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Abstract When examining a surface machined by means of a repeatingly acting
tool, especially a cyclically acting, as in the case of rotating machines, a charac-
teristic patter can be observed when analyzing the surface morphology. Such a
patter can be recognized as a characteristic symptom of the cooperation between the
tool and the machined element, being usually in the tight contact. Obtaining any
quantitative results evaluating this cooperation, demands establishing of the well
suited mathematical model. In this paper a relationship is presented based on the
numerical two-dimensional model filters of the quadrant type, acting on a square
lattice representing surface. This appears to be an efficient numerical tool, providing
a sufficient number of degrees of freedom and a fast execution, even though special
measures have to be taken to assure their stability. The filters have been excited
with simple stochastic processes simulating randomness of the abrasive machining
at its basic level. The obtained results have been examined mainly by to methods:
by using classical statistical analysis and by using the surface autocorrelation idea.
This second method has been proven to be a good tool for the quantitative eval-
uation of the surface interaction during the machining process.
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1 Stochastic Processes Basics

The term “stochastic process” term, often referred to as “random process” is a set of
random variables (random varieties) representing the development of some system
state over the independent variable X, very often representing time. In our case it
represents the spatial variable. The exact mathematical definition is of less value for
non-mathematicians and therefore we present in Fig. 1 a graphical representation of
all the necessary elements and mutual dependencies. Two elements play the main
role [7, 8]:

• the stochastic (random) mechanism generating the exact process value which is
in our case simply the height of the roughness profile at the given X variable
value which is in our case simply the point in physical space—depicted in green,

• assumed to be non-stochastic, a mechanism of the internal dependency between
subsequent elementary events which in our case determine the similitude of
roughness height in the juxtaposed spatial points—depicted in olive.

The first element is described by the probability density distribution, which is
usually chosen from the small, widely used set. In this paper we will make primary
use of the normal (Gaussian) distribution:
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Fig. 1 The structure of mutual dependencies among the basic constituents of the “stochastic
process”, as it will be used in the present paper
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where μ—mean value of the variable h, and σ2—variance of the variable h.
The second distribution we will take into account is the logarithmic-normal

distribution, called shortly “log-normal”, with the probability density:
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where the description of variables is as previously stated. The relationship between
the variable Y of the log-normal distribution and the N0 variable of the normal
distribution with l ¼ 0, r2 ¼ 1, is given by:

Y ¼ exp kl þ kr � N0
� � ð3Þ

where
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For modelling purposes we have to be equipped with an efficient tool to generate
variables with prescribed probability densities. The basic tool is the random number
generator with uniform probability density, usually provided as embedded in the
numerical software. Making use of simple mathematical rules related to the
transformation of random variables we can use the following equation to get the
first random variables N1 with a normal probability distribution from random
variables Ui with uniform probability distribution:

N1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln U1ð Þ

p
� cos 2p � U2ð Þ

N2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln U1ð Þ

p
� sin 2p � U2ð Þ

ð6Þ

This “twin generation” is very often used to obtain two “orthogonal” random
variables, which, for our purpose, are the independent random variables.
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2 Surface Modeling Using Digital Filters

In the classical division of the surface texture into three major components: shape,
waviness and roughness [5], the application of digital filters for modelling allows us
to successfully link two of these components: waviness and roughness. The way
this is achieved is by using the aforementioned stochastic process theory and the
application of digital filters to model the “internal dependency among spatial
events”. This provides researchers with a tool to model the waviness, as seen in the
olive mark in Fig. 1 [1, 2, 4]. Also the use of random signal generators to introduce
the “unpredictability” element in modelling the roughness, as seen in Fig. 1 in light
green [1, 7, 8], is also used to achieve this link. In this paper we have aimed at
applying digital filters [2, 4, 6, 8], referring reader, for example, to the classical
textbook, in the case [3] tools to accomplish it.

3 Digital Filtering Basics

So called digital filter are given by the numerical algorithm operating on samples of
the signal, expressed as numbers. Usually one train of samples is referred to as the
input—independent signal, and the second train of pulses is referred to as the output—
dependent signal. These signals could be ordered by integer indices. If there is one
index—the signal is unidimensional, if two indices are necessary—the signal is two-
dimensional. The object of our interest is a special type of two-dimensional digital
filter described in terms of the recursive filter equation [2, 6], in the “spatial” domain:

h i; jð Þ ¼ Aw0 � xw ið Þ þ Aw1 � h i� 1; jð Þ þ Aw2 � h i� 2; jð Þ
þ Ad0 � xd jð Þ þ Ad1 � h i; j� 1ð Þ þ Ad2 � h i; j� 2ð Þ ð7Þ

where

Aw0;Ad0 input amplitude coefficients: width and depth respectively,
xw ið Þ; xd jð Þ input excitation series: width and depth respectively,
Aw1;Aw2 width spatial memory coefficients for retarded samples,
Ad1;Ad2 depth spatial memory coefficients for retarded samples,
h i; jð Þ output surface shape value for the point (i, j).

The filter structure is depicted in Fig. 2. Input signals are marked with light
green, initial conditions’ cells are marked with green and the active cells are marked
with light yellow. In the active cells the filter equation is inscribed to show changes
in indices. The dark green marked cells are involved during the calculation of the
exemplary cell (4, 4) value. The whole filter is organized on the 100 × 100 grid,
which is not big enough for the targeted purpose, but is more than enough to show
the filter behavior.

138 A. Golabczak et al.



For any digital filter it is essential to determine the conditions of stable work.
The appropriate theoretical considerations could be found in positions [2, 6]. For
the unidimensional filters they are relatively simple, but for two-dimensional filters
it becomes more complicated. Even in the case of relatively simple filters proposed
in this work, the exact numerical evaluation is complicated. Two theorems for the
two-dimensional filter stability have been developed:

Theorem I The two-dimensional filter with indefinite impulse responses (recur-
sive), with the characteristics described by the rational polynomial complex func-

tion: H z1; z2ð Þ ¼ N z1;z2ð Þ
D z1;z2ð Þ is stable when and only when D z1; z2ð Þ 6¼ 0 for any z1, z2

for which z1j j � 1; z2j j � 1. This situation is illustrated in Fig. 3 for the exemplary
filter we deal with further in this paper.

Theorem II The two-dimensional filter with rational polynomial characteristics,
as in Theorem I, is stable when and only when the projection of the plane z1j j ¼ 1
onto the plane Z2, is equivalent the equation D z1; z2ð Þ ¼ 0, and is located entirely

X 0 1 432

Y
Xinput,
Yinput

x(0) x(1) x(2) x(3) x(4)

h(2,0) h(3,0) h(4,0)

h(2,1) h(3,1) h(4,1)

h(2,2)=Aw0*x(2)+Aw1*h(1,2)+Aw2*h(0,2)+
Ad0*y(2)+Ad1*h(2,1)+Ad2*h(2,0)

h(3,2)=Aw0*x(3)+Aw1*h(2,2)+Aw2*h(1,2)+
Ad0*y(2)+Ad1*h(3,1)+Ad2*h(3,0)

h(4,2)=Aw0*x(4)+Aw1*h(3,2)+Aw2*h(2,2)+
Ad0*y(2)+Ad1*h(4,1)+Ad2*h(4,0)

3 y(3)
h(2,3)=Aw0*x(2)+Aw1*h(1,3)+Aw2*h(0,3)+

Ad0*y(3)+Ad1*h(2,2)+Ad2*h(2,1)
h(3,3)=Aw0*x(3)+Aw1*h(2,3)+Aw2*h(1,3)+

Ad0*y(3)+Ad1*h(3,2)+Ad2*h(3,1)
h(4,3)=Aw0*x(4)+Aw1*h(3,3)+Aw2*h(2,3)+

Ad0*y(3)+Ad1*h(4,2)+Ad2*h(4,1)

0 y(0) h(0,0) h(1,0)

1 y(1) h(0,1) h(1,1)

2 y(2) h(0,2) h(1,2)

h(0,3) h(1,3)

4 y(4) h(0,4) h(1,4)
h(2,4)=Aw0*x(2)+Aw1*h(1,4)+Aw2*h(0,4)+

Ad0*y(4)+Ad1*h(2,3)+Ad2*h(2,2)
h(3,4)=Aw0*x(3)+Aw1*h(2,4)+Aw2*h(1,4)+

Ad0*y(4)+Ad1*h(3,3)+Ad2*h(3,2)
h(4,4)=Aw0*x(4)+Aw1*h(3,4)+Aw2*h(2,4)+

Ad0*y(4)+Ad1*h(4,3)+Ad2*h(4,2)

Fig. 2 Proposed filter structure with excitation and initial conditions setting. Cells marked with
dark green color are involved during the calculating the exemplary cell value
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inside the plane z2j j � 1, and, the projection D z1; z2ð Þ ¼ 0 does not reflect any point
from the plane z1j j � 1 onto the point z2j j ¼ 0.

The impulse response at Fig. 4 has been charted for the exemplary filter coef-
ficients (Fig. 5):

Aw0 = 0.100000 Aw1 = 0.375000 Aw2 = −0.425000

Ad0 = 0.100000 Ad1 = 0.575000 Ad2 = −0.395000

Exemplary grid step Dw ¼ 1 lm;Dd ¼ 1lm

Dimension of the grid N� N ¼ 100� 100
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Fig. 4 The exemplary impulse response of the 2D filter (7) for the given coefficients: two different
views
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Fig. 5 The exemplary filter impulse response in the frequency domain
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The frequency response of the filter (7) is given as the Z-transformation of the
filter impulse response taken at the unitary circle at the complex z-plane, i.e. for
zw ¼ exp jxwDwð Þ; zd ¼ exp jxdDdð Þ:

F xw;xdð Þ ¼ Aw0 þ Ad0

1� Aw1 � e�jxwDw � Aw2 � e�2jxwDw � Ad1 � e�jxdDd � Ad2 � e�2jxdDd

ð8Þ

where

Dw;Dd spatial sampling step of the filter grid: width and depth respectively,
xw;xd spatial frequencies: width and depth respectively, other coefficients as i

Eq. (7).

4 Numerical Results

The numerical simulations we have performed, have aimed at demonstrating the
usability and functionality of the proposed filter in generation surfaces widely
occurring in surface machining at different stages of mechanical accuracy, per-
formed with using very different tools ranged from raw milling to abrasive cloth
polishing. The exemplary excitation source for surfaces depicted in Figs. 6 and 7
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Fig. 6 Surface texture generated by using the filter of the impulse response depicted in Fig. 4
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Fig. 7 Surface texture generated by using the filter of another impulse response, more suitable for
modelling of the rotating machine rough machining
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were Gaussian random number generators with variance parameters: Aw = 1.00,
Ad = 0.01 respectively. The referenced surfaces exemplify abrasive cloth polishing
and raw milling respectively.

For to bring out the proposed filter span of use, the two-dimensional autocor-
relation function:

R m; nð Þ ¼ 1
N � mð Þ � N � nð Þ

XN�m

i¼1

XN�n

j¼1

h i; jð Þ � h mþ i; nþ jð Þ ð9Þ

has also been calculated for the surfaces from Figs. 6 and 7 and depicted in Figs. 8
and 9.

5 Conclusions

The two-dimensional filter presented in this work, although relatively simple in its
class, proved to be an efficient tool in generating surface textures from the broad
range of textures encountered in the surface machining to different grades of fin-
ishing and performed with different tools. In our further works we’ll tend to apply it
to modelling of the machined surfaces we currently deal with: AZ31 magnesium
alloy, Ti6Al4V titanium alloy and X38CrMoV5-1 steel.
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Fig. 9 Two-dimensional correlation function for the surface from Fig. 7
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