
Chapter 17
Fracture Mechanics at Atomic Scales

Takahiro Shimada and Takayuki Kitamura

Abstract Fracture and strength in atomic components are governed by mechanical
instabilities at atomic scales associated with irreversible deformations through bond
breaking/switching, such as cleavage, dislocation nucleation, and phase transforma-
tions of crystal lattices. It is therefore of central importance to determine the critical
conditions where atomic structures becomes mechanically unstable. Here we review
the state-of-the-art theory for “fracture mechanics of atomic structures” that provides
a rigorous description of mechanical instabilities in arbitrary atomic structures under
any external loading/constraint. The theory gives the critical instability condition by
positivity of the minimum eigenvalue of the Hessian matrix of the total energy with
respect to degrees of freedom of the system (i.e., instability criterion), and it success-
fully provides atomistic insights into fracture in various atomic/nanoscale structures.
The review also covers the recent development of theory extended to advanced sys-
tems including large-scale, finite temperature, and “multi-physics” instabilities in
(ferro-)electric and magnetic materials as functional fracture.

Keywords Mechanical instabilities · Atomic components · Fracture criterion ·
Nanoscales · Molecular dynamics

17.1 Introduction

Understanding the nature of fracture, a catastrophic failure of materials, remains a
major challenge in a wide range of fields including not only mechanical engineer-
ing but also physics, materials science, biology, and geophysics, because fracture is
both a physically essential phenomenon and a practically inevitable issue that all
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materials in all range of scales intrinsically possess and commonly suffer from
(Liebowitz 1968; Zhang et al. 2014; Holland and Marder 1999; Kermode et al.
2008; Pons and Karma 2010; Warner et al. 2007; Buehler and Gao 2006; Song and
Curtin 2013; Livne et al. 2010; Nalla et al. 2003; Bažant 2002; Rubin 1995; Dombard
2007). Failure of materials is ultimately governed by bond breaking/switching at the
atomic level of crystals. Brittle fracture through cleavage of crystal lattice is the sim-
plest and most typical fracture that is associated with bond breaking. Bond switching
often induces the slip of atomic planes resulting in nucleation and multiplication of
dislocations and phase transformation of crystal lattices, which are closely related to
strength of materials. Such a bond breaking/switching and resulting dramatic change
in (global or local) atomic structures can be regarded as “mechanical instabilities”
of atomic structures, which often accompany irreversible deformations of materials
with a sudden drop of the external load. Suchmechanical instabilities can be critical in
nanoscale/atomic components such as nanofilms, nanotubes, nanowires and nanodots
that have recently been developed due to remarkable advancement in manufactur-
ing technology. In such atomic components only a single bond-breaking/switching
often leads to immediate fracture or the fatal malfunction due to their ultimately
small dimensions. Therefore, it is of central importance to investigate the nature of
mechanical instabilities for thorough understanding of characteristic strength and
fracture of atomic components.

Born and Huang (1954) and Milstein (1971); Hill and Milstein (1997); Milstein
(1980) demonstrated that stability of a perfect crystal can be evaluated on the basis of
the elastic constants. These criteria were extended byWang et al. (1993, 1997, 1995)
for finite deformations, where the crystal stability can be expressed as functions of the
elastic stiffness coefficients (i.e., B-criterion). Wang’s theorem can be successfully
applied to, for example, bifurcation from the fcc to bcc structure in metals under
tension (Luo et al. 2002; Černý et al. 2004). However, this criterion is primarily
effective only for perfect crystals subject to uniform deformation. As an early attempt
toward mechanical instability in inhomogeneous structures, Kitamura et al. (1997,
1998); Yashiro and Tomita (2010) have shown that the dislocation nucleation in
a Ni nano-wire under tension by applying the criterion to the local crystal lattice.
On the other hand, Li et al. (2003, 2002); van Vliet et al. (2003) employed the
concept of phonon soft modes to a local site (�-criterion). Dmitriev et al. (2005a, b)
applied the concept to the low-dimensional components. Thanks to numerous efforts,
the mechanical instabilities in atomic structures have been understood to a certain
extent. However, these criteria do not maintain rigorousness, because only the energy
balance in a local region (i.e., limited degrees of freedom) is taken into account. For
the precise evaluation of mechanical instability in an arbitrary atomic system, it is
necessary to consider all the degrees of freedom of the entire system.

A theory that considers the energy balance with respect to all the degrees of
freedom of atoms has been proposed by Kitamura et al. (2004a, b). This theory rig-
orously evaluates the criterion of mechanical instability in heterogeneous atomic
systems under non-uniform loading or constraint (Kitamura et al. 2004a, b). Here
we review the rigorous criterion that describes the mechanical instabilities in arbi-
trary atomic structures and its recent advances and applications. In Sect. 17.2, we
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provide a detailed theory to describe the mechanical instabilities in atomic structures
and its applications. In Sect. 17.3, we discuss problems of this original theory for
practical situations and introduce an improved approach that resolves the problems.
Section17.4 contributes to the review of recent advances and extension of themethod
toward complicated system such as finite temperature, electric, and magnetic sys-
tems. In Sect. 17.5 we summarize the present review with some future directions of
mechanical instability issues.

17.2 Fracture Criterion for Mechanical Instability
in Arbitrary Atomic Structures

To investigate the onset and nature of mechanical instabilities in atomic components,
a rigorous and universal criterion has been proposed for an arbitrary atomic structure
under any loading/constraint condition (Kitamura et al. 2004a, b). Here, let us con-
sider an atomic system consisting of N atoms. The potential energy of the atomic
system, Φ, can be represented as a function of atomic coordinate,

Φ = Φ(RRR), (17.1)

where RRR denotes the configuration vector consisting of atomic positions,

RRR ≡t (r2z , r3y , r3z , r4x , r4y , r4z , . . . , rα
i , . . . , r N

x , r N
y , r N

z )

=t (R1, R2, . . . , Rm, . . . , RM )
(17.2)

Here, rα
i denotes the coordinate of atom α in the i(= x, y, z) direction. This is

the general form to express the potential energy of atomic system, in any type of
po-tential functions and force fields including first-principles (quantum-mechanics)
approaches. The irreducible number of structural degrees of freedom (DOFs) in the
atomic system without any constraint is M = 3N − 6 because the DOFs of rigid-
body translations (3) and rotations (3) is subtracted from the total DOFs of atoms
(3N ). Under a displacement constraint where some of atoms are fixed, the number of
DOFs is M = 3N − 3nc − 6, where nc is the number of constrained atoms. Here, let
us consider the atomic system under static external load, i.e., the atoms are located
at their own optimal sites and are in balance with the external load and/or constraint.
The total energy � at the equilibrated atomic configuration (RRR0) under external load
consists of the potential energy, Φ, and the work done by external load, W,

� = Φ + W (17.3)

Assuming an infinitesimal deformation, δRRR, to the equilibrated system, the total
energy of slightly deformed system, �(RRR0 + δRRR), can be described by the Taylor’s
series expansion of total energy �(RRR0) with respect to δRRR,
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�(RRR0 + δRRR) = �(RRR0) +
M∑

m=1

(
∂Φ

∂ Rm

∣∣∣∣
RRR=RRR0

+ ∂W

∂ Rm

∣∣∣∣
RRR=RRR0

)
δRm

+ 1

2

M∑

m=1

M∑

n=1

∂2Φ

∂ Rm∂ Rn

∣∣∣∣
RRR=RRR0

δRmδRn + · · ·

+ 1

2

M∑

m=1

M∑

n=1

∂2W

∂ Rm∂ Rn

∣∣∣∣
RRR=RRR0

δRmδRn + · · · ,

(17.4)

where Rm denotes a component of configuration vector RRR included in the DOFs of
system, i.e., Rm = rα

i . Since the first derivative of total energy (i.e., force acting on
atoms) is zero due to the system at equilibrium, the second term on the right-hand
side can be eliminated

∂�

∂ Rm
δRm =

(
∂φ

∂ Rm

∣∣∣∣
RRR=RRR0

+ ∂W

∂ Rm

∣∣∣∣
RRR=RRR0

)
δRm (17.5)

Considering that the external load is constant due to the static loading, the work
is proportional to the displacement of atoms on which the external load is applied.
Thus, we obtain

∂2W

∂ Rm∂ Rn
δRmδRn = 0 (17.6)

Using Eqs. (17.4)–(17.6) and ignoring the higher-order terms, the change in total
energy δ� with respect to the infinitesimal deformation δRRR is given by

δ�(RRR0) = �(RRR0 + δRRR) − �(RRR0) = 1

2

M∑

m=1

M∑

n=1

∂2Φ

∂ Rm∂ Rn
δRmδRn = 1

2
δRRRT HHHδRRR,

(17.7)
where HHH is the M × M Hessian matrix of potential energy � with respect to RRR, and
the superscript T means transposition. The component of Hessian matrix, Hmn , is

Hmn ≡ ∂2Φ

∂ Rm∂ Rn

∣∣∣∣
RRR=RRR0

(17.8)

By solving the eigenvalue problem of the Hessian matrix HHH , we obtain

HHH pppm = ηm pppm, (17.9)

where ηm is the eigenvalue of the Hessian matrix HHH , and pppm is the corresponding
eigenvector. Using the eigenvector pppm , the Hessian matrix is diagonalized as
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PPP−1HHH PPP = PPPT HHH PPP =
⎛

⎜⎝
η1 0

. . .

0 ηM

⎞

⎟⎠ , (17.10)

where PPP = (ppp1 . . . pppM ). Since the eigenvectors are an orthogonal basis set of M-
dimensional vector space, any infinitesimal deformation δRRR can be expressed as a
linear combination of the eigenvectors as

δRRR =
M∑

m=1

um pppm = PPPuuu, (17.11)

where um is the component of δRRR in the pppm direction, uuu = (u1 . . . uM ). Therefore,
the total energy change with δRRR in Eq. (17.7) becomes

δ�(RRR0) = 1

2
(PPPuuu)T HHH(PPPuuu) = 1

2
uuu(PPPT HHH PPP)uuu =

M∑

m=1

ηmu2
m (17.12)

In this equation, the eigenvalue, ηm , signifies the potential energy curvature against
the deformation along the corresponding eigenvector, pppm . Therefore, if theminimum
eigenvalue is positive (η1 > 0), the change in the total energy, δ�, is always positive
with respect to any infinitesimal deformation, indicating that the system is mechan-
ically stable. On the other hand, when the minimum eigenvalue becomes zero or
negative (η1 ≤ 0), the total energy can decrease along the corresponding eigenvec-
tor, ppp1. This indicates that the system ismechanically unstable and the corresponding
eigenvector ppp1 represents the atomic motion at the beginning of instability (unstable
mode). Therefore, the onset of mechanical instabilities in atomic structures can be
determined by the positivity of the eigenvalue of Hessian matrix HHH , i.e., η1 = 0
(Kitamura et al. 2004a, b).

The validity of the theory has been verified by applying the criterion to a nanoscale
cracked atomic body under external load (Kitamura et al. 2004b), as shown in
Fig. 17.1. Two different loading conditions that lead to different fracture modes were
applied to the model: the external load-controlled (Case A) and the displacement-
controlled (Case B) conditions. Figure17.2a plots the stress-strain curves of Cases
A and B. The two stress-strain curves exhibit the different behavior, especially, the
different critical strain where fracture occurs. Note that these bring about different
morphology of mechanical instability at the critical strain: the cleavage crack prop-
agation is observed for Case A (i.e., brittle fracture), while the dislocation emission
from the crack tip (i.e., ductile fracture) occurs for Case B. The above criterion was
applied to these two deformations and fracture, and the minimum eigenvalue as a
criterion is evaluated for each case, as shown in Fig. 17.2b. Although the mechan-
ical behavior and fracture mode are totally different between Cases A and B, the
minimum eigenvalues become zero at each critical strain where stress dramatically
drops (or the strain diverges) and fracture occurs. This indicates that the instability



384 T. Shimada and T. Kitamura

Fig. 17.1 An atomic structure with a crack. a Case A: load control simulation. b Case B: displace-
ment control simulation (Kitamura et al. 2004b)

Fig. 17.2 Results of computational tensile tests shown in Fig. 17.1. a Stress versus strain curves
of cracked atomic structures, b minimum eigenvalue normalized by that of unstrained one as a
function of strain (Kitamura et al. 2004b)

criterion, η1 = 0, exactly captures the critical strain where fracture occurs regardless
of the fracture modes.

Figure17.3 shows the unstable deformation mode, ppp1, corresponding the mini-
mum eigenvalue of η1 = 0. The dominant mode vector for Case A represents the
opening mode of crack, i.e., cleavage fracture. On the other hand, the unstable mode
of Case B shows the sliding mode of neighboring atomic planes, i.e., the dislocation
emission from the crack tip. These modes are perfectly consistent with the fracture
behaviors directly obtained by the molecular dynamics simulations. Therefore, the
method can rigorously evaluate the instability criterion as well as the deformation
mode of the mechanical instabilities.

Owing to the capability of the criterion as a powerful tool to explore the nature
of fracture in atomic components, the method has been applied to various kinds of
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Fig. 17.3 Unstable deformation modes (eigenvectors corresponding to minimum eigenvalues) for
a Case A and b Case B (Kitamura et al. 2004b)

systems (Kitamura et al. 2004a; Umeno et al. 2007; Shimada et al. 2008, 2009a;
Kubo et al. 2013), including metallic glasses and amorphous metals (Umeno et al.
2007; Shimada et al. 2008, 2009a), interface cracking of nanofilms (Kitamura et al.
2004a), and sliding and/or switchingof domain/grain boundaries (Umenoet al. 2009).
For example, the method clarified the fracture mode of bi-material interfaces and
its dominant region near the interface edge (Kitamura et al. 2004a), as shown in
Fig. 17.4a. The method was also applied to more complicated atomic structures,
such as amorphous metals, where atoms are arranged almost randomly in contrast
to crystal lattices. Although it was difficult to extract detailed deformation processes
that contribute to macroscopic plasticity in amorphous metals due to the random
atomic arrangements, themethod successfully captured the localized atomicmotions
dominated by several tens of atoms (see Fig. 17.4b) as an elementary process of
plasticity in amorphous metals (Umeno et al. 2007; Shimada et al. 2008, 2009a).

Fig. 17.4 Unstable deformation modes of a delamination of bi-material interfaces (Kitamura et al.
2004a) and b amorphous metals near a crack-tip (Shimada et al. 2009a)
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Thus, the method has successfully revealed the nature of mechanical instabilities
at the atomic scales and the elementary process of complicated deformation and
fracture in atomic structures.

17.3 Simplified Evaluation of Fracture Criterion
for Large-Scale Atomic Structures

Although the applicability of the instability criterion is quite large and a variety of
mechanical instabilities and fracture issues can be solved by the theory, there are
still some problems. One of the difficulties is to apply the criterion to a large-scale
atomic structure. When the system contains huge number of atoms, the DOFs of the
system and the resulting Hessian matrix, HHH , in Eq. (17.8) becomes extremely large
so that the eigenvalue problem of Hessian matrix cannot be computationally solved
due to its huge memory requirements.

In this section, we introduce a simplified method to evaluate mechanical in-
stabilities even in a large-scale atomic structure using a reasonable concept to re-
duce the effective degrees of freedom in the system (Shimada et al. 2009b, 2010b).
In an attempt to re-duce the degrees of freedom in the computation, a part of the
atomic system is divided into elements and the displacement of atoms in the element
is described using a linear function of the nodal coordinate, like the well-established
concept of finite element analysis. Figure17.5 schematizes the concept applied to a
three-dimensional atomic structure with a crack (Shimada et al. 2010b). In the area

Fig. 17.5 Schematic illustration explaining the concept of reducing degrees of freedom by using
linear elements in a three-dimensional atomic structure with a crack. Degrees of freedom of atoms
inside an element are represented by its nodal displacement (Shimada et al. 2010b)
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far from the crack, the element includes many atoms because the strain gradient
is moderate and the deformation of the atoms can be well-described by the nodal
displacements of element. On the other hand, the number of atoms in the element
should decrease in the region near the crack tip where the strain concentrates, and
the DOFs of each atom is fully taken into account in the proximity of the crack-tip
where the unstable deformation preferentially occurs.

Denoting the number of atoms and nodes in the system as N ′
atom and N ′

node,
respectively, we can re-describe the deformation of the system by the vector RRR′,

RRR′ ≡t
(

r1x , r1y , r1z , . . . , rα
i , . . . , r

N ′
atom

x , r
N ′
atom

y , r
N ′
atom

z ,

S1
x , S1

y , S1
z , . . . , Sξ

i , . . . , S
N ′
node

x , S
N ′
node

y , S
N ′
node

z

) (17.13)

where Sξ
i denotes the i-th coordinate of a node, ξ . Following the concept of the finite

element analyses, it is assumed that the displacements in the x, y, and z direction of
an atom α in an element, uα

x , uα
y , and uα

z , respectively, can be represented using the
linear function as

uα
x = a1 + a2rα

x + a3rα
y + a4rα

z ,

uα
y = a5 + a6rα

x + a7rα
y + a8rα

z ,

uα
z = a9 + a10rα

x + a11rα
y + a12rα

z ,

(17.14)

For the node , ξ , we obtain

U ξ
x = a1 + a2Sξ

x + a3Sξ
y + a4Sξ

z ,

U ξ
y = a5 + a6Sξ

x + a7Sξ
y + a8Sξ

z ,

U ξ
z = a9 + a10Sξ

x + a11Sξ
y + a12Sξ

z ,

(17.15)

where U ξ
i (i = x, y, z) denotes the nodal displacement. Thus, the displacement of

atoms in the element can be described by the displacements of 4 nodes that consist
of the tetrahedral element as follows

⎧
⎨

⎩

uα
x

uα
y

uα
z

⎫
⎬

⎭ = C1
α

⎧
⎨

⎩

U 1
x

U 1
y

U 1
z

⎫
⎬

⎭ + C2
α

⎧
⎨

⎩

U 2
x

U 2
y

U 2
z

⎫
⎬

⎭ + C3
α

⎧
⎨

⎩

U 3
x

U 3
y

U 3
z

⎫
⎬

⎭ + C4
α

⎧
⎨

⎩

U 4
x

U 4
y

U 4
z

⎫
⎬

⎭ , (17.16)

where the coefficient of node ξ , Cξ
α , is represented as a function of the coordinate of

atom and node, rα
i and Sα

i (Shimada et al. 2010b).
The number of reduced degrees of freedomcan nowbe M ′ = 3(N ′

atom+N ′
node)−6

(or, M ′ = 2(N ′
atom + N ′

node) − 3 for a two-dimensional system). It should be noted
that the reduced DOFs of M ′ is quite smaller than the original DOFs of atoms M
because large number of atoms are included in the element regions (i.e., M ′ � M).
The Hessian matrix of this atom-element system, HHH ′, to be solved is now rewritten as
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Fig. 17.6 a Three-dimensional atomic structure of Cu with a crack. b Elements and atoms for
1000 (Case A), 2000 (Case B), and 4000 (Case C) degrees of freedom generated according to the
deformation gradient. Note that the number of degrees of freedom of all atoms is 11127. bMinimum
eigenvalues normalized by those of the unstrained state as a function of strain obtained by Cases
A, B, and C and exact solution of original method as “Precise” (Shimada et al. 2010b)

H ′
mn = ∂2U

∂ R′
m∂ R′

n
, (17.17)

where the size (M ′ × M ′) is significantly reduced from the original size (M ×
M) because M ′ � M (Shimada et al. 2010b). Therefore, by applying the atom-
element concept, the eigenvalues (instability criterion) as well as the corresponding
eigenvectors (unstablemode) can be computed even in a large-scale atomic structure.

The atom-element concept for the mechanical instability analysis of large-scale
atomic structures has been validated by applying the concept to the three-dimensional
Cu atomic structure with a crack under tension (Shimada et al. 2010b), as shown in
Fig. 17.6a. During tension tests, a dislocation is emitted from the crack tip at a critical
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strain. The stress-strain curve and the resulting dislocation emission are similar to
those shown in Fig. 17.1 (Case B), although we do not show the details of tensile de-
formations here. Figure17.6b shows themesh division of a three-dimensional atomic
component with a crack. The atomic structure is divided into elements according to
the strain gradient (Shimada et al. 2009b, 2010b). Here, atomic displacement in
an element is linearly related with the displacement at the nodes. The models of
Cases A, B, and C have approximately 1000, 2000, and 4000 degrees of freedom,
respectively. Note that the total number of degrees of freedom (atomic degrees of
freedom) is 11127. The atomic region appears near the crack tip and elements become
rough far from the crack. Figure17.6c plots the minimum eigenvalues of the Hessian
matrix for Cases A, B and C. The model with the lowest degrees of freedom (Case A)
significantly differs from the exact numerical solution that considers all the degrees
of freedom shown as “Precise.” On the other hand, by increasing the degrees of
freedom, Cases B and C give almost the same curves of the exact solution. Cases B
and C are therefore a quite good approximation of the exact solution so that we are
able to determine the onset of mechanical instability from the minimum eigenvalue
with reduced DOFs and Hessian matrix HHH ′.

Figure17.7 shows the unstable eigenvector modes corresponding to the minimum
eigenvalues for Cases A, B, and C. Case A gives a mode that is remarkably deviated
from the exact solution. This is because the Case A does not afford enough DOFs to

Fig. 17.7 Simplified instability analysis results for Cases A, B, and C. a Unstable mode vectors.
b Error vectors representing the difference from the exact unstable mode. Only the region near the
crack tip is shown (Shimada et al. 2010b)
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represent the unstable mode of discretized atomic motion near the crack tip. On the
other hand, the unstable deformationmode is correctly describedwhen the degrees of
freedom is more than 2000 (Case B). Here, the size of matrix, HHH ′, is reduced to about
1/25 compared with that of the original approach, HHH . Here, it should be noted that
the model introduced here is relatively small for the purpose of the validation of the
concept.Whenwe deal with larger atomic structures that containmillions of atoms as
molecular dynamics simulations usually treat, a huge number of atoms are included
in the element region and the size of Hessian matrix can be reduced dramatically. We
also remark that, although the present model has a crystalline structure which is more
likely to apply the atom-element concept due to its regular atomic arrangement, it has
been confirmed that the concept can be applied to even highly-disordered structures
such as amorphous metals where the atomic displacement exhibits quite nonlinear
behavior (Shimada et al. 2009a; Kubo et al. 2013). Therefore, the atom-element
concept introduced here is quite successful and therefore enables us to evaluate the
mechanical instability criterion even for large-scale atomic systems.

17.4 Recent Advances of Instability Criteria
for Complicated Systems

Very recently, numerous attempts and efforts have been made to extend and apply
the instability criterion to more complicated systems and phenomena (Umeno et al.
2009, 2010; Shimada et al. 2010a; Yan et al. 2012; Shimada et al. 2012, 2015),
such as finite temperature, dislocation structures, ferroelectrics, magnetic materials,
etc. Especially, it has recently attracted much attention that mechanical stress/strain
strongly affects and interacts with ferroelectric and magnetic properties, i.e., “multi-
physics” coupling. Nanostructures where the discreteness of atoms becomes domi-
nant exhibit novel multi-physics properties that is distinct from the bulk counterpart,
as reviewed in (Shimada and Kitamura 2014). Here, we thus focus on advanced
instability criteria related to these hot “multi-physics” phenomena.

For ferroelectric materials where a spontaneous ionic displacement brings about
electric dipoles in perovskite lattices, i.e., spontaneous polarization, the spontaneous
polarization interacts with external electric field. When the external field exceeds the
critical value, the spontaneous polarization and internal ionic displacement becomes
unstable and finally switches its directions, namely, do-main switching. Thus, the
domain switching is one of instabilities of atoms arising from not only mechanical
but also electric loading, i.e., multi-physics instabilities. The criterion for such multi-
physics instabilities in ferroelectrics has been proposed by extending the original
mechanical instability analysis (Shimada et al. 2012). In addition to the original
framework, here the total energy of the system � consists of not only the potential
energy Φ and the work done by external load W , but also the electro-static energy
due to external electric field Velec,
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� = Φ + W + Velec (17.18)

By following the same manner as the original theory, the Hessian matrix to be solved
HHH is now re-formulated as

Hmn = ∂2Φ

∂ Rm∂ Rn

∣∣∣∣
RRR=RRR0

+ ∂2Velec

∂ Rm∂ Rn

∣∣∣∣
RRR=RRR0

(17.19)

Therefore, the eigenvalue of the re-formulated Hessian matrix can be a criterion for
ferroelectric systems that essentially include a strong interaction with both mechan-
ical and electric loading.

This criterion was applied to the switching of 180◦ domain walls (DWs) in fer-
roelectric PbTiO3 under external electric field (Shimada et al. 2012), as shown in
Fig. 17.8a. This simulation model with periodic boundary conditions contains a 180◦
DW at the center of cell. The left side of DW shows spontaneous polarization in the
+z direction while that of the right side is the opposite −z direction. When the exter-
nal electric field is applied in the +z direction, spontaneous polarization (referred
as ferro-electric distortion δFE here) of the right side of DW (denoted as plane 1–4)
smoothly increases, as shown in Fig. 17.8b.When the electric field reaches the critical
value of Ec = 4.225MV/cm, δFE changes from the negative to positive value, indicat-
ing that spontaneous polarization switches from−z to+z, i.e., the domain switching
occurs. The minimum eigenvalue, as a criterion based on the above extended the-

Fig. 17.8 Computational results for domain switching in ferroelectric PbTiO3. a Simulation super-
cell for 180◦ domain walls in ferroelectric PbTiO3. b Ferroelectric distortion (spontaneous polariza-
tion) as a function of external electric field. c Minimum eigenvalue as a function of applied electric
field (Shimada et al. 2012)
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ory, smoothly decreases with increasing electric field, as shown in Fig. 17.8c. The
minimum eigenvalue reaches zero (criterion) at the field of 4.225 MV/cm, which
corresponds to the point where domain switching starts. This consistency therefore
demonstrates that the criterion based on the extended theory can successfully capture
(ferro-)electric instabilities in such ionic systems.

The instability criterion has also been extended to magnetic (spin-lattice) systems
(Shimada et al. 2015). The potential energy of the system with magnetic moments,
such as ferromagnetic Fe, is described by not only the atomic coordinates, RRR, but
also magnetic moments, mmm, and is given by

Φ = Φ(RRR,mmm), (17.20)

where

mmm ≡t (m1
x , m1

y, m1
z , m2

x , m2
y, m2

z , . . . , m N
x , m N

y , m N
z ) (17.21)

Here, mα
i denotes the magnetic moment of atom α in the i direction. Since the

DOFs of magnetic moment in the system is 3N , the total number of DOFs including
atomic and spin DOFs is now M = 6N − 6. Here, an arbitrary deformation and/or
perturbation of the magnetic moment of the system can be represented by a change
in the following M-dimensional vector XXX consisting of all DOFs,

XXX ≡t (r2z , r3y , r3z , r4x , r4y , r4z , . . . , r N
x , r N

y , r N
z )

m1
x , m1

y, m1
z , m2

x , m2
y, m2

z , . . . , m N
x , m N

y , m N
z )

(17.22)

The total energy of the spin-lattice system � now consists of not only the potential
energy Φ and the work done by external load W , but also the magnetostatic energy
due to external magnetic field Vmag,

� = Φ + W + Vmag (17.23)

By following the same manner as the original concept, the Hessian matrix to be
solved HHH is now re-written as

Hmn = ∂2Φ

∂ Xm∂ Xn

∣∣∣∣
XXX=XXX0

+ ∂2Vmag

∂ Xm∂ Xn

∣∣∣∣
XXX=XXX0

(17.24)

Again, the eigenvalue of the re-formulated Hessian matrix can be a criterion for a
magnetic system. This extended criterion was applied to magnetization switching
in ferromagnetic Fe under external magnetic field, as shown in Fig. 17.9. The mag-
netic moment in Fe is initially along +z direction (θ = 0 rad; point A in Fig. 17.9a).
When the external magnetic field is applied in +x direction, the magnetic moment
slightly rotates (point B).When the magnetic field reaches at the coercive field Hc,
the magnetic moment suddenly rotates from +z to +x direction (points C-D; see
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Fig. 17.9 Computational
results for magnetization
switching in ferromagnetic
iron. a Magnetic moment as
a function of external
magnetic field. b Magnetic
configurations under applied
magnetic fields. c Minimum
eigenvalue of criterion as a
function of magnetic field. d
Unstable mode of magnetic
moments under the coercive
field (Shimada et al. 2015)

also Fig. 17.9b), i.e., magnetization switching occurs. The minimum eigenvalue, as
a magnetic criterion based on the extended theory, smoothly decreases with increas-
ing magnetic field (see Fig. 17.9c). The minimum eigenvalue finally becomes zero
(criterion) at the coercive field of Hc, which corresponds to the points C-D where
magnetization switching occurs. This agreement shows that the criterion based on the
extended theory can successfully describe the magnetic instabilities in spin-lattice
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systems. In addition, the unstable mode of magnetic moments shown in Fig. 17.9d
demonstrates the rotation of spins toward the +x direction, which correctly repre-
sents the behavior of magnetization switching shown in Fig. 17.9b.

17.5 Conclusions

This review covered the state-of-the-art theory of “fracture mechanics of atomic
structures” that provides a rigorous description ofmechanical instabilities in arbitrary
atomic structures under any external loading/constraint. The theory gives the critical
instability condition by positivity of theminimumeigenvalue of theHessianmatrix of
the total energywith respect to degrees of freedomof the systemaswell as the fracture
mode at the onset of instability. The theory successfully provides atomistic insights
into fracture in various atomic/nanoscale structures including nanocracks, interface
edges, defects, amorphous and non-crystalline structures. The review concludes with
recent advances of the theory extended to complicated and multi-functional systems
including large-scale, finite temperature, and multi-physics instabilities in (ferro-
)electric and magnetic materials as functional fracture. Such extension of the insta-
bility theory for multi-physics phenomena can open up a new discipline underlying
between material strength and physical properties.
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