVE;

LOOKUP[index][0] = eid;

LOOKUP[index][1] = BID;

30 index = BROKER_SIZE;

}

index = index + 1;

}

cid_B = 0;

35 eid = (eid+1)%MAXEID;

STATUS_B = IDLE;} -> Broker(BID)

[][STATUS_B == IDLE]

ReqLoc?vid.eid1

{

40 vid_B = vid;

var index = 0;

while(index < BROKER_SIZE)

{

if (LOOKUP[index][0] == eid1)

45 {

eloc_B = LOOKUP[index][1];

LOOKUP[index][1] = vid;

index = BROKER_SIZE;//break the loop

}

50 index = index + 1;

}

STATUS_B = REQLOC;} -> Broker(BID)

102 K. Chaudhary and A. Fehnker

Table 3. Broker Process (continued)

[][STATUS_B == REQLOC]

SendLoc[vid_B]!eloc_B

{

5 vid_B = 0;

eloc_B = -1;

STATUS_B = IDLE;} -> Broker(BID)

[][STATUS_B == REQCOIN]

SendCoin[vid_B]!eid_B.amount_B

10 { STATUS_B = IDLE;} -> Broker(BID)

[][STATUS_B == IDLE]

ReqCoin[BID]?eid1.vid

{

STATUS_B = REQCOIN;

15 var index = 0;

vid_B = vid;

while (index < BROKER_SIZE)

{

if (DB_B[index][0] == eid1 && DB_B[index][0] != -1)

20 {

eid_B = DB_B[index][0];

amount_B = DB_B[index][1];

index = BROKER_SIZE; //end loop

}

25 index = index + 1;

}

} -> Broker(BID);

for the location of the e-coin eid1. This event is enabled if the status is Idle. The
broker will look up the entry for the e-coin ID eid1 in the Lookup database,
and save it in variable Beloc, and also update the location of the e-coin in the
Lookup database to that of the requesting vendor vid. The state will change
to ReqLoc, which enables the channel SendLoc. This channel is used for the
reply to the vendor request. The status of the process changes to Idle.

3.3 Vendor Process

The process V endor(Vid) shown in Tables 4 and 5 models a vendor with ID Vid.
Each vendor maintains an e-wallet ewallet which contains e-coins of the various
customers. A vendor can have status Idle, Spending, HaveCoin, HaveLoc,
NoCoin, ReqLoc, RecvReq and ReqCoin. The status is stored in variable
status v. Other variables used to store intermediate results are vid V, eloc V,
cid V, amount V and eid V.

The vendor performs two major task: verifying e-coins received from a cus-
tomer and transferring an e-coin to a requesting vendor. The verification of the
e-coins has two cases; either the current vendor has the e-coin in its e-wallet,

Model Checking a Server-Side Micro Payment Protocol 103

Table 4. Vendor Process

Vendor(VID) =

[STATUS_V[VID] == IDLE &&

(||x:{0..(EWALLET_SIZE-1)}@(Ewallet[VID][x][0]==-1))]

5 Spend[VID]?cid.Eid.amount

{

cid_V[VID]=cid;

var index = 0;

var flag = false;

10 while(index < EWALLET_SIZE)

{

if (Ewallet[VID][index][0] == Eid)

{

flag = true;

15 index_V[VID] = index;

index = EWALLET_SIZE;//break the loop

}

index = index + 1;

}

20 if (flag == true)

STATUS_V[VID] = HAVECOIN;

else{

eid_V[VID] = Eid;

STATUS_V[VID] = NOCOIN;

25 }

} ->Vendor(VID)

[][STATUS_V[VID] == HAVECOIN && Ewallet[VID][index_V[VID]][1] == ISPOSITIVE]

Approval[cid_V[VID]]!Ewallet[VID][index_V[VID]][0].ISPOSITIVE

30 {

Ewallet[VID][index_V[VID]][1] = ISPOSITIVE;

index_V[VID] = 0;

cid_V[VID] =-1;

STATUS_V[VID] = IDLE;} ->Vendor(VID)

35 [][STATUS_V[VID] == HAVECOIN && Ewallet[VID][index_V[VID]][1] == ISPOSITIVE]

Approval[cid_V[VID]]!Ewallet[VID][index_V[VID]][0].ISZERO

{

Ewallet[VID][index_V[VID]][1] = ISZERO;

index_V[VID] = 0;

40 cid_V[VID] = -1;

STATUS_V[VID] = IDLE;} ->Vendor(VID)

[][STATUS_V[VID] == HAVECOIN]

Disapproval[cid_V[VID]]!VID

{STATUS_V[VID] = IDLE;} ->Vendor(VID)

45 [][STATUS_V[VID] == NOCOIN]

ReqLoc!VID.eid_V[VID]

{STATUS_V[VID] = REQLOC;} ->Vendor(VID)

or it is with another vendor or broker. In this case it has to first lookup the
location, and then request the e-coin at that location.

The first task is initiated by the customer process on channel Spend. The
customer, cid, sends an e-coin ID, Eid, and the amount, amount, to a vendor.

104 K. Chaudhary and A. Fehnker

Table 5. Vendor Process (continued)

[][STATUS_V[VID] == REQLOC]

SendLoc[VID]?loc

{

5 eloc_V[VID] = loc;

STATUS_V[VID] = HAVELOC;

} ->Vendor(VID)

[][STATUS_V[VID] == REQCOIN]

10 SendCoin[VID]?eid1.amt

{

var index = 0;

while(index < EWALLET_SIZE)

{

15 if (Ewallet[VID][index][0] == -1 && Ewallet[VID][index][1] == -1)

{

Ewallet[VID][index][0] = eid1;

Ewallet[VID][index][1] = amt;

index_V[VID] = index;

20 index = EWALLET_SIZE;//break the loop

}

index = index + 1;

}

STATUS_V[VID] = HAVECOIN

25 } ->Vendor(VID)

[][STATUS_V[VID] == RECVREQ]

SendCoin[vid_V[VID]]!eid_V[VID].amount_V[VID]

{

vid_V[VID] = -1;

30 amount_V[VID]=0;

eid_V[VID] = -1;

STATUS_V[VID] = IDLE;} ->Vendor(VID)

[][STATUS_V[VID] == IDLE]

ReqCoin[VID]?eid1.vid

35 {

var index = 0; vid_V[VID] = vid;

while (index < EWALLET_SIZE)

{

if (Ewallet[VID][index][0] == eid1)

40 {

eid_V[VID] = Ewallet[VID][index][0];

amount_V[VID] = Ewallet[VID][index][1];

Ewallet[VID][index][0] = -1;

Ewallet[VID][index][1] = -1;

45 index = EWALLET_SIZE; //end loop

}

index = index + 1;

}

STATUS_V[VID] = RECVREQ;} ->Vendor(VID)

50 [][STATUS_V[VID] == HAVELOC]

ReqCoin[eloc_V[VID]]!eid_V[VID].VID

{

eloc_V[VID]= -1;

eid_V[VID]=-1;

55 STATUS_V[VID] = REQCOIN;} ->Vendor(VID);

Model Checking a Server-Side Micro Payment Protocol 105

This event is enabled, if the vendor status is Idle. If the vendor has an e-coin
with a matching ID (line 12 of Table 4) it will enter status HaveCoin. If not it
will store the e-coin ID and change the status to NoCoin.

If the vendor does not have the e-coin and the status is NoCoin, it will first
request the e-coin location from the broker and then, wait for the broker to reply
with the e-coin location, and then request the e-coin from that vendor or broker.
This three step process is modeled as follows:

– The model uses channel RecLoc for the request of the location. It is enabled
when the process is in the status NoCoin (Table 4, line 45)

– After this request the vendor changes its status toReqLoc. The vendor then
waits for the broker to reply on channel SendLoc with the e-coin location
loc (Table 5, line 5). The vendor then stores the location, V eloc[vid], and
changes the status to HaveLoc.

– The request of the vendor vid from the vendor/broker V eloc[vid] to send e-
coin eid[vid] uses channel ReqCoin. The reply uses the SendCoin channel,
upon which the vendor vid changes the status to HaveCoin.

In status HaveCoin, the vendor approves on channel Approval if the amount
is positive (lines 28 and 35 of Table 4). Otherwise, it will disapprove the transac-
tion on channel Disapproval. If the payment is approved, the vendor saves the
remaining e-coins (line numbers 31 and 37 of Table 4).

The second task for the vendor is to send an e-coin to requesting vendor. A
request for an e-coin eid1, from another vendor, vid, is modeled using channel
ReqCoin. This is a message from vendor vid to vendor VID. The event is enabled
in status Idle. This event stores the details of the e-coins and changes the
status to RecvReq. This enables the reply to the requesting vendor on channel
SendCoin. The status will change to Idle and the e-coin will be removed from
the e-wallet.

The Netpay process is composed of customer, vendor and broker process.
There are three vendors, two customers and one broker in this model as shown
in [4]. The next section will look at the correctness of this protocol to prove
three different properties namely chain of trust, preventing double spending and
non-blocking behavior.

4 Correctness of the Netpay Protocol

This section assumes that vendors are cooperative and trusted, which seems
consistent with the fact that in the server-side protocol the customer e-coins are
stored by vendors. Since the touchstone and payword are always stored together
at a trusted party there is no need to prove that the payword remains valid.
In contrast, that was an important property to prove for the client-side Netpay
protocol [3], in which e-coins were stored by the customers, while the broker and
vendors kept the touchstones to verify the e-coins.

For the server-side model we will show three properties. The first is that the
e-coin will not be lost by the vendors, which means that the location of the e-coin

106 K. Chaudhary and A. Fehnker

as recorded by the broker will be correct at the end of a transaction. While a
payment is ongoing, it might be temporarily incorrect.

Furthermore, we show that at most one vendor can have a copy of an e-coin.
The length of an e-coin, and thus its amount, is abstracted, and we assume that
subtracting from the amount is dealt correctly by the trusted vendor. The only
remaining way to double spend would be to have two coins. We show that an
e-coin cannot be spent twice at different vendors. Finally, we show that there is
a deadlock in the protocol and we will present a solution for this.

4.1 Chain of Trust

E-coins are transferred from broker to vendor and from one vendor to another
vendor, and the customer should be sure that the location of the e-coin will be
tracked in this process. For the server-side Netpay protocol, the following two
properties can be shown to hold:

1. If the customer is in the Idle or BuyCoin state, then the broker will have
the location of the e-coin pointing to the vendor with the e-coin.

2. If the customer is in the Spending state, then the broker will have the
location of the e-coin, or it will point to the vendor which will receive the
e-coin after the next exchange of e-coins.

The following lists the goals defined in the PAT model checker:

– Property 1 shows for each e-coin ID held by a customer, that there exists a
corresponding e-coin in the broker database.

– Property 2 shows for each e-coin ID in the lookup database, that there exists
a corresponding e-coin in the broker database, if the location lookup[y][1] is
the broker ID.

– Property 3 shows for each e-coin ID held by the customer, that if the loca-
tion of the e-coin is not the broker ID and the customer status is Idle or
BuyCoin, then there exists a corresponding e-coin at that location.

– Property 4 shows for each e-coin ID held by the customer, that if the loca-
tion of the e-coin is not equal to the broker ID and the customer status is
Spending, then there exists a corresponding e-coin at that location or at
a location stored in variable eloc V. This means that while the broker may
have information that is temporarily not valid, the correct location is stored
in an auxiliary variable.

The properties 1 - 4 were verified using the PAT model checker.

4.2 Double Spending

The main goal of this property is to prevent customers from spending an e-
coin more than once. Note, that because we abstract the exact amount of an
e-coin it can be spent as long as the amount is IsPositive. This assumes that
the vendor updates the amount correctly. However, double spending could still

Model Checking a Server-Side Micro Payment Protocol 107

Property 1. Chain of Trust - Comparison of customer and broker databases

#define Chain_of_Trust_1(&&y:{0..(MAXCOINS-1)};x:{0..(CUSTOMERS-1)}

@(DB_C[x][y][0]==-1 ||(||z:{0..(BROKER_SIZE-1)}

@(DB_C[x][y][0] == DB_B[z][0]))));

#assert Netpay |=[] Chain_of_Trust_1 ;

Property 2. Chain of Trust - Comparison of broker and lookup databases

#define Chain_of_Trust_2(&&y:{0..BROKER_SIZE-1}@(LOOKUP[y][1]!= BROKERID

||(||z:{0..BROKER_SIZE-1}@(DB_B[z][0] == LOOKUP[y][0]))));

#assert Netpay |=[] Chain_of_Trust_2 ;

Property 3. Chain of Trust - Comparison of vendor, customer and lookup
databases
#define Chain_of_Trust_3(&&y:{0..(MAXCOINS-1)};a:{0..(CUSTOMERS-1)}

@(||z:{0..(BROKER_SIZE-1)}@(!(DB_C[a][y][0] == LOOKUP[z][0]

&& LOOKUP[z][1]!= BROKERID &&(STATUS_C[a] == IDLE ||

STATUS_C[a] == BUYCOIN))) || (||x:{0..(VENDORS-1)}

@(||b:{0..(EWALLET_SIZE-1)}@(DB_C[a][y][0]==Ewallet[x][b][0])))));

#assert Netpay |=[] Chain_of_Trust_3;

Property 4. Chain of Trust - Comparison of customer, lookup and different
vendor databases
#define Chain_of_Trust_4(&&y:{0..(MAXCOINS-1)};a:{0..(CUSTOMERS-1)}

@(||z:{0..(BROKER_SIZE-1)}@(DB_C[a][y][0] != LOOKUP[z][0]

|| STATUS_C[a] != SPENDING || (&&x:{0..(VENDORS-1)}

@(LOOKUP[z][1]!= x || eloc_V[x]==-1 || eloc_V[x]==BROKERID)

||(||b:{0..(EWALLET_SIZE-1)}@(DB_C[a][y][0] == Ewallet[eloc_V[x]][b][0]

|| DB_C[a][y][0] == Ewallet[x][b][0])))))) ;

#assert Netpay |=[] Chain_of_Trust_4;

occur, if there would be e-wallets with same e-coin ID and a positive amount.
In that case the customer could spend the same e-coin at two different vendors.
We prove that all e-coins exists only once in one e-wallet at any time. This is
expressed in Property 5: No two e-wallets have the same e-coin ID whose amount
is IsPositive. This means that the coin cannot be spent twice. A Windows 7,
i5 processor, 3.2 GHz and 6 GB RAM machine took about eleven minutes to
verify all 5 properties.

4.3 Non-Blocking Behavior

The CSP model described in Section 3 uses channels for communication between
different processes. A sender process will be blocked on an output channel if no

108 K. Chaudhary and A. Fehnker

Property 5. Double Spending

#define DoubleSpending(&&x:{0..VENDORS-1};a:{0..VENDORS-1}

@(&&y:{0..EWALLET_SIZE-1};z:{0..EWALLET_SIZE-1}

@((Ewallet[x][y][0]==-1||Ewallet[a][z][0]==-1

||Ewallet[x][y][1]==ISZERO||Ewallet[a][z][1]==ISZERO || a==x)

||(Ewallet[x][y][0]!=Ewallet[a][z][0]))));

#assert Netpay |=[] DoubleSpending;

Fig. 1. Deadlock in Netpay protocol

other process has a matching input channel that is enabled. If a channel is
blocked indefinitely, then there is a deadlock in the protocol. We use PAT to
check for absence of deadlocks.

PAT did identify a deadlock in the protocol. Figure 1 depicts the trace that
was generated by PAT model checker. The deadlock occurs as follows: Cus-
tomer(0) buys an e-coin with Broker(3) and spends e-coins at vendor(0). Ven-
dor(0) requests the e-coin location from the broker. The broker provides its own
ID as e-coin location and updates the location for this e-coin to 0. Vendor(0)
requests and receives the e-coin from the broker. Vendor(0) approves payment
for Customer(0), but the amount remains positive. Likewise, Customer(1) buys
an e-coin and spends it at Vendor(1), with a positive amount remaining. Now
Customer(0) spends e-coins with ID 0 at vendor(1) while Customer(1) spends e-
coins with ID 1 at Vendor(0). Vendor(1) requests and receives e-coin location as

Model Checking a Server-Side Micro Payment Protocol 109

0 from broker. Vendor(1) requests for e-coin location and receives 1 from broker.
Now they ask request the e-coin from each other, and enter a circular wait.

This model of the protocol has been corrected by adding a separate process for
the vendor side to handle reply for e-coins request. This process can be found in
[4]. With these changes PAT can verify deadlock freedom. The description of the
protocol does not specify how many processes a vendor should have [7], although
it is presented as if it were a single process. A prototype implementation also
used a single process. Our results suggest that the vendor should be split instead
into two parts to avoid a deadlock.

4.4 Non-Cooperative Customers and Vendors

A system is not only composed of cooperative parties but there will be some
parties who will try to cheat the protocol. In such a case, the protocol may not
be correct anymore. The current protocol does deal with customers who try to
spend e-coins that have zero amount, and also with customers who want to spend
the same e-coin twice. However, if we would enable a customer to send e-coin
IDs that do not exists in the broker or vendor databases, it will cause currently
a deadlock. The current protocol provides no way for a broker to communicate
back to vendor that an e-coin does not exist. This problem is, however, easily
addressed by adding one more case for a declined payment.

We also considered cheating vendors in models that do not abstract from the
exact amount an e-coin is worth. Since vendors in the Server-side Netpay protocol
handle the e-wallet they can cheat by deducting or redeeming the wrong amount.
It will be very difficult for the customer (or broker) to detect such behavior. In
the client-side protocol the customer owned the payword, and could use this to
verify correct behavior of the vendor.

5 Conclusions and Future Research

This paper modeled the server-side Netpay protocol used for micro-payment us-
ing CSP, and verified three important properties using the PAT model checker.
The first is that the broker keeps track of e-coins throughout, even if it is trans-
ferred from vendor to vendor. The second is that a customer cannot spend more
than an e-coin is worth. The protocol prevents double spending. The last is that
the protocol has deadlock when two vendors request e-coins from each other.
This has been rectified by adding a separate process to deal with transfer of
e-coins from one to another.

The verification was done based under the assumption that the broker, ven-
dors, and customers adhere to the protocol. There have been few restrictions
on the behavior of the customer though, who is able use the same e-coin again
and again. Future research involves working on proving validity of e-coins and
double spending when the customer and vendors are not cooperative, and when
the vendors cannot be fully trusted.

110 K. Chaudhary and A. Fehnker

References

1. Cai, Y., Grundy, J., Hosking, J., Dai, X.: Software Architecture Modeling and
Performance Analysis with Argo/MTE. In: SEKE 2004 (1990)

2. Chaudhary, K., Dai, X.: P2P-NetPay: An off-line Micro-payment System for Con-
tent Sharing in P2P-Networks. JETWI 1(1), 46–54 (2009)

3. Chaudhary, K., Fehnker, A.: Modeling and Verification for the Micropayment Pro-
tocol Netpay. In: WASET 2012, vol. 72 (2012)

4. Chaudhary, K., Fehnker, A.: Server-Side Netpay Protocol Models (2015),
http://repository.usp.ac.fj/id/eprint/8165

5. Dai, X., Grundy, J.: Architecture for a Component-Based, Plug-In Micro-payment
System. In: Zhou, X., Zhang, Y., Orlowska, M.E. (eds.) APWeb 2003. LNCS,
vol. 2642, pp. 251–262. Springer, Heidelberg (2003)

6. Dai, X., Grundy, J.: Three Kinds of E-wallets for a NetPay Micro-Payment System.
In: Zhou, X., Su, S., Papazoglou, M.P., Orlowska, M.E., Jeffery, K. (eds.) WISE
2004. LNCS, vol. 3306, pp. 66–77. Springer, Heidelberg (2004)

7. Dai, X., Lo, B.: NetPay - An Efficient Protocol for Micropayments on the WWW.
In: AusWeb 1999, Australia (1999)

8. Glassman, S., Manasse, M., Abadi, M., Gauthier, P., Sobalvarro, P.: The Millicent
Protocol for Inexpensive Electronic Commerce. In: WWW 1995 (December 1995)

9. Hauser, R., Steiner, M., Waidner, M.: Micro-payments Based on ikp. In: SECURI-
COM 1996. LNCS (1996)

10. Herzberg, A., Yochai, H.: Mini-pay: Charging Per Click on the Web (1996)
11. Nisan, N., London, S., Regev, O., Camiel, N.: Globally Distributed Computation

Over the Internet. The POPCORN project. In: ICDCS 1998. IEEE (1998)
12. Rivest, R., Shamir, A.: PayWord and MicroMint: Two Simple Micropayment

Schemes. In: Crispo, B. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 69–87.
Springer, Heidelberg (1997)

13. Sun, J., Liu, Y., Dong, J.: Protocol Analysis Toolkit,
http://www.comp.nus.edu.sg/∼pat/

14. Wei, K., Smith, A., Chen, Y., Vo, B.: WhoPay: A Scalable and Anonymous Pay-
ment System for Peer-to-Peer Environments. In: Distributed Computing Systems.
IEEE (2006)

15. Yang, B., Garcia-Molina, H.: PPay: Micro-payments for Peer-to-Peer Systems. In:
CSS 2003, pp. 300–310 (2003)

16. Zou, E., Si, T., Huang, L., Dai, Y.: A New Micro-payment Protocol Based on P2P
Networks. In: ICEBE 2005 (2005)

http://repository.usp.ac.fj/id/eprint/8165
http://www.comp.nus.edu.sg/~pat/

Specification and Analysis

Require, Test and Trace IT

Bernhard K. Aichernig1, Klaus Hörmaier2, Florian Lorber1(�),
Dejan Ničković3, and Stefan Tiran1,3

1 Graz University of Technology, Graz, Austria
aichernig@ist.tugraz.at

2 Infineon Technologies Austria AG, Villach, Austria
3 AIT Austrian Institute of Technology, Vienna, Austria

Abstract. We propose a framework for requirement-driven test gener-
ation that combines contract-based interface theories with model-based
testing. We design a specification language, requirement interfaces, for
formalizing different views (aspects) of synchronous data-flow systems
from informal requirements. Multiple views of a system, modeled as re-
quirement interfaces, are naturally combined by conjunction.

We develop an incremental test generation procedure with several ad-
vantages. The test generation is driven by a single requirement interface
at a time. It follows that each test assesses a specific aspect or feature of
the system, specified by its associated requirement interface. Since we do
not explicitly compute the conjunction of all requirement interfaces of
the system, we avoid state space explosion while generating tests. How-
ever, we incrementally complete a test for a specific feature with the
constraints defined by other requirement interfaces. This allows catch-
ing violations of any other requirement during test execution, and not
only of the one used to generate the test. Finally, this framework de-
fines a natural association between informal requirements, their formal
specifications and the generated tests, thus facilitating traceability. We
implemented a prototype test generation tool and we demonstrate its
applicability on an industrial use case.

Keywords: Model-based testing · Test-case generation · Requirements
engineering · Traceability · Requirement interfaces · Formal specifica-
tion · Synchronous systems · Consistency checking · Incremental test-case
generation

1 Introduction

Modern software and hardware systems are becoming increasingly complex, re-
sulting in new design challenges. For safety-critical applications, correctness ev-
idence for designed systems must be presented to the regulatory bodies (see for
example the automotive standard ISO 26262 [16]). It follows that verification
and validation techniques must be used to provide evidence that the designed
system meets its requirements. Testing remains the preferred practice in in-
dustry for gaining confidence in the design correctness. In classical testing, an
engineer designs a test experiment, i.e. an input vector that is executed on the

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 113–127, 2015.
DOI: 10.1007/978-3-319-19458-5_8

114 B.K. Aichernig et al.

system-under-test (SUT) in order to check whether it satisfies its requirements.
Due to the finite number of experiments, testing cannot prove the absence of
errors. However, it is an effective technique for catching bugs. Testing remains a
predominantly manual and ad-hoc activity that is prone to human errors. As a
result, it is often a bottleneck in the complex system design.

Model-based testing (MBT) is a technology that enables systematic and au-
tomatic test case generation (TCG) and execution, thus reducing system design
time and cost. In MBT, the SUT is tested for conformance against its specifica-
tion, a mathematical model of the SUT. In contrast to the specification, that is a
formal object, the SUT is a physical implementation with often unknown inter-
nal structure, also called a “black-box”. The SUT can be accessed by the tester
only through its external interface. In order to reason about the conformance
of the SUT to its specification, one needs to use the testing assumption [24],
stating that the SUT can react at all times to all inputs and can be modeled in
the same language as its specification.

The formal model of the SUT is derived from its informal requirements. The
process of formulating, documenting and maintaining system requirements is
called requirement engineering. Requirements are typically written in a textual
form, using possibly constrained English, and are gathered in a requirements doc-
ument. The requirements document is structured into chapters describing various
(behavioural, safety, timing, etc.) views of the system. Intuitively, a system must
correctly implement the conjunction of all its requirements. Sometimes, require-
ments can be inconsistent, resulting in a specification that does not admit any
correct implementation.

In this paper, we propose a requirement-driven framework for MBT of syn-
chronous data-flow reactive systems. In contrast to classical MBT, in which the
requirements document is usually formalized into one monolithic specification,
we exploit the structure of the requirements and adopt a multiple viewpoint
approach.

Timing View

Consistency
Check

Test Case
Generation

Behavioral View Power Cons. View
Requirements Document

consistent purpose
test

Test Suite

Test Case

System
Under Test

Execution

Violated ReqsInconsistent
Trace to

Reqs

inconsistent

Requirement Interface
A2

Requirement Interface
A3

Requirement Interface A = A1 ∧ A2 ∧ A3

· · ·

Trace fail to

· · · · · · · · ·

fail

pass

A1

Requirement Interface

Tn

Reqk Reqk+1 Reqm Reqm+1 Reqn

T1

Req1

Fig. 1. Overview of using requirement interfaces for testing, analysis and tracing

Require, Test and Trace IT 115

We first introduce requirement interfaces as the formalism for modeling system
views as subsets of requirements. It is a state-transition formalism that supports
compositional specification of synchronous data-flow systems by means of as-
sume/guarantee rules, that we call contracts. We associate subsets of contracts
to requirement identifiers, to facilitate their tracing to the informal requirements
from which the specification is derived. These associations can later on be used
to generate links between the work products [2], connecting severals tools.

A requirement interface is intended to model a specific view of the SUT.
We define the conjunction operation that enables combining different views of
the SUT. Intuitively, a conjunction of two requirement interfaces is another re-
quirement interface that requires contracts of both interfaces to hold. We assume
that the overall specification of the SUT is given as a conjunction of requirement
interfaces modeling its different views.

Next, we develop a requirement-driven TCG and execution procedure from
requirement interfaces, with language inclusion as the conformance relation. We
present a procedure for TCG from a specific SUT view, modeled as a requirement
interface, and a test purpose. Such a test case can be used directly to detect
if the implementation by the SUT violates a given requirement, but cannot
detect violation of other requirements in the conjunction. Next, we extend this
procedure by completing such a partial test case with additional constraints from
other view models that enable detection of violations of any other requirement.

Finally, we develop a tracing procedure that exploits the natural mapping
between informal requirements and our formal model. Thus, inconsistent con-
tracts or failing test cases can be traced back to the violated requirements. We
believe that such tracing information provides precious maintenance and debug-
ging information to the engineers. We illustrate the entire workflow of using
requirement interfaces for consistency checking, testing and tracing in Figure 1.

2 Requirement Interfaces

We introduce requirement interfaces, a formalism for specification of synchronous
data-flow systems. Their semantics is given in the form of labeled transition
systems (LTS). We define consistent interfaces as the ones that admit at least
one correct implementation. The refinement relation between interfaces is given
as language inclusion. Finally, we define the conjunction of requirement interfaces
as another interface that subsumes all behaviors of both interfaces.

2.1 Syntax

Let X be a set of typed variables. A valuation v over X is a function that assigns
to each x ∈ X a value v(x) of the appropriate type. We denote by V (X) the set
of all valuations over X . We denote by X ′ = {x′ | x ∈ X} the set obtained by
priming each variable in X . Given a valuation v ∈ V (X) and a predicate ϕ on
X , we denote by v |= ϕ the fact that ϕ is satisfied under the variable valuation
v. Given two valuations v, v′ ∈ V (X) and a predicate ϕ on X ∪ X ′, we denote
by (v, v′) |= ϕ the fact that ϕ is satisfied by the valuation that assigns to x ∈ X
the value v(x), and to x′ ∈ X ′ the value v′(x′).

116 B.K. Aichernig et al.

Given a subset Y ⊆ X of variables and a valuation v ∈ V (X), we denote
by π(v)[Y], the projection of v to Y . We will commonly use the symbol wY to
denote a valuation projected to the subset Y ⊆ X . Given the sets X , Y1 ⊆ X ,
Y2 ⊆ X , w1 ∈ V (Y1) and w2 ∈ V (Y2), we denote by w = w1 ∪ w2 the valuation
w ∈ V (Y1 ∪ Y2) such that π(w)[Y1] = w1 and π(w)[Y2] = w2.

Given a set X of variables, we denote by XI , XO and XH three disjoint
partitions of X denoting sets of input, output and hidden variables, such that
X = XI∪XO∪XH . We denote by Xobs = XI∪XO the set of observable variables
and by Xctr = XH∪XO the set of controllable variables1. A contract c on X∪X ′,
denoted by (ϕ, ψ), is a pair consisting of an assumption predicate ϕ on X ′

I ∪X

and a guarantee predicate ψ on X ′
ctr ∪ X . A contract ĉ = (ϕ̂, ψ̂) is said to be

an initial contract if ϕ̂ and ψ̂ are predicates on X ′
I and X ′

ctr, respectively, and
an update contract otherwise. Given two valuations v, v′ ∈ V (X) and a contract
c = (ϕ, ψ) over X ∪ X ′, we say that (v, v′) satisfies c, denoted by (v, v′) |= c,
if (v, π(v′)[XI]) |= ϕ → (v, π(v′)[Xctr]) |= ψ. In addition, we say that (v, v′)
satisfies the assumption of c, denoted by (v, v′) |=A c if (v, π(v′)[XI]) |= ϕ. The
valuation pair (v, v′) satisfies the guarantee of c, denoted by (v, v′) |=G c, if
(v, π(v′)[Xctr]) |= ψ)2.

Definition 1. A requirement interface A is a tuple 〈XI , XO, XH , Ĉ, C,R, ρ〉,
where

– XI , XO and XH are disjoint finite sets of input, output and hidden vari-
ables, respectively, and X = XI ∪XO ∪XH denotes the set of all variables;

– Ĉ and C are finite non-empty sets of initial and update contracts;
– R is a finite set of requirement identifiers;
– ρ : R → P(C ∪ Ĉ) is a function mapping requirement identifiers to subsets

of contracts, such that
⋃

r∈R ρ(r) = C ∪ Ĉ.

We say that a requirement interface is receptive if in any state it has defined
behaviors for all inputs, that is

∨
(ϕ̂,ψ̂)∈Ĉ ϕ̂ and

∨
(ϕ,ψ)∈C ϕ are both valid. A

requirement interface is fully-observable if XH = ∅. A requirement interface is
deterministic if for all (ϕ̂, ψ̂) ∈ Ĉ, ψ̂ has the form

∧
x∈XO

x′ = c, where c is
a constant of the appropriate type, and for all (ϕ, ψ) ∈ C, ψ has the form∧

x∈Xctr
x′ = f(X), where f is a function over X that has the same type as x.

Example 1. We use the N -bounded FIFO buffer example to illustrate all the
concepts introduced in the paper. Let Abeh be the behavioral model of the buffer.
The buffer has two Boolean input variables enq, deq, i.e. Xbeh

I = {enq, deq}, two
Boolean output variables E, F, i.e. Xbeh

O = {E,F} and a bounded integer internal
variable k ∈ [0 : N] for some N ∈ N, i.e. Xbeh

H = {k}. The textual requirements
are listed below:

r0: The buffer is empty and the inputs are ignored in the initial state.

1 We adopt SUT-centric conventions to naming the roles of variable.
2 We sometimes use the direct notation (v, w′

I) |=A c and (v, w′
ctr) |=G c, where wI ∈

V (XI) and wctr ∈ V (Xctr).

Require, Test and Trace IT 117

r1: enq triggers an enqueue operation when the buffer is not full.
r2: deq triggers a dequeue operation when the buffer is not empty.
r3: E signals that the buffer is empty.
r4: F signals that the buffer is full.
r5: Simultaneous enq and deq (or their simultaneous absence), an enq on the

full buffer or a deq on the empty buffer have no effect.

We formally define3 Abeh as Ĉbeh = {c0}, Cbeh = {ci | i ∈ [1, 5]}, Rbeh = {ri | i ∈
[0, 5]} and ρbeh(ri) = {ci}, where

c0 : true
 (k′ = 0) ∧ E′ ∧ ¬F′

c1 : enq′ ∧ ¬deq′ ∧ k < N
 k′ = k + 1
c2 : ¬enq′ ∧ deq′ ∧ k > 0
 k′ = k − 1
c3 : true
 k′ = 0 ⇔ E′

c4 : true
 k′ = N ⇔ F′

c5 : (enq′ = deq′) ∨ (enq′ ∧ F) ∨ (deq′ ∧ E)
 k′ = k

2.2 Semantics

Given a requirement interface A defined over X , let V = V (X)∪{v̂} denote the
set of states in A, where a state v is a valuation v ∈ V (X) or the initial state
v̂ ∈ V (X). The latter is not a valuation, as the initial contracts do not specify
unprimed and input variables. There is a transition between two states v and v′

if (v, v′) satisfies all its contracts. The transitions are labeled by the (possibly
empty) set of requirement identifiers corresponding to contracts for which (v, v′)
satisfies their assumptions. The semantics [[A]] of A is the following LTS.

Definition 2. The semantics of the requirement interface A is the LTS [[A]] =
〈V, v̂, L, T 〉, where V is the set of states, v̂ is the initial state, L = P(R) is the
set of labels and T ⊆ V × L× V is the transition relation, such that:

– (v̂, R, v) ∈ T if v ∈ V (X),
∧

ĉ∈Ĉ(v̂, v) |= ĉ and R = {r | (v̂, v) |=A

ĉ for some ĉ ∈ Ĉ and ĉ ∈ ρ(r)};
– (v,R, v′) ∈ T if v, v′ ∈ V (X),

∧
c∈C(v, v

′) |= c and R = {r | (v, v′) |=A

c for some c ∈ C and c ∈ ρ(r)}.
We say that τ = v0

R1−−→ v1
R2−−→ · · · Rn−−→ vn is an execution of the requirements

interface A if v0 = v̂ and for all 1 ≤ i ≤ n− 1, (vi, Ri+1, vi+1) ∈ T . In addition,

we use the following notation: (1) v
R−→ iff ∃v′ ∈ V (X) s.t. v

R−→ v′; (2) v → v′

iff ∃R ∈ L s.t. v
R−→ v′; (3) v → iff ∃v′ ∈ V (X) s.t. v → v′; (4) v

ε
=⇒ v′ iff

v = v′; (5) v
w
=⇒ v′ iff ∃Y ⊆ X s.t. π(v′)[Y] = w and v → v′; (6) v

w
=⇒ iff

∃v′, Y ⊆ X s.t. π(v′)[Y] = w and v → v′; (7) v w1·w2···wn=======⇒ v′ iff ∃v1, . . . , vn−1, vn
s.t. v

w1=⇒ v1
w2=⇒ · · · vn wn=⇒ v′; and (8) v

w1·w2···wn=======⇒ iff ∃v′ s.t. v w1·w2···wn=======⇒ v′.
We say that a sequence σ ∈ V (Xobs)

∗ is a trace of A if v̂
σ
=⇒. We denote by

L(A) the set of all traces of A. Given a trace σ of A, let A after σ = {v | v̂ σ
=⇒ v}.

Given a state v ∈ V , let succ(v) = {v′ | v → v′} be the set of successors of v.
3 For readability we use the concrete syntax ϕ � ψ to denote (ϕ,ψ) in our examples.

118 B.K. Aichernig et al.

2.3 Consistency, Refinement and Conjunction

A requirement interface consists of a set of contracts, that can be conflicting.
Such an interface does not allow any correct implementation. We say that a re-
quirement interface is consistent if it allows at least one correct implementation.

Definition 3. Let A be a requirement interface, [[A]] its associated LTS, v ∈ V
a state and C = Ĉ if v is initial, and C otherwise. We say that a state v ∈ V is
consistent, denoted by cons(v), if for all wI ∈ V (XI), there exists v′ such that
wI = π(v′)[XI],

∧
c∈C(v, v

′) |= c and cons(v′). We say that A is consistent if
cons(v̂).

Example 2. Abeh is consistent – every reachable state accepts every input valu-
ation and generates an output valuation satisfying all contracts. Consider now
replacing c2 in Abeh with the contract c′2 : ¬enq′ ∧ deq′ ∧ k ≥ 0
 k′ = k − 1,
that incorrectly models r2 and decreases the counter k upon deq even when the
buffer is empty, setting it to the value minus one. This causes an inconsistency
with the contracts c3 and c5, that state that if k equals zero the buffer is empty,
and that dequeue on an empty buffer has no effect on k.

We define the refinement relation between two requirement interfaces A1 and
A2, denoted by A2 � A1, as trace inclusion.

Definition 4. Let A1 and A2 be two requirement interfaces. We say that A2

refines A1, denoted by A2 � A1, if (1) A1 and A2 have the same sets XI , XO

and XH of variables; and (2) L(A1) ⊆ L(A2).

We use a requirement interface to model a view of a system. Multiple views
are combined by conjunction. The conjunction of two requirement interfaces is
another requirement interface that is either inconsistent due to a conflict between
views, or is the greatest lower bound with respect to the refinement relation. The
conjunction of A1 and A2, denoted by A1 ∧ A2, is defined if the two interfaces
share the same sets XI , XO and XH of variables.

Definition 5. Let A1 = 〈XI , XH , XO, Ĉ
1, C1,R1, ρ1〉 and A2 = 〈XI , XH , XO,

Ĉ2, C2,R2, ρ2〉 be two requirement interfaces. Their conjunction A = A1 ∧A2 is
the requirement interface 〈XI , XH , XO, Ĉ, C,R, ρ〉, where
– Ĉ = Ĉ1 ∪ Ĉ2 and C = C1 ∪ C2;
– R = R1 ∪R2; and
– ρ(r) = ρ1(r) if r ∈ ρ1 and ρ(r) = ρ2(r) otherwise.

Remark: For refinement and conjunction, we require the two interfaces to share
the same alphabet. This additional condition is used to simplify definitions. It
does not restrict the modeling – arbitrary interfaces can have their alphabets
equalized without changing their properties by taking union of respective input,
output and hidden variables. Contracts in the transformed interfaces do not
constrain newly introduced variables. For requirement interfaces A1 and A2,
alphabet equalization is defined if (X1

I ∪ X2
I) ∩ (X1

ctr ∪ X2
ctr) = (X1

O ∪ X2
O) ∩

(X1
H ∪X2

H) = ∅. Otherwise, A1 � A2 and vice versa, and A1 ∧A2 is not defined.

Require, Test and Trace IT 119

Example 3. We now consider a power consumption view of the bounded FIFO
buffer. Its model Apc has the Boolean input variables enq and deq and a bounded
integer output variable pc. The following textual requirements specify Apc:

ra: The power consumption equals zero when no enq/deq is requested.
rb: The power consumption is bounded to 2 units otherwise.

The interface Apc consists of Ĉpc = Cpc = {ca, cb},
Rpc = {ri | i ∈ {a, b}} and ρ(ri) = {ci}, where:

ca : ¬enq ∧ ¬deq
 pc′ = 0
cb : enq ∨ deq
 pc′ ≤ 2

The conjunction Abuf = Abeh ∧ Apc is the requirement interface such that
Xbuf

I = {enq, deq}, Xbuf
O = {E,F, pc}, Xbuf

H = {k}, Ĉbuf = {c0, ca, cb}, Cbuf =
{c1, c2, c3, c4, c5, ca, cb}, Rpc = {ri | i ∈ {a, b, 0, 1, 2, 3, 4, 5}}, and ρ(ri) = {ci}.

The conjunction of two requirement interfaces with the same alphabet is the
intersection of their traces.

Theorem 1. Let A1 and A2 be two consistent requirement interfaces defined
over the same alphabet. Then either A1 ∧ A2 is inconsistent, or L(A1 ∧ A2) =
L(A1) ∩ L(A2).

We now show some properties of requirement interfaces.
The conjunction of two requirement interfaces with the same alphabet is either

inconsistent, or it is the greatest lower bound with respect to refinement.

Theorem 2. Let A1 and A2 be two consistent requirement interfaces defined
over the same alphabet such that A1 ∧A2 is consistent. Then A1 ∧A2 � A1 and
A1 ∧ A2 � A2, and for all consistent requirement interfaces A, if A � A1 and
A � A2, then A � A1 ∧ A2.

The following theorem states that the conjunction of an inconsistent require-
ment interface with any other interface remains inconsistent. This result enables
incremental detection of inconsistent specifications.

Theorem 3. Let A be an inconsistent requirement interface. Then for all con-
sistent requirement interfaces A′ with the same alphabet as A, A ∧ A′ is also
inconsistent.

For proofs we refer to our technical report [4].

3 Testing and Tracing

In this section, we present our test-case generation and execution framework and
instantiate it with bounded model checking techniques. For now, we assume that
all variables range over finite domains. This restriction can be lifted by consid-
ering richer data domains in addition to theories that have decidable quantifier
elimination, such as linear arithmetic over reals. Note that before executing the
test-case generation, we can apply a consistency check on the requirement inter-
face. For details, we refer to our technical report [4].

120 B.K. Aichernig et al.

3.1 Test Case Generation

A test case is an experiment executed on the SUT I by the tester. We assume
that I is a black-box that is only accessed via its observable interface. We assume
that I can be modeled as an input-enabled, deterministic4 requirement interface.
Without loss of generality, we can represent I as a total sequential function
I : V (XI) × V (Xobs)

∗ → V (XO). A test case TA for a requirement interface A
overX takes a history of actual input/output observations σ ∈ L(A) and returns
either the next input value to be executed or a verdict. Hence, a test case can
be represented as a partial function TA : L(A) → V (XI) ∪ {pass, fail}.

We first consider the problem of generating a test case from A. The test
case generation procedure is driven by a test purpose. Here, a test purpose is a
condition specifying the target set of states that a test execution should reach.
Hence, it is a formula Π defined over Xobs.

Given a requirement interface A, let φ̂ =
∨

(ϕ̂,ψ̂)∈Ĉ ϕ̂ ∧ ∧
(ϕ̂,ψ̂)∈Ĉ ϕ̂ → ψ̂ and

φ =
∨

(ϕ,ψ)∈C ϕ ∧ ∧
(ϕ,ψ)∈C ϕ → ψ. The predicates φ̂ and φ encode the transition

relation of A, with the additional requirement that at least one assumption
must be satisfied, thus avoiding input vectors for which the test purpose can be
trivially reached due to under-specification. A test case for A that can reach Π
is defined iff there exists a trace σ = σ′ ·wobs in L(A) such that wobs |= Π . The
test purpose Π can be reached in A in at most k steps if

∃i,X0, . . . , Xk. i ≤ n ∧ φ0 ∧ . . . ∧ φk ∧
∨

i≤k

Π [Xobs\X i
obs],

where φ0 = φ̂[X ′\X0] and φi = φ[X ′\X i, X\X i−1] represent the transition
relation of A unfolded in i steps.

Given A and Π , assume that there exists a trace σ in L(A) that reaches Π .
Let σI be a projection to inputs. π(σ)[XI] = w0

I · w1
I · · ·wn

I . We first compute
ωσI ,A (see Algorithm 1), a formula5 characterizing the set of output sequences
that A allows on input σI .

Algorithm 1. OutMonitor

Input: σI = w0
I · w1

I · · ·wn
I , A

Output: ωσI ,A

1: ω0
σI ,A

← θ̂[X ′
I\w0

I , X
′
ctr\X0

ctr]
2: for i = 1 to n do
3: ωi

σI ,A
← θ[XI\wi-1

I , X ′
I\wi

I , Xctr\Xi-1
ctr , X

′
ctr\Xi

ctr]
4: end for
5: ω∗

σI ,A
← ω0

σI ,A
∧ . . . ∧ ωn

σI ,A

6: ωσI ,A ← qe(∃X0
H , X1

H , . . . , Xn
H .ω∗

σI ,A
)

7: return ωσI ,A

Let θ̂ =
∧

(ϕ̂,ψ̂)∈Ĉ ϕ̂ → ψ̂

and θ =
∧

(ϕ,ψ) ϕ → ψ.
For every step i, we repre-
sent by ωi

σI ,A
the allowed

behavior of A constrained
by σI (Lines 1 − 4). The
formula ω∗

σI ,A
(Line 5) de-

scribes the transition rela-
tion of A, unfolded to n
steps and constrained by
σI . However, this formula

refers to the hidden variables of A and cannot be directly used to characterize

4 The restriction to deterministic implementations is for presentation purposes only,
the technique is general and can also be applied to non-deterministic systems.

5 The formula ωσI ,A can be seen as a monitor for A under input σI .

Require, Test and Trace IT 121

the set of output sequences allowed by A under σI . Since any implementation of
hidden variables that preserves correctness of the outputs is acceptable, it suf-
fices to existentially quantify over hidden variables in ω∗

σI ,A
. After eliminating

the existential quantifiers with strategy qe, we obtain a simplified formula ωσI ,A

over output variables only (Line 6).

Algorithm 2. TσI ,A

Input: σI = w0
I · · ·wn

I , A, σ = w0
obs · · ·wk

obs

Output: V (XI
I) ∪ {pass, fail}

1: ωσI ,A ← OutMonitor(σI , A)
2: for i = 0 to k do
3: wi

O ← π(wi
obs)[XO]

4: end for
5: ω0,k

σI ,A
← ωσI ,A[X

0
O\w0

O, . . . , X
k
O\wk

O]

6: if ω0,k
σI ,A

= true then
7: return pass
8: else if ω0,k

σI ,A
= false then

9: return fail
10: else
11: return wk+1

I

12: end if

Let TσI ,A be a test case, pa-
rameterized by the input se-
quence σI and the requirement
interface A from which it was
generated. It is a partial func-
tion, where TσI ,A(σ) is defined if
|σ| ≤ |σI | and for all 0 ≤ i ≤ |σ|,
wi

I = π(wi
obs)[XI], where σI =

w0
I · · ·wn

I and σ = w0
obs · · ·wk

obs.
Algorithm 2 gives a constructive
definition of the test case TσI ,A.
Incremental test-case generation:
So far, we considered test case
generation for a flat requirement
interface A. We now describe how
test cases can be incrementally
generated when the interface A

consists of multiple views6, i.e. A = A1 ∧ A2. Let Π be a test purpose for the
view modeled with A1. We first check whether Π can be reached in A1, which is
a simpler check than doing it on the conjunction A1 ∧A2. If Π can be reached,
we fix the input sequence σI that drives A1 to Π . Instead of creating the test
case TσI ,A1 , we generate TσI ,A1∧A2 , which keeps σI as the input sequence, but
collects output guarantees of A1 and A2. Such a test case drives the SUT to-
wards the test purpose in the view modeled by A1, but is able to detect possible
violations of both A1 and A2.

We note that test case generation for fully observable interfaces is simpler
than the general case, because there is no need for the quantifier elimination,
due to the absence of hidden variables in the model. A test case from a deter-
ministic interface is even simpler as it is a direct mapping from the observable
trace that reaches the test purpose – there is no need to collect constraints on
the output since the deterministic interface does not admit any freedom to the
implementation on the choice of output valuations.

Example 4. Consider the requirement interface Abeh for the behavioral view of
the 2-bounded buffer, and the test purpose F. Our test case generation proce-
dure gives the input vector σI of size 3 such that σI [0] = (enq, deq), σI [1] =
(enq,¬deq) and σI [2] = (enq,¬deq). The observable output constraints for σI

(encoded in OutMonitor) are E ∧ ¬F in step 0, ¬E ∧ ¬F in step 1 and ¬E ∧ F in
step 2. Together, the input vector σI and the associated output constraints form
the test case TσI ,beh. By using the incremental test case generation procedure,

6 We consider two views for the sake of simplicity.

122 B.K. Aichernig et al.

we can extend TσI ,beh to a test case TσI ,buf that also takes into account the power
consumption view of the buffer, resulting in output constraints E ∧ ¬F ∧ pc ≤ 2
in step 0, ¬E ∧ ¬F ∧ pc ≤ 2 in step 1 and ¬E ∧ F ∧ pc ≤ 2 in step 2.

3.2 Test Case Execution

Algorithm 3. TestExec

Input: I , TσI ,A

Output: {pass, fail}
1: in : V (XI) ∪ {pass, fail}
2: out : V (XO)
3: σ ← ε
4: in ← TσI ,A(A,σ)
5: while in �∈ {pass, fail} do
6: out ← I(in, σ)
7: σ ← σ · (in ∪ out)
8: in ← TσI ,A(A,σ)
9: end while
10: return in

Let A be a requirement interface, I a SUT with
the same set of variables as A, and TσI ,A a
test case generated from A. Algorithm 3 defines
the test case execution procedure TestExec that
takes as input I and TσI ,A and outputs a verdict
pass or fail. TestExec gets the next test input in
from the given test case TσI ,A (Lines 4, 8), stim-
ulates at every step the SUT I with this input
and waits for an output out (Line 6). The new in-
puts/outputs observed are stored in σ (Line 7),
which is given as input to TσI ,A. The test case
monitors if the observed output is correct with re-
spect to A. The procedure continues until a pass

or fail verdict is reached (Line 5). Finally, the verdict is returned (Line 10).

Proposition 1. Let A, TσI ,A and I be arbitrary requirement interface, test case
generated from A and implementation, respectively. Then, we have that:

1. if I � A, then TestExec(I, TσI ,A) = pass; and
2. if TestExec(I, TσI ,A) = fail, then I � A.

Proposition 1 immediately holds for test cases generated incrementally from
a requirement interface of the form A = A1 ∧ A2. In addition, we notice that
a test case TσI ,A1 , generated from a single view A1 of A does not need to be
extended to be useful, and can be used to incrementally show that a SUT does
not conform to its specification. We state the property in the following corollary,
that follows directly from Proposition 1 and Theorem 2.

Corollary 1. Let A = A1 ∧ A2 be an arbitrary requirement interface composed
of A1 and A2, I an arbitrary implementation and TσI ,A1 an arbitrary test case
generated from A1. Then, if TestExec(I, TσI ,A1) = fail, then I � A1 ∧A2.

3.3 Traceability

Requirement identifiers as first-class elements in requirement interfaces facilitate
traceability between informal requirements, views and test cases. A test case
generated from a view Ai of an interface A = A1 ∧ . . .∧An is naturally mapped
to the set Ri of requirements. In addition, requirement identifiers enable tracing
violations caught during consistency checking and test case execution back to
the conflicting/violated requirements.

Tracing inconsistent interfaces to conflicting requirements: When we detect
an inconsistency in a requirement interface A defining a set of contracts C, we

Require, Test and Trace IT 123

use QuickXPlain, a standard conflict set detection algorithm [17], in order to
compute a minimal set of contracts C′ ⊆ C such that C′ is inconsistent. Once
we compute C′, we use the requirement mapping function ρ defined in A, to
trace back the set R′ ⊆ R of conflicting requirements.

Tracing fail verdicts to violated requirements: In fully observable interfaces,
every trace induces at most one execution. In that case, a test case resulting
in fail can be traced to a unique set of violated requirements. This is not the
case in general for interfaces with hidden variables. A trace that violates such
an interface may induce multiple executions resulting in fail with different val-
uations of hidden variables, and thus different sets of violated requirements. In
this case, we report all sets to the user, but ignore internal valuations that would
introduce an internal requirement violation before inducing the visible violation.
Again, more details can be found in our technical report [4].

4 Implementation and Experimental Results

Implementation and experimental setup: We present a prototype that imple-
ments our test case generation framework introduced in Section 3. The proto-
type was integrated in our model-based testing toolchain MoMuT7 and named
MoMuT::REQs. The implementation uses Scala 2.10 and the SMT solver Z3.
The tool implements both monolithic and incremental approaches to test case
generation. All experiments were run on a MacBook Pro with a 2.53 GHz Intel
Core 2 Duo Processor and 4 GB RAM.

Demonstrating example: In order to experiment with our implementation,
we model three variants of the buffer behavioral interface. All three variants
model buffers of size 150, with different internal structure. Buffer 1 models a
simple buffer with a single counter variable k. Buffer 2 models a buffer that is
composed of two internal buffers of size 75 each and Buffer 3 models a buffer
that is composed of three internal buffers of size 50 each. We also remodel a
variant of the power consumption interface that created a dependency between
the power used and the state of the internal buffers (idle/used).

We compare the monolithic and incremental approach to test case generation,
by generating tests for the conjunction of the buffer interfaces and the power
consumption interface, and incrementally, by generating tests only for the buffer
interfaces, and completing them with the power consumption interface. Table 1
summarizes the results. The three examples diverge in complexity, expressed in
the number of contracts and variables. Our results show that the incremental
approach outperforms the monolithic one, resulting in speed-ups from 33% to
68%. Results on the consistency check can be found in our technical report [4].

Industrial application: We present an automotive use case from the European
ARTEMIS project8, that partially motivated our work on requirement inter-
faces. The use case was initiated by our industrial partner Infineon and evolves
around building a formal model for analysis and test case generation for the

7 http://www.momut.org
8 https://mbat-artemis.eu

http://www.momut.org
https://mbat-artemis.eu

124 B.K. Aichernig et al.

Table 1. Run-time in seconds for incremental and monolithic test case generation

Contracts # Variables tinc tmon speed-up

Buffer 1 6 6 10 16.8 68 %
Buffer 2 15 12 36.7 48.8 33 %
Buffer 3 20 15 69 115.6 68 %

safing engine of an airbag chip. The requirements document, developed by a
customer of Infineon, is written in natural (English) language. We identified 39
requirements that represent the core of the system’s functionality and iteratively
formalized them in collaboration with the designers of Infineon. The resulting
formal requirement interface is deterministic and consists of 36 contracts.

The formalization process revealed several under-specifications in the infor-
mal requirements that were causing some ambiguities. These ambiguities were
resolved in collaboration with the designers. The consistency check revealed two
inconsistencies between the requirements. Tracing the conflicts back to the infor-
mal requirements allowed their fixing in the customer requirements document.

We generated 21 test cases from the formalized requirements, that were de-
signed to ensure that every boolean internal and output variable is at least
activated once and that every possible state of the underlying finite state ma-
chine is reached at least once. The average length of the test cases was 3.4, but
since the test cases are synchronous, each of the steps is able to trigger sev-
eral inputs and outputs at once. The test cases were used to test the Simulink
model of the system, developed by Infineon as the part of their design process.
The Simulink model of the safing engine consists of a state machine with seven
states, ten smaller blocks transforming the input signals and a Matlab function
calculating the final outputs according to the current state and the input signals.
In order to execute the test cases, Infineons engineers developed a test adapter
that transforms abstract input values from the test cases to actual inputs passed
to the Simulink model. We illustrate a part of the use case with three customer
requirements that give the flavor of the underlying system’s functionality:

r1: There shall be seven operating states for the safing engine: RESET state,
INITIAL state, DIAGNOSTIC state, TEST state, NORMAL state, SAFE state
and DESTRUCTION state.

r2: The safing engine shall change per default from RESET state to INIT state.
r3: On a reset signal, the safing engine shall enter RESET state and stay while

the reset signal is active.

These informal requirements were formalized with the following contracts with
a one to one relationship between requirements and contracts:

c1: true
 state’ = RESET ∨ state’ = INIT ∨ state’ = DIAG ∨ state’ = TEST
∨ state’ = NORM ∨ state’ = SAFE ∨ state’ = DESTR

c2 : state = RESET
 state’ = INIT
c3 : reset’
 state’ = RESET

This case study extends an earlier one [2] with test-case execution and a
detailed mutation analysis evaluating the quality of the generated test cases.

Require, Test and Trace IT 125

We created 66 mutants (six turned out to be equivalent), by flipping every
boolean signal (also internal ones) involved in the Matlab function calculating
the final output signals. Our 21 test cases were able to detect 31 of the 60 non-
equivalent mutants, giving a mutation score of 51.6%. These numbers show that
state and signal coverage is not enough to find all faults and confirm the need to
incorporate a more sophisticated test case generation methodology. Therefore,
we manually added 10 test purposes generating 10 additional test cases. The
combined 31 test cases finally reached a 100% mutation score. This means that
all injected faults were detected. In order to achieve this high mutation score
fully automatically, we will add support for fault-based test-case generation to
our tool, like we recently did for UML [1] and timed automata [3].

5 Related Work

The main inspiration for this work was the introduction of the conjunction op-
eration and the investigation of its properties [11] in the context of synchronous
interface theories [9]. While the mathematical properties of the conjunction in
different interface theories were further studied in [6,21,15], we are not aware of
any similar work related to model-based testing.

Synchronous data-flow modeling [7] has been an active area of research in
the past. The most important synchronous data-flow programming languages
are Lustre [8] and SIGNAL [13]. These languages are implementation languages,
while requirement interfaces enable specifying high-level properties of such pro-
grams. Testing of Lustre-like programs was studied by Raymond et al. [20] and
Papailiopoulou [19]. Compositional properties of specifications in the context
of testing were studied before [25,18,22,5,10]. None of these workes consider
synchronous data-flow specifications, and the compositional properties are in-
vestigated with respect to the parallel composition and hiding operations, but
not conjunction. A different notion of conjunction is introduced for the test case
generation with SAL [14]. In that work, the authors encode test purposes as trap
variables, and conjunct them in order to drive the test case generation process to-
wards reaching all the test purposes with a single test case. Consistency checking
of contracts has been studied in [12], yet for a weaker notion of consistency.

Our specifications using constraints share similarities with the Z specification
language [23], that also follows a multiple-viewpoint approach to structuring a
specification into pieces called schemas. However, a Z schema defines the dynam-
ics of a system in terms of operations. In contrast, our requirement interfaces
follow the style of synchronous languages.

Finally, the application of the TCG and consistency checking tool for require-
ment interfaces and its integration into a set of software engineering tools was
presented in [2]. That work focuses on the requirement-driven testing methodol-
ogy, workflow and tool integration and gives no technical details about require-
ment interfaces. In contrast, this paper provides a sound mathematical theory
for requirements interfaces and their associated incremental TCG, consistency
checking and tracing procedures.

126 B.K. Aichernig et al.

6 Conclusions and Future Work

Wepresented a framework for requirement-drivenmodeling and testing of complex
systems that naturally enablesmultiple-view incrementalmodeling of synchronous
data-flow systems. The formalism enables conformance testing of complex systems
to their requirements and combining partial models via conjunction.

Our requirement-driven framework opens many future directions. We will ex-
tend our procedure to allow generation of adaptive test cases. We will investigate
in the future other compositional operations in the context of testing synchronous
systems such as the parallel composition and quotient. We also plan to study
whether partitioning the requirements into views is feasible via (semi) automa-
tion, based on static analysis of input/output dependencies between require-
ments. We will consider additional coverage criteria and test purposes and will
use our implementation to generate test cases for other industrial-size systems
from our automotive, avionics and railways partners.

Acknowledgment. We are grateful to the anonymous reviewers for their valuable
and detailled feedback. The research leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreements No 269335 and No 332830
and from the Austrian Research Promotion Agency (FFG) under grant agreements
No 829817 and No 838498 for the implementation of the projects MBAT, Combined
Model-based Analysis and Testing of Embedded Systems and CRYSTAL, Critical Sys-
tem Engineering Acceleration.

References

1. Aichernig, B.K., Auer, J., Jöbstl, E., Korošec, R., Krenn, W., Schlick, R., Schmidt,
B.V.: Model-based mutation testing of an industrial measurement device. In: Seidl,
M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 1–19. Springer, Heidelberg
(2014)

2. Bernhard, K.A., Hörmaier, K., Lorber, F., Ničković, D., Schlick, R., Simoneau, D.,
Tiran, S.: Integration of Requirements Engineering and Test-Case Generation via
OSLC. In: QSIC, pp. 117–126 (2014)

3. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants — model-based mu-
tation testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP 2013.
LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013)

4. Aichernig, B.K., Lorber, F., Ničković, D., Tiran, S.: Require, test and trace it.
Technical Report IST-MBT-2014-03, Graz University of Technology, Institute
for Software Technology (2014), https://online.tugraz.at/tug online/voe main2.
getVollText?pDocumentNr=637834&pCurrPk=77579

5. Aiguier, M., Boulanger, F., Kanso, B.: A formal abstract framework for modelling
and testing complex software systems. Theor. Comput. Sci. 455, 66–97 (2012)

6. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

7. Benveniste, A., Caspi, P., Le Guernic, P., Halbwachs, N.: Data-flow synchronous
languages. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 1–45. Springer, Heidelberg (1994)

https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=637834&pCurrPk=77579
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=637834&pCurrPk=77579

Require, Test and Trace IT 127

8. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for
programming synchronous systems. In: POPL, pp. 178–188. ACM Press (1987)

9. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Synchronous and
bidirectional component interfaces. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 414–427. Springer, Heidelberg (2002)

10. Daca, P., Henzinger, T.A., Krenn, W., Ničković, D.: Compositional specifica-
tions for ioco testing: Technical report. Technical report, IST Austria (2014),
http://repository.ist.ac.at/152/

11. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: EMSOFT, pp. 79–88. ACM (2008)

12. Ellen, C., Sieverding, S., Hungar, H.: Detecting consistencies and inconsistencies
of pattern-based functional requirements. In: Lang, F., Flammini, F. (eds.) FMICS
2014. LNCS, vol. 8718, pp. 155–169. Springer, Heidelberg (2014)

13. Gautier, T., Le Guernic, P.: Signal: A declarative language for synchronous pro-
gramming of real-time systems. In: Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274,
pp. 257–277. Springer, Heidelberg (1987)

14. Hamon, G., De Moura, L., Rushby, J.: Automated test generation with sal. CSL
Technical Note (2005)

15. Henzinger, T.A., Ničković, D.: Independent implementability of viewpoints. In:
Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539, pp.
380–395. Springer, Heidelberg (2012)

16. ISO. ISO/DIS 26262-1 - Road vehicles - Functional safety - Part 1 Glossary. Techni-
cal report, International Organization for Standardization / Technical Committee
22 (ISO/TC 22), Geneva, Switzerland (July 2009)

17. Junker, U.: Quickxplain: Preferred explanations and relaxations for over-
constrained problems. In: AAAI, pp. 167–172. AAAI Press (2004)

18. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth-
ods in System Design 34(3), 238–304 (2009)

19. Papailiopoulou, V.: Automatic test generation for lustre/scade programs. In: ASE,
pp. 517–520. IEEE Computer Society, Washington, DC (2008)

20. Raymond, P., Nicollin, X., Halbwachs, N., Weber, D.: Automatic testing of reactive
systems. In: RTSS, pp. 200–209. IEEE Computer Society (1998)

21. Reineke, J., Tripakis, S.: Basic problems in multi-view modeling. Technical Report
UCB/EECS-2014-4, EECS Department, University of California, Berkeley (Jan-
uary 2014)

22. Sampaio, A., Nogueira, S., Mota, A.: Compositional verification of input-output
conformance via csp refinement checking. In: Breitman, K., Cavalcanti, A. (eds.)
ICFEM 2009. LNCS, vol. 5885, pp. 20–48. Springer, Heidelberg (2009)

23. Michael Spivey, J.: Z Notation - a reference manual, 2nd edn. Prentice Hall Inter-
national Series in Computer Science. Prentice Hall (1992)

24. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 17(3), 103–120 (1996)

25. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

http://repository.ist.ac.at/152/

© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 128–145, 2015.
DOI: 10.1007/978-3-319-19458-5_9

Applying Finite State Process Algebra to Formally
Specify a Computational Model of Security Requirements

in the Key2phone-Mobile Access Solution

Sunil Chaudhary1(), Linfeng Li2(), Eleni Berki1,3, Marko Helenius4 , Juha Kela5,
and Markku Turunen1

1 School of Information Sciences, University of Tampere,
Kanslerinrinne 1, Pinni B, 30014, Tampere, Finland

chaudhary.sunil.x@student.uta.fi, eleni.berki@uta.fi,
markku.turunen@sis.uta.fi

2 Information Engineering College, Beijing Institute of Petrochemical Technology,
19 Qingyuan North Rd, Daxing, Beijing, China

lilinfeng@bipt.edu.cn
3 Department of Computer Science and Information Systems, University of Jyväskylä,

P.O. Box 35 (Agora), 40014, Jyväskylä, Finland
4 Department of Pervasive Computing, Tampere University of Technology,

P.O. Box 553, 33101, Tampere, Finland
marko.t.helenius@tut.fi

5 Finwe Ltd., Elektroniikkatie 8, 90590, Oulu, Finland
juha.kela@finwe.fi

Abstract. Key2phone is a mobile access solution which turns mobile phone into
a key for electronic locks, doors and gates. In this paper, we elicit and analyse
the essential and necessary safety and security requirements that need to be
considered for the Key2phone interaction system. The paper elaborates on
suggestions/solutions for the realisation of safety and security concerns
considering the Internet of Things (IoT) infrastructure. The authors structure
these requirements and illustrate particular computational solutions by
deploying the Labelled Transition System Analyser (LTSA), a modelling tool
that supports a process algebra notation called Finite State Process (FSP). While
determining an integrated solution for this research study, the authors point to
key quality factors for successful system functionality.

1 Introduction

People carry their mobile phone most of the time, and this is the main reason that the
mobile phone could be deployed as an alternative of a door-key. There exist many
mobile applications that are available using communication technologies like Near
Field Communication (NFC), Bluetooth, and other. A mobile phone could be used to
unlock e.g. a hotel room, work office, house door; even to open garage and car doors.

Although, the use of a mobile phone as an integrated door-key has several
advantages, it also has various safety and security vulnerabilities and threats. What will

 Applying Finite State Process Algebra to Formally Specify a Computational Model 129

possibly happen when a mobile phone is stolen, lost or misplaced? How will the whole
communication system behave during some severe disasters? For example, work
premises are on fire and people are trapped inside. Will the trapped people have to dial
the door number and enter the Personal Identification Number (PIN) code to open the
door? This can be a time-consuming and in this situation unreliable process, which may
prove fatal when time runs out. Even the slightest vulnerability or threat in this system
can severely hinder the safety and security of the owners, their family, and valuables.
Hence, it is essential to have a comprehensive analysis of personal safety and system
security requirements. Further, there is a need for a resulting formal specification and
verification model of the mobile phone based door access-control system in order to
determine safety and security considerations and integrate them within the system’s
design. The resulted model could help the designers to articulate what they must include
and avoid in order to improve the safety and security of the system.

In this paper, we consider the case study of Key2phone mobile access solution [1].
We provided safety and security suggestions and measures that can be purposeful,
applicable and realisable through implementation in the Key2phone system.

For writing the applicable formal specifications, we utilised the Finite State
Process (FSP) formal specification method, which is a formal process algebra
notation used to generate finite Labelled Transition System (LTS) [2, 3]. By
applicable specifications, we mean only those specifications which can be a part of
the Key2phone interaction system. The formal specifications demonstrate and verify
different safety and security interactions in the Key2phone system. In order to verify
the previous in FSP notation, we used a model checking tool called Labelled
Transition System Analyser (LTSA) [4], which is a verification tool for concurrent
systems and supports FSP for the concise description of components’ behaviour.

This paper is organised as follows: section 2 discusses related work. Section 3 and
4 include brief introductions of the Key2phone system, and FSP and LTSA
respectively. Section 5 further investigates and scrutinises the security vulnerabilities
and threats, and presents their management control; these are exhibited in tabular
representation. Section 6 analyses the safety and security requirements, demonstrating
the interaction support for various security levels in the Key2phone system, utilising
FSP specification models. Section 7 briefly revisits the need for this approach and
concludes on its strengths and limitations

2 Related Work

In general, formal specification models have been employed to present the system
specification in an unambiguous way and discover errors early, already in
requirements specification. This constitutes a significant effort, especially for safety
critical and real-time systems development, where emergent properties such as safety,
reliability and security are very important in practice [5]. Magee and Maibaum [6]
employed FSP to write the formal requirements specification of a fault tolerance
system and LTSA to model and analyse fault tolerance mechanisms in self managed
or self-healing systems. Likewise, the work of Kaisar et al. [7] utilised LTSA to

130 S. Chaudhary et al.

define narrow passageway system operations in terms of a finite state machine and,
thus, verify and validate its architecture-level behaviour.

To our knowledge, there is no other research study that has formalised the safety
and security requirements of a mobile-phone-based door access-control system.
However, there are a few studies, mentioned next, which have analysed the design
and deployment of similar systems and have also considered some security aspects.

Ogri et al. [8] have described their design for a door-locking security system,
which can be operated and controlled by a mobile phone. Regarding security, they
have considered only authentication mechanism(s) in their design. The latter design
overlooks other crucial properties for achieving a level of sound security:
authorization mechanism(s) suited to different users; confirmation of accountability;
integrity of transmitted data; availability of service to authorized users, to mention
just a few of the limitations. Further, they have failed to address emergency cases:
even during an emergency case, a user has to go through all the procedures, i.e. dial
the door number and enter suitable PIN… in order to open the door.

Another study is that of Bauer et al. [9], in which the authors investigated the
usability challenges in building a Smartphone-based access-control system and the
users’ expectations when the system is deployed. Their claim ‘security properties are
unimportant for the user’ is rather controversial and misleading. The degree of
security is contextual and varies according to the needs of individuals [10, 11]. It
cannot, therefore, be generalized for every type of user, merely by conducting studies
on a single type of user, which in their case is university staff. Nevertheless, we
understand the issue ‘failure to open the door’ which is mentioned in [9] as a usability
issue, pertained to security as well, since failure to open the door during a normal
situation can only be a cause of frustration. Naturally and while prioritising properties
the level of significance will be different during any emergency situations e.g. the
building is on fire or there is an earthquake and the door cannot be opened.

3 Key2phone-Mobile Access Solution

Key2phone is a mobile access solution that turns mobile phone into a key for
electronic locks at e.g. industrial and office gates, and generally supports door
automation procedures in an enhanced way. By deploying this solution, a door can be
opened simply by dialing the number assigned to it or with Bluetooth connection.
When the number assigned to a door is dialed, the door control module checks
whether the calling mobile number belongs to a valid user (group) or not. In case of a
valid number, it rejects the call and opens the gate; otherwise, it simply ignores the
call, which means the call is always free of charge. Likewise, when any mobile phone
with authorised Bluetooth address and Key2phone Bluetooth application installed
enters into the Bluetooth range of the door, the door detects it and opens
automatically. The access rights are managed online with a web-based configuration
management system and access policies are transmitted wirelessly to the Key2phone
control module. This mobile access solution is available in two products:

 Applying Finite State Process Algebra to Formally Specify a Computational Model 131

A. Key2phone Easy. This product is suitable for single and multiple electronic locks,
doors, gates or barriers. It supports up to 1000 users per door.
B. Key2phone Access Control. This product can be tailored to communicate with the
most common access control systems. In this product, management of access rights
can be performed via the system interface or with a web configuration tool.

This mobile access solution can be suitable for different usages environments, e.g.
in industry, logistics, harbours, airports, offices, and for resident. Currently, it is
available for Nokia N-Series, Nokia E-Series, and many other Nokia models.

4 LTSA Tool and FSP Notation

LTSA is a verification tool used to specify behaviour modelling or generate LTS.
This tool helps in modeling various processes of a system as a Finite State Machine
(FSM) with well defined mathematical properties, and thus facilitates formal analysis
and mechanical checking and control of the system. It obeys easy to grasp formal
syntax and semantics, and displays the result in an intuitive manner, i.e., simple
graphical representations. Further, a user can animate the LTS by stepping through
the sequences of the actions it models, and model-check the LTS for various
properties, including deadlock freedom, safety and progress properties.

In LTS, the basic building block of a specification is FSP. The major component of
FSP is process, defined by one or more local processes separated by commas. To
write the specification, we have employed the following process operators: action
represented by an action prefix (“->”), choice represented by a bar (“|”), conditional
(“if boolean_condition then expression1 else expression2”), guarded action (when
(boolean_condition) expression), and a primitive local process “STOP”. The process
names start with uppercase and the action names with lowercase. For example,

KEY= (primaryKey->ADMINISTRATOR
 |nonPrimaryKey->GENERAL_USER),

In the above code snippet, primaryKey and nonPrimaryKey are the actions

while KEY, ADMINISTRATOR, and GENERAL_USER are the processes.
Moreover, the choice (“|”) states that after the first action has occurred, the
subsequent behaviour is described by ADMINISTRATOR if the first action was
primaryKey, and GENERAL_USER if the first action was nonPrimaryKey. The
meaning of this code is that when the key is primary, the key bearer is an
administrator otherwise a general user.

The components conditional and guarded action are used as condition checking
statements, and the primitive local process “STOP” is used to terminate the execution
of the program.

132 S. Chaudhary et al.

5 Security Threats/Vulnerabilities and their Management
Control

When dealing with the security threats and vulnerabilities in a system like
Key2phone, which controls the entrance of various premises, people’s physical safety
occupies a top priority. By physical safety, we mean protecting against the occurrence
of any fatalities. Similarly, security also encompasses protection against any misuse
by the authorised users.

For the elicitation of safety and security requirements, firstly we identified
different actors, preconditions, and assumptions in each case of the scenario. This is
followed by expert group opinions. In the first phase of expert opinions, our team
(comprising six security and usability researchers) listed out the safety and security
requirements for each case. In the second phase two external field experts participated
to identify if there are any missing or unnecessary requirements. Last it was decided
that a verifiable and verified design should be among our target.

The final list of threats and vulnerabilities against which the Key2phone system
has to act, along with their management control, are presented in Table 1.

Table 1. Security threats and vulnerabilities and their management control

Security Threats/Vulnerabilities Management Control
Human physical safety Implement safety measures
1.1. It will be inconvenient for a user to dial

the door number to open it during
emergency situations, e.g., a fire breaks
into the building and people are in
panic.

Use different sensors; however, which
sensor(s) will be considered will depend on
the necessity of the user. When a sensor is
triggered, the door opens automatically to
facilitate the escape of people inside the
premises. However, it is necessary to avoid
nuisance or false alarms and handle no-alarm
situations (i.e., sensors fail to act due to worn
out batteries or faulty loose connections)

1.2. People can be trapped in-between or
under the doors while closing them.

Include door entrapment protection
mechanisms, such as motion or proximity
detectors, to determine (and inform) when it is
safe to close the door.

Follow on attack or tailgating Use automatic locking system
1.3. People may enter the premises

immediately behind an authorised user
when it takes time to close the door.

Use automatic locking system to lock the door
automatically, soon after it closes.

Lost , theft, misplace of mobile phone Use mechanism to authenticate user
1.4. The mobility nature of mobile phone

makes it vulnerable to loss or theft.
Misplacing it, even temporarily, due to
the owner’s carelessness, it can be
exposed to unauthorised access.

Use PIN and password to authenticate the
system’ users. There is a possibility that
authorised users may forget their PIN and
password. Hence, PIN or password reset
mechanism can be implemented. Some
alternatives can be graphical password, e-
tokens, and biometrics but they come with
inherent limitations, extra cost and several of
the mobile phones will not support them.

 Applying Finite State Process Algebra to Formally Specify a Computational Model 133

Table 1. (Continued)

Password cracking Strengthen the authentication mechanism
1.5. Even when the device is properly

secured by PIN or password, it is
possible for a determined attacker to
intercept it when the user enters it [10].
Attackers can employ techniques, such
as brute force attacks, password guess,
and dictionary attacks in order to crack
the password (paraphrase) or PIN used
for authentication.

Users must select high entropy password.
Entropy of a password can be increased by using
an uncommon and lengthy composition of
characters (both uppercase and lowercase),
integers, and special characters. However, such
password will decrease its usability. Besides,
users can be blocked after three consequent
attempts of incorrect PIN or password. A danger
is that anyone can abuse it, when adopting
account lockout to lock a legitimate user’s
account. An alternative can be introducing a
delay of 5 sec for the first wrong entry and after
every wrong entry the delay is increased by 5
sec [11].

Bluetooth hacked Improve Bluetooth pairing protocol
1.6. Hackers can intercept the Bluetooth signal

to hack into mobile phone and gain full
control of it. They can employ different
types of attack, such as BlueBug,
HeloMoto, Bluesnarf, Bluesnarf++, and
Bluebugging to take control of victim’s
phone. These attacks are possible when
Bluetooth is left exposed and under full
connection facility. Further, many
times mobile phone users do not change
their Bluetooth passkey and leave the
default one provided by the company.
Such users are easy prey to hackers.

Use the latest version of Bluetooth and always
turn off its discovery and connect modes when
they are not needed [12, 13, 14]. Also use
strong passkey (length and randomness) used
for Bluetooth pairing [12, 13, 14]. More
importantly, verifier should not accept
unknown claimant [14]. Furthermore,
Bluetooth specification time-out period
between repeated attempts can be set that will
increase exponentially [12] to protect from
Bluesnarf attack by guessing the device’s
Media Access Control (MAC) address via a
vicious and enforced attack.

Caller ID spoofing Implement caller ID verification mechanisms
1.7. Attackers can employ ‘caller ID

spoofing’ to fake the authorised mobile
number to open the door.

A solution can be ‘CallerDec’ that builds a
trusted covert channel between the person called
(callee) and the claimed caller, and uses timing
estimation together with the call status to verify
indeed the claimed caller is calling [15]. In the
case of Key2phone, simply authenticating the
caller as mentioned in 1.4 before opening the
door can protect against ‘caller ID spoofing’.

Attacks during data transmission Use of crypto graphical measures
1.8. User’s phone identification is based on

phone number or phone’s Bluetooth
address. Attackers can use man-in-the-
middle attacks, or packet sniffing, or
eavesdropping to intercept data packets
travelling over network.

IPSec, e.g., TSL/SSL can be used for web-based
configuration. Similarly, an upgraded version of
Cellular Message Encryption Algorithm
(CMEA), such as ECMEA and SCMEA [16]
can be used in mobile data transmission.
Further, mobile end-to-end protection can be
used. In case of Bluetooth, it offers built-in
security measures at the link level; for example,
in the Security Mode 3 of Bluetooth, the link-
level authentication and encryption methods are
used for all connections to and from the device.

134 S. Chaudhary et al.

Table 1. (Continued)

Disruption of service to authorized users Implement network protection
1.9. Attackers can employ Denial-of-Service

(DoS), Distributed Denial of Service
(DDoS), network congestion, server
crashing, signal jamming, false
information passed to the piconet
members, etc. to prevent legitimate
users from accessing the service.

Mechanisms for integrity management,
intrusion or anomaly detection systems,
timeliness detection of data, and originality of
data [17] can be implemented. Further,
security defense techniques (e.g., Firewall,
Intrusion Detection System, and other) can be
applied at multi-level and at each level they
should be dissimilar to each other. Blacklisting
the connection request in a suspicious manner
can help to prevent from such attacks to an
extent.

Intentional/accidental attacks by authorised
users

Design suitable policies and ensure that user
adheres to them; implement authorisation and
ensure accountability

1.10. An authorised user can deliberately
misuse and conceal any service or
device. Moreover, there is an equal
chance that s/he accidentally misuses it
and does not realise it.

Apply the least privilege principle for
authorisation. Maintaining logs or audit trails
can help to record each activity of an
authorised user and improve accountability.
Moreover, users who are allowed access for a
limited time should be immediately removed
as soon as the permitted time completes.
Finally, designing suitable policies for the
authorised user and ensuring that they all
understand and adhere to the policies can help
to prevent from accidental misuse.

Attacks using phishing to hack Bluetooth or
obtain PIN and password

Employ security software; design suitable
policies and ensure that users adhere to them;
educate and bring awareness in users;
implement authorization; and use simple
design for security related operations

1.11. Attackers can use technical subterfuge
like keylogger and malware to steal
password. Furthermore, they can
employ social skills to lure potential
victims and hack their Bluetooth.
Similar acts can be deployed even to
know the password or PIN from the
users. In fact, social engineering is a key
threat in information security. Humans
can be the weakest link in information
security [18, 19, 20, 21]. They can
easily be manipulated and are prone to
errors.

It is advisable to use security software like
firewall, anti-virus, and anti-phishing software
and keep them up-to-date. Further, human can
become the strongest link [20]. Design
suitable policies and ensure that users
understood and practiced them. Educating and
bringing awareness in users about the risks can
help in preventing them from falling for social
engineering tricks. Further, equipping users
with simple and intuitive design and usability
in security related tasks [21, 22] can also help
in social engineering cases. In case anyone
becomes a victim of social engineering,
implementing the least privilege principle will
limit the compromise.

 Applying Finite State Process Algebra to Formally Specify a Computational Model 135

Table 1. (Continued)

Vulnerabilities in software and hardware Use high quality hardware and software
1.12. Attackers exploit vulnerabilities in the

software. Likewise, quality of the
hardware against below freezing
temperature as well as above
temperature, high humidity, power loss
problems, and many other situations are
vital from security perspective.

Integrate safety and security requirements with
the system requirements and design process
for validation and verification from the early
stage of the system development [23, 24, 25]
and obey secure coding principles and
practices to write software code [26]. In case
of hardware, design verification and hardware
testing before purchasing can help to improve
the hardware quality [27]. Performing regular
tests using diversified real time scenarios can
help to recognise the bugs and limitations and
fix them on time that is before the product
reaches the users.

6 Formal Specification of the Key2phone System

The main idea behind formalising these specifications using FSP and LTSA is to
increase their computationality/formality and understanding and describe the
evolutionary nature of the requirements under analysis. Running the FSP notation in
LTSA utilising its animation and FSM draw features can help the user to get clearer
picture of the specifications and the ways they interact when implemented in the
system.

We start the formalisation of specification with authorisation function, which can
be a possible mitigation for 1.10 (Table 1). Along with that, the activities of user are
also registered in a log-file in order to guarantee accountability.

Regarding authorisation, there are primary key bearer and non-primary key bearer.
The primary key bearer is the administrative rights holder whilst the non-primary key
bearer is a general user.

/*Declarations of constant, range, and Boolean.*/
const MAXATTEMPT=3
range ATTEMPTRANGE=1..MAXATTEMPT
const MAXHOUR=8
range HOURRANGE=1..MAXHOUR
range BOOL=0..1

/* When an authorised user sends requests for open-
close door operation or mode change, the door control
module processes the requests. */
DOOR_OPERATION= (process->KEY),

/*Users can be a primary key bearer (administrator) or
a non primary key bearer (general user). */
KEY= (primaryKey->ADMINISTRATOR

136 S. Chaudhary et al.

 |nonPrimaryKey->GENERAL_USER),

The primary key bearer is authorised to the following operations: manage mode,
move mode, remote mode, sleep mode, normal mode, and emergency mode. In
contrast, the non-primary key bearer is authorised to only normal mode, move mode
and emergency mode.
/*The administrator is authorised to: configure
settings (manage mode); enable and disable modes like
move mode, sleep mode, and remote mode; open and close
door (normal mode), and receive alerts during emergency
situations (emergency mode)*/
ADMINISTRATOR= (managementOperation->MANAGE_MODE
 |moveOperation->MOVE_MODE
 |sleepOperation->SLEEP_MODE
 |remoteOperation->REMOTE_MODE
 |defaultOperation->NORMAL_MODE
 |emergencyOperation->EMERGENCY_MODE),

/* A general user is authorised to: open and close door
(normal mode); enable and disable move mode; and
receive alerts during emergency situations (emergency
mode).*/
GENERAL_USER= (defaultOperation->NORMAL_MODE
 |moveOperation->MOVE_MODE
 |emergencyOperation->EMERGENCY_MODE),

In manage mode, the primary key bearer can add any new non-primary users,

update or delete the existing non-primary users, download report, and configure
security management rules through configuration management system. Security
management rules can be related to sleep mode, remote mode, and other, for example,
at what time the sleep mode should be enabled or disabled. The primary key bearer
must be authenticated to perform these administrative activities.

But to identify different user types and to prevent misuse from 1.4 (Table 1), it
necessitates authenticating users. For an authentication purpose, username-password
pair can be used, since it is simple to implement and does not add extra costs [28, 29].
However, a delay of a few seconds can be introduced when an incorrect entry is
made, which again exponentially increases after every incorrect attempt to
countermeasure 1.5 (Table 1). The idea is that if somebody employs techniques like
dictionary attack or brute-force attack or password-guess for password cracking, the
attacker will have to wait for the failed delay, thus, forcing them to spend more time
for the task. The National Institute of Standards and Technology [11] recommends a
delay of 5 sec for the first wrong entry and after every next wrong entry the delay is
increased by 5 sec.

/*To perform the management, the administrator has to
be logged-in using username-password pair. */
MANAGE_MODE=(authenticateAdmin-> ADMIN_AUTHENTICATION),

 Applying Finite State Process Algebra to Formally Specify a Computational Model 137

/*A delay of a few seconds, which will increase
exponentially is introduced for every incorrect login
attempt.*/
ADMIN_AUTHENTICATION= (
 correctCredentials->performManagement->
 MANAGEMENT_ACTIVITY
 |incorrectCredentials->introduceExponentialDelay->
 allowRetry-> ADMIN_AUTHENTICATION),
/*During manage mode, the administrator can add new
users; delete or edit the existing users; download
reports; and configure security rules for remote mode
and sleep mode. */
MANAGEMENT_ACTIVITY= ({addUser,removeUser,updateUser,
downloadReport, configureSecurityRules}->
maintainLogEntry->(loginStatus[l:BOOL]->
 if l==1 then
 (continue->MANAGEMENT_ACTIVITY)
 else
 (logOut->DOOR_OPERATION))),

A user can enable or disable move mode only after entering the correct PIN code

(again PIN code is simple to implement and does not add extra costs) through the
Key2phone Bluetooth application. In order to improve the security and protect from
attacks like brute force attack, password guess, and dictionary attack, we have limited
the interaction to only three consecutive attempts of incorrect PIN code before the
number is blocked from opening the door as well as changing the mode. The number
can be unblocked via the web-based configuration management system. A danger
when adopting account lockout could be that anyone can easily abuse it to lock an
authorised user’s account. However, in this case it is difficult, since, the attacker will
first need access to the mobile phone of an authorised user to abuse it.

When enabling the move mode, the mobile-phone’s Bluetooth is also set
discoverable and connectable after the correct PIN code is entered. A time has to be
set for which the move mode has to remain in enabled state. On the one hand it will
relieve the user from separately pressing a button to enable Bluetooth while on the
other hand it will help in protecting against Bluetooth hacking, since the rest of the
time when Bluetooth is not required (i.e., move mode is disabled) it will remain
undiscovered and thus not connectable to counteract 1.6 (Table 1).

The move mode is activated when a user requires frequent door opening. In this
mode, a user is able to open the door just by pressing a button. The door opens when a
valid Bluetooth comes into the door proximity and open-button in the Key2phone
Bluetooth application is pressed. Thus, it will prevent users from a tiresome task of
entering the PIN code each time they open the door.

/*Move mode is used for the occasions when frequent
opening of the door is required. During move mode, a
user can simply dial the door number or reach the door
proximity, select the door he wants to open and press
open-door button in the Key2phone Bluetooth application
to open the door*/

138 S. Chaudhary et al.

MOVE_MODE= (moveModeStatus [m: BOOL] ->
 if m==1 then
 (dialDoorNumber->openDoor->maintainLogEntry->
 protectDoorEntrapment->DOOR_CLOSE
 |bluetoothInRange->selectDoor->pressButton->
 openDoor->maintainLogEntry->
 protectDoorEntrapment-> DOOR_CLOSE)
 else
 (authenticateUser-> MODE_AUTHENTICATION)),
/*To set move mode, the user has to first authenticate
by entering correct PIN code, and provide the time for
which move mode will remain enabled. Moreover, after
the correct PIN code, the user's mobile phone Bluetooth
will set to discoverable and connectable. */
MODE_AUTHENTICATION= (
 correctPIN->setOnShowBluettooth->setTime->moveMode->
 maintainLogEntry ->DOOR_OPERATION
 |incorrectPIN [k: ATTEMPTRANGE]->ATTEMPT_CHECK [k]),

/*When authenticating with PIN code, only three
incorrect attempts are allowed after that the number is
blocked. The number can be unblocked via configuration
management system*/ ATTEMPT_CHECK
[l: ATTEMPTRANGE] = (
 when (l <MAXATTEMPT)
 allowRetry-> MODE_AUTHENTICATION
 |when (l >= MAXATTEMPT)
 blockNumber->STOP),

The sleep mode defines the operational behaviour of the door-lock system during

the night time. The security management rules set by the primary key bearer for this
mode get activated. For example, the primary key bearer can define the time after
which the door has to be locked with no more operation.

/*Sleep mode for the night time, i.e., how the door
operation should behave during the night time. The
primary key bearer can set security rules via the
configuration management system, which will be
activated during sleep mode*/
SLEEP_MODE= (sleepModeStatus[s: BOOL] ->
 if s==1 then
 (applySleepModePolicy->protectDoorEntrapment->
 DOOR_CLOSE)
 else
 (checkWithinSleepTime[c:BOOL]->
 if c==1 then
 (applySleepModePolicy->
 protectDoorEntrapment-> DOOR_CLOSE)
 else
 (default->DOOR_OPERATION))),

 Applying Finite State Process Algebra to Formally Specify a Computational Model 139

The remote mode allows an ability to control the door from remote locations. For
example, when the remote mode is activated, the pre-defined security rules are
automatically loaded and taken into use in order to keep doors locked until the
primary key bearer is approaching. Further, for the functioning of the remote mode, it
is necessary to detect the administrator’s location. Thus, the administrator has to
either manually enable the remote mode when s/he wants or implement geo-location
service, which in turn will continuously record his or her current location and will
enable remote mode when s/he is outside of the city.
/*Remote mode is for the time when the administrator is
out of the town. The primary key bearer can set
security rules via the configuration management system,
which will be activated during remote mode. In order to
know the location of the administrator, his location at
a respective time is recorded.*/
REMOTE_MODE=(adminLocation->respectivTime-> leaveHome
[l:BOOL]->
 if l==1 then
 (activateRemoteModeSecurity->
 protectDoorEntrapment-> DOOR_CLOSE)
 else
 (default-> DOOR_OPERATION)),

Normal mode allows users to open the door after entering the correct PIN code. For

example, during the day time an authorised user can dial the door number or reach the
door proximity with Bluetooth enabled and can enter the correct PIN code to open the
door.

/*During normal mode, users can open the door by
dialing the door number or reach the door proximity
with Bluetooth enabled; but in this case the users will
also need to authenticate by entering the PIN code.*/
NORMAL_MODE= (normalModeStatus [n: BOOL] ->
 if n==1 then
 (correctPIN->openDoor->maintainLogEntry->
 protectDoorEntrapment->DOOR_CLOSE
 |inCorrectPIN[i:ATTEMPTRANGE]->
 AUTHENTICATE_USER[i])
 else
 (protectDoorEntrapment->DOOR_CLOSE)),
/*When authenticating with PIN code, only three
incorrect attempts are allowed after that the number is
blocked. The number can be unblocked via configuration
management system*/
AUTHENTICATE_USER [a: ATTEMPTRANGE] = (
 when (a <MAXATTEMPT)
 allowRetry-> NORMAL_MODE

140 S. Chaudhary et al.

 |when (a >= MAXATTEMPT)
 blockNumber->STOP),

During the emergency mode the system notifies the people inside the premise and
opens the door automatically to facilitate them in escaping the premise in a short time,
which is a solution for 1.1 (Table 1). This mode is enabled when there are serious
situations, for instances when the building is on fire or there is an earthquake. To
correctly operate the emergency mode, it requires additional sensors, e.g. smoke
sensors, to be deployed and connected with the Key2phone system. But the sensor-
system has to protect from nuisance or false alarms and at the same time it must
trigger when there is any true cause. A sensor which automatically adjusts the
sensitivity without affecting its performance during no-alarm situations can prove to
be extremely helpful.
/*Emergency mode is activated during any serious
situation, like, building on fire or there is an
earthquake. During this mode, all the users are alerted
and the door opens automatically.*/
EMERGENCY_MODE= (notifyEmergency->openDoor->STOP),

When closing the door, it is necessary to protect any entrapment in between the

door, i.e. a solution for 1.2 (Table 1).

/*When closing the door, it first checks for any object
in-between the door to prevent entrapment.*/
DOOR_CLOSE=(objectInBetweenDoorStatus [o:BOOL]->
 if o==1 then
 (openDoor->DOOR_CLOSE)
 else
 (closeDoor->DOOR_OPERATION)).

The authentication mechanism will also prevent caller ID spoofing, i.e., 1.7
(Table 1), since fake caller will fail to open the door without a valid PIN code.
Moreover, blocking the mobile number dialing the door in suspicious ways can help
in protecting from DoS and DDoS attacks, a mitigation for 1.9 (Table 1). Likewise,
open-door operation has always been immediately followed by close-door operation,
which can be helpful to prevent tailgating, a solution for 1.3 (Table 1).

The remaining vulnerabilities 1.8, 1.11, and 1.12 (Table 1) are not included in the
FSP notations since they deal with data transmission, people, and employed
hardware/software. In practice, service from third party SSL/TLS provider is used to
encrypt transmitted data to maintain their confidentiality and integrity and, therefore
1.8 (Table 1) is out of our scope. Similarly, identifying vulnerabilities in people, i.e.,
1.11 (Table 1) to suggest suitable mitigations for them is a wide domain and will need
a separate future study, so even in the Table 1 we suggested general but generic
mitigations. Last, vulnerabilities due to the quality of hardware and software are again

 Applying Finite State Process Algebra to Formally Specify a Computational Model 141

a domain which will need a separate study to suggest appropriate mitigations. Thus,
only formal abstraction suggestions are included in the table.

Fig 1 is the FSM model of door operation. State ‘0’ is the initial state and state ‘2’
is the final state of the non-primary key bearer whereas state’3’ is the final state of the
primary key bearer. State ‘-1’ is the unreachable state which occurred in the figure
because it is a result of executing only a part of the FSP notation encoded of the
Key2phone system. The complete FSM model resulted by executing the complete
FSP notation encoded of the Key2phone system (where state ‘-1’ does not occur)
cannot be fitted in this paper in a readable clear form because the graphical model is
too large and abstract with complex graphical detail. For example, in Fig 3 which
presents the FSM model of the emergency mode the resulted graph was obtained by
executing its complete code and, thus, does not have ‘-1’ state. In order to obtain the
complete FSM, it simply requires copying all the aforementioned code snippets (of
the current section) sequentially and executing it using LTSA.

The FSM in the Fig 1 conveys that when the door operation is processed, if it is the
primary key bearer it moves to state ‘3’ otherwise state’2’. From state ‘3’
administrative activities can be performed whereas from state ‘2’ only activities
authorised to a general user can be performed.

Likewise, Fig 2 is the respective animation of the FSM in Fig 1. Clicking the
checkbox with a checkmark, which also means selecting an activity, will lead to the
activity which has to be performed next. For example, in the beginning the checkmark
was in ‘process’ through which, when clicked checkmark moves to ‘primarykey’ and
‘nonprimarykey’ conveying the same information as the FSM. This increases the
understandability and simplicity of the formal FSM-based specifications, since a user
does not have to understand each code, but can instead just watch the animation of the
specification.

Fig. 1. FSM of Door Operation showing the authorisation provided to the primary key and non-
primary key bearers. State ‘0’ is the initial state and states ‘2’ and ’3’ are the final state of the
non-primary key and primary key bearers respectively. State ‘-1’ is unreachable state.

142 S. Chaudhary et al.

Fig. 2. Animation of Door Operation in which clicking the checkbox with check mark (i.e.,
selecting activity) will proceed to the activity which has to be performed next

Fig. 3. FSM of Emergency Mode in which state ‘0’ is the initial state and state ‘2’ is the final
state

Figures 1-3 above are just a small sample of the graphs generated while executing
the formal specification of this case study.

7 Conclusions and Limitations

We elicited, analysed, and formally modelled safety and security requirements, which
should be deliberated and implemented in the Key2phone system. Further, we
described and represented the requirements in a formal language [see e.g. reference
30] and automated tool that cater for formal system specification. In relation to
personal safety, we suggested i) an automatic opening of door during emergency
situations and ii) the inclusion of a door entrapment protection mechanism. Likewise,
we expressed and analysed security concerns for the protection against physical,
syntactic, and semantic attacks. In physical attacks we consider, for instance, theft or
misplace of mobile phone. Similarly, in syntactic attacks we raised the issues
primarily associated with integrated technologies, such as Bluetooth and mobile
technology data transmission. Regarding semantic attacks, we support that measures
merely focused on system’s design are not adequate because they cannot eliminate all
the possible risks and vulnerabilities. Therefore, the respective organizations should
have suitable policies and ways to ensure that those policies are adhered by the users.

 Applying Finite State Process Algebra to Formally Specify a Computational Model 143

Moreover, to facilitate users in implementing safety and security measures
consistently and correctly, the usability of the interaction interface has to be such that
it will i) lessen the users’ burden and ii) protect the system from users’ (conscious or
unconscious) aggressive behaviour [31].

An important fact to remember while applying safety and security design
principles is that they are contextual. So the respective persons/organisations have to
determine which level of safety and security is appropriate for them. Furthermore,
different countries have their own recommended standard(s) for door functioning, so
it is necessary to follow them. Meanwhile, an implementation of safety and security
requirements, counter actions and counter measures comes with cost. In general,
safety and security features are not cost-effective. Therefore, selecting the degree of
safety and security depending on the sensitivity and contextual background of user
scenarios can result in reduced (unnecessary) expenses.

An equally important reality is that a mobile phone device is battery powered. Any
unnecessary activities (e.g., enabling Bluetooth all the time or running the application
even when it is not needed …) will also strain the battery. Further, any intensive
computing tasks related to security checks (e.g., use of biometrics for authentication,
unnecessary code execution …) can result in an accelerated battery drain.

Our work does not discuss in detail the severity of the mentioned safety and
security issues; the main aim has so far been to provide design solution based on
formal specification, which would naturally lead to system automation. Our design
solution also does not cover risks from Subscriber Identity Module (SIM) cloning,
and limitations in mobile phone technology such as threats from malicious software.
A feature called ‘remote mode’ learns the location and the respective
time of the primary user. This can raise complications for users who consider it
a privacy breach. Last but not least, our work does not consider the impact in people
with hearing or vision disability who also need to open doors in their daily life.
Ongoing and future R&D work will deal with the above and also concentrate on the
proposed algorithm’s computational complexity, delay measurements, and energy
spending.

Acknowledgments. This work has financially been supported by TEKES (The National
Research Agency of Finland) and is of the DIGILE Internet-of-Things (IoT) research
programme. The content is a deliverable of the WP4: Human Interaction. We sincerely
thank Professor Maria Papadopouli from The University of Crete and Ms Yan Zhao as Nokia
corporation’s ex-employee for their useful insights and very constructive feedback.

References

1. Finwe Ltd.: Key2phone Mobile Access Solution,
http://key2phone.com/english_index.html (cited February 23, 2014)

2. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs, 2nd edn. John Wiley
& Sons (2006) ISBN: 0470093552

3. Imperial College, London: FSP Notation, http://www.doc.ic.ac.uk/~jnm/
LTSdocumention/FSP-notation.html (cited February 23, 2014)

144 S. Chaudhary et al.

4. Labelled Transition System Analyser V3.0, http://www.doc.ic.ac.uk/~jnm/
book/ltsa/LTSA_applet.html (cited February 23, 2014)

5. Sommerville, I.: Software Engineering: Dependability and Security Specification, 9th edn.,
pp. 309–340. Pearson Education Inc. (2011) ISBN-13: 978-0-13-703515-1

6. Magee, J., Maibaum, T.: Towards Specification, Modelling and Analysis of Fault
Tolerance in Self Managed Systems. In: Proceedings of the International Workshop on
Self-Adaptation and Self-Managing Systems, Shanghai, China, May 21-22, pp. 30–36
(2006), doi:10.1145/1137677.1137684

7. Kaisar, E., Austin, M., Papadimitriou, S.: Formal Development and Evaluation of Narrow
Passageway System Operations. European Transport Trasporti Europei 34, 88–104 (2006)

8. Orgi, U.J., Okwong, D.E.B., Etim, A.: Designing and Construction of Door Locking
Security System Using GSM. IJECS 2(7), 2235–2257 (2013) ISSN: 2319-7242

9. Bauer, L., Cranor, L.F., Reiter, M.K., Vaniea, K.: Lessons Learned from the Deployment
of a Smartphone-Based Access-Control System. In: Proceedings of Symposium on Usable
Privacy and Security (SOUPS), Pittsburgh, PA, USA, July 18-20, pp. 64–75 (2007),
doi:10.1145/1280680.1280689

10. Symantec Inc.: Bluetooth Security Review, http://www.symantec.com/
connect/articles/bluetooth-security-review-part-1 (cited February
23, 2014)

11. Scarfone, K., Souppaya, M.: Guide to Enterprise Password Management:
Recommendations of the National Institute of Standards and Technology. National
Institute of Standard and Technology (NIST) Special Publication 800-118 (2009)
http://csrc.nist.gov/publications/drafts/800-118/draft-
sp800-118.pdf (cited February 3, 2014)

12. Scarfone, K., Padgette, J.: Guide to Bluetooth Security: Recommendations of the National
Institute of Standards and Technology. NIST Special Publication 800-121 (2008),
http://csrc.nist.gov/publications/drafts/800-121r1/Draft-
SP800-121_Rev1.pdf (cited February 3, 2014)

13. National Security Agency (NSA): Bluetooth Security, http://www.nsa.gov/ia/_
files/factsheets/i732-016r-07.pdf (cited February 2, 2014)

14. Singelée, D., Preneel, B.: Improved pairing protocol for bluetooth. In: Kunz, T., Ravi, S.S.
(eds.) ADHOC-NOW 2006. LNCS, vol. 4104, pp. 252–265. Springer, Heidelberg (2006)

15. Mustafa, H., Sadeghi, A.R., Schulz, S., Xu, W.: You Can Call But Can’t Hide: Detecting
Called ID Spoofing Attacks. In: The Proceedings of 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Atlanta Georgia USA,
June 23-26 (2014)

16. Cryptome: Common Cryptographic Algorithms. Revision D.1 publication version. Report
no. TR45.AHAG (2000), http://cryptome.org/espy/TR45-ccad1.pdf (cited
January 4 2014)

17. Frantti, T., Savola, R., Hietalahti, H.: A Risk-Driven Security Analysis and Metrics
Development for WSN-MCN Router. In: Proceedings of ICTC 2013, pp. 342–347 (2013),
doi:10.1109/ICTC.2013.6675370

18. Bagnall, P.: Improving Visibility. ITNOW 54(3), 30–32 (2012),
doi:10.1093/itnow/bws063

19. Sasse, M.A., Brostoff, S., Weirich, D.: Transforming the ‘Weakest Link’- A
Human/Computer Interaction Approach to Usable and Effective Security. BT Technology
Journal 19(3), 122–131 (2001), doi:10.1023/A:1011902718709

20. Niblett, G.: Securing the Human. ITNOW 54(3), 25 (2012), doi: 10.1093/itnow/bws063

 Applying Finite State Process Algebra to Formally Specify a Computational Model 145

21. Whitten, A., Tygar, J.D.: Usability of Security: A Case Study. Carnegie Mellon
University, CMU-CS-98-155 (1998), http://reports-archive.adm.cs.cmu.
edu/anon/1998/abstracts/98-155.html (cited February 2, 2014)

22. Schultz, E.E., Proctor, R.W., Lien, M.C., Salvendy, G.: Usability and Security an
Appraisal of Usability Issues in Information Security. Computer & Security 20(7),
620–634 (2001) ISSN: 0167-4048/01

23. Leveson, N.G.: Intent Specifications: An Approach to Building Human-Centered
Specifications. IEEE Transactions on Software Engineering SE-26 (2000)

24. Zafar, S., Dormey, R.G.: Integrating Safety and Security Requirements into Design of an
Embedded System. In: The Proceedings of 12th Asia Pacific Software Engineering
Conference, Taipei, Taiwan, December 15-17 (2005)

25. Flechais, I.: Integrating security and usability into the requirements and design process.
Int. J. Electronic Security and Digital Forensics 1(1) (2007)

26. Graff, M.G., van Wyk, K.R.: Secure Coding Principles and Practices. O’Reilly (June
2003) ISBN: 978-0-596-55601-3

27. Martin, R.J., Mathur, A.P.: Software and Hardware Quality Assurance: Towards a
Common Platform for High Reliability. In: Proceedings of IEEE International Conference
on Communications 1990, Atlanta Georgia, USA, April 16-19, vol. 4, pp. 1324–1328
(1990), doi:10.1109/ICC.1990.117284

28. Li, L., Berki, E., Helenius, M., Savola, R.: New Usability Metrices for Authentication
Mechanisms. In: Proceedings of SQM 2012, Tampere, Finland, August 20-23, pp.
239–250 (2012)

29. Bonneau, J., Herley, C., Oorschot, P.C., Stanjano, F.: A Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes. In: Proceedings
of IEEE Symposium on Security and Privacy, pp. 553–567 (2012),
doi:10.1109/SP.2012.44(2012)

30. Diller, A.: Z: An Introduction to Formal Methods, 2nd edn. John Wiley & Sons Ltd.,
Chichester (1994) ISBN: 978-0-471-93973-3

31. Kainda, R., Flechais, I., Roscoe, A.W.: Security and Usability. In: Proceedings of ARES
2010, pp. 275–282 (2010), doi:10.1109/ARES.2010.77

Timed Mobility and Timed Communication

for Critical Systems

Bogdan Aman(�) and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science,
Blvd. Carol I no.11, 700506, Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. We present a simple but elegant prototyping language for
describing real-time systems including specific features as timeouts, ex-
plicit locations, timed migration and timed communication. The parallel
execution of a step is provided by multiset labelled transitions. In order
to illustrate its features, we describe a railway control system. Moreover,
we define some behavioural equivalences matching multisets of actions
that could happen in a given range of time (up to a timeout). We define
the strong time-bounded bisimulation and the strong open time-bounded
bisimulation, and prove that the latter one is a congruence. By using var-
ious bisimulations over the behaviours of real-time systems, we can check
which behaviours are closer to an optimal and safe behaviour.

1 Introduction

To emphasize real-time aspects in critical systems, we use our prototyping lan-
guage called rTiMo (real Timed Mobility) having specific features as timeouts,
explicit locations, timed migration and timed communication. The timed con-
straints on migration and communication are used to coordinate interactions
among various processes in time-aware systems. A notable advantage of using
rTiMo to describe real-time critical systems is the possibility to express natural
compositionality, explicit mobility, parallel execution of actions, scalable speci-
fication of complex systems in a modular fashion, and behavioural equivalences
between matching multisets of actions that could happen in a given range of
time (up to a timeout). Moreover, describing processes in rTiMo allows an au-
tomatic verification by using the model checking capabilities of Uppaal [1]. Here
we emphasize on the behaviours of the critical systems depending not only on
the order of actions, but also on the time at which the actions are performed.
Thus, correctness and performances issues are closely related. When choosing
which behavioural equivalence relation to adopt for a certain time-aware sys-
tem, we should decide what properties should be preserved by the equivalence
relation and how behaves the reliable system taken as reference. On the other
hand, all the equivalence relations should be compositional with respect to the
main constructs of the language: for example, if two systems are equivalent, then
they remain equivalent when composed in parallel with the same third system.
This allows compositional reasoning, and so each parallel component can be
substituted by equivalent ones.

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 146–161, 2015.
DOI: 10.1007/978-3-319-19458-5_10

Timed Mobility and Timed Communication for Critical Systems 147

In critical systems the time issues are essential. A correct evolution depends
not only on the actions taken, but also when the actions happen. A system may
crash if an action is taken too early or too late. We illustrate how rTiMoworks
by describing a railway control system, a well-known example of a real-time
system [11]. The system used in this paper is composed of two railways that
intersect on a mobile bridge, together with several trains that want to cross the
bridge. The mobile bridge is used to allow ships sail on the river below. The most
important security rule is to avoid collision by prohibiting more than one train
to cross the bridge at any given moment. The railway crossing is equipped with
a controller that either allows or stops trains from crossing, depending on the
state of the bridge (up or down). We use new temporal bisimilarities to define
equivalence classes of trains offering similar services with respect to the waiting
time (possibly up to an acceptable time difference). By using various bisimu-
lations over the behaviours of real-time critical systems, we can identify which
behaviours are closer to an optimal and safe behaviour (i.e., reductions work
as expected) and compare it with sub-optimal ones containing faults (unaccept-
able reductions). The bisimulations can return some useful information about
the compared processes: a qualitative indication that a sub-optimal behaviour
might be present, and also quantitative information about the possible location
or moment of a fault.

2 rTiMo : Syntax and Semantics

In rTiMo the processes can migrate between different locations of a distributed
environment consisting of a number of explicit distinct locations. Timing con-
straints over migration and communication actions are used to coordinate pro-
cesses in time and space. The passage of time in rTiMo is described with respect
to a real-time global clock, while migration and communication actions are per-
formed in a maximal parallel manner. Timing constraints for migration allow one
to specify a temporal timeout after which a mobile process must move to another
location. Two processes may communicate only if they are present at the same
location. In rTiMo, the transitions caused by performing actions with timeouts
are alternated with continuous transitions. The semantics of rTiMo is provided
by multiset labelled transitions in which multisets of actions are executed in
parallel (in one step).

Timing constraints applied to mobile processes allow us to specify how many
time units are required by a process to move from one location to another. A
timer in rTiMo is denoted by Δt, where t ∈ R+. Such a timer is associated with
a migration action such as goΔtbridge then P indicating that process P moves
to location bridge after t time units. A timer Δ5 associated with an output
communication process aΔ5!〈z〉 then P else Q makes the channel a available
for communication (namely it can send z) for a period of 5 time units. It is also
possible to restrict the waiting time for an input communication process aΔ4?(x)
then P else Q along a channel a; if the interaction does not happen before the
timeout 4, the process gives up and continues as the alternative process Q.

148 B. Aman and G. Ciobanu

The syntax of rTiMo is given in Table 1, where the following are assumed:
• a set Loc of locations, a set Chan of communication channels, and a set Id
of process identifiers (each id ∈ Id has its arity mid);

• for each id ∈ Id there is a unique process definition id(u1, . . . , umid
)
def
= Pid,

where the distinct variables ui are parameters;
• a ∈ Chan is a communication channel; l is a location or a location variable;
• t ∈ R+ is a timeout of an action; u is a tuple of variables;
• v is a tuple of expressions built from values, variables and allowed operations.

Table 1. rTiMo Syntax

Processes P,Q ::= aΔt!〈v〉 then P else Q � (output)
aΔt?(u) then P else Q � (input)
goΔtl then P � (move)
0 � (termination)
id(v) � (recursion)
P | Q (parallel)

Located Processes L ::= l[[P]]
Systems N ::= L � L | N

The only variable binding constructor is aΔt?(u) then P else Q that binds the
variable u within P (but not within Q). fv(P) is used to denote the free variables
of a process P (and similarly for systems); for a process definition, is assumed
that fv(Pid) ⊆ {u1, . . . , umid

}, where ui are the process parameters. Processes
are defined up-to an alpha-conversion, and {v/u, . . .}P denotes P in which all
free occurrences of the variable u are replaced by v, eventually after alpha-
converting P in order to avoid clashes.

Mobility is provided by a process goΔtl then P that describes the migration
from the current location to the location indicated by l after t time units. Since l
can be a variable, and so its value is assigned dynamically through communica-
tion with other processes, this form of migration supports a flexible scheme for
the movement of processes from one location to another. Thus, the behaviour can
adapt to various changes of the distributed environment. Processes are further
constructed from the (terminated) process 0, and parallel composition P | Q. A
located process l[[P]] specifies a process P running at location l, and a system
is built from its components L | N . A system N is well-formed if there are no
free variables in N .

Operational Semantics. The first component of the operational semantics of
rTiMo is the structural equivalence ≡ over systems. The structural equivalence
is the smallest congruence such that the equalities in Table 2 hold. Essentially,
the role of≡ is to rearrange a system in order to apply the rules of the operational
semantics given in Table 3. Using the equalities of Table 2, a given system N
can always be transformed into a finite parallel composition of located processes
of the form l1[[P1]] | . . . | ln[[Pn]] such that no process Pi has the parallel
composition operator at its topmost level. Each located process li[[Pi]] is called
a component of N , and the whole expression l1[[P1]] | . . . | ln[[Pn]] is called a
component decomposition of the system N .

Timed Mobility and Timed Communication for Critical Systems 149

Table 2. rTiMo Structural Congruence

(NNULL) N | l[[0]] ≡ N
(NCOMM) N | N ′ ≡ N ′ | N
(NASSOC) (N | N ′) | N ′′ ≡ N | (N ′ | N ′′)
(NSPLIT) l[[P | Q]] ≡ l[[P]] | l[[Q]]

The operational semantics rules of rTiMo are presented in Table 3. The mul-

tiset labelled transitions of form N
Λ−→ N ′ use a multiset Λ to indicate the actions

executed in parallel in one step. When the multiset Λ contains only one action λ,

in order to simplify the notation, N
{λ}−−→ N ′ is simply written as N

λ−→ N ′. The
transitions of form N

t� N ′ represent a time step of length t.

Table 3. rTiMo Operational Semantics

(Stop) l[[0]] � λ−→ (DStop) l[[0]]
t� l[[0]]

(DMove) if t ≥ t′ then l[[goΔtl′ then P]]
t′� l[[goΔt−t′ l′ then P]]

(Move0) l[[goΔ0l′ then P]]
l�l′−−→ l′[[P]]

(Com) l[[aΔt!〈v〉 then P else Q | aΔt′?(u) then P ′ else Q′]]
{v/u}@l−−−−−→ l[[P | {v/u}P ′]]

(DPut) if t ≥ t′ > 0 then l[[aΔt!〈v〉 then P else Q]]
t′� l[[aΔt−t′ !〈v〉 then P else Q]]

(Put0) l[[aΔ0!〈v〉 then P else Q]]
a!Δ0@l−−−−−→ l[[Q]]

(DGet) if t ≥ t′ > 0 then l[[aΔt?(u) then P else Q]]
t′� l[[aΔt−t′?(u) then P else Q]]

(Get0) l[[aΔ0?(u) then P else Q]]
a?Δ0@l−−−−−→ l[[Q]]

(DCall) if l[[{v/x}Pid]]
t� l[[P ′

id]] and id(v)
def
= Pid then l[[id(v)]]

t� l[[P ′
id]]

(Call) if l[[{v/x}Pid]]
id@l−−−→ l[[P ′

id]] and id(v)
def
= Pid then l[[id(v)]]

id@l−−−→ l[[P ′
id]]

(DPar) if N1
t� N ′

1, N2
t� N ′

2 and N1 | N2 � λ−→ then N1 | N2
t� N ′

1 | N ′
2

(Par) if N1
Λ1−−→ N ′

1 and N2
Λ2−−→ N ′

2 then N1 | N2
Λ1∪Λ2−−−−→ N ′

1 | N ′
2

(DEquiv) if N ≡ N ′, N ′ t� N ′′ and N ′′ ≡ N ′′′ then N
t� N ′′′

(Equiv) if N ≡ N ′, N ′ Λ−→ N ′′ and N ′′ ≡ N ′′′ then N
Λ−→ N ′′′

In rule (Move0), the process goΔ0l′ then P migrates from location l to loca-
tion l′ and evolves as process P . In rule (Com), a process aΔt!〈v〉 then P else Q
located at locationl, succeeds in sending a tuple of values v over channel a to pro-
cess aΔt?(u) then P ′ else Q′ also located at l. Both processes continue to execute
at location l, the first one as P and the second one as {v/u}P ′. If a communica-
tion action has a timer equal to 0, then by using the rule (Put0) for output action
or the rule (Get0) for input action, the generic process aΔ0 ∗ then P else Q
where ∗ ∈ {!〈v〉, ?(x)} continues as the process Q. Rule (Call) describes the
evolution of a recursion process. The rules (Equiv) and (DEquiv) are used to
rearrange a system in order to apply a rule. Rule (Par) is used to compose

150 B. Aman and G. Ciobanu

larger systems from smaller ones by putting them in parallel, and considering
the union of multisets of actions.

The rules devoted to the passing of time are starting with D. For instance,

in rule (DPar), N1 | N2 	 λ−→ means that no action λ (i.e, an action labelled by
l′ � l, {v/u}@l, id@l, goΔ0@l, a?Δ0@l or a!Δ0@l) can be applied in the system
N1 | N2. Negative premises are used to denote the fact that the passing to a new
step is performed based on the absence of actions; the use of negative premises
does not lead to an inconsistent set of rules.

A complete computational step is captured by a derivation of the form:

N
Λ−→ N1

t� N ′.
This means that a complete step is a parallel execution of individual actions

of Λ followed by a time step. Performing a complete step N
Λ−→ N1

t� N ′ means
that N ′ is directly reachable from N . If there is no applicable action (Λ = ∅),
N

Λ−→ N1
t� N ′ is written N

t� N ′ to indicate (only) the time progress.

Proposition 1. For all systems N , N ′ and N ′′, the following statements hold:

1. If N
t�N ′ and N

t�N ′′, then N ′≡N ′′;

2. N
(t+t′)� N ′ if and only if there is a N ′′ such that N

t� N ′′ and N ′′ t′� N ′.

The first item of Proposition 1 states that the passage of time does not intro-
duce any nondeterminism into the execution of a process. Moreover, if a process
is able to evolve to a certain time t, then it must evolve through every time
moment before t; this ensures that the process evolves continuously.

3 Modelling Critical Systems by Using rTiMo

The use of rTiMo for specifying critical systems is illustrated by considering
a railway bridge controller, a real-time problem concerned with the control of
accessing a mobile bridge by several trains according to the rule that the bridge
can be accessed only by one train at a time. The system is defined as a number
of trains (we use three trains), two railways (each divided into two sections on
each side of the bridge), and a mobile bridge that can allow ships to sail on the
river below (the bridge is up) or not (the bridge is down). This is a simplified
version of the system described in [11]. Since not all the actions can take place
simultaneously, their delays are modelled by timers.

The initial system is described in rTiMoby:

railway1a[[train1 | train3]] | railway1b[[0]] | railway2a[[train2]] | railway2b[[0]]
| bridge[[operate | control1]],

Timed Mobility and Timed Communication for Critical Systems 151

where the processes placed inside locations are as defined below.

Fig. 1. A railway crossing

In what follows branches that continue with a 0 process are omitted.
Waiting indefinitely on a channel a is abstracted by using the timer Δ∞.

train1 = goΔ15bridge then apprΔ20!〈train1, railway1a, railway1b〉
| stopΔ25?(x) then moveΔ∞?(y)

then (goΔ3bridge then goΔ7railway1b then train1′

| goΔ10bridge then leaveΔ1!〈train1〉)
else (goΔ2bridge then goΔ7railway1b then train1′

| goΔ9bridge then leaveΔ1!〈train1〉)
train2 = goΔ11bridge then apprΔ20!〈train2, railway2a, railway2b〉

| stopΔ21?(x) then moveΔ∞?(y) then (goΔ2bridge

then goΔ6railway2b then train2′

| goΔ8bridge then leaveΔ1!〈train2〉)
else (goΔ1bridge then goΔ6railway1b then train2′

| goΔ7bridge then leaveΔ1!〈train2〉)
train3 = goΔ1bridge then apprΔ20!〈train3, railway1a, railway2b〉

| stopΔ11?(x)then moveΔ∞?(y)
then (goΔ1bridge then goΔ5railway2b then train3′

| goΔ6bridge then leaveΔ1!〈train3〉)
else (goΔ0.5bridge then goΔ5railway1b then train3′

| goΔ5.5bridge then leaveΔ1!〈train3〉)
operate = downΔ∞?(v) then upΔ∞?(w) then operate

control1 = apprΔ∞?(x1, y1, z1) then (downΔ1!〈x1〉 | control0 | control2)
control0 = leaveΔ∞?(x) then (upΔ1!〈x1〉 | unblockΔ∞!〈x1〉)
controli = apprΔ∞?(xi, yi, zi)

then [goΔ0yi then stopΔ1!〈xi〉 | goΔ10iyi then moveΔ1!〈xi〉
| waitΔ10i?(x) then 0 else (downΔ10!〈x1〉 | control0)
| unblockΔ1?(z) then controli−1 else controli+1]

A train movement is abstractly modelled using go actions to describe the
migrations between the locations of the system (the parts of the railways and the
bridge). The synchronization between the controllers operating the bridge and
the trains is modelled by communication actions. When a train is approaching,
it communicates with the controli on channel appr, announcing the name of
the train, the current location and the destination. The timer Δ20 means that
the controli has to acknowledge in at most 20 units of time that the train is
approaching. If the bridge is occupied, the train has to be stopped in 10 units
of time from the receiving of the approach message; otherwise the train goes
to location bridge. When the controli decides to stop a train, it does it by

152 B. Aman and G. Ciobanu

synchronizing on channel stop at the train location. After a train was stopped,
it waits for the synchronization on the channel move allowing it to cross the
bridge. It can be noticed that if a train is stopped, then it takes a longer period
of time to cross the bridge.

The bridge has to ensure the following safety properties: the bridge is down
whenever a train is at the crossing, and it prevents trains crossing when another
train is engaged in crossing. The controller controli interacts with the incoming
trains, instruct them what to do (e.g., stop or move) and sends messages to
control the operation of the bridge (either up or down).

In what follows are written some evolution steps for the system described
above. For each process are written only the actions to be applied next (e.g.,
the train1 process is represented as train1 = goΔ15bridge . . . | stopΔ25?(x) . . .).
In order to follow easily the evolution, the reductions are performed one after
another instead of an entire multiset of reductions; the whole parallel step is

delimited by the time steps
t�. To ease the reading, we bold the actions or the

processes that are executed in the next step. We illustrate only a few reductions
just to give an idea how the system evolves.

railway1a[[train1 | train3]] | railway2a[[train2]] | railway1b[[0]] | railway2b[[0]]
| bridge[[operate | control1]]

1� railway1a[[goΔ14bridge . . . | stopΔ24?(x) . . .
| goΔ0bridge . . . | stopΔ10?(x) . . .]]

| railway2a[[goΔ10bridge . . . | stopΔ20?(x) . . .]]
| railway1b[[0]] | railway2b[[0]] | bridge[[operate | control1]]

railway1a�bridge−−−−−−−−−−−→ railway1a[[goΔ14bridge . . . | stopΔ24?(x) . . . |stopΔ10?(x) . . .]]
| railway2a[[goΔ10bridge . . . | stopΔ20?(x) . . .]] | railway1b[[0]] | railway2b[[0]]
| bridge[[operate | control1 | apprΔ20!〈train3, railway1a, railway2b〉]]

{(train3,railway1a,railway2b)/(x1,y1,z1)}@bridge−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
railway1a[[goΔ14bridge . . . | stopΔ24?(x) . . . | stopΔ10?(x) . . .]]
| railway2a[[goΔ10bridge . . . | stopΔ20?(x) . . .]] | railway1b[[0]] | railway2b[[0]]
| bridge[[operate | downΔ1!〈train3〉
| {(train3, railway1a, railway2b)/(x1, y1, z1)}control0
| {(train3, railway1a, railway2b)/(x1, y1, z1)}control2]]

{train3/v}@bridge−−−−−−−−−−−−→ railway1a[[goΔ14bridge . . . | stopΔ24?(x) . . . | stopΔ10?(x) . . .]]
| railway2a[[goΔ10bridge . . . | stopΔ20?(x) . . .]] | railway1b[[0]] | railway2b[[0]]
| bridge[[upΔ∞?(w) . . . | {(train3, railway1a, railway2b)/(x1, y1, z1)}control0

| {(train3, railway1a, railway2b)/(x1, y1, z1)}control2]]
10� . . .

An important advantage of using rTiMo to describe time-aware systems is the
possibility to verify certain interesting real-time properties such as safety prop-
erties (a specified error cannot occur) and bounded liveness properties (configu-
ration reachability within a certain amount of time) by using the model checking
capabilities of the software tool Uppaal . This is possible due to the relationship
between rTiMo and timed safety automata presented in [1], allowing a natural
use of the software tool Uppaal for verification of critical systems described in
rTiMo .

Timed Mobility and Timed Communication for Critical Systems 153

4 Real-Time Behavioral Equivalences in rTiMo

Bisimulation is one of the important notion related to concurrent complex sys-
tems [15]. We focus here on behavioural equivalences over multiset labelled tran-
sition systems; unlike the classical definition in which two systems are equivalent
if they match each other’s actions, in this paper we consider that two systems are
equivalent if they match each other’s multiset of actions. Moreover, this could
happen in a certain range of time (up to a timeout). An advantage of equiva-
lences defined in this way is that one could aim at obtaining a correspondence
between processes that otherwise would not be equivalent (by using already ex-
isting equivalences where the order of compared actions has to be the same,
at the same moment of time). The multisets of actions could be considered as
timely equivalent if they are in a similar interval of time, without imposing a
strict moment for each action. Bisimilarity could be also useful when reasoning
about behavioural equivalences of processes: given a process, one can check if it is
behaving as intended (optimal behaviour) or not (sub-optimal behaviour). Two
processes are said to be equivalent if they are able to “simulate” each others’
actions, step by step, and continue to be equivalent after each such step [14].

When choosing which equivalence relation to adopt for a given system, one
needs to decide what properties should be preserved by the equivalence relation.
It is an advantage if the equivalence relations are compositional with respect
to the main constructs of the formalism, and so allowing the components to be
substituted by equivalent ones without any side-effect.

Definition 1. A timed bisimulation R over rTiMo systems using a set Act
of actions is a symmetrical binary relation satisfying the conditions:

– for all (N1, N2) ∈ R, if N1
λ−→ N ′

1 for λ ∈ Act and N ′
1, then N2

λ−→ N ′
2 and

(N ′
1, N

′
2) ∈ R for some N ′

2.

– for all (N1, N2) ∈ R, if N1
t� N ′

1 for t ∈ R+ and N ′
1, then N2

t� N ′
2 and

(N ′
1, N

′
2) ∈ R for some N ′

2.

Two rTiMo systems are timed bisimilar iff there is a timed bisimulation rela-
tion containing them.

In a similar way as in timed distributed π-calculus [4], the standard notion of
bisimilarity is extended to take into account timed transitions and multisets of
actions. For a set A, A∗ denotes the set of all multisets over A. For a multiset

of actions Λ = {λ1, . . . , λn} ∈ A∗, the sequence
λ1−→ . . .

λn−−→ is denoted by
Λ−→.

The identity relation over the set L of located processes is id
def
= {(L,L) |L∈

L}. The inverse of a relation R is R−1 def
= {(L2, L1) | (L1, L2)∈R}. The com-

position of relations R1 and R2 is R1R2
def
= {(L,L′′) | ∃L′∈L such that(L,L′)

∈R1 and (L′, L′′)∈R2}.
Definition 2. A binary relation R ⊆ L × L is called a timed simulation (T
simulation) if when (l[[P]], l[[Q]]) ∈ R and Λ ∈ {id@l, {v/u}@l, goΔ0@l, a?Δ0@l,
a!Δ0@l}∗:

154 B. Aman and G. Ciobanu

• if l[[P]]
Λ−→ l�l′−−→ l′[[P ′]] | l[[P ′′]] then ∃Q′, Q′′ s.t. l[[Q]]

Λ−→ l�l′−−→ l′[[Q′]] | l[[Q′′]],
(l′[[P ′]], l′[[Q′]]) ∈ R and (l[[P ′′]], l[[Q′′]]) ∈ R;

• if l[[P]]
Λ−→ t� l[[P ′]] then ∃Q′ s.t. l[[Q]]

Λ−→ t� l[[Q′]] and (l[[P ′]], l[[Q′]]) ∈ R.

If R and R−1 are timed simulations, then R is called a timed bisimulation (T
bisimulation). Strong timed bisimilarity (ST bisimulation) ∼ is defined by

∼ def
= {(l[[P]], l[[Q]]) ∈ L × L | ∃T bisimulation R and (l[[P]], l[[Q]]) ∈ R}.

This definition treats timed transitions as normal transitions, and so it coincides
with the original notion of bisimulation over a labelled transition system.

Remark 1. ∼ is an equivalence relation, and also the largest ST bisimulation.

Example 1. Inspired by the railway system of Subsection 3, consider the follow-
ing simplified two located processes:

L1 = railway1a[[stopΔ5?(x) then (goΔ3bridge then goΔ7railway1b)

else (goΔ2bridge then goΔ7railway1b)]]

L2 = railway1a[[stopΔ5?(x) then (goΔ2bridge then goΔ6railway1b)
else (goΔ1bridge then goΔ6railway1b)]]

If the trains reach bridge after different numbers of time units, the two located
processes are not strong timed bisimilar, i.e., (L1 	∼ L2), because they have
different evolutions in time (after 7 units of time).

L1
5� railway1a[[stopΔ0?(x) then (goΔ3bridge then goΔ7railway1b) (DPar)

else (goΔ2bridge then goΔ7railway1b)]]
stop?Δ0@railway1a−−−−−−−−−−−−−→ railway1a[[goΔ3bridge then goΔ7railway1b]] (Get0)
2� railway1a[[goΔ1bridge then goΔ7railway1b]] (DPar)
1� railway1a[[goΔ0bridge then goΔ7railway1b]] (DPar)

L2
5� railway1a[[stopΔ0?(x) then (goΔ2bridge then goΔ6railway1b) (DPar)

else (goΔ1bridge then goΔ6railway1b)]]
stop?Δ0@railway1a−−−−−−−−−−−−−→ railway1a[[goΔ2bridge then goΔ6railway1b]] (Get0)
2� railway1a[[goΔ0bridge then goΔ6railway1b]] (DPar)
railway1a�bridge−−−−−−−−−−−→ bridge[[goΔ7railway1b]] (Move0)

Strong timed equivalences require an exact matching between the multisets of
transitions of two located processes, for the entire evolution. Sometimes these
requirements are too strong. According to [12], there are problems in computer
science and artificial intelligence where only the timed behaviour within a given
amount of time t is of interest. Sometimes one needs to see if two critical systems
have the same behaviour for a predefined period of time and not for their entire
evolution (e.g., trains that behave equivalently only between two locations, re-
gardless of what happens for the rest of their evolutions). That is why in what
follows the equivalences are restricted to a given time range [0, t], thus defining
time-bounded equivalences.

Definition 3. The binary relations Rt ⊆ L × L, t ∈ R+ over located processes
are called time-bounded simulations (TB simulations) if for t ∈ R+, when-
ever (l[[P]], l[[Q]]) ∈ Rt and Λ∈{id@l, {v/u}@l, goΔ0@l, a?Δ0@l, a!Δ0@l}∗:

Timed Mobility and Timed Communication for Critical Systems 155

• if l[[P]]
Λ−→ l�l′−−→ l′[[P ′]] | l[[P ′′]] then ∃Q′, Q′′ such that l[[Q]]

Λ−→ l�l′−−→ l′[[Q′]] |
l[[Q′′]], (l′[[P ′]], l′[[Q′]]) ∈ Rt and (l[[P ′′]], l[[Q′′]]) ∈ Rt;

• ∀t′ ≤ t, t′ ∈ R+ if l[[P]]
Λ−→ t′� l[[P ′]] then ∃Q′ such that l[[Q]]

Λ−→ t′� l[[Q′]]
and (l[[P ′]], l[[Q′]]) ∈ Rt−t′ .

If Rt and R−1
t , with t ∈ R+, are time-bounded simulations, then Rt is a time-

bounded bisimulation (TB bisimulation). Time-bounded bisimilarities
�t are defined by

�t
def
= {(l[[P]], l[[Q]])∈L×L | ∃ TB bisimulation Rt and (l[[P]], l[[Q]])∈Rt}.

(l[[P]], l[[Q]]) ∈ �t can be written also as l[[P]] �t l[[Q]].

Example 2. Consider the two located processes of Example 1. Even if those
systems have different definitions, they are time-bounded bisimilar before time
unit 7 (L1 �7 L2) since they have the same evolutions during this period at
location railway1a. Hence L1 and L2 cannot be identified by timed bisimulation,
but this is possible by using time-bounded bisimulation for the time range [0, 7].
However, if t > 7, then L1 	�t L2.

Time-bounded bisimulation satisfies the following properties showing that an
equivalence�t includes the equivalence�u for any u ≤ t. This result is consistent
with the continuity of time. This means that if two processes are time-bounded
equivalent in a finite time range [0, t], then they are time-bounded equivalent in
any finite time range [0, u], u ≤ t.

Lemma 1. For any processes P and Q, location l, and any u, t ∈ R+:
If l[[P]] �t l[[Q]], then for any u ≤ t it holds that l[[P]] �u l[[Q]].

A useful question to ask about an rTiMo located process is the reachability
of a given process within a given amount of time. In what follows l and l′ denote
the same or different locations:

Definition 4. Given t ∈ R+ and l[[P]], l′[[Q]] ∈ L, the t-bounded reachability
problem asks if there exists a computation leading from l[[P]] to l′[[Q]] in at
most t units of time.

The next lemma states that time-bounded bisimulation is adequate to check
t-bounded reachability on arbitrary located processes.

Lemma 2. If l[[P]] �t l[[Q]], then l′[[R]] is reachable from l[[P]] in at most t
units of time iff l′[[R]] is reachable from l[[Q]] in at most t units of time.

Using the TB bisimulations �t, a specific relation of bisimilarity is defined,
called strong time-bounded bisimilarity, satisfying Proposition 2.

Definition 5. Strong time-bounded bisimilarity (STB bisimulation), de-
noted �, is defined by:

�= {(l[[P]], l[[Q]])∈L×L | ∃t ∈ R+ and a TB bisim. �t s.t. (l[[P]], l[[Q]]) ∈�t}.

156 B. Aman and G. Ciobanu

Proposition 2. The following statements hold:

1. � is a TB bisimulation;
2. � is closed to identity, inverse, composition and union;
3. � is the largest TB bisimulation;
4. � is an equivalence.

Using the fact that � is an equivalence can be used to partition a state space
into equivalence classes such that states in the same class are observationally
equivalent with respect to the system’s behaviour. This leads to a reduction of
the state space prior to model checking.

4.1 Strong Open Time-Bounded Equivalences

Bisimulation as a congruence is a desirable feature for any (real-time) language
for critical systems because it can be used in checking compositionally whether
two critical systems are behaving similarly. This means that the specifications
related by a bisimulation relation R can be used interchangeably as parts of a
larger process without affecting the overall behaviour of the latter (as depicted
in Figure 2). In this paper behavioural equivalences are based on the observable
transitions of processes, rather than on their states (as done in timed automata
and time/timed Petri nets).

P

l

R Q

l

implies P

l

. . .

l′
R Q

l

. . .

l′

Fig. 2. Interchangeably equivalent parts of a larger system

In this section we define such a relation for rTiMo , a relation inspired by
the open bisimilarity [14]. In this kind of bisimilarity, all names that occur in a
system are potentially replaceable (all free names are treated as variables). The
newly defined open bisimilarity is necessary since, according to the following
example, the TB equivalence is not closed under arbitrary substitutions.

Example 3. Consider that train1 from Subsection 3 is located in the depot (has
not entered yet either railway1a or railway2a of the two railways to which
the depot is connected) and wants to reach railway2b. In order to reach the
destination it is necessary to use either railway1a or railway2a. It has to take a
decision on which of the these two railways its journey starts. In order to decide
on this aspect it sends a query to the depot in order to receive an answer that
can help it in making this decision. There are two situations: the train1 decides
either to use the received information (process P1) or not (process P2).

Timed Mobility and Timed Communication for Critical Systems 157

P1 = newrailΔ0?(railway1a) then queryΔ2!〈railway1a〉
| queryΔ5?(u) then (goΔ3u then train1).

P2 = newrailΔ0?(railway1a) then queryΔ2!〈railway1a〉
| queryΔ5?(u) then (goΔ3railway1a then train1).

For any t ∈ R+, it holds that station[[P1]] �t station[[P2]] because

station[[P1]]
newrail?Δ0@station−−−−−−−−−−−−−→ {railway1a/u}@station−−−−−−−−−−−−−−−→
station[[goΔ3railway1a then train1]], and

station[[P2]]
newrail?Δ0@station−−−−−−−−−−−−−→ {railway1a/u}@station−−−−−−−−−−−−−−−→
station[[goΔ3railway1a then train1]].

After communicating on channel query, results the same process and thus
station[[P1]] �t station[[P2]]. However, if in these two processes, P1 and P2,
the free names are rewritten by the substitution σ = {railway2a/railway1a}
(meaning that name railway2a is communicated instead of railway1a), then

station[[P1σ]]
newrail?Δ0@station−−−−−−−−−−−−−→ {railway1a/u}@station−−−−−−−−−−−−−−−→
station[[goΔ3railway1a then train1]], and

station[[P2σ]]
newrail?Δ0@station−−−−−−−−−−−−−→ {railway1a/u}@station−−−−−−−−−−−−−−−→
station[[goΔ3railway2a then train1]].

These processes have different behaviours, and so
station[[P1]] 	�t station[[P2]].

Following the style presented in [15], we define the following bisimilarity that
becomes a congruence by closing the bisimilarity under arbitrary substitutions.

Definition 6. The binary relations Ro
t ⊆ L × L, t ∈ R+ over located pro-

cesses are called open time-bounded simulations (OTB simulations) if for
t ∈ R+, whenever (l[[P]], l[[Q]]) ∈ Ro

t , then for any substitution σ and Λ ∈
{id@l, {v/u}@l, goΔ0@l, a?Δ0@l, a!Δ0@l}∗ it holds:

• if l[[Pσ]]
Λ−→ l�l′−−→ l′[[P ′]] | l[[P ′′]] then ∃Q′, Q′′ such that l[[Qσ]

Λ−→ l�l′−−→ l′[[Q′]] |
l[[Q′′]], (l′[[P ′]], l′[[Q′]]) ∈ Ro

t and (l[[P ′′]], l[[Q′′]]) ∈ Ro
t ;

• ∀t′ ≤ t, t′ ∈ R+ if l[[Pσ]]
Λ−→ t′� l[[P ′]] then ∃Q′ such that l[[Qσ]]

Λ−→ t′� l[[Q′]]
and (l[[P ′]], l[[Q′]]) ∈ Ro

t−t′ .

If Ro
t and (Ro

t)
−1 are open time-bounded simulations for t ∈ R+, then Ro

t are
called open time-bounded bisimulations (OTB bisimulations). Open time-
bounded bisimilarities �o

t are defined by

�o
t
def
= {(l[[P]], l[[Q]])∈L×L | ∃OTB bisimulation Ro

t and (l[[P]], l[[Q]])∈Ro
t}.

(l[[P]], l[[Q]]) ∈ �o
t can be written as l[[P]] �o

t l[[Q]].

The intuition is that two located processes are equivalent whenever all possible
instantiations (substitutions of their free names) have matching transitions.

The next result is consistent with the continuity of time: an open time-
bounded equivalence �t

0 includes the open time-bounded equivalence �u
0 , for

any u ≤ t. This means that if two processes are open time-bounded equivalent
in a finite time range [0, t], then they are open time-bounded equivalent in any
finite time range [0, u], u ≤ t.

158 B. Aman and G. Ciobanu

Lemma 3. For any processes P and Q, location l, and any u, t ∈ R+: if l[[P]] �o
t

l[[Q]], then for any u ≤ t it holds that l[[P]] �o
u l[[Q]].

Using the OTB bisimulations �o
t , a specific relation of bisimilarity is defined,

called strong open time-bounded bisimilarity; this relation satisfies the state-
ments of Proposition 3.

Definition 7. Strong open time-bounded bisimilarity (SOTB bisimula-
tion), denoted �o, is defined by:

�o= {(l[[P]], l[[Q]])∈L×L | ∃t ∈ R+ and a OTB bisim. �o
t s.t. (l[[P]], l[[Q]]) ∈�o

t}.

The following results present some properties of the SOTB equivalences.

Proposition 3. The following statements hold:

1. �o is a OTB bisimulation;

2. �o is closed to identity, inverse, composition and union;

3. �o is the largest OTB bisimulation;

4. �o is an equivalence.

Definition 8. A binary relation R is said to be closed under substitutions
if whenever (l[[P]], l[[Q]]) ∈ R, then (l[[Pσ]], l[[Qσ]]) ∈ R for any substitution σ.
Formally,

clos(R)
def
= {(l[[Pσ]], l[[Qσ]]) |(l[[P]], l[[Q]])∈R

and σ is an arbitrary substitution}.

The connections between � and �o are illustrated in the next result. The
second item states that �o is included in �, namely if l[[P]] �o l[[Q]] implies
that l[[P]] � l[[Q]].

Lemma 4. 1. If � is closed under substitution, then �=�o.

2. �o⊆�.

The following result states that the SOTB equivalence �o is preserved by
migration, communication and parallel composition.

Lemma 5. For P, P ′, Q,Q′∈P and l, l′∈Loc, if l[[P]]�o l[[P ′]] then

1. l[[P | Q]] �o l[[P ′ | Q]];

2. l[[aΔt′?(u) then P else Q]]�o

l[[aΔt′?(u) then P ′ else Q]];

3. l[[goΔt′ l′ then P]] �o l[[goΔt′ l′ then P ′]].

As a consequence of Lemmas 3 and 5, the main result of the paper is obtained.

Theorem 1. �o is a congruence.

Timed Mobility and Timed Communication for Critical Systems 159

When choosing which bisimulation to adopt in certain situation one needs to
decide what kind of properties should be preserved by the equivalence relation.
If the bisimulation is not a congruence then the bisimilar systems can still be
distinguished by putting them in appropriate contexts. On the other hand, if
the bisimulation is a congruence, this means that the systems that are related
by a congruence relation, e.g., �o in our case, can be used interchangeably as
parts of a larger system without affecting the overall behaviour of the latter (as
depicted in Figure 2). For this reason, usually one needs to ensure that he defines
equivalences that are in fact congruences. In this way theories can be constructed
that support modular description and verification of critical systems. Thus, it
should be possible to use the congruence relation�o in computer simulations and
model checkers for real-time systems with timed migration and communication.

5 Conclusion and Related Work

Several proposals for real-time modelling and verification have been presented
in the literature (e.g., [16]). A comprehensive overview of the development of an
algebraic theory of processes with time is given in [3]. In this paper we used a pro-
totyping language rTiMo for describing real-time critical systems. It emphasizes
the essential aspects, and is different from all these previous approaches since
it encompasses specific features as timeouts, explicit locations, timed migration
and communication. Starting from a first version of TiMo proposed in [6], sev-
eral variants were developed during the last years in order to model various
complex systems; we mention the access permissions given by a type system in
perTiMo [7]. TiMo is a simpler version of timed distributed π-calculus [8]. In-
spired by TiMo , a flexible software platform was introduced in [5] to support
the specification of agents allowing timed migration in a distributed environ-
ment. Interesting properties as bounded liveness and optimal reachability are
presented in [2]. A verification tool called TiMo@PAT is presented in [9]; it was
developed by using an extensible platform for model checkers called PAT.

In this paper rTiMo is used for comparing in a formal way the behaviours
of critical systems. In particular, we have presented an example of applying
rTiMo to the distributed railway bridge system, illustrating that rTiMo pro-
vides a natural framework for modelling and reasoning about critical systems
with timed migration and concurrency given by interaction/communication. This
leads to a compositional approach of verifying concurrent critical systems, in
opposition to the noncompositional approach provided by inductive assertion
method and Hoare logic.

Behavioural equivalences are useful to define some observational criteria that
processes should fulfil. Several behavioural equivalences over tDπ and TiMo are
studied in [4]. In practice, even though several processes can be valid solutions
to a given problem, some processes may be preferable to others. For example, a
faster or less resource consuming process is often preferred to one that is slower or
demanding more resources, respectively. In fact, there are many ways to evaluate
processes. An important goal of defining bisimulations is to obtain refinements

160 B. Aman and G. Ciobanu

and equivalence relations that can reduce state space to their equivalence classes,
in order to facilitate a more efficient (automated) verification.

We defined two bisimulations (� and �o) over real-time distributed processes,
and illustrated them by using a distributed railway control system involving a
mobile bridge and several trains. The behavioural equivalences are established in
terms of relative time (timeouts) and locations, and are also used to distinguish
between optimal and sub-optimal behaviours. We prove that �o is a congruence,
allowing a compositional reasoning of complex real-time systems in terms of their
observable parallel behaviours. The first equivalence (�) resembles the finite-
horizon bisimulation defined over time-inhomogeneous Markov chains [10], in the
sense that they also consider a threshold in time when comparing two systems.

The strong bisimulations studied in the paper are useful but their usage is
somehow limited in the sense that at each moment either the time elapse or
the multiset of actions should coincide. A weaker version of these bisimulations
could be defined, having a more practical use in real problems: e.g., to distinguish
between trains having the same route, but different moving time depending on
the type of the train (e.g., InterRegio or InterCity). Such weak bisimulations in
rTiMo and verification of realistic scenarios with a powerful model-checker like
Uppaal [13] represent a future work. The capabilities of Uppaal allow verifi-
cation of various properties: reachability of desired configurations (e.g., several
mobile elements being close to each other at some time instance), the fact that
the system does not block, and whether an error occurs (e.g., two trains collide).

Acknowledgements. The work was supported by a grant of the Romanian National
Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-
2011-3-0919.

References

1. Aman, B., Ciobanu, G.: Real-Time Migration Properties of rTiMo Verified in
Uppaal. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS,
vol. 8137, pp. 31–45. Springer, Heidelberg (2013)

2. Aman, B., Ciobanu, G., Koutny, M.: Behavioural Equivalences over Migrating
Processes with Timers. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS
2012. LNCS, vol. 7273, pp. 52–66. Springer, Heidelberg (2012)

3. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. In: Monographs
in Theoretical Computer Science, An EATCS Series. Springer, Berlin (2002)

4. Ciobanu, G.: Behaviour Equivalences in Timed Distributed π-Calculus. In:
Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software Intensive
Systems. LNCS, vol. 5380, pp. 190–208. Springer, Heidelberg (2008)

5. Ciobanu, G., Juravle, C.: Flexible Software Architecture and Language for Mo-
bile Agents. Concurrency and Computation: Practice and Experience 24, 559–571
(2012)

6. Ciobanu, G., Koutny, M.: Modelling and Verification of Timed Interaction and
Migration. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp.
215–229. Springer, Heidelberg (2008)

Timed Mobility and Timed Communication for Critical Systems 161

7. Ciobanu, G., Koutny, M.: Timed Migration and Interaction With Access Permis-
sions. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 293–307.
Springer, Heidelberg (2011)

8. Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. Electronic Notes in
Theoretic Computer Science 164(3), 81–99 (2006)

9. Ciobanu, G., Zheng, M.: Automatic Analysis of TiMoSystems in PAT. In: Proc.
18th International Conference on Engineering of Complex Computer Systems, pp.
121–124. IEEE Computer Society (2013)

10. Han, T., Katoen, J.-P., Mereacre, A.: Compositional Modeling and Minimization of
Time-Inhomogeneous Markov Chains. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 244–258. Springer, Heidelberg (2008)

11. Heitmeyer, C., Lynch, N.: The Generalized Railroad Crossing: A Case Study in
Formal Verification of Real-Time Systems. In: Proc. of IEEE Real-Time Systems
Symposium, pp. 120–131 (1994)

12. Kamide, N.: Bounded Linear-Time Temporal Logic: A Proof-Theoretic Investiga-
tion. Annals of Pure and Applied Logic 163, 439–466 (2012)

13. Larsen, K.G., Petterson, P., Yi, W.: Uppaal in a Nutshell. International Journal
on Software Tools for Technology Transfer 1(2), 134–152 (1997)

14. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press (1999)

15. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2011)

16. Yi, W., Pettersson, P., Daniels, M.: Automatic Verification of Real-time Commu-
nicating Systems by Constraint-Solving. In: International Conference on Formal
Description Techniques, pp. 223–238 (1994)

On the Formal Analysis of Photonic Signal

Processing Systems

Umair Siddique(�), Sidi Mohamed Beillahi, and Sofiène Tahar

Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada

{muh sidd,beillahi,tahar}@ece.concordia.ca

Abstract. Photonic signal processing is an emerging area of research,
which provides unique prospects to build high-speed communication sys-
tems. Recent advancements in fabrication technology allow on-chip man-
ufacturing of signal processing devices. This fact has lead to the
widespread use of photonics in industrial critical applications such as
telecommunication, biophotonics and aerospace. One the most challeng-
ing aspects in the photonics industry is the accurate modeling and anal-
ysis of photonic devices due to the complex nature of light and optical
components. In this paper, we propose to use higher-order-logic theo-
rem proving to improve the analysis accuracy by overcoming the known
limitations of incompleteness and soundness of existing approaches (e.g.,
paper-and-pencil based proofs and simulation). In particular, we formal-
ize the notion of transfer function using the signal-flow-graph theory
which is the most fundamental step to model photonic circuits. Conse-
quently, we formalize and verify the important properties of the stability
and the resonance of photonic systems. In order to demonstrate the ef-
fectiveness of the proposed infrastructure, we present the formal analysis
of a widely used double-coupler double-ring (DCDR) photonic processor.

Keywords: Photonic signal processing · Signal-flow-graph · Theorem
proving · HOL light

1 Introduction

Recent advances in communication technology resulted in the development of so-
phisticated devices such as multifunction routers and personal digital assistants
(PDAs); which brought additional challenges of high-speed, low power and huge
bandwidth requirements. However, traditional electronic communication has al-
ready reached a point where such issues cannot be addressed. On the other hand,
photonics technology offers promising solution to resolve these bottlenecks and
provides the better convergence of computation and communication, which is
a key to cope with future communication challenges. Although, the complete
replacement of existing communication systems is not possible at this point, fu-
ture communication systems will be based on electronic-photonic convergence
as mentioned in the MIT’s first Communications Technology Roadmap (CTR)

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 162–177, 2015.
DOI: 10.1007/978-3-319-19458-5_11

On the Formal Analysis of Photonic Signal Processing Systems 163

[7]. Moreover, some feasibility studies have been conducted to demonstrate the
realization of large scale (100,000-node) photonic networks which indicate that
photonics has the capabilities to interconnect thousands of computing nodes
with an ultimate goal of building Exaflops/second links [19]. The main require-
ment of designing such systems is to process light waves (counterpart of elec-
tronic signals) to achieve the desired functionality such as light amplification,
filtering and ultrashort pulse generation. Photonic signal processing (PSP) [5]
is an active area of research which offers an efficient framework to process high
bandwidth signals with low power consumption. The demand of miniaturized
communication devices and recent advances in fabrication technology resulted
in the development of very large scale integrated (VLSI) photonic circuits [10].
One of the core steps in photonic systems development life cycle is the physical
modeling of fundamental building-blocks such as photonic filters and amplifiers
[5]. A significant portion of time is spent finding bugs through the validation of
such models in order to minimize the failure risks and monetary loss. In par-
ticular, this step is more important in industrial applications, where failures
directly lead to safety issues such as in aerospace and biomedical devices. For
example, the mission management system of Boeing F/A-18E is linked using a
photonic network [25]. In general, there are several aspects of light-wave systems
which need to be analyzed; however, the focus of this paper is photonic signal
processing which forms the core of modern communication devices.

The first step to analyze the behavior of PSP systems is to obtain the transfer
function which relates the input and output signals (light-waves). Consequently,
the test for the stability (which ensures that the system output is always finite)
and resonance (which ensures the oscillation of light waves at certain frequen-
cies) conditions of the photonic circuit can be identified which are the foremost
design criterion. One primary analytical approach is to compute the transfer
function by explicitly writing node and loop equations which can further be
utilized to analyze some physical aspects (e.g., transfer intensity and dispersion
[9]) of photonic systems. Recently, however, the signal-flow graph (SFG) the-
ory (originally proposed by Mason [17]) has been extensively used to compute
the transfer function of PSP systems. The main motivation of this choice was
inspired by its successful applications in electrical and control systems. Indeed,
the problem of finding the transfer function reduces to the computation of the
forward paths and loops which further can be plugged into the Mason’s gain
formula (MSG) [17] (which provides an easy way to find the transfer function).
The analysis of complex photonic systems using paper-and-pencil based proofs
[5] and computer algorithms [11] is not rigorous and sound and thus cannot be
recommended for safety critical applications. We believe that there is a dire need
of an accurate framework to build high assurance photonic systems.

The main focus of this paper is to formalize the signal-flow-graph theory
along with the Mason’s gain formula and strengthen the formal reasoning sup-
port in the area of photonic signal processing. Indeed, our current work is at

164 U. Siddique et al.

the intersection of two ongoing projects12, i.e., the formalization of different
theories of optics and the formal analysis of signal processing systems. As a
first step towards our ultimate goal, we present in this paper the higher-order
logic formalization of signal-flow-graph theory and Mason’s gain formula for the
computation of transfer functions in HOL Light theorem prover [12]. Next, we
formalize the notion of stability and resonance along with the formal verification
of some important properties such as the finiteness and the cardinality of the
set of poles (complex-valued parameters at which the system becomes unstable)
and zeros (parameters which determine the resonance condition in the system).
In order to show the practical utilization of our work, we formally verify the
transfer function of a double-coupler double-ring (DCDR) circuit [5], which is
a widely used photonic signal processor. Consequently, we derive the general
stability and resonance conditions (for both coherent and incoherent operation
[5]), which greatly simplifies the verification for any given DCDR configuration.
The rigor of higher-order-logic theorem proving allows us to unveil all the hidden
assumptions in the paper-and-pencil based approach reported in [5]. Moreover,
we also found some incorrect stability conditions and we formally prove that
these conditions lead to an unstable operation of the DCDR circuit. The source
code of our formalization is available for download [3] and can be utilized by
other researchers and engineers for further developments and the analysis of
more practical systems.

The rest of the paper is organized as follows: we highlight the most relevant
work about the formal analysis of optical and photonic systems in Section 2.
Some fundamentals of signal-flow-graph theory and the Mason’s gain formula
are reviewed in Section 3. We present the formal analysis framework for the
photonic signal processing systems along with highlights of our higher-order
logic formalization in Section 4. We describe the analysis of the DCDR photonic
processor as an illustrative practical application in Section 5. Finally, Section 6
concludes the paper and provides hints for some future directions.

2 Related Work

In the last decade, formal methods based techniques have been proven to be
an effective approach to analyze physical, hybrid and digital engineering sys-
tems. Here, we describe the most relevant works for analyzing optical systems
using theorem proving. The pioneering work about the formal analysis of opti-
cal waveguides has been reported in [13]. However, this work is primarily based
on real analysis in HOL4 which is insufficient to capture the dynamics of the
real photonic systems which involve complex-valued electric and magnetic fields.
In [20], a preliminary infrastructure has been developed in HOL Light to ver-
ify some fundamental properties (e.g., ray confinement or stability) of optical
systems based on ray optics which can only be used when the size of involved
optical components is much larger than the wavelength of light. However, the

1 http://hvg.ece.concordia.ca/projects/optics/
2 http://hvg.ece.concordia.ca/projects/signal-processing/

http://hvg.ece.concordia.ca/projects/optics/
http://hvg.ece.concordia.ca/projects/signal-processing/

On the Formal Analysis of Photonic Signal Processing Systems 165

physical meaning of stability considered in [20] and in the current paper are
totally different, as the first is related to the ray confinement conditions inside
a cavity and later deals with the finite output response. In [22], a preliminary
formalization of photonic microresonators has been reported which is only fo-
cused towards the transmission and reflection properties of light-waves. This
work cannot be used to analyze many signal processing properties of optical
systems particularly stability and resonance. A more recent work about quan-
tum formalization of coherent light has been reported in [15], with potential
applications in the development of future quantum computers. Other interesting
works are the formalization of Laplace transform [23] and Z-transform [21] in
the HOL Light. Both of these transformations are less popular in the photonic
community due to the additional overhead of transforming back-and-forth from
time to frequency domain. On the other hand, most PSP systems can directly
be described using the SFG theory where properties of interest (such as stability
and resonance) can be analyzed [5]. This is the main motivation of choosing the
signal-flow-graph approach to model photonic processing systems in our work.

3 Signal-Flow-Graph Theory and Mason’s Gain Formula

A signal-flow graph (SFG) [17] is a special kind of directed graph which is widely
used to model engineering systems. Mathematically, it represents a set of linear
algebraic equations of the corresponding system. An SFG is a network in which
nodes are connected by directed branches. Every node in the network represents
a system variable and each branch represents the signal transmission from one
node to the other under the assumption that signals flow only in one direction.
An example of an SFG is shown in Figure 1 consisting of six nodes. An input
(source node) and an output (sink node) are those which only have outgoing
branches and incoming branches, respectively (e.g., node 1 and node 6 in Figure
1). A branch is a directed line from node i to j and the gain of each branch is
called the transmittance which is represented by tij as shown in Figure 1. A path
is a traversal of connected branches from one node to the other and if no node is
crossed more than once and it connects the input to the output then the path is
called forward path otherwise if it leads back to itself without touching any node
more than once it is considered as a feedback path or a loop. The loop containing
only one node is called self loop and any two loops in the SFG are said to be
touching loops if they have any common node. The total gain of forward path
and a loop can be computed by multiplying the transmittances of each traversed
branch.

In the analysis of practical engineering systems, the main task is to char-
acterize the relation among system input and output which is called transfer
function. The total transmittance or gain between two given nodes (usually in-
put and output) describes the transfer function of the corresponding system.
Mason [17] proposed a computational procedure (also called Mason’s gain for-
mula) to obtain the total gain of any arbitrary signal-flow-graph. The formula

166 U. Siddique et al.

1 3 6

4 5

2

t12

t24
t45

t54

t32

t22

t53

t36

Fig. 1. Signal-Flow-Graph

is described as follows [16]:

G =
∑

k

GkΔk

Δ
(1)

Δ = 1−
∑

m

Pm1 +
∑

m

Pm2 −
∑

m

Pm3 + . . .+ (−1)n
∑

. . . (2)

where Δ represents the determinant of the graph, Δk represents the value of Δ
for the part of graph that is not touching the kth forward path and it is called the
cofactor of forward path k, Pmr is the gain product of mth possible combination
of r non-touching loops. The gain of each forward path is represented by Gk.

4 Proposed Formal Analysis Framework

The proposed framework for the analysis of photonic signal processing systems,
given in Figure 2, outlines the necessary steps to encode theoretical fundamen-
tals in higher-order logic. In order to represent a given system in HOL, the first
step is the formalization of the signal-flow-graph theory which consists of some
new type definitions and the implementation of an algorithm which computes all
the elementary circuits (i.e., forward paths and loops). Consequently, this can be
used to formalize the Mason’s gain formula. The next step is the formalization of
the transfer function and its corresponding properties describing different situa-
tions such as systems with no forward paths or no touching loops, etc. In order
to facilitate the formal modelling of the system properties and reasoning about
their satisfaction in the given system model, the last step is to provide the nec-
essary support to express system properties in HOL, i.e., their formal definitions
and most frequently used theorems. These system properties are stability, which
ensures the finite behavior of the system, resonance, which provides the basis to
derive the suitable parameters at which the photonic circuit can resonate, and
frequency response, which is necessary to evaluate the frequency dependent sys-
tem response such as group delay. Finally, we apply the above mentioned steps
to develop a library of frequently used photonic signal processing components,
such as the double-coupler double-ring [5] or the add-drop filter [26].

On the Formal Analysis of Photonic Signal Processing Systems 167

Resonance

Signal Flow
Graph

Stability Frequency
Response

Transfer
Function

ansfer

Mason’s
Gain

Formula
Component

Library

Double-
Coupler

Double-Ring

Add-Drop
Filter

Resonators

.

.

HOL LIGHT

Multivariate
Analysis
Libraries

Fig. 2. Proposed Analysis Framework for Photonic Signal Processing Systems

4.1 Formalization of Signal-Flow-Graphs and Mason’s Gain

In this section, we only present a brief overview of the formalization developed
in our framework (Figure 2). A more detailed description can be found in [4].

We model a single branch as a triplet (a, tab, b), where a, tab and b represent
the start node, the transmittance and the end node, respectively. Consequently,
a path can be modeled as a list of branches and furthermore an SFG can be
defined as a composition of a path along with the information about the total
number of nodes in the circuit, sink and source nodes at which we want to
compute light amplitudes. As mentioned in Section 3, nodes and transmittance
represent the system variable and gain, respectively. These parameters are indeed
complex valued, i.e., a, tab, b ∈ C in the context of photonic systems. However,
the information about the nodes is just used to find properties of signals (light-
waves) transmission and they do not appear in the gain and transfer function
computation using Mason’s gain formula. So, we adopted the same approach
as proposed by Mason [17], where nodes of an SFG are represented by natural
numbers (N). In order to simplify the reasoning process, we encode the above
information by defining three type abbreviations in HOL Light3, i.e., branch,
path and signal-flow-graph as follows:

Definition 1 (Branch, Path and SFG).

new type abbrev ("branch", ‘:N × C × N‘)

new type abbrev ("path", ‘:(branch)list‘)

new type abbrev ("sfg", ‘:path × N × N × N‘)

where branch represents a triplet (a, tab, b). The second element of sfg represents
the total number of nodes whereas the third and fourth elements represent the
input and output nodes of a signal-flow-graph, respectively.

3 Note that throughout this paper, we used minimal HOL Light syntax in the pre-
sentation of definitions and theorems to improve the readability and for a better
understanding without prior experience of HOL Light notations.

168 U. Siddique et al.

Our main task is to find all the forward paths and loops from the source node
to the sink node given by the user. We implemented a procedure to extract this
information which is mainly inspired from the method proposed in [24]. Briefly,
we take an SFG and generate a matrix in which nodes are arranged in the first
column and each row represents the branches of the node under consideration.
In elementary circuits (loops) extraction, we start the process by the first node
of the SFG and go through all possible paths which start from the node under
consideration and test for each path whether it is a loop or not. In the next
iteration, we go to the next node of the graph and repeat the same process. For
forward circuits (forward paths) extraction, we repeat a similar process, but we
only consider the paths starting from the source node rather than exploring all
the nodes. For the sake of conciseness, we give the following two main definitions
of our formalization where more details can be found in [3].

Definition 2 (Elementary Circuits).
� ∀(system : sfg). EC system = if (fst of four system = []) then []

else all loops (EC MAIN system) system

Here, the function EC MAIN accepts an SFG, (system : path × N× N× N) and
returns the list of loops in which each loop is represented as a list of nodes only,
and all loops takes the result of EC MAIN and an SFG (system) and returns
the list of loops in the standard format where each branch represents a triplet.
Finally, the main function EC returns an empty list if the system has no branches
otherwise it gives the list of all loops in the system.

Definition 3 (Forward Circuits).
� ∀(system : sfg). FC system = if (fst of four system = []) then []

else forward paths (FC MAIN system) system

where the function FC MAIN accepts an SFG (system) and returns the list of
forward paths in which each forward path is considered as a list of nodes. Then
the function forward paths takes the result of FC MAIN and system and returns
the list of forward paths, such that each forward path is a list of branches.

Finally, we utilize above described definitions to formalize the Mason’s gain
formula given in Equation 1, as follows:

Definition 4 (Mason’s gain formula).
� ∀(system : sfg). Mason Gain system =

product gain det (EC system) (FC system)

determinant (EC system)

where the function Mason Gain accepts an SFG (system, which is a model of the
given system in our case) and computes the Mason’s gain as given in Equation 1.
Note that the function product gain det accepts the list of loops (Definition 2)
and forward paths (Definition 3) in the system and computes

∑

k∈system

GkΔk,

On the Formal Analysis of Photonic Signal Processing Systems 169

where Gk and Δk represent, respectively, the product of all forward path gains
and the determinant of the kth forward path considering the elimination of all
loops touching the kth forward path as described in Section 3. The function
determinant takes the list of loops and gives the determinant of the system as
given in Equation (2).

We developed some simplification tactics for the loops and forward paths ex-
traction and Mason’s gain computations. For example, MASON SIMP TAC accepts
a list of theorems (or definitions) and automatically proves or simplify the goal
(more details can be found in the source code [3,4]). Next, we present the for-
malization of the transfer functions which is the second part of the proposed
framework (Figure 2).

4.2 Formalization of the Transfer Function

In practice, the physical behavior of any photonic signal processing system is
described by the transmittance of each path (or a single branch) involved in
the signal-flow-graph. We can consider each path as a system component which
processes the input light signal to achieve the desired functionality such as am-
plification, attenuation or delay [5]. The general expression for the photonic
transmittance is given as follows:

Ti = taiGiz
mi (3)

where i corresponds to the ith path, tai is the transmission coefficient for each
path expressed as the same path ta, the parameter Gi is the optical intensity
gain factor and mi is the delay factor of the ith path described as the power of
complex-valued parameter z. Note that the parameters tai and Gi are constants
whereas z is a variable quantity in the system. Indeed, the signal-flow-graph of
the given photonic system is expressed as function of z and we need to consider
this physical aspect in the formalization of the transfer function which describes
the overall behavior of the system. It is mentioned in Section 3 that the Mason’s
gain formula describes the total gain between the input and the output of the
system and hence it can be used to describe the transfer function of the photonic
system provided the given signal flow graph can be described as a function of a
complex parameter (z). We use the Mason’s gain formalization and the above
description to formalize the transfer function of a photonic system as follows:

Definition 5 (Photonic System Transfer Function).

� ∀system. transfer function system = Mason Gain (λz. system z)

where the function transfer functionaccepts a systemwhich has typeC → sfg

and returns a complex (C) quantity which represents the transfer function of the
photonic system(system).Next,wedefine the following twohelper functionswhich
simplify the formalization of the stability and resonance.

� ∀sys. numerator sys = product gain det (EC sys) (FC sys)
� ∀sys. denominator sys = determinant EC sys

170 U. Siddique et al.

Finally, we verify that any photonic transfer function can be described in
terms of the numerator and denominator as follows:

Theorem 1 (Transfer Function).

� ∀system z. transfer function (system z) =
numerator (system z)

denominator (system z)

4.3 Formalization of System Properties

To this point, we covered the two components of the proposed framework (Fig-
ure 2) which concern the process of formal modeling of the photonic system
description provided by the physicists or optical system designers. In order to
verify that the given model meets its specification, we need to build the foun-
dations based on which we can formally describe the main system properties
(i.e., stability, resonance and frequency response) in HOL. Physically, the sta-
bility and resonance are concerned with the identification of all values of z for
which the system transfer function becomes infinite and zero, respectively. In
the signal processing literature, these values are called system poles and system
zeros which can be computed by the denominator and numerator of the transfer
function, respectively. Furthermore, all poles and zeros need to be inside the
unit circle which means that their magnitude should be less than 1. The fre-
quency response of the system can be computed by considering the parameter
z as a complex exponential exp(jw), where exp, j and w represent the base of
logarithm, the imaginary unit

√−1 and the angular frequency, respectively. We
formalize the above mentioned informal description of the system properties in
HOL as follows:

Definition 6 (System Poles).

� ∀system. poles system = {z | z �= 0 ∧ denominator (system z) = 0}
� ∀system. zeros system = {z | z �= 0 ∧ numerator (system z) = 0}
where the functions poles and zeros take the system as a parameter and return
the set of poles and zeros, respectively. Note that we do not consider the case
z = 0 because it leads to unconditional stable or resonant system (i.e., 0 is always
inside the unit circle). Next, we formalize the notion of stability and resonance
as follows:

Definition 7 (System Stability and Resonance).

� ∀system. is stable psp system ⇔
∀p. p ∈ (poles system) =⇒ ‖ p ‖< 1

� ∀system. is resonant psp system ⇔
∀z. z ∈ (zeros system) =⇒ ‖ z ‖< 1

where the predicate is stable psp accepts the photonic system (system) and
verifies that the magnitude (norm of a complex number, ‖ pi ‖) of each element

On the Formal Analysis of Photonic Signal Processing Systems 171

pi of the set of poles {p0, ..., pn} is smaller than 1. The function is resonant psp

is defined in a similar way by considering the zeros of the system.
Next, we verify two important theorems which describe that if the denomina-

tor or the numerator of the transfer function is a polynomial of order n, it will
always have a finite number of poles or zeros and the cardinality of the set of
poles and zeros can only be equal or less than n.

Theorem 2 (Finiteness and Cardinality of Poles).

� ∀n c system. ¬(∀i. i ∈ {0, 1, ..., n} ⇒ c i = 0)∧
(∀z. denominator (system z) =

∑
i∈{0,1,...,n}(λi. c i ∗ zi)) =⇒

FINITE (poles (system z)) ∧ CARD (poles (system z)) ≤ n

where n represents the order of the complex polynomial function c. The function∑
s takes two parameters, i.e., s which specifies the set over which the summation

occurs and an arbitrary function f : (A → R
N). The functions FINITE and CARD,

represent the finiteness and cardinality of a set, respectively. We also prove the
same theorem for the set of zeros of a system, where more details can be found
in [3]. We formalize the frequency response of a photonic system, group delay
and dispersion [8] in terms of the transfer function where more details can be
found in [3].

5 Application: Analysis of Photonic Signal Processors

Photonic signal processors process light-waves to achieve different functionali-
ties such as switching, filtering and amplification. In practice, photonic signal
processors are of two types (coherent and incoherent) depending upon the na-
ture of light source used in the system. In incoherent photonic processors, the
coherence time (i.e., the interval within which the phase of light signal can be
predictable) [5] of the light source is much shorter than the unit time delay (or
sampling period). On the other hand, coherent processors require the coherence
time of the light source to be much longer than the basic time delay to achieve
coherent interference of the delayed signals. Both types of photonic processors
have wide application domains, e.g., incoherent systems are more stable and
mostly used as light amplifiers, whereas coherent integrated optical processors
are used in microwave communication systems [5]. The design and analysis of
photonic processors mainly involves three steps, i.e., specification of the desired
properties of the system, modeling using transfer function and the realization of
overall structure (parallel, cascaded, etc.). Given the processor specifications in
terms of nature of light sources, transmission powers and optical intensity, the
first step is to represent the system as an SFG, the identification of all forward
paths and feedback loops and then to compute the system transfer function.
Consequently, stability, resonance and frequency response analysis and architec-
tural optimization (possibility of reducing the total number of involved system
components) can be performed based on the given specifications. Our proposed

172 U. Siddique et al.

framework (Figure 2) allows us to perform these steps (for both coherent and
incoherent signal processing) within HOL Light.

The double-coupler double-ring (DCDR) [5] is a widely used processor in the
domain of photonics due to its unique features such as compact size, low cost
and better compatibility with fiber communication devices. It also has many
important physical characteristics due to which it has been used as a photonic
filter [5], interferometer [6] and photonic switch [5]. Generally, a DCDR is com-
posed of two main components: (1) Optical directional coupler which are optical
devices that transfer the maximum possible optical power from one or more op-
tical devices to another one in a selected direction; and (2) Microring (or cavity)
which consists of a fiber ring and confine the light in a very small volume to
perform different operations such as light amplification and wavelength filtering.

Using the proposed framework, we formally analyze the DCDR circuit as both
coherent and incoherent signal processor. However, we present the analysis of
incoherent case while more details about the coherent case can be found in [3].
The schematic diagram of the DCDR circuit is shown in Figure 3 which consists
of two directional couplers interconnected with three optical fiber forward and
feedback paths. The fiber paths 3 - 6 and 4 - 5 are the forward paths of the
circuit while the path 7 - 2 is the feedback path of the circuit. The parame-
ters (k1, k2), and (T1,T2,T3) represent the power coupling coefficients of the two
couplers and the transmission functions of the forward paths, respectively. The
photonic transmittance can be expressed as Ti = taiGiz

mi for the ith forward
path as described in Section 4.2. The parameters (k1, k2) are the deciding factor
whether the processor is coherent or incoherent. Typically, for incoherent sys-
tems, k1 = 1− k2 and for coherent systems k1 =

√
1− k and k2 = −j

√
k, where

k is the intensity coupling coefficient [5].

Coupler 2

1 3

4 2

7 5

6 8

Input

Output

T1 T2 T3

Coupler 1

k1

k2

Fig. 3. Double-Coupler Double-Ring Schematic Architecture

On the Formal Analysis of Photonic Signal Processing Systems 173

The SFG representation of the DCDR circuit is shown in Figure 4 which
consists of the same number of nodes as in the block diagram representation
in Figure 3. Our main interest is to evaluate the circuit behavior at the output
node which is represented by node 8 , when the signal is applied at the input,
i.e., node 1 . We keep all above mentioned parameters in general form which
further can be used to model different DCDR configurations. We formally define
the SFG of the DCDR as follows:

Definition 8 (DCDR Model).

� ∀T1 T2 T3 k1 k2 ∈ C.

DCDR model T1 T2 T3 k1 k2 = [(1, 1− k1, 3); (3, T1, 6); (6, 1− k2, 8); (1, k1, 4);

(4, T2, 5); (5, k2, 8); (6, k2, 7); (7, T3, 2); (2, k1, 3); (2, 1− k1, 4); (5, 1− k2, 7)], 8, 1, 8

where DCDR model accepts complex-valued transmittances and coupling coeffi-
cients, and returns the signal-flow-graph which has a total number of 8 nodes,
where 1 and 8 represent the input and output nodes as shown in Figure 3.

1 5 8

2 7

4

1-k1

T1

T2

3 6

1-k1

k1

k2 k1

k2

1-k2 1-k2
T3

Fig. 4. Signal-Flow-Graph Model of the DCDR

Next, we verify the transfer function of the DCDR circuit as follows:

Theorem 3 (Transfer Function of DCDR).

� ∀T1 T2 T3 k1 k2 ∈ C.

transfer function (DCDR model T1 T2 T3 k1 k2) =

(1− k1) ∗ (1 − k2) ∗ T1 + k1 ∗ k2 ∗ T2 − (1 − 2 ∗ k1) ∗ (1− 2 ∗ k2) ∗ T1 ∗ T2 ∗ T3
1− k1 ∗ k2 ∗ T1 ∗ T3 − (1 − k1) ∗ (1− k2) ∗ T2 ∗ T3

The proof of this theorem is mainly based on the extraction of forward paths and
loops in the circuit and then using Mason’s gain formula. In fact, we developed
some simplification tactics [4] which can find elementary and forward circuits
to automate the parts of the proof in HOL Light. The transfer function veri-
fied in Theorem 3 can be used to analyze four different configurations of DCDR
as given in Table 1. One of the most widely used case is when every path has
unity delay. Such DCDR circuits are usually used as data processing elements
in the photonic communication. The second case of Table 1 describes the condi-
tions when one of the paths in the circuit (Figure 3) amplifies the light signals.

174 U. Siddique et al.

The DCDR circuit operates in passive mode when there is no light amplification
in the circuit. Finally, the last case describes the circuit operation when each
path can have different delays.

Table 1. DCDR Configurations (parameters Gi and mi correspond to Eq. 3)

DCDR Configuration Parameters

Active DCDR Circuit with Unit Delay m1 = m2 = m3 = 1

Optical Amplifier in the Fiber Path (m1 = m2 = m3 = 1) ∧ (Gi > 1)

Passive DCDR Circuit G1 = G2 = G3 = 1

DCDR with Multiple Delay mi can have different combinations

In the case of unit delay, the denominator of transfer function of the DCDR
can be represented as a second order polynomial which leads to the useful infor-
mation that the DCDR can have 2 poles at maximum according to Theorem 2.
Next, we present the verification of the stability conditions of the DCDR circuit
under unit delay conditions as follows:

Theorem 4 (Stability Conditions for Incoherent DCDR).

� ∀G1 G2 G3 k1 k2 ∈ C.
‖ √

k1 ∗ k2 ∗ G1 ∗ G2 + (1− k1) ∗ (1 − k2) ∗ G2 ∗ G3 ‖≤ 1 ∧
(k1 ∗ k2 ∗ G1 ∗ G2 + (1 − k1) ∗ (1− k2) ∗ G2 ∗ G3) �= 0

=⇒ is stable psp (λz. DCDR (G1 ∗ 1
z
) (G2 ∗ 1

z
) (G3 ∗ 1

z
) k1 k2)

where ‖ . ‖ and
√
. represent the complex norm and complex square root, respec-

tively. The first assumption ensures that both poles are inside the unit circle,
whereas the second assumption is required to prove that the poles are indeed
valid. Similarly, we verify the second important result, i.e., the resonance condi-
tion for the DCDR circuit as follows:

Theorem 5 (Resonance Conditions for Incoherent DCDR).

� ∀G1 G2 G3 k1 k2 ∈ C. ‖
√

((1−2∗k1)∗(1−2∗k2)∗G1∗G2∗G3)
((1−k1)∗(1−k2)∗G1+k1∗k2∗G2) ‖≤ 1 ∧

((1 − 2 ∗ k1) ∗ (1− 2 ∗ k2) ∗ G1 ∗ G2 ∗ G3) �= 0 ∧
(1− k1) ∗ (1− k2) ∗ G1 + k1 ∗ k2 ∗ G2) �= 0

=⇒ is resonant psp (λz. DCDR (G1 ∗ 1
z
) (G2 ∗ 1

z
) (G3 ∗ 1

z
) k1 k2)

where all assumptions in this theorem are required to ensure that zeros of the
DCDR are valid and inside the unit circle.

Similarly, we verify the stability and the resonance conditions of the other
DCDR configurations as described in Table 1. One of the main strengths of
theorem proving based approach is to unveil all the assumptions under which
a theorem can be verified. For example, the second assumption of Theorem 4,
and the last two of Theorem 5 are not mentioned in the paper-and-pencil based
approach reported in [5]. However, without these assumptions Theorems 4 and
5 cannot be verified. Moreover, our results are verified for universally quantified

On the Formal Analysis of Photonic Signal Processing Systems 175

parameters and the problem of finding the stability and resonance conditions
reduces to just ensuring that the values of the system parameters satisfy both
assumptions. In an effort to validate the stability results provided in [5], we
discovered that both given values of poles cannot satisfy the stability conditions.
We formally proved the instability of the DCDR in case of passive operation (i.e.,
G1 = G2 = G3 = 1) with k1 = k2 = 0.9 as follows:

� unstable psp (λz. DCDR 1
z

1
z

1
z
0.9 0.9 [0.905539;−0.905539])

where unstable psp sys = ¬(is stable psp sys) as described in Definition 7.
This demonstrates the importance of using higher-order-logic theorem proving
to unveil such discrepancies. In fact, incorrect stability conditions can lead to
the instability of the photonic processor which is hazardous in industrial critical
systems which are related to both cost and human safety.

This completes our formal analysis of the DCDR which is a practical photonic
processor with vast industrial applications in photonic and microwave communi-
cation systems. The stability and resonance conditions have been verified under
the general parameters of the DCDR circuit (e.g., k1, k2) which is not possible
in the case of simulation [5], where these properties are verified for the particular
values of k1 and k2. Note that the signal-flow-graph model of the DCDR proces-
sor involves 8 nodes, however, our formalization is general and can be applied
for an arbitrary number of nodes. For example, we formally verified the transfer
function of a quadruple optical ring resonator based filter which consists of 20
nodes and 14 complex-valued parameters [8]. We also formalized and verified
another important photonic processor namely the add-drop filter [26] which is
widely used as a filtering element in biosensors and wavelength division mul-
tiplexing (WDM). Some remarkable features of our formalized libraries of SFG
and corresponding properties are the generic nature and reusability as the formal
specification and verification of above mentioned case studies require minimal
efforts. Moreover, we have also made efforts to provide effective automation us-
ing derived rules and tactics, so that the application to a particular system does
not involve the painful manual proofs often required with interactive (higher-
order logic) theorem proving. The source code of the add-drop filter and the
quadruple optical ring resonator specification along with their analyses in HOL
Light is available at [3]. A brief summary of developed tactics can be found in
the Appendix I of [4].

We believe that the formal analysis of above mentioned real-world photonic
processors provides two main insights: theorem proving systems have reached to
the maturity, where complex physical models can be expressed with less efforts
than ever before; and formal methods can assist in the verification of futuristic
photonic processors in particular and quantum computers in general. However,
the utilization of higher-order-logic theorem proving in industrial settings (par-
ticularly, physical systems) is always questionable due to the huge amount of
time required to formalize the underlying theories. Another, important factor is
the gap between the theorem proving and engineering communities which limits
its usage in industry. For example, it is hard to find engineers (or physicists)

176 U. Siddique et al.

with theorem proving background and vice-versa. On the other hand, the use of
formal methods for safety-critical systems is recommended by different industrial
standards like IEC 61508 [14] for electrical and electronics systems, or DO178-B
[18] for aviation. In the last decade, some major iconic companies (e.g., Intel
[2] and IBM [1]) have established research centers to build revolutionary future
computing and communication systems based on the recent advancements in
silicon photonics. We believe that applying formal methods to certify photonic
designs will be an interesting and challenging future research direction for the
formal methods community. Our reported work can be considered as a one step
towards an ultimate goal of using theorem provers as a complementary tool in
the field of photonics which is one of the rapidly growing high-tech industries in
the world today.

6 Conclusion

In this paper, we reported a new application of formal methods in the domain
of photonic signal processing. We presented a formal analysis framework based
on higher-order logic which provides the required expressiveness and soundness
to formally model and verify physical aspects of photonics. In particular, we
formalized the signal-flow-graph theory along with Mason’s gain formula and
transfer functions. Consequently, we presented the formalization of the properties
of photonic signal processing systems (such as stability, resonance and frequency
response). Finally, we described the formal analysis of the stability and resonance
conditions of the double-coupler double-ring photonic processor.

Our immediate future work is to explore the formal relation among the signal-
flow-graph representation and the Z-transform [21]. A potential utilization of our
formalization and developed automation tactics is to build a framework to certify
the results produced by informal tools such as MATLAB based SFG analysis
program (available at [11]). Other interesting directions are the application of
the current work to formally verify control and digital signal processing systems
which are usually modeled as signal-flow-graphs.

References

1. IBM: Silicon photonics (2015),
http://www.zurich.ibm.com/st/photonics/silicon.html

2. Intel-based Optical PCI Express (2015), http://www.intel.com/content/www/us/
en/research/intel-labs-silicon-photonics-optical-pci-express-server.html

3. Beillahi, S.M., Siddique, U.: Formal Analysis of Photonic Signal Processing Systems
(2015), http://hvg.ece.concordia.ca/projects/optics/psp.html

4. Beillahi, S.M., Siddique, U., Tahar, S.: On the Formalization of Signal-Flow-Graphs
in HOL. Technical report, Department of Electrical and Computer Engineering,
Concordia University, Montreal, QC, Canada (November 2014)

5. Binh, L.N.: Photonic Signal Processing: Techniques and Applications. Optical Sci-
ence and Engineering. Taylor & Francis (2010)

http://www.intel.com/content/www/us/en/research/intel-labs-silicon-photonics-optical-pci-express-server.html
http://www.intel.com/content/www/us/en/research/intel-labs-silicon-photonics-optical-pci-express-server.html
http://hvg.ece.concordia.ca/projects/optics/psp.html

On the Formal Analysis of Photonic Signal Processing Systems 177

6. Harvey, D., Millar, C.A., Urquhart, P.: Fibre Reflection Mach-Zehnder Interferom-
eter. Optics Communcation 70, 304–308 (1989)

7. MIT’s CTR (2015), https://mphotonics.mit.edu/ctr-documents
8. Dey, S.B., Mandal, S., Jana, N.N.: Quadruple Optical Ring Resonator based Fil-

ter on Silicon-on-insulator. Optik - International Journal for Light and Electron
Optics 124(17), 2920–2927 (2013)

9. Emelett, S., Soref, R.: Synthesis of Dual-Microring-Resonator Cross-Connect Fil-
ters. Optics Express 13(12), 4439–4456 (2005)

10. Driessen, A., et al.: Microresonators as Building Blocks for VLSI Photonics. AIP
Conference Proceedings 709(1), 1–18 (2004)

11. Signal Flow Graph Simplification Program for MATLAB (2015),
http://www.mathworks.com/matlabcentral/fileexchange/22-mason-m

12. Harrison, J.: HOL Light: A Tutorial Introduction. In: Srivas, M., Camilleri, A.
(eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

13. Hasan, O., Khan Afshar, S., Tahar, S.: Formal Analysis of Optical Waveguides in
HOL. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 228–243. Springer, Heidelberg (2009)

14. Ladkin, P.B.: An Overview of IEC 61508 on EEPE Functional Safety (2008)
15. Yousri Mahmoud, M., Tahar, S.: On the Quantum Formalization of Coherent Light

in HOL. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
128–142. Springer, Heidelberg (2014)

16. Mason, S.J.: Feedback Theory, Further Properties of Signal Flow Graphs. In: Pro-
ceeding of IRE, vol. 44, pp. 920–926 (July 1956)

17. Mason, S.J.: Feedback Theory, Some Properties of Signal Flow Graphs. In: Pro-
ceeding of IRE, vol. 41, pp. 1144–1156 (September 1953)

18. RTCA/DO-178B: Software Considerations in Airborne Systems and Equipment
Certification (1992)

19. Rumley, S., Glick, M., Dutt, R., Bergman, K.: Impact of Photonic Switch Radix
on Realizing Optical Interconnection Networks for Exascale Systems. In: IEEE
Optical Interconnects Conference, pp. 98–99 (2014)

20. Siddique, U., Aravantinos, V., Tahar, S.: Formal Stability Analysis of Optical Res-
onators. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871,
pp. 368–382. Springer, Heidelberg (2013)

21. Siddique, U., Mahmoud, M.Y., Tahar, S.: On the Formalization of Z-Transform in
HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 483–498.
Springer, Heidelberg (2014)

22. Siddique, U., Tahar, S.: Towards the Formal Analysis of Microresonators Based
Photonic Systems. In: IEEE/ACM Design Automation and Test in Europe, pp.
1–6 (2014)

23. Taqdees, S.H., Hasan, O.: Formalization of Laplace Transform Using the Multivari-
able Calculus Theory of HOL-Light. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013)

24. Tiernan, J.C.: An Efficient Search Algorithm to Find the Elementary Circuits of
a Graph. Communnications of the ACM 13(12), 722–726 (1970)

25. Weaver, T.: High-Flying Photonics. SPIE OE Magazine (2004),
http://spie.org/x17123.xml

26. Yupapin, P.P., Li, C., Saeung, P.: Characteristics of Complementary Ring-
Resonator Add/Drop Filters Modeling by Using Graphical Approach. Optics Com-
munications 272(1), 81–86 (2007)

https://mphotonics.mit.edu/ctr-documents
http://www.mathworks.com/matlabcentral/fileexchange/22-mason-m
http://spie.org/x17123.xml

Verification

Automated Verification of Nested DFS

Jaco C. van de Pol(�)

Formal Methods and Tools, Department of Computer Science,
CTIT, University of Twente, Enschede, The Netherlands

j.c.vandepol@utwente.nl

Abstract. In this paper we demonstrate the automated verification of
the Nested Depth-First Search (NDFS) algorithm for detecting accepting
cycles. The starting point is a recursive formulation of the NDFS algo-
rithm. We use Dafny to annotate the algorithm with invariants and a
global specification. The global specification requires that NDFS indeed
solves the accepting cycle problem. The invariants are proved automati-
cally by the SMT solver Z3 underlying Dafny. The global specifications,
however, need some inductive reasoning on paths in a graph. To prove
these properties, some auxiliary lemmas had to be provided. The full
specification is contained in this paper. It fits on 4 pages, is verified by
Dafny in about 2 minutes, and was developed in a couple of weeks.

1 Introduction

Model checking is an attractive verification technique because it is fully auto-
matic. Since model checking is memory and time intensive, scalability of model
checking to industrial systems requires sophisticated algorithms and high-perfor-
mance implementations. This makes the construction of model checkers intricate
and error prone. When model checkers are used for the verification of industrial
critical systems, they themselves become part of the critical engineering infras-
tructure. This motivated several efforts to verify the verification algorithms and
tools themselves.

Recently, model checkers have been verified using interactive theorem provers.
Here users are responsible for creating a proof, which is then checked by the
machine. Examples include the verification of a μ-calculus model checker in
Coq [14], compositional model checkers in ACL2 [12], and a depth-first search
algorithm for strongly connected components in Coq [11]. Probably the largest
piece of work in this direction is the development of a reasonably efficient, certi-
fied automata-based LTL model checker in Isabelle/HOL [4]. This includes the
translation of LTL properties to Büchi automata, and an algorithm to detect
accepting cycles in the result graph.

The purpose of the current paper is to raise the level of automation. We inves-
tigated whether full functional correctness of graph-based verification algorithms
can be established by automatic program verifiers. These tools depend on user
added annotations to a program, like pre- and postconditions and loop invari-
ants. The program verifier then generates proof obligations, which are discharged
automatically by an SMT solver.

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 181–197, 2015.
DOI: 10.1007/978-3-319-19458-5_12

182 J.C. van de Pol

Concretely, this paper demonstrates how the Nested Depth-First Search al-
gorithm (NDFS) can be expressed in Dafny, and how it can be verified in an
incremental manner. The complete specification (Section A) demonstrates that
NDFS correctly decides if the input graph contains an accepting cycle. Dafny
is an automatic program verifier created by Rustan Leino and relies on the
workhorse Z3 as the underlying SMT solver. We took inspiration from the ver-
ification of the Schorr-Waite graph algorithm, also by Leino [10]. However, we
insist on the natural recursive formulation of NDFS.

As far as we know, we provide the first verification of full correctness of a model
checking algorithm by an automatic program verifier. A related approach [6]
applied automatic program verifiers to distributed state space generators (but
not on the model checking algorithm). Another approach based on annotations
is the PAT model checker, model checking its own annotations [15] (but not full
functional correctness).

2 Nested Depth-First Search and Dafny

2.1 Dafny

Dafny [10] provides a straightforward imperative programming language. It
supports sequential programs, with classes and dynamic allocation. The pro-
gram can be mixed freely with specification annotations, like preconditions
(requires), postconditions (ensures) and invariants. Loops and recursion
require termination metrics (decreases) to ensure termination. In order to
support modularity, framing conditions restrict read and write permissions on
objects.

The specification language is quite liberal: specifications can introduce ghost
variables in program text, mathematical functions, and built-in value types like
sets and sequences. We heavily depend on these features.

Dafny parses and type-checks the program, and generates proof obligations
to guarantee absence of runtime errors, termination, and the validity of all spec-
ification annotations. Dafny works in a modular fashion, method by method.
It relies on the SMT solver Z3 [3] to discharge the proof obligations, and recon-
structs sensible error messages at the program level when verification fails.

2.2 Nested Depth-First Search

The automata based approach [16] reduces the LTL model checking problem to
the detection of accepting cycles. Given a graph G = (V,E, s0, A), with nodes
V , edges E, root s0 ∈ V and accepting states A ⊆ V , the question is whether
there exists a reachable accepting cycle, i.e. a state t ∈ A with s0E

∗t and tE+t.
The famous linear-time algorithm to detect accepting cycles on-the-fly is called
Nested Depth-First Search [2]. NDFS performs a first (blue) DFS to detect
accepting states, and a second (red) search to identify cycles on those states. Both
searches visit nodes at most once, by colouring them cyan/blue and pink/red.

Automated Verification of Nested DFS 183

NDFS is heavily used as the core algorithm of LTL model checkers, starting
with SPIN model checker [7], and also forms the basis of parallel LTL model
checking in LTSmin [8]. Its memory overhead is negligible: only two bits per
state [13]. The version verified in this paper is the new NDFS [13] without early
cycle detection, and with a distinction in pink and red nodes. It corresponds to
the sequential version of the parallel algorithm in [8]. We claim that the pink
colour not only helped in parallelizing NDFS, but is also instrumental in the
formal verification proof.

2.3 Formulation of the NDFS Algorithm in Dafny

1 datatype Co lo r = wh i t e | cyan | b lue | p ink | r ed ;
2

3 c l a s s Node {
4 var next : seq<Node>;
5 var a c c ep t i n g : bool ;
6 var co l o r 1 : Co lo r ;
7 var co l o r 2 : Co lo r ;
8 }
9

10 method nd f s (r o o t :Node) r e tu r n s (found : bool)
11 { found := d f s b l u e (r o o t) ; }
12

13 method d f s b l u e (s :Node) r e tu r n s (found : bool)
14 { s . c o l o r 1 := cyan ;
15 var i := 0 ;
16 wh i l e (i < | s . n ex t |)
17 { var t := s . n ex t [i] ;
18 i := i +1;
19 i f (t . c o l o r 1 = wh i t e)
20 { found := d f s b l u e (t) ;
21 i f (found) { r e tu r n ; }
22 }
23 }
24 i f (s . a c c ep t i n g)
25 { found := d f s r e d (s) ;
26 i f (found) { r e tu r n ; }
27 }
28 s . c o l o r 1 := b lue ;
29 r e tu r n f a l s e ;
30 }
31

32 method d f s r e d (s :Node) r e tu r n s (found : bool)
33 { s . c o l o r 2 := p ink ;
34 var i := 0 ;
35 wh i l e (i < | s . n ex t |)
36 { var t := s . n ex t [i] ;
37 i := i +1;
38 i f (t . c o l o r 1 = cyan) { r e tu r n t rue ; }
39 i f (t . c o l o r 2 = wh i t e)
40 { found := d f s r e d (t) ;
41 i f (found) { r e tu r n ; }
42 }
43 }
44 s . c o l o r 2 := r ed ;
45 r e tu r n f a l s e ;
46 }

Fig. 1. Expressing the plain NDFS algorithm in Dafny syntax

184 J.C. van de Pol

Figure 1 introduces the recursive formulation of the NDFS algorithm in Dafny
syntax. After introducing the enumerated datatype Color (�. 1), the class
Node of nodes in the underlying graph is defined (�. 3-8). Each node is equipped
with a sequence next of successors in the graph and a Boolean accepting.
These attributes will never be changed. Two colours are introduced as well,
which will be manipulated by the algorithm. Alternatively, one could introduce
distinct types for bluish and reddish colours.

The main algorithm is method ndfs (�. 10,11). Its single argument is the
root:Node where the algorithm starts, and its return value found:Bool indi-
cates whether an accepting cycle was found. Return values are named in Dafny,
so they can be referred to in the postcondition of the specification. They can be
used as normal local variables in the method body. The main method just calls
method dfsblue. The reason to have ndfs as a separate method is to be able
to attach the top-level specification to it later.

0

1

2

3

4

5

6

7

8

Fig. 2. Illustrating NDFS

The recursive formulation of method dfsblue
(s:Node) (�. 13-30) closely follows the textbook de-
scription, see for instance [13, Fig 3.]. After marking
s cyan (�. 14), all successor nodes t of s are iterated
over (�. 15-18). If t is seen for the first time (�. 19),
it is processed recursively (�. 20) and the result is
stored in found. As soon as an accepting cycle has
been found, the search can be terminated (�. 21); note
that return is an abbreviation for return found
in Dafny, since we named the return value found.

After processing all successors of s, the red search
is started with dfsred(s) (�. 25), provided that s is
accepting (�. 24). Again, if an accepting cycle is found
we return immediately. When no cycle is found, node
s is coloured blue and the procedure returns (�. 28-
29).

The method dfsred(s:Node) (�. 32-46) per-
forms the red search in a similar fashion. Initially,
nodes are coloured pink (�. 33). All successors t are
processed sequentially (�. 34-37). If t is cyan, a cycle
has been found and is reported (�. 38). Otherwise,
the procedure continues recursively and the results
are propagated (�. 39-41). Finally, when no cycle has
been found at all, node s is coloured red and the procedure returns (�. 44-45).

Figure 2 illustrates the colours. Cyan and pink nodes are still in progress.
After backtracking from the search, nodes are coloured blue or red. So for these
colours we can establish strong invariants.

Automated Verification of Nested DFS 185

3 Developing the Correctness Proof

The verification was carried out incrementally. First, runtime errors are elimi-
nated by appropriate preconditions, then termination is addressed. To verify the
algorithm, the key approach was to identify invariants on the local properties
of the colours in the graph. These invariants can be checked easily. Similar in-
variants played a crucial role in the manual proof of parallel NDFS [8]. Finally,
completeness and soundness of NDFS are proved using auxiliary lemmas, which
reason on global properties of paths and cycles in the graph.

3.1 Absence of Runtime Errors

Even though we did not specify any requirements on NDFS, the code in Figure 1
is not regarded correct by Dafny. It does not report syntax or type check errors,
but the verifier complains (�. 14, 33):

Error: assignment may update an object not in ... modifies clause
Error: target object may be null

First, in order to allow for modular verification, Dafny uses dynamic frames,
insisting on explicit permissions to modify objects. In Figure 3, we added the
permissions to modify the color-fields only (�. 10, 16, 22). Note that dfsred
only modifies color2.

In order to guarantee absence of runtime errors, Dafny has generated some
implicit proof obligations. In our case, runtime errors could occur due to null
dereferences (e.g. in s.color1) and out-of-bound indexing (e.g. in next[i]).
The latter is excluded, since Dafny easily deduces 0 ≤ i < |s.next| from the
loop bounds. However, if initially s:Node = null, indeed s.next would lead
to a run-time error.

In order to solve both problems, we use the technique explained in [10] in the
verification of the Schorr-Waite graph algorithm. We extend the specification as
indicated in Figure 3. We define a ghost variable G:set<Node> (�. 1), indicating
the universe of all (reachable) nodes in the graph. As a ghost variable,G can only
be used in specification annotations; it cannot modify the program execution.
Next, the predicate graph(G) is defined (�. 3-5). G is a valid graph if its
nodes are non-null records and their successors are in G again. We equip all
methods with a precondition that requires that the start node is contained in
the valid graph G (e.g., �. 14-15). Since graph(G) is closed, there is no risk to
run into null nodes anymore.

3.2 Termination

Still, Dafny is not satisfied. In order to guarantee total correctness, it insists on
termination. Termination of the while loops in our case (cf. Figure 1, �. 16, 35)
is easily discharged automatically. However, the recursive calls (�. 20, 40) lead
to the following complaint:

Error: cannot prove termination; try supplying a decreases clause

186 J.C. van de Pol

1 ghost var G : set<Node>;
2

3 p r e d i c a t e graph (G : set<Node>)
4 r ead s G;
5 { ∀ m • m ∈ G =⇒ (m �= n u l l ∧ ∀ n • n ∈ m. next =⇒ n ∈ G) }
6

7 method nd f s (r o o t :Node) r e tu r n s (found : bool)
8 r e q u i r e s graph (G) ;
9 r e q u i r e s r o o t ∈ G;

10 mod i f i e s G‘ co l o r1 , G‘ c o l o r 2 ;
11 { . . . }
12

13 method d f s b l u e (s :Node) r e tu r n s (found : bool)
14 r e q u i r e s s ∈ G;
15 r e q u i r e s graph (G) ;
16 mod i f i e s G‘ co l o r1 , G‘ c o l o r 2 ;
17 { . . . }
18

19 method d f s r e d (s :Node) r e tu r n s (found : bool)
20 r e q u i r e s s ∈ G;
21 r e q u i r e s graph (G) ;
22 mod i f i e s G‘ co l o r 2 ;
23 { . . . }

Fig. 3. Specifying a well-defined and closed graph

So why does NDFS terminate at all? Basically, because every node is visited
at most twice: once during dfsblue and once during dfsred. This is realized
by the colours: we only recurse on white nodes, and immediately colour them
cyan. We specify this insight by declaring that the function G-Cyan(G) de-
creases for each call to dfsblue (�. 11 in Figure 4), where the set Cyan(G) is
defined as those nodes n ∈ G with n.color1=cyan (�. 1-3)1. We add similar
definitions and annotations for pink nodes in dfsred.

Dafny is not yet convinced: We clearly need to require that initially all
nodes are white (�. 6) and we only meet white nodes along the way (�. 10),
otherwise the termination function wouldn’t decrease. Moreover, recursive calls
to dfsblue could manipulate the Cyan set arbitrarily in principle, leading to
non-termination for calls to subsequent successors. To exclude this, dfsblue
must ensure that it will leave the Cyan set unchanged (�. 12). Note that this
is realized in (�. 23), but only in case no accepting cycle is found. An invariant
(�. 15) is required to reason about the value of Cyan during and after the loop.

We are nearly there, but not quite! The preconditions lead to new proof obli-
gations. Obviously, the recursive call to dfsblue(t) (�. 18) satisfies the precon-
dition that t.color1=white. However, Dafny points out that at (Figure 4,
�. 21) there is a call to dfsred, but the precondition t.color2=white at
(Figure 4, �. 28) is not guaranteed:

Error: A precondition for this call might not hold.
Related location: This is the precondition that might not hold.

1 An alternative is to introduce and manipulate a ghost variable Cyan in the method
body, but we prefer our more declarative approach, since it does not clutter the code.

Automated Verification of Nested DFS 187

1 f u n c t i o n Cyan (G : s e t 〈Node〉) : s e t 〈Node〉
2 r ead s G; r e q u i r e s graph (G) ;
3 { s e t n | n ∈ G ∧ n . c o l o r 1 = cyan • n }
4

5 method nd f s (r o o t :Node) r e tu r n s (found : bool)
6 r e q u i r e s ∀ s • s ∈ G =⇒ s . c o l o r 1 = s . c o l o r 2 = wh i t e ;
7 { . . . }
8

9 method d f s b l u e (s :Node) r e tu r n s (found : bool)
10 r e q u i r e s s . c o l o r 1 = wh i t e ;
11 decr ea se s G − Cyan (G) ;
12 en su r e s ¬found =⇒ o ld (Cyan (G)) = Cyan (G) ;
13 { . . .
14 wh i l e (i < | s . n ex t |)
15 i n v a r i a n t Cyan (G) = o ld (Cyan (G)) ∪ { s } ;
16 { . . .
17 i f (t . c o l o r 1 = wh i t e)
18 { found := d f s b l u e (t) ;
19 . . .
20 i f (s . a c c ep t i n g)
21 { found := d f s r e d (s) ; // s t i l l to p rove : why i s s . c o l o r 2 wh i t e ?
22 . . .
23 s . c o l o r 1 := b lue ;
24 r e tu r n f a l s e ;
25 }
26

27 method d f s r e d (s :Node) r e tu r n s (found : bool)
28 r e q u i r e s s . c o l o r 2 = wh i t e ;
29 decr ea se s G − Pink (G) ;
30 en su r e s ¬found =⇒ o ld (Pink (G)) = Pink (G) ;
31 { . . . }

Fig. 4. Specifying decreasing termination functions

Indeed, the insight that the red search does not escape the blue territory is
subtle. It depends on the very depth-first nature of NDFS! Proving the main
invariants on the NDFS colours will also complete the termination proof.

3.3 Main Local Invariants on NDFS Colours

In order to prove the main invariant Red ⊆ Blue we have to provide several
additional invariants. These invariants are needed in the termination proof, but
they will be reused in the completeness proof of NDFS. All invariants in this
section can be proved locally, without reasoning about the whole graph.

We now come to the formulation of the main invariants. They capture the very
basic idea of Depth-First Search: A node is only coloured blue if its successors
are processed, i.e. they are coloured blue or cyan. Similarly, all successors of
red nodes are red or pink. We express these invariants concisely with a special
predicate Next, where Next(G,X,Y) indicates that all successors in G of nodes
X are in Y . See Figure 5 for the statement of the main invariants.

Another important local property is that there will never be an edge from a
red node to a cyan node, Next(G,Red(G),G-Cyan(G)). This is guaranteed
by the cycle detection in dfsred at (Section A.5, �. 38).

For the complete proof we refer to Section A. One of the subtleties is that
in dfsred (Section A.5, �. 50) we colour the start node red, just before it

188 J.C. van de Pol

1 p r e d i c a t e Next (G : s e t 〈Node〉 ,X : s e t 〈Node〉 ,Y : s e t 〈Node〉)
2 r ead s G; r e q u i r e s graph (G) ;
3 { ∀ n , i • n ∈ G ∧ 0 ≤ i < | n . nex t | =⇒ (n ∈ X =⇒ n . nex t [i] ∈ Y) }
4 . . .
5 i n v a r i a n t Red (G) ⊆ Blue (G) ;
6 i n v a r i a n t Next (G, Blue (G) , Blue (G) ∪ Cyan (G)) ;
7 i n v a r i a n t Next (G, Red (G) , Red (G) ∪ Pink (G)) ;
8 i n v a r i a n t Next (G, Red (G) , G − Cyan (G)) ;

Fig. 5. Stating the main local invariants on the colours in NDFS

becomes blue, temporarily violating the main invariant. This is solved by re-
membering the starting point of dfsred in a ghost variable ghost root:Node
(Section A.5, �. 1). The invariants on Blue in dfsred are modified to Blue ∪
{root} (Section A.5, �. 8, 10, 19, 32). Also, we must explicitly state that all
successors of s up to i are in Blue ∪ Cyan (Section A.4, �. 33), or Red ∪ Pink
(Section A.5, �. 29), respectively. In order to prove this under the given condi-
tions, we introduce an invariant on the exact types that the two colour variables
may assume (Section A.1, �. 16-20).

Adding the invariants expands the Dafny code considerably, since most in-
variants must be repeated six times: before and after each recursive call, and in
the while loops. See for instance the six occurrences of invariant types(G)
in Section A.4, A.5.

At this point, Dafny is happy, since the code is guaranteed to terminate with-
out run time errors. This run takes about 10 seconds (on a 2.7GHz Macbook).

Dafny program verifier finished with 13 verified, 0 errors

3.4 Completeness

We can now proceed to specify and prove that NDFS accomplishes a useful task.
The correctness criterion is that the result found indicates correctly whether
the graph G has an accepting cycle. In order to specify this, we first define the
notions of paths and cycles, in terms of sequences of nodes, Figure 6.

A sequence of nodes p is a path from x to y in graph G if it starts with x,
ends with y, and successive members are linked by an edge in G. A reachable
accepting cycle is defined as a lasso: a path p from root x to accepting state y,
and the cycle is a non-empty path q from y to itself.

Next, correctness of ndfs is ensured, distinguishing soundness and complete-
ness. In the rest of this section, we prove completeness, i.e. the algorithm does
not miss an accepting cycle. To this end we state the key invariant (Figure 6,
�. 13-15). The completeness proof consists of two parts: proving the key invari-
ant, that no blue nodes can have an accepting cycle, and proving that all nodes
will be blue if ndfs terminates with found=false.

Let us see what we know after dfsblue(root) terminates with
found=false; we refer to the line numbers in Section A.4. We have already
proved the invariant Next(G,Blue(G),Blue(G) ∪ Cyan(G)) (�. 16). Since
Old(Cyan)=Cyan (�. 19) and Cyan={} initially (nodes start white), we obtain

Automated Verification of Nested DFS 189

1 function Path (G: set 〈Node〉 , x : Node , y : Node , p : seq〈Node〉) : bool
2 reads G; requires graph (G) ;
3 { |p | > 0 ∧ p [0] = x ∧ p [| p|−1] = y
4 ∧ ∀ i • 0 ≤ i < |p|−1 =⇒ p [i] ∈ G ∧ p [i +1] ∈ p [i] . next }
5

6 function Cycle (G: set 〈Node〉 , x : Node , y : Node , p : seq〈Node〉 , q : seq〈Node〉) : bool
7 reads G; requires graph (G) ;
8 { Path (G, x , y , p) ∧ Path (G, y , y , q) ∧ |q | > 1 ∧ y . accept ing }
9

10 ensures found =⇒ (∃ a , p , q • Cycle (G, root , a , p , q)) ; / / soundness
11 ensures (∃ s , p , q • Cycle (G, root , s , p , q)) =⇒ found ; / / completeness
12

13 function Key Invar ian t (G: set 〈Node〉) : bool
14 reads G; requires graph (G) ;
15 { ∀ s • s ∈ Blue (G) ∧ s . accept ing =⇒ ¬ ∃ p • |p | > 1 ∧ Path (G, s , s , p) }

Fig. 6. Specification of the full functional correctness and key invariant of NDFS

Next(G,Blue(G),Blue(G)). Since root.color1=blue (�. 18), we can now
prove inductively that all reachable nodes are indeed in Blue(G). So if the Key
Invariant holds, there cannot be an accepting cycle.

Since finding inductive proofs is beyond the capabilities of Dafny, we must
prove this with a separate lemma. In Dafny, an inductive proof corresponds to a
recursive function that establishes the correct post condition. Function NoCycle
(Section A.2, �. 15-21) represents a proof by induction over the reachable nodes
that the key invariant indeed implies that there is no accepting cycle. Note that
we have to explicitly apply this lemma in ndfs (Section A.3, �. 9).

Next we must still prove the Key Invariant (�. 10, 23, 38). The crucial step
is just before we assign s.color1 = blue for an accepting state s (�. 58). At
this point we apply a new lemma, NoPath, which basically reasons about the
result of dfsred, with another inductive argument.

So what do we know after calling dfsred when found=false?We now refer
to line numbers in Section A.5. We already proved Next(G,Red(G),Red(G) ∪
Pink(G)) (�. 18). Since Old(Pink)=Pink (�. 16) and Pink={} before the call
(Section A.4,�.31)weobtainNext(G,Red(G),Red(G)).Sinces.color2=red
(�. 15), we can now prove inductively that all reachable nodes are in Red(G). One
of ourmain invariants on colours is that there is no edge between rednodes and cyan
nodes (�. 11). So indeed, the root node, which is still cyan, is not reachable.

Again, this requires an inductive argument, which is provided by the recur-
sive function NoPath (Section A.2, �. 5-13) that establishes the correct post-
condition.

3.5 Soundness

The final task is to prove soundness, i.e., if ndfs reports found=true, then
there exists an accepting cycle. This is intuitively an easy task, since the stack
of the program execution corresponds to the accepting cycle (cf. the cyan and
pink nodes in Figure 2). However, we have no access to the stack. Actually, the
soundness proof posed some verification challenges to the underlying Z3 SMT
solver, since it introduces quantifications over sequences. To limit the search

190 J.C. van de Pol

1 method nd f s (r o o t :Node)
2 { t r y
3 { d f s b l u e (r o o t) ;
4 a s s e r t ¬Cy c l e E x i s t s ;
5 }
6 catch CycleFound ⇒ { a s s e r t Cy c l e E x i s t s ; }
7 }
8

9 method d f s b l u e (s :Node) r a i s e s CycleFound
10 { s . c o l o r 1 := cyan ;
11 var i := 0 ;
12 wh i l e (i < | s . n ex t |)
13 { var t := s . n ex t [i] ;
14 i := i +1;
15 i f (t . c o l o r 1 = wh i t e) { d f s b l u e (t) ; }
16 }
17 i f (s . a c c ep t i n g) { d f s r e d (s) ; }
18 s . c o l o r 1 := b lue ;
19 }
20

21 method d f s r e d (s :Node) r a i s e s CycleFound
22 { s . c o l o r 2 := p ink ;
23 var i := 0 ;
24 wh i l e (i < | s . n ex t |)
25 { var t := s . n ex t [i] ;
26 i := i +1;
27 i f (t . c o l o r 1 = cyan) { r a i s e CycleFound ; }
28 i f (t . c o l o r 2 = wh i t e) { d f s r e d (t) ; }
29 }
30 s . c o l o r 2 := r ed ;
31 }

Fig. 7. Specification in Dafny language extended with exceptions

space, Dafny does not try extensively to find a witness to an obligation of the
form exists p:seq<<Node>>. So at certain places in the program we must
add assertions, to suggest the correct witnesses. Alternatively, one could add
ghost variables to manipulate paths explicitly, as done in [10].

The blue search ensures that when found=true, there is indeed an accept-
ing cycle (Section A.4, �. 22). The assertion at (�. 46) shows how this cycle is
constructed from the path obtained from the recursive call. In the other case, at
(�. 55), the situation is less trivial. Here we apply lemma CycleFoundHere
to reconstruct the cycle.

Let us first consider this situation. Assume that the blue search started in
node s, calls the red search from an accepting node t, which hits a cyan state r.
Note that r is not necessarily accepting. In this case, the accepting cycle consists
of the prefix s to t, followed by the loop t to r back to t (s = 0, t = 5, r = 1 in
Figure 2).

The fact that there is a path from r to t is not obvious. We added a new
precondition (Section A.4, �. 11) that from any cyan state c (in particular r)
there is a path to the current state s. When we color s cyan, the path is trivial,
but still we must assert it (�. 26). Before the recursive call (�. 43) we use lemma
NextCyan (Section A.2, �. 23-29) to tell Dafny how the path to the next cyan
node is constructed by concatenation.

To reconstruct the path from t to some r, the red search ensures that if
found=true, there is a path from the current state to some cyan state

Automated Verification of Nested DFS 191

(Section A.5, �. 21). The assertion at (�. 39) indicates how this path is con-
structed in case the cyan state is found, and (�. 45) indicates how the path is
created from the path obtained in the recursive call.

Lemma CycleFoundHere (Section A.2, �. 31-41) checks the reasoning that
we sketched above. It was fairly non-trivial to convince Dafny that this con-
struction is correct, even though it is basic first-order reasoning without induc-
tion. Actually, the interaction with Dafny at this point was quite inconvenient:
Dafny just tells that the proof does not go through, and the user has to find
out, via numerous assertions, which facts Dafny does or does not see. This small
part of the proof would have been easier with an interactive theorem prover. But
then it is extra rewarding to see (in 2 minutes):

Dafny program verifier finished with 22 verified, 0 errors

4 Conclusion

The main conclusion is that verification of recursive graph algorithms with auto-
matic program verifiers is feasible. In particular, the functional correctness proof
of NDFS with Dafny was successful.

Success Factors. One of the success factors is the rich specification language of
Dafny. We heavily depended on set values (for sets of nodes with a particular
colour) and sequence values (representing paths and cycles in the graph). We also
made extensive use of quantifiers. We feel that every line of the specification is
straightforward and understandable. Also, the recursive nature of the algorithm
did not pose any problem.

Another success factor is the power of the SMT solver Z3, and the error
reporting by Dafny. In nearly all cases of a failed verification Dafny came
back with a line number and a diagnosis of the cause, on which the user could
take action.

This was the first experience with Dafny by the author, or with any auto-
matic program verifier at all. Still it took only a couple of weeks to finish the
complete proof. Here it should be noted that the author was already familiar with
the details of the NDFS algorithm, and also with interactive theorem provers.

Finally, the proof strategy to split local invariants on colours from inductive
arguments on paths helped to structure the proof. These invariants contribute to
the global understanding of the NDFS algorithm. Also, the modular approach
was essential to build up the specification incrementally, even though Dafny
does not provide extra support for specification refinement. But also it was
necessary to keep the verification task manageable.

Useful Extensions to Dafny. There are still a few issues where Dafny could
be improved to be even more useful. The complete verification takes about 2
minutes, which is fine. However, when the user checks intermediate attempts
frequently, 2 minutes imply a considerable slowdown. But even worse, Dafny
(or rather Z3) chokes on failed proof attempts: Dafny simply does not come

192 J.C. van de Pol

back at all within a reasonable amount of time. This was the main reason to
follow an incremental approach. Maybe the IDE interface to Dafny would have
better supported an incremental approach.

There are also two reasons why the specification has increased more than
necessary. First, many invariants are repeated six times: in both while-loops, and
before and after each recursive procedure. This could be mitigated by allowing
an invariant keyword for recursive functions. A more drastic solution would
be to generate invariants, possibly guided by some hints. For example, specify
once hint types(G); instead of six times as in Section A.4, A.5.

The other extension on the wish list is exceptions. Several lines in the plain
code (Figure 1) just handle return values. A more natural coding would use
exceptions, as illustrated in (Figure 7). This is probably a non-trivial extension
to the verification condition generator in Dafny.

Finally, SMT solving for full first-order logic is necessarily incomplete. So,
when Dafny reports that an assertion at some line number fails, that assertion
may hold or not. No further diagnostic information is given. At one place we
struggled hard to come up with the three intermediate assertions to convince
Dafny, cf. CycleFoundHere in (Section A.2, �. 38-40). It would be nice if the
user had the possibility to fall back on an interactive proof session to deal with
such cases, in order to avoid blind guessing.

Perspectives for Future Work. It is now possible to easily play with variants of
NDFS, for instance those introduced by [5]. After submission of the paper, the
author modified the code and proof in a couple of hours to the 2-bit version
of [13], basically by replacing the pink colour by a ghost variable OnStack. The
basic setup might also be reused to automate the verification of other DFS al-
gorithms, e.g. SCC-based algorithms [9]. A more challenging assignment would
be to include partial-order reduction, the LTL-to-Büchi translation, or the op-
erational semantics of a modeling language. It is not clear that these tasks are
in the scope of an automatic program verifier right now.

The most useful extension would be the application to parallel graph algo-
rithms, like the parallel NDFS in [8]. This would require a program verifier for
multi-threaded programs that synchronize by reading and writing colours on a
shared graph. Such a tool would help researchers in developing parallel graph
algorithms, especially when small input graphs could be generated as counter
examples for faulty programs.

Acknowledgement. The author is grateful to the organisers and participants of
Dagstuhl Seminar 14171 [1] in April 2014 on Software Verification System benchmarks,
which initiated this research. In particular, the author is thankful to Rustan Leino for
creating Dafny, and supporting the author during and after the workshop. The re-
viewers of this paper provided several useful suggestions to improve the presentation.

Automated Verification of Nested DFS 193

References

1. Beyer, D., Huisman, M., Klebanov, V., Monahan, R.: Evaluating Software Verifica-
tion Systems: Benchmarks and Competitions (Dagstuhl Reports 14171). Dagstuhl
Reports 4(4), 1–19 (2014)

2. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-Efficient Al-
gorithms for the Verification of Temporal Properties. Formal Methods in System
Design 1(2/3), 275–288 (1992)

3. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

4. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013)

5. Gaiser, A., Schwoon, S.: Comparison of Algorithms for Checking Emptiness on
Büchi Automata. CoRR, abs/0910.3766 (2009)

6. Gava, F., Fortin, J., Guedj, M.: Deductive verification of state-space algorithms. In:
Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 124–138. Springer,
Heidelberg (2013)

7. Holzmann, G.J., Peled, D., Yannakakis, M.: On Nested Depth First Search. In:
The Spin Verification System, pp. 23–32. American Mathematical Society (1996)

8. Laarman, A.W., Langerak, R., van de Pol, J.C., Weber, M., Wijs, A.: Multi-Core
Nested Depth-First Search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 321–335. Springer, Heidelberg (2011)

9. Lammich, P.: Verified efficient implementation of Gabow’s strongly connected com-
ponent algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558,
pp. 325–340. Springer, Heidelberg (2014)

10. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

11. Pottier, F.: Depth-first search and strong connectivity in Coq. Journées Franco-
phones des Langages Applicatifs (JFLA 2015) (January 2015)

12. Ray, S., Matthews, J., Tuttle, M.: Certifying compositional model checking algo-
rithms in ACL2. In: IW on ACL2 Theorem Prover and its Applications (2003)

13. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190.
Springer, Heidelberg (2005)

14. Sprenger, C.: A verified model checker for the modal µ-calculus in Coq. In: Steffen,
B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998)

15. Sun, J., Liu, Y., Cheng, B.: Model checking a model checker: A code contract
combined approach. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447,
pp. 518–533. Springer, Heidelberg (2010)

16. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS, pp. 332–344. Cambridge (1986)

194 J.C. van de Pol

A Full NDFS Proof in Dafny

This section contains the full specification of the NDFS algorithm and is com-
pletely verified with Dafny. The verification was run with Dafny version
1.8.2.10419 on a Macbook 2.7 GHz Intel Core i7 processor with 8GB RAM under
MacOS 10.10.1 and Mono version 3.2.5. The verification time varies around 2
minutes. The code in this section has been typeset with dafny.sty by Rustan
Leino, obtained from https://searchcode.com/codesearch/view/28108731/.

A.1 Basic Definitions

1 datatype Co lo r = wh i t e | cyan | b lue | p ink | r ed ;
2

3 c l a s s Node {
4 var next : seq 〈Node〉 ;
5 var a c c ep t i n g : bool ;
6 var co l o r 1 : Co lo r ;
7 var co l o r 2 : Co lo r ;
8 }
9

10 ghost var G : s e t 〈Node〉 ;
11

12 p r e d i c a t e graph (G : s e t 〈Node〉)
13 r ead s G;
14 { ∀ m • m ∈ G =⇒ (m �= n u l l ∧ ∀ n • n ∈ m. next =⇒ n ∈ G) }
15

16 p r e d i c a t e t y p e s (G : s e t 〈Node〉)
17 r ead s G; r e q u i r e s graph (G) ;
18 { ∀ m • m ∈ G =⇒
19 m. co l o r 1 ∈ {whi te , cyan , b l u e }
20 ∧ m. co l o r 2 ∈ {white , p ink , r ed}}
21

22 f u n c t i o n Cyan (G : s e t 〈Node〉) : s e t 〈Node〉
23 r ead s G; r e q u i r e s graph (G) ;
24 { s e t n | n ∈ G ∧ n . c o l o r 1 = cyan • n }
25

26 f u n c t i o n Blue (G : s e t 〈Node〉) : s e t 〈Node〉
27 r ead s G; r e q u i r e s graph (G) ;
28 { s e t n | n ∈ G ∧ n . c o l o r 1 = b lue • n }
29

30 f u n c t i o n Pink (G : s e t 〈Node〉) : s e t 〈Node〉
31 r ead s G; r e q u i r e s graph (G) ;
32 { s e t n | n ∈ G ∧ n . c o l o r 2 = p ink • n }
33

34 f u n c t i o n Red (G : s e t 〈Node〉) : s e t 〈Node〉
35 r ead s G; r e q u i r e s graph (G) ;
36 { s e t n | n ∈ G ∧ n . c o l o r 2 = r ed • n }
37

38 p r e d i c a t e Next (G : s e t 〈Node〉 ,X : s e t 〈Node〉 ,Y : s e t 〈Node〉)
39 r ead s G; r e q u i r e s graph (G) ;
40 { ∀ n , i • n ∈ G ∧ 0 ≤ i < | n . nex t | =⇒ (n ∈ X =⇒ n . nex t [i] ∈ Y) }
41

42 f u n c t i o n Path (G : s e t 〈Node〉 , x :Node , y :Node , p : seq 〈Node〉) : bool
43 r ead s G; r e q u i r e s graph (G) ;
44 { | p | > 0 ∧ p [0] = x ∧ p [| p |−1] = y
45 ∧ ∀ i • 0 ≤ i < | p|−1 =⇒ p [i] ∈ G ∧ p [i +1] ∈ p [i] . n ex t }
46

47 f u n c t i o n Cyc l e (G : s e t 〈Node〉 , x :Node , y :Node , p : seq 〈Node〉 , q : seq 〈Node〉) : bool
48 r ead s G; r e q u i r e s graph (G) ;
49 { Path (G , x , y , p) ∧ Path (G, y , y , q) ∧ | q | > 1 ∧ y . a c c ep t i n g }

https://searchcode.com/codesearch/view/28108731/

Automated Verification of Nested DFS 195

A.2 Auxiliary Lemmas on Paths and Cycles

1 function Key Invar ian t (G: set 〈Node〉) : bool
2 reads G; requires graph (G) ;
3 { ∀ s • s ∈ Blue (G) ∧ s . accept ing =⇒ ¬∃ p • |p | > 1 ∧ Path (G, s , s , p) }
4

5 function NoPath (G: set 〈Node〉 , s : Node , t : Node , p : seq〈Node〉) : bool
6 reads G; requires graph (G) ;
7 requires Next (G, Red(G) ,Red(G)) ;
8 requires Next (G, Red(G) ,G − Cyan (G)) ;
9 requires s ∈ Red(G) ;

10 requires t ∈ Cyan (G) ;
11 ensures NoPath (G, s , t , p) ;
12 ensures |p | > 1 =⇒ ¬Path (G, s , t , p) ;
13 { |p | > 1 ∧ p [0] = s ∧ p [1] ∈ p [0] . next =⇒ NoPath (G, p [1] , t , p [1 . .]) }
14

15 function NoCycle (G: set 〈Node〉 , r oo t : Node , s : Node , p : seq〈Node〉 , q : seq〈Node〉) : bool
16 reads G; requires graph (G) ;
17 requires r oo t ∈ Blue (G) ;
18 requires Next (G, Blue (G) , Blue (G)) ;
19 requires Key Invar ian t (G) ;
20 ensures ¬Cycle (G, root , s , p , q) ;
21 { |p | > 1 ∧ p [0] = r oo t ∧ p [1] ∈ p [0] . next =⇒ NoCycle (G, p [1] , s , p [1 . .] , q) }
22

23 lemma NextCyan (G: set 〈Node〉 , s : Node , t : Node)
24 requires graph (G) ;
25 requires s ∈ G;
26 requires t ∈ s . next ;
27 requires ∀ c • c ∈ Cyan (G) =⇒ ∃ q • Path (G, c , s , q) ;
28 ensures ∀ c • c ∈ Cyan (G) =⇒ ∃ q • Path (G, c , t , q) ;
29 { assert ∀ c , p • Path (G, c , s , p) =⇒ Path (G, c , t , p+[t]) ; }
30

31 lemma CycleFoundHere (G: set 〈Node〉 , s : Node)
32 requires graph (G) ;
33 requires s ∈ G;
34 requires s . accept ing ;
35 requires ∃ c , p • c ∈ Cyan (G) ∧ Path (G, s , c , p) ∧ |p|>1;
36 requires ∀ c • c ∈ Cyan (G) =⇒ ∃ q • Path (G, c , s , q) ;
37 ensures ∃ p , q • Cycle (G, s , s , p , q) ;
38 { assert ∃ c , p , q • c ∈ Cyan (G) ∧ |p|>1 ∧ Path (G, s , c , p) ∧ Path (G, c , s , q) ;
39 assert ∀ c , p , q • Path (G, s , c , p) ∧ Path (G, c , s , q) =⇒ Path (G, s , s , p+q [1 . .]) ;
40 assert ∀ q • |q | > 1 ∧ Path (G, s , s , q) =⇒ Cycle (G, s , s , [s] , q) ;
41 } / / t h i s was very hard to prove and r a t h e r s e n s i t i v e. . .

A.3 Main Method and Correctness Statement

1 method ndfs (roo t : Node) returns (found : bool)
2 requires graph (G) ;
3 requires r oo t ∈ G;
4 requires ∀ s • s ∈ G =⇒ s . co lo r1 = s . co lo r2 = whi te ;
5 modifies G‘ color1 , G‘ co lo r2 ;
6 ensures found =⇒ (∃ a , p , q • Cycle (G, root , a , p , q)) ; / / soundness
7 ensures (∃ s , p , q • Cycle (G, root , s , p , q)) =⇒ found ; / / completeness
8 { found := dfsb lue (roo t) ;
9 assert ¬found =⇒ ∀ s , p , q • NoCycle (G, root , s , p , q) =⇒ ¬Cycle (G, root , s , p , q) ;

10 }

196 J.C. van de Pol

A.4 Blue Search

1 method d f s b l u e (s :Node) r e tu r n s (found : bool)
2 r e q u i r e s s ∈ G;
3 r e q u i r e s graph (G) ;
4 r e q u i r e s t y p e s (G) ;
5 r e q u i r e s s . c o l o r 1 = wh i t e ;
6 r e q u i r e s Next (G, Blue (G) , Blue (G) ∪ Cyan (G)) ;
7 r e q u i r e s Next (G, Red (G) , Red (G) ∪ Pink (G)) ;
8 r e q u i r e s Pink (G) = {} ;
9 r e q u i r e s Red (G) ⊆ Blue (G) ;

10 r e q u i r e s Key I n va r i a n t (G) ;
11 r e q u i r e s ∀ c • c ∈ Cyan (G) =⇒ ∃ p • Path (G, c , s , p) ;
12 mod i f i e s G‘ co l o r1 , G‘ c o l o r 2 ;
13 decr ea se s G − Cyan (G) ;
14 en su r e s t y p e s (G) ;
15 ensu re s o l d (Blue (G)) ⊆ Blue (G) ;
16 en su r e s Next (G, Blue (G) , Blue (G) ∪ Cyan (G)) ;
17 en su r e s Next (G, Red (G) , Red (G) ∪ Pink (G)) ;
18 en su r e s ¬found =⇒ s ∈ Blue (G) ;
19 en su r e s ¬found =⇒ o ld (Cyan (G)) = Cyan (G) ;
20 en su r e s ¬found =⇒ Pink (G) = {} ;
21 en su r e s ¬found =⇒ Red (G) ⊆ Blue (G) ;
22 en su r e s found =⇒ (∃ a , p , q • Cyc l e (G, s , a , p , q)) ;
23 en su r e s Key I n va r i a n t (G) ;
24

25 { s . c o l o r 1 := cyan ;
26 a s s e r t Path (G, s , s , [s]) ;
27 var i := 0 ;
28 wh i l e (i < | s . n ex t |)
29 i n v a r i a n t t y p e s (G) ;
30 i n v a r i a n t Cyan (G) = o ld (Cyan (G)) ∪ { s } ;
31 i n v a r i a n t Pink (G) = {} ;
32 i n v a r i a n t i ≤ | s . n ex t | ;
33 i n v a r i a n t ∀ j • 0 ≤ j < i =⇒ s . n ex t [j] ∈ Blue (G) ∪ Cyan (G) ;
34 i n v a r i a n t o ld (Blue (G)) ⊆ Blue (G) ;
35 i n v a r i a n t Next (G, Blue (G) , Blue (G) ∪ Cyan (G)) ;
36 i n v a r i a n t Next (G, Red (G) , Red (G) ∪ Pink (G)) ;
37 i n v a r i a n t Red (G) ⊆ Blue (G) ;
38 i n v a r i a n t Key I n va r i a n t (G) ;
39

40 { var t := s . n ex t [i] ;
41 i := i +1;
42 i f (t . c o l o r 1 = wh i t e)
43 { NextCyan (G, s , t) ;
44 found := d f s b l u e (t) ;
45 i f (found) {
46 a s s e r t ∀ a , p , q • Cyc l e (G , t , a , p , q) =⇒ Cyc l e (G , s , a , [s]+p , q) ;
47 r e tu r n ;
48 }
49 }
50 }
51 i f (s . a c c ep t i n g)
52 { a s s e r t s �∈ Pink (G) ;
53 found := d f s r e d (s , s) ;
54 i f (found) {
55 CycleFoundHere (G, s) ;
56 r e tu r n ;
57 }
58 a s s e r t ∀ p • NoPath(G, s , s , p) ;
59 }
60 s . c o l o r 1 := b lue ;
61 r e tu r n f a l s e ;
62 }

Automated Verification of Nested DFS 197

A.5 Red Search

1 method d f s r e d (s :Node , ghost r o o t :Node) r e tu r n s (found : bool)
2 r e q u i r e s graph (G) ;
3 r e q u i r e s t y p e s (G) ;
4 r e q u i r e s s ∈ G;
5 r e q u i r e s r o o t ∈ G;
6 r e q u i r e s s . c o l o r 2 = wh i t e ;
7 r e q u i r e s s = r o o t ∨ s . c o l o r 1 = b lue ;
8 r e q u i r e s Next (G, Blue (G) ∪ { r o o t } , B lue (G) ∪ Cyan (G)) ;
9 r e q u i r e s Next (G, Red (G) , Red (G) ∪ Pink (G)) ;

10 r e q u i r e s Red (G) ⊆ Blue (G) ∪ { r o o t } ;
11 r e q u i r e s Next (G, Red (G) ,G − Cyan (G)) ;
12 mod i f i e s G‘ co l o r 2 ;
13 decr ea se s G − Pink (G) ;
14 en su r e s t y p e s (G) ;
15 en su r e s ¬found =⇒ s ∈ Red (G) ;
16 en su r e s ¬found =⇒ o ld (Pink (G)) = Pink (G) ;
17 ensu re s o l d (Red (G)) ⊆ Red (G) ;
18 en su r e s Next (G, Red (G) , Red (G) ∪ Pink (G)) ;
19 en su r e s Red (G) ⊆ Blue (G) ∪ { r o o t } ;
20 en su r e s Next (G, Red (G) ,G − Cyan (G)) ;
21 en su r e s found =⇒ ∃ p , c • | p | > 1 ∧ c ∈ Cyan (G) ∧ Path (G, s , c , p) ;
22

23 { s . c o l o r 2 := p ink ;
24 var i := 0 ;
25 wh i l e (i < | s . n ex t |)
26 i n v a r i a n t t y p e s (G) ;
27 i n v a r i a n t o ld (Red (G)) ⊆ Red (G) ;
28 i n v a r i a n t i ≤ | s . n ex t | ;
29 i n v a r i a n t ∀ j • 0 ≤ j < i =⇒ s . n ex t [j] ∈ Red (G) ∪ Pink (G) ;
30 i n v a r i a n t Next (G, Red (G) , Red (G) ∪ Pink (G)) ;
31 i n v a r i a n t Pink (G) = o ld (Pink (G)) ∪ { s } ;
32 i n v a r i a n t Red (G) ⊆ Blue (G) ∪ { r o o t } ;
33 i n v a r i a n t Next (G, Red (G) ,G − Cyan (G)) ;
34 i n v a r i a n t ∀ j • 0 ≤ j < i =⇒ s . n ex t [j] ∈ G − Cyan (G) ;
35

36 { var t := s . n ex t [i] ;
37 i := i +1;
38 i f (t . c o l o r 1 = cyan) {
39 a s s e r t Path (G, s , t , [s , t]) ;
40 r e tu r n t rue ;
41 }
42 i f (t . c o l o r 2 = wh i t e)
43 { found := d f s r e d (t , r o o t) ;
44 i f (found) {
45 a s s e r t ∀ p , c • Path (G , t , c , p) =⇒ Path (G , s , c , [s]+p) ;
46 r e tu r n ;
47 }
48 }
49 }
50 s . c o l o r 2 := r ed ;
51 r e tu r n f a l s e ;
52 }

On the Formal Verification of Optical Quantum

Gates in HOL

Mohamed Yousri Mahmoud1(�), Prakash Panangaden2, and Sofiène Tahar1

1 Electrical and Computer Engineering Deptartment, Concordia University,
Montreal, Canada

{mo solim,tahar}@ece.concordia.ca
http://hvg.ece.concordia.ca

2 Computer Science Department, Mcgill University,
Montreal, Canada

prakash@cs.mcgill.ca

Abstract. Quantum computers are expected to handle hard compu-
tational problems and provide unbreakable security protocols. Among
different quantum computer implementations, those based on quantum
optics and nuclear magnetic resonance show good advancement in build-
ing large scale machines. However, the involvement of optical and nu-
clear techniques makes their development very critical. This motivates
us to apply formal techniques, in particular theorem proving, in quan-
tum circuits analysis. In this work, we present the formalization of multi-
inputs/multi-outputs quantum gates (technically called multi-modes op-
tical circuits). This requires the implementation of tensor product over
complex-valued functions. Firstly, we build a formal model of single op-
tical beams and then extend it to cover circuits of multi optical beams,
with the help of the developed tensor product algebra. As an application,
we formally verify the behavior of the optical quantum CNOT gate and
Mach-Zehnder interferometer.

Keywords: Quantum computing · Multi-modes · Tensor product ·
CNOT gate · Mach-Zehnder · Theorm proving · HOL light

1 Introduction

Quantum computers implemnt algorithms that would outperform classical ma-
chines, in particular for solving hard problems: a well known example is Shor’s
algorithm for integer factorization [10]. The new machine capabilities also offer
powerful unbreakable security systems, e.g., [2]. Similar to classical machines,
quantum ones consist of a new notion of a bit, called quantum bit (abbreviated
as qbit), and a set of universal quantum gates, e.g., the Controlled NOT (the
quantum counterpart of the classical NOT gate) [18]. The implementation of
the quantum machine has been carried out in small scales using different means
and technologies, such as ion traps [6] and quantum dots [11]. Many efforts are
being invested for large scale machines [9], where optical circuits with the help
of Nuclear Magnetic Resonance [20] and Optical Nuclear Coupling [7] are more
reliable to implement such large scale computers.

c© Springer International Publishing Switzerland 2015
M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 198–211, 2015.
DOI: 10.1007/978-3-319-19458-5_13

Formal Verification of Quantum Gates in HOL 199

The analysis and verification of this kind of optical quantum circuits and gates
is very critical and faces some difficulties since traditional analysis techniques
are ineffective. For instance, it has been proved that the simulation of a single
time instance of a quantum system requires solving an exponential number of
differential equations [4]. This motivates us to apply formal methods in this
area, since the latter has enabled significant advancements took place in many
engineering areas, e.g., analog systems designs [22], information theory [17], and
sensor networks [3].

Recently, some developments for the formal verification of quantum optics has
been conducted in higher-order logic (HOL) theorem proving [12] [14]. The main
reason behind the choice of HOL is because of the high expressiveness it offers.
Definitely, this comes at the expense of the full automation that HOL provers do
not offer. However, HOL theorem proving still provides a good compromise com-
pared to other automated formal techniques, such as model checking [1], that are
unable to deal with the details of quantum systems. The application of abstrac-
tion techniques is not of much help as it would implicitly converge a quantum
system to a classical one [21]. Frst-order logic is not suitable either since in most
of the targeted quantum definitions and theorems there are quantifications over
functions and predicates.

Based on [14], the formal model of one of the quantum computer gates, namely
the optical flip gate, has been developed along with its verification [13]. How-
ever, the existing work is limited to single-input/single-output optical systems,
which is technically called the single-mode optical beams theory. In this paper,
we tackle the formalization of tensor product for complex-valued functions in
order to allow the analysis of multi-inputs/multi-outputs systems, which is tech-
nically called multi-mode optical beams theory. As an application, we apply the
multi-mode theory in the analysis of two quantum optical circuits: the Mach-
Zehnder interferometer [16] and the Controlled NOT gate [19]. The former is
a common circuit in quantum computing and quantum optics. The latter is a
larger circuit, which is one of the universal gates of quantum computers. This
shows the effectiveness of formal methods, especially in the case of complicated
circuits with multiple connections. The verification of the two circuits is han-
dled by two tactics that automatize most of the process, which removes a lot of
burden from the interactive user, typically a system designer.

The rest of the paper is organized as follows: Section 2 briefly summarizes
some basics of quantum optics. Section 3 deals with the formalization of L2

space and single-mode theory. Section 4 contains the formalization of multi-
mode and tensor product. Then, Section 5 discusses the formalization of the
CNOT gate and the Mach-Zehnder interferometer and their verification, along
with more elaboration about the tactics involved. Finally, we conclude the paper
in Section 6 and provide hints to future work.

Note: the whole formalization presented here is implemented using the HOL
Light theorem prover, and is freely available at [15].

200 M.Y. Mahmoud et al.

2 Background

Any physical system has a mathematical model that describes its state. In clas-
sical physics, a system state can be deterministically evaluated at any time.
However, in quantum theory, a system state has a probabilistic nature. In other
words, a quantum state of a system, written as |ψ〉 [5], acts as a probability
density function. Accordingly, the system state should satisfy the normalization
condition (i.e., its integration over the real line is equal to one). In particu-
lar, in quantum optics theory, a state of an optical beam ψ(q) is of type real
−→ complex and satisfy the following condition:

∫ ∞

−∞
ψ∗(q) ψ(q)dq = 1 (1)

where q, in some physics interpretations, refers to the electric charges inside the
optical beam [16].

A collection of such quantum states forms an inner product space, equipped
with the Lebesgue integral as the inner product function. Formally, the inner
product of two quantum states f and g is denoted as 〈f |g〉, and it is equal to∫∞
−∞ f∗(q) g(q)dq. A major consequence of this mathematical formalization of an
optical beam is the consideration of light as a stream of particles, called photons,
instead of the ray or wave nature as was believe in the classical theory.

Since quantum states form a linear function space, then there exists an infinite
basis that spans such a space. In case of an optical beam, so-called fock states
form the basis states, i.e., any |ψ〉 can be written as follows:

|ψ〉 =
∑

n

cn
∣
∣n
〉

where cn’s are complex numbers such that
∑

n cn = 1, and
∣
∣n
〉
is a fock state

representing the existence of n photons inside the optical beam. Note that
∣
∣0
〉

is called the vacuum state, and describes the case of zero photons.
For a fock state, we are interested in a number of operations. An operator â

is called the annihilation operator and another operator written â† is called the
creation operator. These operators are adjoints of each other, i.e., 〈â n1|n2〉 =
〈n1|â† n2〉, and their commutation is equal to 1, i.e., â ∗ ∗ a† − â† ∗ ∗ â = I
(note that I is the unity function, and the multiplication ∗∗ is point-wise mul-
tiplication). The effect of these operators on fock states is described as follows:

â
∣
∣n
〉
=

√
n
∣
∣n− 1

〉
and â†

∣
∣n
〉
=

√
n+ 1

∣
∣n+ 1

〉
. (2)

Another important operator is the number operator N̂ = â† ∗∗ â, which returns
the number of photons:

N̂ |n〉 = n ∗ |n〉
This shows that fock states are eigenvectors of the number operator.

Based on photon number operator, we can define the energy operator Ĥ =
1
2�ω(N̂+ I), where ω is called the mode resonance frequency and � is the planck

Formal Verification of Quantum Gates in HOL 201

constant. The operator returns the amount of energy in a light beam. This
formalization of energy inside an optical beam leads to the existence of energy
in the vacuum state, i.e., in the absence of photons, the main source of energy
in a beam. This is one of the interesting results in the quantum paradigm that
does not have a classical counterpart.

All the above mentioned definitions, formulas and equations form the single-
mode optical beams theory. This theory is suitable as long as we are dealing
with systems that involve no more than one single beam. In order to tackle more
general systems with multiple optical beams, we should consider the theory of
multi-modes. The core idea is how to consider two independent optical beams
(or particles), given that one has the individual physical description of each. For
this purpose, we utilize the mathematical tool of tensor product. Let us assume
the existence of two beams with quantum states

∣
∣ψ1

〉
and

∣
∣ψ2

〉
, then we have

a new quantum state
∣
∣ψ1 ⊗ ψ2

〉
that describes both beams simultaneously. The

new state satisfies the following properties:

∣
∣c ∗ ψ1 ⊗ ψ2

〉
= c ∗ ∣∣ψ1 ⊗ ψ2

〉
and

∣
∣ψ1 + ψ2 ⊗ ψ3

〉
=

∣
∣ψ1 ⊗ ψ3

〉
+
∣
∣ψ2 ⊗ ψ3

〉

For this kind of states, we need to develop suitable operators based on the
existing ones. For instance, for two annihilation operators we will have a new ten-
sor product operator â1 ⊗ â2, where subscripts refer to the modes to which they
belong. This operator when it is applied to

∣
∣ψ1 ⊗ ψ2

〉
, results in

∣
∣â1ψ1 ⊗ â2ψ2

〉
.

It also satisfies similar properties such as tensor product of states, e.g., (â†1 +

â1)⊗ â†2 = â†1 ⊗ â†2 + â1 ⊗ â†2.
In the following sections, we will present the formal aspects of the theories

presented in Section 2, where we elaborate more on the details of the higher-order
logic implementation.

3 Single-Mode Formalization

As we described in Section 2, the set of quantum states lies in the inner product
space of square Lebesgue integrable functions. In [14], the quantum states space
was defined axiomatically as an inner product space of the functions of type
A −→ complex. In this formalization, we instantiate A to be real, since the electric
charge q is of type real. Thus, we define a new type bqs : real −→ complex which
stands for beam quantum state. Based on the new type, we can then define the
notion of space of complex-valued square integrable functions L2.

We start by formally defining the notion of the set of square integrable
complex-valued functions, namely sq integrable:

202 M.Y. Mahmoud et al.

Definition 1.
new specification [“sq integrable”]

∀f. f ∈ sq integrable⇔
1 f complex measurable on (: real) ∧
2 (λx. ||f x|| 2) real integrable on (: real)

Since we are dealing with complex-valued functions then the square of a function
f means the multiplication of f(x) by its conjugate f(x)∗. This is equivalent to
the norm square of f(x), as presented in Line 2. There is another mandatory
condition to form a subspace of these functions, which is the complex measura-
bility [8]:

Definition 2.
f complex measurable on s ⇔

(λx. Re (f x)) real measurable on s ∧
(λx.Im (f x)) real measurable on s

Note here that the measurability and integrability are over the whole real line
(i.e., from −∞ to ∞). We refer the reader to [8], where more information about
measure theory can be found. Next, we define the inner product function over
the elements of space sq integrable as follows:

Definition 3.
r inprod f g =
1 complex(real integral (: real) (λx : real. Re((f x)∗ ∗ (g x))),
2 real integral (: real) (λx.Im ((f x)∗ ∗ (g x))))

The above definition states that the inner product of two square integrable func-
tions f and g is a complex value, whose real part is the real integral of the real
part of f ∗ g (see Line 1), and its imaginary part is the real integral of the
imaginary part of f ∗ g (see Line 2).

Now, we move to the most important step, namely to prove that these def-
initions form a linear space and the associated r inprod function is its inner
product. Formally, we need to prove the following set of properties according
to [12]:

Theorem 1.
is cfun subspace sq integrable ∧ ∀x. x ∈ sq integrable⇒
real (r inprod x x) ∧ 0 ≤ real of complex (r inprod x x) ∧
(r inprod x x = Cx(0) ⇔ x = cfun zero) ∧
∀y. y ∈ sq integrable⇒ cnj (rinprod y x) = r inprod x y ∧
(∀a. r inprod x (a%y) = a ∗ (r inprod x y)) ∧
∀z. z ∈ sq integrable ⇒ r inprod (x+ y) z = r inprod x z+ r inprod y z

where cfun zero is a function that always returns zero regardless of the input
parameter, % refers to scalar multiplication.

The proof details of above theorem is complex and outside the scope of the
paper. We refer interested readers to [15] for proof scripts, where they can find
more details. According to the above shown properties, we can prove the follow-
ing result, which is a conjunction of them:

Formal Verification of Quantum Gates in HOL 203

Theorem 2.
is inner space (sq integrable, r inprod)

Now, we have all ingredients to formally implement the single-mode (see Sec-
tion 2):

Definition 4.
is sm sm ⇔ 0 < w sm∧
1 is hermitian(sq integrable, r inprod) (anh sm)(cr sm)
2 ∧ anh sm com cr sm = I ∧ is qst (vac sm)

3 is eigen pair (h sm) (vac sm, Cx(planck ∗ (w sm)
2

))

where a single-mode sm consists of the creator cr, annihilator anh, resonance
frequency w and vacuum state vac. Line 1 assumes the adjointness between
creator and annihilator, where is hermitian is defined as follows:

Definition 5.
is hermitian (s, inprod) op1 op2 ⇔

is inner space (s, inprod) ⇒
∀x y. inprod x (op2 y) = inprod (op1 x) y

Line 2 in Definition 4 assumes the commutation between the same operators and
Line 3 assumes the relation between the vacuum state and the energy operator,
where is eigen pair is defined as follows:

Definition 6.
is eigen pair op (v, μ) ⇔

op v = μ% v ∧ (v �= cfun zero)

Recall that a single-mode field at a fock state |n〉 means that the light stream
contains exactly n photons. Such states are quite important since they form the
basis of the single-mode quantum states space. Accordingly, we define fock states
as follows:

Definition 7.
fock sm 0 = vac sm ∧

fock sm (SUC n) = get qst(cr sm (fock sm n))

where get qst f =
√
r inprod f f % f, i.e., returns the normalized version of a

square integrable function, which is typically a quantum state.
For the given definition of the fock state, we prove the effect of creator and

annihilator on fock states as presented in Section 2:

Theorem 3.
∀n sm.is sm sm ⇒

(cr sm) (fock sm n) = Cx(sqrt((SUC n)))%fock sm (SUC n) ∧
⇒ (anhhsm) (fock sm (SUC n)) =

√
SUC n % fock sm n

In the next section, we will present the multi-mode formalization which is the
main tool, in addition to single-mode, to formally verify the CNOT gate and the
Mach-Zehnder interferometer.

204 M.Y. Mahmoud et al.

4 Multi-Mode Formalization

The core idea of the Multi-Mode formalization is based on the development of
the tensor product between states and operators. Before we present the general
definition of quantum states tensor product, we will show an example of the
tensor product of only two states. Given a quantum state |n1〉 of an optical
beam, in one of the interpretations of quantum mechanics, this state (i.e., the
complex valued functions) is a probability density function which provides the
probability of the number of photons inside the optical beam. Now, if we have
another beam with state |n2〉, the function that describes the joint probability of
the two beams is the point-wise multiplication of |n1〉 and |n2〉. Hence, we define
the tensor product of two quantum states as follows: λy1 y2. |n1〉 y1 ∗ |n1〉 y2.
To generalize for n beams, we define the tensor product recursively as follows:

Definition 8.
tensor 0 (modes : bqsN) = K(Cx(1)) ∧

tensor (SUC n) (modes) =
(λy : AN.((tensor n modes) y) ∗ (modes$(SUC n)) (y$(SUC n)))

where modes is a vector of size n that contains n modes. The base case of the
zero modes is a trivial case; it only guarantees a terminating definition. We then
define the tensor product of operators as follows:

Definition 9.
is tensor(tens : copsN −→ (realN −→ complex) −→ (realN −→ complex)) ⇒

∀(ops : (bqs −→ bqs)N) (modes : bqsN) n. is linear cop (tens ops)∧
tens ops (tensor n modes) = tensor n(lambda i.(ops$i) (modes$i))

where ops is a vector of operators defined on the single-modes, and tens ops

is the tensor product. Note that the resulting new operator is only applicable
to the tensor product of states. That is why we define it in a predicate form
in order to restrict its functionality. For this definition, we prove the following
crucial property of the operators tensor product, associativity:

Theorem 4.
∀ ten ops1 ops2 n modes.

is tensor ten ⇒ ten ops2(ten ops1 (tensor nmodes)) =
ten ((λ i. (ops2$i) o (ops1$i))) (tensor n modes)

where o refers to function composition.
As we will see later, an optical quantum circuit accepts single-modes as inputs,

however, the circuit operation itself runs in multi-mode. Thus, we need to develop
a function to embed (or express) a single-mode operator in a multi-mode fashion.
For this purpose, we define the following function:

Definition 10.
pos (tens : copsN −→ (AN −→ complex) −→ (AN −→ complex)) (op : cops) m =

tens (lambda i. if i = m then op else I)

Formal Verification of Quantum Gates in HOL 205

The concept of pos (or positioning) is to place a given operator in a specific mode
(based on its order in the input list) and leave the other modes with the identity
operator. Now, we will utilize the development of multi-mode to define a very
important optical element, of which many quantum circuits are built.

Beam Splitter in Multi-Mode
A beam splitter is a device that takes a beam of light and partly transmits it
and partly reflects it, thus splitting the beam into two beams. The remarkable
feature of quantum mechanics is that a single photon can be split by a beam
splitter.

In its standard definition, a beam splitter consists of two-input/two output
ports. We can recognize each port (or optical mode) by the creator and annihi-
lator operators, as shown Figure 1:

 o1

 o2

Fig. 1. Beam Splitter- Standard Inputs and Outputs

The beam splitter then relates input modes with the output modes according
to the following matrix representation:

(
â†o1 ⊗ I

I ⊗ a†o2

)

=

(
T′ R
R′ T

)(
â†i1 ⊗ I

I ⊗ a†i2

)

(3)

with the following relations between the coefficients :

|R′| = |R|, |T′| = |T|, |R|2 + |T|2 = 1,

R∗T′ +R′T∗ = 0, and R∗T+R′T′∗ = 0.

These coefficients are of type complex and represent the reflectivity and transi-
tivity in some sense. We now have the quantum mechanical description of the
beam splitter, and thus we can develop its formal version as follows:

Definition 11.
1 is beam splitter(p1, p2, p3, p4, ten, i1, m1, i2, m2, o1, m3, o2, m4) ⇔
2 is sm i1 ∧ is sm i2 ∧ is sm o1 ∧ is sm o2

3 ∧ w i1 = w i2 ∧ w i2 = w o1 ∧ w o1 = w o2 ∧
4 vac i1 = vac i2 ∧ vac i2 = vac o1 ∧ vac o1 = vac o2 ∧
5 pos ten (cr i1) m1 = p1∗% pos ten (cr o1) m3+ p2∗% pos ten (cr o2) m4

6 pos ten (cr i2) m2 = p3∗% pos ten (cr o1) m3+ p4∗% pos ten (cr o2) m4

206 M.Y. Mahmoud et al.

Note that the formal definition of beam splitters relates the inputs operators in
terms of the outputs operators (see Line 5 and Line 6), to the contrary of the
theoretical definitions presented earlier in Equation (3): This form is practical for
the analysis of the circuits, as we will see later, since the goal is to generate the
output states from the input states. Thus, the parameters {p1,p2,p3,p4} are the
inverse of the matrix presented before. In Line 1, the parameters {m1,m2,m3,m4}
define the order of each mode in the whole circuit. In the case of a circuit of only
two inputs/two outputs, the possible values of these parameters are 1 and 2. Line
2 and Line 3 ensure that the four modes are proper single modes, and working
with the same frequency and vacuum state (i.e., the state of zero photons).

Now, we have the full tools to tackle any circuit that consists of beam splitters,
and generate the corresponding output of this circuit.

5 Quantum Optical CNOT Gate

In this section, we will tackle the formalization of the universal quantum CNOT
gate. Before this step, we will study the formalization of a simpler circuit, namely
Mach-Zehnder Interferometer, in order to illustrate how the mathematics work
in these kind of circuits, which also applies for the larger circuits, e.g., the CNOT
gate.

5.1 Mach-Zehnder Verification

The most interesting use of the beam splitter is to combine it with mirrors
that reflect the incident photon. The configuration shown in Figure 2 is called
a Mach-Zehnder Interferometer. There are two beam splitters labelled BS1 and
BS2. The grey objects shown are mirrors. The photon is shown as a wavy line.
The photon incident at BS1 is split in the manner we have described above,

where each beam splitter is working according the matrix 1√
2

(−i 1
−1 i

)

, and each

mirror produces phase shifts of i over creation operators.

â†
1

BS1

b̂†1

b̂†2

b̂†3

b̂†4

BS2

ĉ†2

ĉ†1

Fig. 2. Mach-Zehnder Interferometer- Inputs and Outputs

Formal Verification of Quantum Gates in HOL 207

Accordingly, we have the following transformation between the different cre-
ations operators:

a†1 = 1√
2
(ib†

1 + b†
2)

b†
1 = ib†

3

b†
2 = ib†

4

b3†
1 = 1√

2
(ic†1 + c†2)

b4†
1 = 1√

2
(c†1 + ic†2)

Given that only one photon incidents at the input mode a†1(see Figure 2),
then the state of the input modes is

∣
∣1
〉⊗ ∣

∣0
〉
. According to Equation (2), this

is equal to a†1 ⊗ I(
∣
∣0
〉⊗ ∣

∣0
〉
). Carrying out the above transformations of the

field operators all the way to the end, the output modes state becomes equal to
ic†1 ⊗ I(

∣
∣0
〉⊗ ∣

∣0
〉
), i.e., the photon will leave from the vertical port of BS2 (see

Figure 2). In the following, we see how to formally prove this result along with
the formal definition of the Mach-Zehnder interferometer.

Before we present the theorem that verifies the above result, we have to define
the notion of mirror, similar to what we have for the beam splitters:

Definition 12.
mirror(ten, i1, m1, o1, m2)⇔

pos ten(cr i1) m1 = i % pos ten (cr o1) m2

The following theorem shows the formal structure of the above circuit, and
proves that if we receive a photon at the horizontal input of the interferometer,
then it will leave at the vertical output of the interferometer:

Theorem 5.
∀a b d.
is tensor ten∧

1 is beam splitter (−
√

1
2
∗ ii,

√
1
2
),−

√
1
2
,
√

1
2
∗ ii,

ten, a$1, 1, a$2, 2, b$1, 1, b$2, 2)∧
2 mirror(ten, b$1, 1, b$3, 1)∧ mirror(ten, b$2, 2, b$4, 2)∧
3 is beam splitter (−

√
1
2
∗ ii,

√
1
2
),−

√
1
2
,
√

1
2
∗ ii,

ten, b$3, 1, b$4, 2, c$1, 1, c$2, 2)
4 ⇒ tensor 2 (lambda i. if i = 1 then fock (a$1) 1 else vac) =
5 ii% tensor 2 (lambda i. ifi = 1 then fock (c$1)1 else vac)

Lines (1-3) provide the structure of the circuit in Figure 2 with the same modes

naming. Line 4 describes the input modes, where we have one photon at mode a†1
and nothing elsewhere. Line 5 provides the corresponding output modes, where
we obtain one photon at mode c†1 and nothing elsewhere.

Now, we will move to a more complex circuit, where we will focus on the
formal results obtained rather than the proof steps.

208 M.Y. Mahmoud et al.

5.2 CNOT Gate Verification

Similar to classical computer, the basic component of the quantum computer is
the quantum bit (or qbit). A quantum bit is a quantum system with two basis
states |0〉 and |1〉. However, in contrast to its classical counterpart, the state
of a qbit is not only |0〉 or |1〉, but can be a mix. Indeed, such a state can be
expressed as |ψ〉 = α|0〉 + β|1〉, where |α|2 + |β|2 = 1. There are a number of
operations that can be defined over these qbits. In this paper, we are interested
in the Controlled NOT gate. It is a two inputs/two outputs gate, namely control
and target signals. The gate semantic is to invert the target bit whenever the
control bit is equal to one, and nothing changes as long as the control bit is
equal to zero. The control bit is always transmitted as is. In other word: if
the possible input is |ψ〉 = α|00〉 + β|01〉 + γ|10〉 + η|11〉 then the output is
|ψo〉 = α|00〉+ β|01〉+ γ|11〉+ η|10〉.

In quantum optics, this gate can be implemented using five beam splitters
[19], as given in Figure 3, where each of the control and target qbits is repre-

BS1

BS2

BS3

BS4 BS5

c0

vac

t0

t1

vac

t1

t0

c1

c0

c1

v0

v5

 4

 2

 1

 2

 5

 4

 5

 3

 1

 4

 3

 6

 5

 6

 4

 5

Fig. 3. Controlled NOT gate optical implementation

sented using two optical beams, and each of the beam splitter follows the matrix(√
η

√
1− η√

1− η −√
η

)

. For BS4, BS5 η is equal to 1
2 , and for the rest it is equal to

1
3 . The encoding of such four beams is as follows: applying a single photon to
c0 is equivalent to setting the control bit to zero, and applying the photon to c1
is equivalent to setting the control bit to one (same rule applies for the target
bit). In Figure 3, vac refers to vacuum state, i.e., we do not apply any photons
at these ports. For the output modes, v0 and v5 are dummy signals and do not
have any semantic.

Now the formal definition of such circuit is included in the following theorem:

Formal Verification of Quantum Gates in HOL 209

Theorem 6.
∀a b c d.
is tensor ten ∧

1 is beam splitter (
√

1
3
,
√

2
3
,
√

2
3
,−

√
1
3
, ten, a$2, 2, a$1, 1, b$2, 2, b$1, 1)∧

2 is beam splitter(
√

1
2
,
√

1
2
,
√

1
2
,−

√
1
2
, ten, a$4, 4, a$5, 5, b$4, 4, b$5,5) ∧

3 is beam splitter(
√

1
3
,
√

2
3
,
√

2
3
,−

√
1
3
, ten, b$4, 4, a$3, 3, c$4, 4, c$3,3) ∧

4 is beam splitter(
√

1
3
,
√

2
3
,
√

2
3
,−

√
1
3
, ten, b$5, 5, a$6, 6, c$5, 5, c$6,6) ∧

5 is beam splitter(
√

1
2
,
√

1
2
,
√

1
2
,−

√
1
2
, ten, c$4, 4, c$5, 5, d$4, 4, d$5,5) ⇒

6 |010100〉 = 1
3
∗ (|010100〉+√

2 ∗ |101000〉
7 +

√
2 ∗ |100001〉+ |011000〉+ |010001〉+√

2 ∗ |100100〉)
Lines (1-5) represent the formal structure of the CNOT gate in Figure 3. Note
that we used the bra-ket notation [5] in the formal theorem for simplicity, in the
actual code all states are written the same form as in the Mach-Zehnder example
(see Theorem 5). The order of the output bits, on the right hand side of Line 6
and Line 7, is v0, c0, c1, t0, t1, v5.

According to [19], the output of the circuit in Figure 3 is not exactly as desired:
As one can notice from Line 6 and Line 7, in the case of the control bit is equal
to zero and the target bit is equal to zero. The result on the right hand side
contains many possibilities of different probabilities, among them the required
(underlined) one with probability (13)

2. Note that these unwanted possibilities
do not contain at all any meaningful states, i.e., |011000〉, |001100〉, |001010〉. We
can get rid of these unwanted outputs by a physics process called coincidence
basis [19]. We also verify the case where the control gate is equal to zero and
the target is equal to one. The result was compatible with the one presented in
[19]. Similarly, we verified the case of the control is equal to one. For example in
case of |001100〉, the following theorem shows the result:

Theorem 7.
tensor |001100〉 = 1

3
∗ (|001010〉 − √

2 ∗ |002000〉 − |001001〉+√
2 ∗ |000200〉+ |000101〉+ |000110〉+ |000011〉)

The formal analysis of these two optical circuits would not have been possible
without the development of the following tactic: MULTI MODE DECOMPOSE TAC

which is responsible for passing the creator operator in/out to/from the different
modes. As its name suggests, it acts like decomposing multi-modes to many single
modes that can be dealt with using the single-mode theorems.. The key lemma,
on which this tactic is built, is:

Theorem 8.
∀p q f x.(p x ⇒ f x = q) ⇒ (if p x then q else (f x)) = f x

This lemma typically reduces multi-mode to single-mode, whenever all possible
conditions (in the if statement) reduce to the same predicate.

210 M.Y. Mahmoud et al.

Besides above tactic, we have developed a few other, such as CFUN FLATTEN TAC,
which takes the whole formula to complex level, at final stage of the proof, to han-
dle some algebraic simplification to finalize the proof. Without these tactics the
verification of Mach-Zehnder and CNOT would be lengthly and complicated. In-
terested readers can check the HOL script of these tactics at [15], and see how they
are utilized in the proofs.

This interesting result concludes the whole formalization by showing the effec-
tiveness of formal methods, in particular with large circuits with a large number
of connections and variables. Note that this circuit is working on 6 modes in
each step, with the actual number of single modes (including intermediates)
equal to 16.

6 Conclusion

Quantum computers are expected to outperform classical machines in certain
cases, and provide powerful and unbreakable security systems. Among many
implementations, quantum optical circuits with the help of nuclear optical cou-
pling and nuclear magnetic resonance showed good advancement in building
quantum machines at large scale. Thus, the quantum computer development
became very critical. In this paper, we have studied the applicability of formal
methods, in particular of HOL theorem proving, for the formal analysis and
verification of quantum optical computers. The presented work includes the for-
malization of optical single-mode and multi-mode that helped in the analysis
of quantum gates. As an illustrative application, we presented the verification
of the Mach-Zehnder interferometer and Controlled NOT gate. Throughout our
development, we have experienced a number of difficulties. We had a problem to
find one clear definition of many quantum concepts. Physics books present the
same idea from different perspectives and each considers some implicit assump-
tions. To deal with this problem, we focused our axiomatic definitions on the
common ground of the different physics resources. The usability and readability
of definitions and theorems are another challenge, where in the first versions of
our development, we had lengthy definitions and theorems due to the high num-
ber of variables that control the quantum process. For this situation, we tried to
remove irrelevant variables (which is a kind of low-level abstraction) that do not
affect the quantum natures of systems. We also enhanced the proving process
by developing dedicated tactics. This facilitates the reasoning about potentially
similar circuits and gates and removes the burden of tedious steps, in particular
with large circuits that have a high number of modes (i.e., optical beams). As
a future work, we are targeting the formalization of more complicated quantum
gates, e.g., the Hadamard gate [19], and enhancing the whole verification process
to be more automated.

Formal Verification of Quantum Gates in HOL 211

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Brassard, G., Crepeau, C., Jozsa, R., Langlois, D.: A quantum bit commit-

ment scheme provably unbreakable by both parties. In: Proceedings IEEE Annual
Symposium on Foundations of Computer Science, pp. 362–371 (1993)

3. Elleuch, M., Hasan, O., Tahar, S., Abid, M.: Towards the formal performance
analysis of wireless sensor networks. In: Proceedings IEEE International Work-
shop on Enabling Technologies: Infrastructures for Collaborative Enterprises,
pp. 365–370 (2013)

4. Feynman, R.: Simulating physics with computers. International Journal of Theo-
retical Physics 21, 467–488 (1982), doi:10.1007/BF02650179

5. Griffiths, D.J.: Introduction to Quantum Mechanics. Pearson Prentice Hall (2005)
6. Haeffner, H., Roos, C.F., Blatt, R.: Quantum computing with trapped ions. Physics

Reports 469(4), 155–203 (2008)
7. Jones, J.A.: Quantum computing: Optical nuclear coupling. Natural Photon-

ics 5(11), 513 (2011)
8. Kolmogorov, A.N., Fomin, S.V., Fomin, S.V.: Elements of the Theory of Functions

and Functional Analysis. Dover books on mathematics, vol. 2. Dover (1999)
9. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.:

Quantum computers. Nature 464, 45–53 (2010)
10. Lomonaco, S.J.: Quantum Computation: A Grand Mathematical Challenge for the

Twenty-first Century and the Millennium. American Mathematical Society (2002)
11. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Physical

Review A 57, 120–126 (1998)
12. Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formalization of infinite dimension

linear spaces with application to quantum theory. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 413–427. Springer, Heidelberg (2013)

13. Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formal verification of optical quan-
tum flip gate. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp.
358–373. Springer, Heidelberg (2014)

14. Mahmoud, M.Y., Tahar, S.: On the quantum formalization of coherent light in HOL.
In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 128–142.
Springer, Heidelberg (2014)

15. Mahmoud, M.Y.: Formal verification of optical quantum gates - HOL Light script
(2014), http://hvg.ece.concordia.ca/code/QGates/

16. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge Univer-
sity Press (1995)

17. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of entropymeasures in HOL. In: In-
teractiveTheoremProving.LNCS,vol.6898,pp.233–248.Springer,Heidelberg(2011)

18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press (2010)

19. Ralph, T.C., Langford, N.K., Bell, T.B., White, A.G.: Linear optical controlled-not
gate in the coincidence basis. Physics Review A 65, 062324 (2002)

20. Verhulst, A.S.: Optical pumping experiments to increase the polarization in
nuclear-spin based quantum computers. PhD thesis, Stanford University, CA, USA
(2004)

21. Yamashita, S., Markov, I.L.: Fast equivalence-checking for quantum circuits. In:
IEEE/ACM International Symposium on Nanoscale Architectures, pp. 23–28
(2010)

22. Zaki, M.H., Tahar, S., Bois, G.: Formal verification of analog and mixed signal
designs: A survey. Microelectronics Journal 39(12), 1395–1404 (2008)

http://hvg.ece.concordia.ca/code/QGates/

Author Index

Aichernig, Bernhard K. 113
Aman, Bogdan 146

Beillahi, Sidi Mohamed 162
Berki, Eleni 128
Bienmüller, Tom 62
Blanchard, Allan 15
Brain, Martin 62
Breton, Nicolas 1

Cambronero, M. Emilia 81
Chapoutot, Alexandre 31
Chaudhary, Kaylash 96
Chaudhary, Sunil 128
Ciobanu, Gabriel 146
Courbis, Roméo 1

Damouche, Nasrine 31
Dı́az, Gregorio 81

Fehnker, Ansgar 96
Fonteneau, Yoann 1

Güdemann, Matthias 1

Helenius, Marko 128
Hörmaier, Klaus 113

Kela, Juha 128
Kim, Jin Hyun 47
Kosmatov, Nikolai 15
Kroening, Daniel 62

Larsen, Kim G. 47
Lemerre, Matthieu 15
Li, Linfeng 128
Lorber, Florian 113
Loulergue, Frédéric 15

Macià, Hermenegilda 81
Mahmoud, Mohamed Yousri 198
Martel, Matthieu 31
Martins, Ruben 62
Mikučionis, Marius 47

Ničković, Dejan 113
Nielsen, Brian 47

Olsen, Petur 47

Panangaden, Prakash 198
Petit-Doche, Marielle 1

Schrammel, Peter 62
Siddique, Umair 162

Tahar, Sofiène 162, 198
Teige, Tino 62
Tiran, Stefan 113
Turunen, Markku 128

Valero, Valentin 81
van de Pol, C. Jaco 181

	Preface
	Organization
	Contents
	Formal Verification of Industrial Critical Software
	1 Introduction
	2 Introduction to Systerel Smart Solver
	2.1 Principles of S[1]3
	2.2 Application of S[1]3: Static Analysis
	2.3 Application of S[1]3: Verification of Safety Properties
	2.4 Application of S[1]3: Equivalence Verification of Different Models
	2.5 Application of S[1]3: Test Case Generation
	2.6 Certifiable Systerel Smart Solver

	3 The openETCS Project
	3.1 European Train Control System
	3.2 OpenETCS Case Study

	4 Use of Systerel Smart Solver in the openETCS Project
	4.1 Model Verification
	4.2 Validation of Safety Properties
	4.3 Functional Validation by Equivalence of Models

	5 Discussion

	Applications
	A Case Study on Formal Verificationof the Anaxagoros Hypervisor Paging Systemwith Frama-C
	1 Introduction
	2 The Anaxagoros Virtual Memory System
	3 Formal Verification
	3.1 Simulating Parallel Execution
	3.2 Counters of Mappings and Global Invariant
	3.3 Proof with the Wp Plugin of Frama-C
	3.4 Proof of Lemmas in Coq

	4 Discussion
	4.1 Weak Memory Model Compliance
	4.2 Lessons Learned, Benefits and Limitations of the Approach

	5 Related Work
	6 Conclusion and Future Work

	Intra-procedural Optimization of the Numerical Accuracy of Programs
	1 Introduction
	2 Case Study: Odometry
	3 Transformation of Expressions
	3.1 Static Analysis of the Accuracy
	3.2 Accuracy Improvement of Expressions

	4 Transformation of Commands
	5 Experimental Results
	5.1 Control Algorithms
	5.2 Numerical Algorithms
	5.3 Results

	6 Conclusion

	Formal Analysis and Testing of Real-Time Automotive Systems Using UPPAAL Tools
	1 Introduction
	2 Background
	2.1 Uppaal Symbolic Model Checking
	2.2 Uppaal Statistical Model Checking
	2.3 Uppaal Yggdrasil

	3 Formal Analysis Framework
	3.1 Analysis Properties

	4 Turn Indication Systems
	4.1 Functional Requirements
	4.2 Analysis Properties

	5 Formal Modeling of TI system
	5.1 Data and Event Flows of TA Models for TI System

	6 Formal Analysis of TI system
	6.1 Validation with SMC
	6.2 Verification with MC
	6.3 Test-Case Generation with Yggdrasil

	7 Related Work
	8 Conclusions

	Successful Use of Incremental BMC in the Automotive Industry
	1 Introduction
	2 Verification of Model-Based Embedded Software
	2.1 Requirements and Challenges
	2.2 Case Study: Fault-Tolerant Fuel Control System
	2.3 Structure of Generated Code
	2.4 Analysis with BMC and k-Induction

	3 Incremental BMC
	3.1 Incremental SAT Solving
	3.2 Incremental BMC

	4 Experimental Evaluation
	4.1 Implementation
	4.2 Incremental BMC for Embedded Software
	4.3 Code Coverage on FuelSys Using BTC EmbeddedTester
	4.4 Incremental k-Induction for Embedded Software

	5 Related Work
	6 Conclusions

	Protocols
	Colored Petri Net Modeling of the Publish/Subscribe Paradigm in the Context of Web Services Resources
	1 Introduction
	2 Background
	2.1 WSRF and the Publish/Subscribe Paradigm
	2.2 Prioritized-Timed Colored Petri Nets

	3 PTCPN Modeling of Publish/Subscribe
	3.1 WS-resource Modeling
	3.2 Discovery and Subscription Modeling
	3.3 Notification and Subscription Time-Out Modeling

	4 Case Study
	5 Conclusions and Future Work

	Model Checking a Server-Side Micro Payment Protocol
	1 Introduction
	2 The Netpay Protocol
	3 Description of Netpay Protocol Using CSP
	3.1 Customer Process
	3.2 Broker Process
	3.3 Vendor Process

	4 Correctness of the Netpay Protocol
	4.1 Chain of Trust
	4.2 Double Spending
	4.3 Non-Blocking Behavior
	4.4 Non-Cooperative Customers and Vendors

	5 Conclusions and Future Research

	Specification and Analysis
	Require, Test and Trace IT
	1 Introduction
	2 Requirement Interfaces
	2.1 Syntax
	2.2 Semantics
	2.3 Consistency, Refinement and Conjunction

	3 Testing and Tracing
	3.1 Test Case Generation
	3.2 Test Case Execution
	3.3 Traceability

	4 Implementation and Experimental Results
	5 Related Work
	6 Conclusions and Future Work

	Applying Finite State Process Algebra to FormallySpecify a Computational Model of Security Requirementsin the Key2phone-Mobile Access Solution
	1 Introduction
	2 Related Work
	3 Key2phone-Mobile Access Solution
	4 LTSA Tool and FSP Notation
	5 Security Threats/Vulnerabilities and their Management Control
	6 Formal Specification of the Key2phone System
	7 Conclusions and LimitationsWe elicited, analysed, and formally modelled
	References

	Timed Mobility and Timed Communication for Critical Systems
	1 Introduction
	2 rTiMo: Syntax and Semantics
	3 Modelling Critical Systems by Using rTiMo
	4 Real-Time Behavioral Equivalences in rTiMo
	4.1 Strong Open Time-Bounded Equivalences

	5 Conclusion and Related Work

	On the Formal Analysis of Photonic Signal Processing Systems
	1 Introduction
	2 Related Work
	3 Signal-Flow-Graph Theory and Mason's Gain Formula
	4 Proposed Formal Analysis Framework
	4.1 Formalization of Signal-Flow-Graphs and Mason's Gain
	4.2 Formalization of the Transfer Function
	4.3 Formalization of System Properties

	5 Application: Analysis of Photonic Signal Processors
	6 Conclusion

	Verification
	Automated Verification of Nested DFS
	1 Introduction
	2 Nested Depth-First Search and Dafny
	2.1 Dafny
	2.2 Nested Depth-First Search
	2.3 Formulation of the NDFS Algorithm in Dafny

	3 Developing the Correctness Proof
	3.1 Absence of Runtime Errors
	3.2 Termination
	3.3 Main Local Invariants on NDFS Colours
	3.4 Completeness
	3.5 Soundness

	4 Conclusion
	A Full NDFS Proof in Dafny
	A.1 Basic Definitions
	A.2 Auxiliary Lemmas on Paths and Cycles
	A.3 Main Method and Correctness Statement
	A.4 Blue Search
	A.5 Red Search

	On the Formal Verification of Optical QuantumGates in HOL
	1 Introduction
	2 Background
	3 Single-Mode Formalization
	4 Multi-Mode Formalization
	5 Quantum Optical CNOT Gate
	5.1 Mach-Zehnder Verification
	5.2 CNOT Gate Verification

	6 Conclusion

	Author Index

