
Chapter 26
Modeling of Large-Strain Cyclic Plasticity
Including Description of Anisotropy
Evolution for Sheet Metals

Fusahito Yoshida, Takeshi Uemori and Hiroshi Hamasaki

Abstract The present paper describes a framework for the constitutive modeling
of a large-strain cyclic plasticity to describe the evolution of anisotropy and the
Bauschinger effect of sheet metals that is based on the Yoshida-Uemori kinematic
hardening model. In the model, the shapes of the yield and the bounding surfaces
are assumed to change simultaneously with increasing plastic strain. An anisotropic
yield function that varies continuously with the plastic strain is defined by a non-
linear interpolation function of the effective plastic strain using a limited number
of yield functions determined at a few discrete points of plastic strain. With this
modeling framework, any type of yield function can be used and the convexity of the
yield surface is always guaranteed. A set of kinematic parameters can be identified
experimentally independent of the anisotropic parameters.

Keywords Constitutive model · Yoshida-Uemori model · Cyclic plasticity ·
Anisotropy evolution · Sheet metal

26.1 Introduction

The use of constitutive models that properly describe the elastic-plastic deformation
behavior is essential for accurate numerical simulation of sheet metal forming. The
anisotropy of sheets is of great concern to the forming industry because it strongly
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influences the formability of sheets. Thus, many types of anisotropic yield functions
have been proposed in the past, e.g., Hill (1948, 1979, 1990); Gotoh (1977); Barlat
and Lian (1989); Barlat et al. (1991, 2003, 2005); Cazacu and Barlat (2001, 2003,
2004); Karafillis and Boyce (1993); Bron and Besson (2004); Banabic et al. (2005);
Hu (2005, 2007); Leacock (2006); Vegter and Boogaard (2006); Comsa and Banabic
(2008); Steglich et al. (2011); Desmorat and Marull (2011), etc.

Another important issue in material modeling is describing cyclic plasticity
behavior. Descriptions of the Bauschinger effect and workhardening have been
intensively investigated within the framework of a combined isotropic-kinematic
hardening model for the past few decades, e.g., Armstrong and Frederick (1966);
Mróz (1967); Krieg (1975); Dafalias and Popov (1976); Ohno (1982); Chaboche
and Rousselier (1983); Ohno and Wang (1993); MacDowell (1995); Geng and Wag-
oner (2002); Yoshida (2000); Yoshida et al. (2002, 2013, 2015); Yoshida andUemori
(2002, 2003); Haddadi et al. (2006); Taleb (2013); for more details, refer to reviews
by Chaboche (2008); Ohno (2015). Before 2000, most cyclic plasticity models were
constructed within the theory of infinitesimal deformation without consideringmate-
rial anisotropy because they were applied mainly to structural analyses for predicting
low-cycle fatigue life and ratcheting. In the early 2000s, some researchers pointed
out that the Bauschinger effect of materials greatly affects springback behavior,
especially for high-strength steel (HSS) sheets, and several cyclic plasticity models
were proposed for springback simulation, e.g., Yoshida and Uemori (2002, 2003);
Geng and Wagoner (2002). The present authors previously proposed a model of
large-strain cyclic plasticity, so-called ‘Yoshida-Uemori (Y-U)model’ (Yoshida et al.
2002; Yoshida and Uemori 2002, 2003) to describe the following cyclic plasticity
behaviors (see Fig. 26.1) together with the anisotropy of materials:

Fig. 26.1 Elastic-plastic behavior in a reverse deformation: early re-yielding, transient Bauschinger
effect, workhardening stagnation and permanent softening (Yoshida and Uemori 2003)
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• Two stages of the Bauschinger effect: (i) the transient Bauschinger deformation
characterized by early re-yielding and smooth elastic-plastic transitionwith a rapid
change in the workhardening rate; and (ii) the permanent softening observed in a
region after the transient period;

• Workhardening stagnation, which appears at a certain range of reverse deforma-
tion;

• The strain-range and mean-strain dependency of cyclic hardening, i.e., the larger
cyclic strain range induces the larger saturated stress amplitudes.

A recent topic of plasticity for sheet metals has been the modeling of anisotropic
hardening. Conventional plasticity models assume that the shape of the yield surface
does not change during a plastic deformation; consequently, the r -values and flow
stress directionality calculated with these models remain constant throughout the
deformation. However, some metallic sheets exhibit significant changes in r -value
anisotropy and flow stress directionality (e.g., Hu 2007; Stoughton and Yoon 2009;
An et al. 2013; Safaei et al. 2014) and the shape of the yield surface (e.g., Tozawa
1978; Kuwabara et al. 1998; Yanaga et al. 2014; Yoon et al. 2014) as plastic strain
increases. Although there are some models of the anisotropic hardening (e.g., Hu
2007; Plunkett et al. 2008; Stoughton and Yoon 2009; An et al. 2013; Safaei et al.
2014; Yanaga et al. 2014; Yoon et al. 2014), most of them exclude a description of
the Bauschinger effect. Distortion yield function modeling is another type of for-
mulation used to represent the Bauschinger effect and stress-strain responses under
non-proportional cyclic loading (e.g., Shiratori et al. 1979; Voyiadjis and Foroozesh
1990;Kurtyka and Życzkowski 1996; Francois 2001; FeigenbaumandDafalias 2007;
Barlat et al. 2011, 2013, 2014). However, to the best of the present authors’ knowl-
edge, only Barlat et al.’s homogeneous anisotropic hardening (HAH) model (Barlat
et al. 2011, 2013, 2014) reproduces the Bauschinger effect well together with the
anisotropy evolution of sheet metals.

The present paper proposes a model of large-strain cyclic plasticity that describes
the evolution of anisotropy and the Bauschinger effect of sheet metals based on the
Y-U kinematic hardening model. This modeling framework has great advantages
over other models. It allows any type of yield function to be used, and the convexity
of the yield surface is always guaranteed. A set of kinematic parameters can be
identified from experimentally independent of anisotropic parameters.

26.2 Framework of Combined Anisotropic-Kinematic
Hardening Model

With the assumption of small elastic and large plastic deformation, the rate of defor-
mation DDD is decomposed into its elastic and plastic parts, DDDe and DDDp, respectively,
as follows:

DDD = DDDe + DDDp (26.1)
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The decomposition of the continuum spin WWW is given as follows:

WWW = ΩΩΩ + WWW p, (26.2)

whereWWW p denotes the plastic spin andΩΩΩ is the spin of substructures. The constitutive
equation of elasticity is expressed as follows:

σ̊σσ = σ̇σσ − ΩΩΩσσσ + σσσΩΩΩ = CCC : DDDe, (26.3)

whereσσσ and σ̊σσ are the Cauchy stress and its objective rate, respectively,ΩΩΩ is the spin
tensor; andCCC is the elasticity modulus tensor. The initial yield criterion is expressed
by the following equation:

f = φ0(σσσ) − Y = σ(σσσ) − Y = 0, (26.4)

where Y is the initial yield stress and σ is the effective stress. To describe the
Bauschinger effect, as well as the evolutionary change of anisotropy, the subsequent
yielding is expressed by the following equation:

f = φ(σσσ − ααα,εεε) − Y = σ(σ̃σσ ,εεε) − Y = 0, σ̃σσ = σσσ − ααα, (26.5)

where ααα denotes the backstress. Based on the following definitions of the effective
plastic strain and its rate

σε̇εε = σ̃σσ : DDDp, εεε =
∫

ε̇εεdt, (26.6)

the associated flow rule is written as follows:

DDDp = ∂ f

∂σ̃σσ
λ̇ = ∂φ

∂σ̃σσ
λ̇ (26.7)

where λ̇ = ε̇εε.
Most kinematic hardening models assume the following form of the evolution

equation of the back stress:

α̊αα =
{

A

Y
(σσσ − ααα) − xxx

}

ε̇εε =
(

A

Y
σ̃σσ − xxx

)

ε̇εε, (26.8)

Here ˚(. . .) denotes the objective rate. For example, in the linear kinematic hardening
model:

α̊αα = H ′
L K

Y
(σσσ − ααα)ε̇εε = H ′

L K

Y
σ̃σσε̇εε, A = H ′

L K , xxx = 000 (26.9)

In the Armstrong-Frederick model (Armstrong and Frederick 1966):
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α̊αα =
{γ1

Y
(σσσ − ααα) − γ2ααα

}

ε̇εε =
(γ1

Y
σ̃σσ − γ2ααα

)

ε̇εε, A = γ1, xxx = γ2ααα (26.10)

The Y-U kinematic hardening law has the same form (for details, see the following
section). The constitutive equation is given by the following form:

σ̊σσ = CCCep : DDD, (26.11)

CCCep =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

CCC if λ̇ = 0

CCC −
CCC : ∂φ

∂σ̃σσ
⊗ CCC : ∂φ

∂σ̃σσ
∂φ

∂σ̃σσ
: CCC : ∂φ

∂σ̃σσ
+ H ′ − ∂φ

∂ε

if λ̇ > 0
(26.12)

where

H ′ = A − ∂φ

∂σ̃σσ
: xxx (26.13)

26.3 Cyclic Plasticity Model to Describe the Bauschinger
Effect and Workhardening Stagnation:
Yoshida-Uemori Model

The Y-U model was constructed within the framework of two-surface modeling
(Krieg 1975), wherein the yield surface moves kinematically within a bounding
surface, as schematically illustrated in Fig. 26.2. To describe anisotropic hardening
(i.e., expansion of the surface with shape change) and also kinematic hardening, the
bounding surface F is expressed by the equation:

Fig. 26.2 Schematic
illustration of the
Yoshida-Uemori two-surface
model
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F = φ(σσσ − βββ, ε) − (B + R) = 0, (26.14)

where βββ denotes the center of the bounding surface, and B and R are the initial
size of the surface and its workhardening component, respectively. To include the
description of anisotropic hardening in the model, it is assumed that the shapes of
both the yield and bounding surfaces vary simultaneously.

The kinematic hardening of the yield surface describes the transient Bauschinger
deformation,which is characterized by early re-yielding and subsequent rapid change
inworkhardening rate. The relative kinematicmotion of the yield surfacewith respect
to the bounding surface is expressed by the following equation:

ααα∗ = σσσ − βββ (26.15)

The evolution of ααα∗ is given by the following equation:

α̊αα∗ = C

{

( a

Y

)

(σσσ − ααα) −
√

a

ααα∗

}

ε̇ =
{(

Ca

Y

)

σ̃σσ − C

√

a

ααα∗

}

ε̇, (26.16)

α∗ = φ(ααα∗), a = B + R − Y (26.17)

An Armstrong-Frederick-type evolution equation is used to express the kinematic
hardening of βββ

β̊ββ∗ = k

{(

b

Y

)

(σσσ − ααα) − βββ

}

ε̇ =
(

kb

Y
σ̃σσ − kβββ

)

ε̇ (26.18)

Thus, in Eq. (26.8),

A = Ca + kb, xxx = C

√

a

α∗
ααα −

(

C

√

a

α∗
− k

)

βββ (26.19)

and in Eq. (26.13).
With respect to the expansion of the bounding surface, i.e., the evolution of R, in
the first version of the Y-U model (Yoshida and Uemori 2002, 2003), the following
equation based on the Voce hardening law (Voce 1948) was proposed:

R = RVoce = Rsat{1 − exp(−kε)}, (26.20)

written as
Ṙ = ṘVoce = k(Rsat − RVoce)ε̇ (26.21)

However, it is not necessary to use the Voce-type formulation. For example, based
on the Swift law (Swift 1952):

R = RSwift = K {(ε0 + ε)n − εn
0 }, (26.22)
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the following evolution equation can be obtained

Ṙ = ṘSwift = nK 1/n(RSwift + K εn
0 )

(n−1)/n ε̇ (26.23)

Furthermore, a combination of the above two hardening laws, Eqs. (26.22) and
(26.23), is also possible and can be expressed as follows:

Ṙ = ω ṘSwift + (1 − ω)ṘVoce, 0 ≤ ω ≤ 1 (26.24)

where ω is a weighting coefficient. This model has high flexibility in describing
various levels of workhardening at large strain levels.

One of the features of the Yoshida-Uemori model is that it is able to describe the
workhardening stagnation that appears in a reverse stress-strain curve for a certain
range of reverse deformation (see Hasegawa and Yakou 1975; Christodoulou et al.
1986). This phenomenon is closely related to the strain-range andmean-strain depen-
dency of cyclic hardening. Specifically, the larger the cyclic strain range is, the larger
the saturated stress amplitudes are. This dependency is expressed by the stagnation
of the expansion of the bounding surface for a certain range of reverse deformation.
The states of hardening (Ṙ > 0) and non-hardening (Ṙ = 0) of the bounding surface
are determined for a so-called non-IH (isotropic hardening) surface, gσ , defined in
the stress space as follows and schematically illustrated in Fig. 26.3a, b:

gσ = φ(σσσ − qqq, r) − r = 0, (26.25)

where qqq and r denote the center and size of the non-IH surface, respectively. It is
assumed that the center of the bounding surface qqq exists either on or inside of the
surface gσ . The expansion of the bounding surface takes place only when the center
point of the bounding surface, qqq , lies on the surface gσ (see Fig. 26.3b), i.e., when

Fig. 26.3 Schematic illustration of the non-IH surface defined in the stress space, when expansion
of the bounding surface a stops, and b takes place (Yoshida and Uemori 2003)
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Ṙ > 0 : gσ (βββ − qqq, r) = φ(βββ − qqq, r) − r = 0 (26.26)

and

Ṙ = 0 : Γ = ∂gσ (βββ − qqq, r)

∂βββ
: β̊ββ > 0 (26.27)

otherwise. In an analysis of some experimental data, the plastic strain region of
workhardening stagnation was found to increase with the accumulated plastic strain.
To describe this phenomenon, itwas assumed that the surface gσ moves kinematically
as it expands. The governing equations of the kinematic motion and expansion of
the surface are given by Eqs. (26.28) and (26.29), respectively.

q̊qq = (1 − h)Γ

r
(βββ − qqq), (26.28)

ṙ = hΓ (26.29)

Here, h is a parameter that controls the strength of the workhardening stagnation
characteristic. A larger value of h corresponds to a larger strain region within which
workhardening stagnation occurs, and as a result, a larger value of h leads to weaker
cyclic hardening of a material. We may assume that the shape of the surface gσ , is
fixed φ = φ0, or even φ = von Mises type, throughout the deformation, because
the shape of gσ has not been measured experimentally yet, and its effect on the
stress-strain calculation would be rather minor.

Models of workhardening stagnation were recently reviewed by Ohno (2015).
It should be noted that Ohno’s model of non-isotropic-hardening, where the non-
hardening region is expressed in the plastic strain space, is identical to the
infinitesimal-strain Yoshida-Uemori model when assuming a linear kinematic hard-
ening of the bounding surface.

In the proposed model, the size of the yield surface is held constant. However, if
we carefully observe the stress-strain response during unloading after plastic defor-
mation, we find that the stress-strain curve is no longer linear but rather is slightly
curved due to very early re-yielding and the Bauschinger effect. To describe this phe-
nomenon, in the model, the following equation for plastic-strain-dependent Young’s
modulus is introduced (Yoshida et al. 2002):

E = E0 − (E0 − Eα){1 − exp(−ξε)}, (26.30)

where E0 and Eα are Young’s modulus for virgin and infinitely large pre-strained
materials, respectively, and ξ is a material constant.

Figure26.4 shows stress-strain responses of 780MPa high strength steel sheets
under cyclic straining and uniaxial tension, calculated by the Y-U model, together
with the corresponding experimental results.
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Fig. 26.4 Stress-strain
curves for 780MPa HSS
sheet calculated with the Y-U
model and the corresponding
experimental data

26.4 Description of Evolution of Anisotropy

The evolution of anisotropy is expressed by the anisotropic hardening of the yield
surface, as follows (refer to Yoshida et al. 2015):

φ(σ̃σσ , ε) = μ(ε)φA(σ̃σσ ) + (1 − μ(ε))φB(σ̃σσ ) for εA ≤ ε ≤ εB (26.31)

Here, φA(σ̃σσ ) and φB(σ̃σσ ) are two different yield functions defined at the effective plas-
tic strains εA and εB , respectively, i.e., φA(σ̃σσ ) = φ(σ̃σσ , εA) and φB(σ̃σσ ) = φ(σ̃σσ , εB),
and μ(ε) an interpolation function of the effective plastic strain, where

1 = μ(εA) ≥ μ(ε) ≥ μ(εB) = 0 (26.32)

Note that the types of these two yield functions, φA(σ̃σσ ) and φB(σ̃σσ ), do not need to be
the same. An advantage of this modeling framework is that, if the two yield functions
φA(σ̃σσ ) and φB(σ̃σσ ) are convex, φ(σ̃σσ , ε) always satisfies the convexity. The derivatives
are expressed as follows:

∂φ

∂σ̃σσ
= μ(ε)

∂φA(σ̃σσ )

∂σ̃σσ
+ (1 − μ(ε))

∂φB(σ̃σσ )

∂σ̃σσ
,

∂φ

∂ε
= (φA(σ̃σσ ) − φB(σ̃σσ ))

∂μ(ε)

∂ε
(26.33)

Several linear and nonlinear functions can be used for the interpolation function
μ(ε). Assuming that εA = 0 (at initial yielding) and εA = ∞ (at infinitely large
strain) and that φA(σ̃σσ ) = φ0(σ̃σσ ) = φ0(σσσ) and φB(σ̃σσ ) = φ∞(σ̃σσ ), Eq. (26.31) reduces
to the following

φ(σ̃σσ , ε) = μ(ε)φ0(σ̃σσ ) + (1 − μ(ε))φ∞(σ̃σσ ) 0 ≤ ε ≤ 0 (26.34)

Some examples of forms of interpolation functions are as follows:
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μ(ε) = exp(−λε), (26.35)

μ(ε) = a exp(−λ1ε) + (1 − a) exp(−λ2ε), (26.36)

where λ, a, λ1 and λ2 are material constants.
If we have M sets of experimental data (σ0, σ45, σ90, σb, r0, r45, r90, etc.) for

material parameter identification corresponding to M discrete plastic strain points,
ε1(= 0), ε2, . . . , εi , εi+1, . . . , εM , we can determine M sets of yield functions
φ1(σ̃σσ ), φ2(σ̃σσ ), . . . , φi (σ̃σσ ), φi+1(σ̃σσ ), . . . , φM (σ̃σσ ). Using an interpolation function
μ(ε), the yield function φ(σ̃σσ , ε) can be defined by the following equation:

φ(σ̃σσ , ε) = μ(ε)φi (σ̃σσ ) + (1 − μ(ε))φi+1(σ̃σσ ) for εi ≤ ε ≤ εi+1 (26.37)

The following nonlinear equation is proposed for use as the interpolation function:

μ(ε) = 1 −
(

ε − εi

εi+1 − ε1

)pi

εi ≤ ε ≤ εi+1, (26.38)

where pi (i = 1, 2, . . . , M − 1) are material constants.
Among the various types of anisotropic yield functions available, stress polyno-

mial-type models (e.g., Hill 1948; Gotoh 1977; Soare et al. 2008; Yoshida et al.
2013) are suitable for use in modeling anisotropy evolution. A polynomial-type
yield criterion is given by the following equation:

f = φ(m)(σσσ) − Y m = σm − Y m = 0, (26.39)

where φ(m)(σσσ) denotes the mth order stress polynomial-type yield function. For
example, when m = 6 (Yoshida et al. 2013) under plane stress condition,

φ(6) = C1σ
6
x − 3C2σ

5
x σy + 6C3σ

4
x σ 2

y − 7C4σ
3
x σ 3

y + 6C3σ
2
x σ 4

y − 3C6σxσ
5
y

+ C7σ
6
y + 9(C8σ

4
x − 2C9σ

3
x σy + 3C10σ

2
x σ 2

y − 2C11σxσ
3
y + 2C12σ

4
y )τ 2xy

+ 27(C13σ
2
x − C14σxσy + C15σ

2
y )τ 4xy + 27C16τ

6
xy

(26.40)

In the same manner as Eq. (26.31), when the following equation is assumed

φ(m)(σ̃σσ , ε) = μ(ε)φ
(m)
A (σ̃σσ ) + (1 − μ(ε))φ

(m)
B (σ̃σσ ), (26.41)

it reduces to an interpolation for material parametersCk, k = 1, 2, . . . , N , as follows

Ck = μ(ε)Ck(A) + (1 − μ(ε))Ck(B) (26.42)

Here, Ck(A) and Ck(B) are material parameters determined at the effective plastic
strains, εA and εB , respectively. Assuming that εA = 0 (at initial yielding) and
εB = ∞ (at infinitely large strain) and that Ck(A) = Ck(0) and Ck(B) = Ck(∞),
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Eq. (26.42) reduces to the following:

Ck = μ(ε)Ck(0) + (1 − μ(ε))Ck(∞), 0 ≤ ε ≤ ∞ (26.43)

In discretization form:

Ck = μ(ε)Ck(i) + (1 − μ(ε))Ck(i+1), i = 1, 2, . . . , M − 1 (26.44)

To validate the model, calculated stress-strain responses were compared with the
corresponding experimental data for AA6022-T43 aluminum sheet (Stoughton and
Yoon 2009). As for the yield function, sixth-order polynomial model is employed.
One of advantages of this model is that, flow stresses σ0, σ45, σ90, σb and r -values
r0, r45, r90 are calculated by using the material parametersC1 ∼ C16 explicitly. Thus
the material parameters are easily identified.

σ90 =
(

C1

C7

) 1
6

σ0, σ45 =
(

C1

S + 9T + 27U + 27C16

) 1
6

σ0, σb =
(

C1

S

) 1
6

σ0,

(26.45)

r0 = C2

2C1 − C2
, r45 = −S − 3T + 9U + C16

2S + 12T + 18U
, r90 = C6

2C7 + C6
(26.46)

S = C1 − 3C2 + 6C3 − 7C4 + 6C5 − 3C6 + C7,

T = C8 − 2C9 + 3C10 − 2C11 + C12,

U = C13 − C14 + 3C15

On AA6022-T43 aluminum sheet, r -value planar anisotropy remains fixed through-
out the plastic deformation. In this calculation the kinematic hardening was excluded
since in monotonic loading the stress-strain calculation is not affected by the kine-
matic hardening. The results of flow stresses, σ0, σ45, σ90, σb calculated using
Eqs. (26.44) and (26.38), with M = 3, are compared to the experimental data, as
shown in Fig. 26.5. Here, three discrete plastic strain points, ε = 0, 0.1 and 0.5 are
selected to define φ1(σσσ), φ2(σσσ) and φ3(σσσ). The calculated results agree well overall
with the experimental results for the stresses.

The model was also validated by comparing the calculated results of stress-strain
responses with experimental data on r -value and stress-directionality changes in an
aluminum sheet (Hu 2007) and a stainless steel sheet (Stoughton and Yoon 2009),
as well as the variation of the yield surface of an aluminum sheet (Yanaga et al.
2014). Furthermore, anisotropic cyclic behavior was examined by performing exper-
iments of uniaxial tension and cyclic straining in three sheet directions on a 780MPa
advanced high-strength steel sheet. For details of the results, refer to Yoshida et al.
(2015).
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Fig. 26.5 Flow stresses of
AA6022-T43 aluminum
sheet predicted using the
anisotropy evolution model

26.5 Concluding Remarks

The present paper describes a framework for the constitutivemodeling of large-strain
cyclic plasticity that describes the evolution of anisotropy and the Bauschinger effect
of sheetmetals based on theY-Ukinematic hardeningmodel. TheY-Umodel predicts
the springback much more accurately than the classical isotropic hardening model
(e.g., refer toYoshida andUemori 2002;Eggertsen andMattiasson2009, 2010;Ghaei
et al. 2010; Wagoner et al. 2013; Huh et al. 2011). It has gained popularity in the
sheetmetal forming industry because it has already been implemented into several FE
commercial codes (e.g., PAM-STAMP, LS-DYNA, StamPack) and is widely used for
springback simulation. The highlights of this modeling are summarized as follows.

• The Y-U model is highly capable of describing various cyclic plasticity
characteristics such as the Bauschinger effect, the workhardening stagnation,
strain-range-dependent cyclic workhardening, and the degradation of unload-
ing stress-strain slope with increasing plastic strain. Furthermore, any type of
anisotropic yield function can be used.

• It requires a limited number of material parameters (seven or eight plasticity para-
meters and three elasticity parameters including Young’s modulus). The scheme
for material parameter identification and testing have been clearly presented, see
Yoshida and Uemori (2002).

• The evolution of the anisotropy can be described by incorporating the proposed
anisotropic hardening model in the Y-U model. In this modeling framework a set
of kinematic hardening parameters can be identified experimentally independent
of anisotropic hardening parameters, and their values remain fixed throughout the
plastic deformation

• An anisotropic yield function that varies continuously with the plastic strain is
defined by a nonlinear interpolation function of the effective plastic strain using a
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limited number of yield functions determined at a few discrete points of the plastic
strain. In this modeling framework, it is possible to use any type of yield function,
and the convexity of the yield surface is always guaranteed.

• This approach, which requires only one interpolation equation, offers a great
advantage over other approaches in that it involves fewer material parameters.
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