
Chapter 7

Modeling Longitudinal Responses using
Generalized Least Squares

In this chapter we consider models for a multivariate response variable repre-
sented by serial measurements over time within subject. This setup induces
correlations between measurements on the same subject that must be taken
into account to have optimal model fits and honest inference. Full likelihood
model-based approaches have advantages including (1) optimal handling of
imbalanced data and (2) robustness to missing data (dropouts) that occur
not completely at random. The three most popular model-based full like-
lihood approaches are mixed effects models, generalized least squares, and
Bayesian hierarchical models. For continuous Y , generalized least squares
has a certain elegance, and a case study will demonstrate its use after sur-
veying competing approaches. As OLS is a special case of generalized least
squares, the case study is also helpful in developing and interpreting OLS
modelsa.

Some good references on longitudinal data analysis
include148,159,252,414,509,635,637.

7.1 Notation and Data Setup

Suppose there are N independent subjects, with subject i (i = 1, 2, . . . , N)
having ni responses measured at times ti1, ti2, . . . , tini

. The response at time t
for subject i is denoted by Yit. Suppose that subject i has baseline covariates
Xi. Generally the response measured at time ti1 = 0 is a covariate in Xi

instead of being the first measured response Yi0.
For flexible analysis, longitudinal data are usually arranged in a “tall and

thin” layout. This allows measurement times to be irregular. In studies com-

a A case study in OLS—Chapter 7 from the first edition—may be found on the text’s
web site.

© Springer International Publishing Switzerland 2015
F.E. Harrell, Jr., Regression Modeling Strategies, Springer Series
in Statistics, DOI 10.1007/978-3-319-19425-7 7

143



144 7 Modeling Longitudinal Responses using Generalized Least Squares

paring two or more treatments, a response is often measured at baseline
(pre-randomization). The analyst has the option to use this measurement as
Yi0 or as part of Xi. There are many reasons to put initial measurements of
Y in X, i.e., to use baseline measurements as baseline .1

7.2 Model Specification for Effects on E(Y )

Longitudinal data can be used to estimate overall means or the mean at the
last scheduled follow-up, making maximum use of incomplete records. But the
real value of longitudinal data comes from modeling the entire time course.
Estimating the time course leads to understanding slopes, shapes, overall
trajectories, and periods of treatment effectiveness. With continuous Y one
typically specifies the time course by a mean time-response profile. Common
representations for such profiles include

• k dummy variables for k+1 unique times (assumes no functional form for
time but assumes discrete measurement times and may spend many d.f.)

• k = 1 for linear time trend, g1(t) = t
• k–order polynomial in t
• k+1–knot restricted cubic spline (one linear term, k− 1 nonlinear terms)

Suppose the time trend is modeled with k parameters so that the time
effect has k d.f. Let the basis functions modeling the time effect be g1(t),
g2(t), . . . , gk(t) to allow it to be nonlinear. A model for the time profile with-
out interactions between time and any X is given by

E[Yit|Xi] = Xiβ + γ1g1(t) + γ2g2(t) + . . .+ γkgk(t). (7.1)

To allow the slope or shape of the time-response profile to depend on some
of the Xs we add product terms for desired interaction effects. For example,
to allow the mean time trend for subjects in group 1 (reference group) to
be arbitrarily different from the time trend for subjects in group 2, have a
dummy variable for group 2, a time “main effect” curve with k d.f. and all k
products of these time components with the dummy variable for group 2.

Once the right hand side of the model is formulated, predicted values,
contrasts, and ANOVAs are obtained just as with a univariate model. For
these purposes time is no different than any other covariate except for what
is described in the next section.

7.3 Modeling Within-Subject Dependence

Sometimes understanding within-subject correlation patterns is of interest
in itself. More commonly, accounting for intra-subject correlation is crucial
for inferences to be valid. Some methods of analysis cover up the correlation



7.3 Modeling Within-Subject Dependence 145

pattern while others assume a restrictive form for the pattern. The following
table is an attempt to briefly survey available longitudinal analysis meth-
ods. LOCF and the summary statistic method are not modeling methods. 2

LOCF is an ad hoc attempt to account for longitudinal dropouts, and sum-
mary statistics can convert multivariate responses to univariate ones with few
assumptions (other than minimal dropouts), with some information loss.

What Methods To Use for Repeated Measurements /
Serial Data? ab

Repeated GEE Mixed GLS LOCF Summary
Measures Effects Statisticc

ANOVA Model
Assumes normality × × ×
Assumes independence of ×d ×e

measurements within subject
Assumes a correlation structuref × ×g × ×
Requires same measurement × ?

times for all subjects
Does not allow smooth modeling ×

of time to save d.f.
Does not allow adjustment for ×

baseline covariates
Does not easily extend to × ×

non-continuous Y
Loses information by not using ×h ×

intermediate measurements
Does not allow widely varying # × ×i × ×j

of observations per subject
Does not allow for subjects × × × ×

to have distinct trajectoriesk

Assumes subject-specific effects ×
are Gaussian

Badly biased if non-random ? × ×
dropouts

Biased in general ×
Harder to get tests & CLs ×l ×m

Requires large # subjects/clusters ×
SEs are wrong ×n ×
Assumptions are not verifiable × N/A × × ×

in small samples
Does not extend to complex × × × × ?

settings such as time-dependent
covariates and dynamico models

a Thanks to Charles Berry, Brian Cade, Peter Flom, Bert Gunter, and Leena Choi
for valuable input.
b GEE: generalized estimating equations; GLS: generalized least squares; LOCF: last
observation carried forward.
c E.g., compute within-subject slope, mean, or area under the curve over time. As-
sumes that the summary measure is an adequate summary of the time profile and
assesses the relevant treatment effect.
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The most prevalent full modeling approach is mixed effects models in which
baseline predictors are fixed effects, and random effects are used to describe
subject differences and to induce within-subject correlation. Some disadvan-
tages of mixed effects models are

• The induced correlation structure for Y may be unrealistic if care is not
taken in specifying the model.

• Random effects require complex approximations for distributions of test
statistics.

• The most commonly used models assume that random effects follow a
normal distribution. This assumption may not hold.

It could be argued that an extended linear model (with no random effects)
is a logical extension of the univariate OLS model b. This model, called the
generalized least squares or growth curve model221,509,510, was developed long
before mixed effect models became popular.

We will assume that Yit|Xi has a multivariate normal distribution with
mean given above and with variance-covariance matrix Vi, an ni × ni matrix
that is a function of ti1, . . . , tini

. We further assume that the diagonals of Vi

are all equalb. This extended linear model has the following assumptions:

• all the assumptions of OLS at a single time point including correct mod-
eling of predictor effects and univariate normality of responses conditional
on X

d Unless one uses the Huynh-Feldt or Greenhouse-Geisser correction
e For full efficiency, if using the working independence model
f Or requires the user to specify one
g For full efficiency of regression coefficient estimates
h Unless the last observation is missing
i The cluster sandwich variance estimator used to estimate SEs in GEE does not
perform well in this situation, and neither does the working independence model
because it does not weight subjects properly.
j Unless one knows how to properly do a weighted analysis
k Or uses population averages
l Unlike GLS, does not use standard maximum likelihood methods yielding simple
likelihood ratio χ2 statistics. Requires high-dimensional integration to marginalize
random effects, using complex approximations, and if using SAS, unintuitive d.f. for
the various tests.
m Because there is no correct formula for SE of effects; ordinary SEs are not penalized
for imputation and are too small
n If correction not applied
o E.g., a model with a predictor that is a lagged value of the response variable
b E.g., few statisticians use subject random effects for univariate Y . Pinheiro and
Bates [509, Section 5.1.2] state that “in some applications, one may wish to avoid
incorporating random effects in the model to account for dependence among obser-
vations, choosing to use the within-group component Λi to directly model variance-
covariance structure of the response.”
b This procedure can be generalized to allow for heteroscedasticity over time or with
respect to X, e.g., males may be allowed to have a different variance than females.
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• the distribution of two responses at two different times for the same sub-
ject, conditional on X, is bivariate normal with a specified correlation
coefficient

• the joint distribution of all ni responses for the ith subject is multivariate
normal with the given correlation pattern (which implies the previous two
distributional assumptions)

• responses from two different subjects are uncorrelated.

7.4 Parameter Estimation Procedure

Generalized least squares is like weighted least squares but uses a covariance
matrix that is not diagonal. Each subject can have her own shape of Vi due
to each subject being measured at a different set of times. This is a maximum
likelihood procedure. Newton-Raphson or other trial-and-error methods are
used for estimating parameters. For a small number of subjects, there are ad-
vantages in using REML (restricted maximum likelihood) instead of ordinary
MLE [159, Section 5.3] [509, Chapter 5]221 (especially to get a more unbiased
estimate of the covariance matrix).

When imbalances of measurement times are not severe, OLS fitted ignoring
subject identifiers may be efficient for estimating β. But OLS standard errors
will be too small as they don’t take intra-cluster correlation into account.
This may be rectified by substituting a covariance matrix estimated using
the Huber-White cluster sandwich estimator or from the cluster bootstrap.
When imbalances are severe and intra-subject correlations are strong, OLS
(or GEE using a working independence model) is not expected to be efficient
because it gives equal weight to each observation; a subject contributing two
distant observations receives 1

5 the weight of a subject having 10 tightly-
spaced observations.

7.5 Common Correlation Structures

We usually restrict ourselves to isotropic correlation structures which assume
the correlation between responses within subject at two times depends only on
a measure of the distance between the two times, not the individual times.
We simplify further and assume it depends on |t1 − t2|c. Assume that the
correlation coefficient for Yit1 vs. Yit2 conditional on baseline covariates Xi

for subject i is h(|t1 − t2|, ρ), where ρ is a vector (usually a scalar) set of
fundamental correlation parameters. Some commonly used structures when

c We can speak interchangeably of correlations of residuals within subjects or correla-
tions between responses measured at different times on the same subject, conditional
on covariates X.
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times are continuous and are not equally spaced [509, Section 5.3.3] are shown
below, along with the correlation function names from the R nlme package.
Compound symmetry: h = ρ if t1 �= t2, 1 if t1 = t2 nlme corCompSymm

(Essentially what two-way ANOVA assumes)
Autoregressive-moving average lag 1: h = ρ|t1−t2| = ρs corCAR1

where s = |t1 − t2|
Exponential: h = exp(−s/ρ) corExp
Gaussian: h = exp[−(s/ρ)2] corGaus
Linear: h = (1− s/ρ)[s < ρ] corLin
Rational quadratic: h = 1− (s/ρ)2/[1 + (s/ρ)2] corRatio
Spherical: h = [1− 1.5(s/ρ) + 0.5(s/ρ)3][s < ρ] corSpher

Linear exponent AR(1): h = ρ
dmin+δ

s−dmin
dmax−dmin , 1 if t1 = t2572

The structures 3–7 use ρ as a scaling parameter, not as something re-
stricted to be in [0, 1]

7.6 Checking Model Fit

The constant variance assumption may be checked using typical residual
plots. The univariate normality assumption (but not multivariate normal-
ity) may be checked using typical Q-Q plots on residuals. For checking the
correlation pattern, a variogram is a very helpful device based on estimating
correlations of all possible pairs of residuals at different time pointsd. Pairs
of estimates obtained at the same absolute time difference s are pooled. The
variogram is a plot with y = 1−ĥ(s, ρ) vs. s on the x-axis, and the theoretical
variogram of the correlation model currently being assumed is superimposed.

7.7 Sample Size Considerations

Section 4.4 provided some guidance about sample sizes needed for OLS.
A good way to think about sample size adequacy for generalized least squares
is to determine the effective number of independent observations that a given
configuration of repeated measurements has. For example, if the standard er-
ror of an estimate from three measurements on each of 20 subjects is the same
as the standard error from 27 subjects measured once, we say that the 20×3
study has an effective sample size of 27, and we equate power from the uni-
variate analysis on n subjects measured once to 20n

27 subjects measured three
times. Faes et al.181 have a nice approach to effective sample sizes with a
variety of correlation patterns in longitudinal data. For an AR(1) correlation
structure with n equally spaced measurement times on each of N subjects,

d Variograms can be unstable.
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with the correlation between two consecutive times being ρ, the effective

sample size is n−(n−2)ρ
1+ρ N . Under compound symmetry, the effective size is

nN
1+ρ(n−1) .

7.8 R Software

The nonlinear mixed effects model package nlme of Pinheiro & Bates in
Rprovides many useful functions. For fitting linear models, fitting functions
are lme for mixed effects models and gls for generalized least squares without
random effects. The rms package has a front-end function Gls so that many
features of rms can be used:

anova: all partial Wald tests, test of linearity, pooled tests
summary: effect estimates (differences in Ŷ ) and confidence limits
Predict and plot: partial effect plots
nomogram: nomogram
Function: generate R function code for the fitted model
latex: LATEX representation of the fitted model.

In addition, Gls has a cluster bootstrap option (hence you do not use rms’s
bootcov for Gls fits). When B is provided to Gls( ), bootstrapped regression
coefficients and correlation estimates are saved, the former setting up for
bootstrap percentile confidence limitse The nlme package has many graphics
and fit-checking functions. Several functions will be demonstrated in the case
study.

7.9 Case Study

Consider the dataset in Table 6.9 of Davis [148, pp. 161–163] from a multi-
center, randomized controlled trial of botulinum toxin type B (BotB) in pa-
tients with cervical dystonia from nine U.S. sites. Patients were randomized
to placebo (N = 36), 5000 units of BotB (N = 36), or 10,000 units of BotB
(N = 37). The response variable is the total score on the Toronto Western
Spasmodic Torticollis Rating Scale (TWSTRS), measuring severity, pain, and
disability of cervical dystonia (high scores mean more impairment). TWSTRS
is measured at baseline (week 0) and weeks 2, 4, 8, 12, 16 after treatment
began. The dataset name on the dataset wiki page is cdystonia.

e To access regular gls functions named anova (for likelihood ratio tests, AIC, etc.)
or summary use anova.gls or summary.gls.
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7.9.1 Graphical Exploration of Data

Graphics which follow display raw data as well as quartiles of TWSTRS by
time, site, and treatment. A table shows the realized measurement schedule.

require(rms)

getHdata(cdystonia)

attach(cdystonia)

# Construct unique subject ID

uid ← with(cdystonia , factor(paste(site , id)))

# Tabulate patterns of subjects ' time points

table(tapply(week , uid ,

function(w) paste(sort(unique(w)), collapse= ' ' )))

0 0 2 4 0 2 4 12 16 0 2 4 8 0 2 4 8 12
1 1 3 1 1

0 2 4 8 12 16 0 2 4 8 16 0 2 8 12 16 0 4 8 12 16 0 4 8 16
94 1 2 4 1

# Plot raw data , superposing subjects

xl ← xlab( ' Week ' ); yl ← ylab( ' TWSTRS-total score ' )
ggplot(cdystonia , aes(x=week , y=twstrs , color=factor(id))) +

geom_line () + xl + yl + facet_grid(treat ∼ site) +

guides(color=FALSE) # Fig. 7.1

# Show quartiles

ggplot(cdystonia , aes(x=week , y=twstrs)) + xl + yl +

ylim(0, 70) + stat_summary(fun.data="median_hilow",

conf.int =0.5, geom= ' smooth ' ) +

facet_wrap(∼ treat , nrow =2) # Fig. 7.2

Next the data are rearranged so that Yi0 is a baseline covariate.

baseline ← subset(data.frame(cdystonia ,uid), week == 0,

-week)

baseline ← upData(baseline , rename=c(twstrs= ' twstrs0 ' ),
print=FALSE)

followup ← subset(data.frame(cdystonia ,uid), week > 0,

c(uid ,week ,twstrs))

rm(uid)

both ← merge(baseline , followup , by= ' uid ' )

dd ← datadist(both)

options(datadist= ' dd ' )
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Fig. 7.1 Time profiles for individual subjects, stratified by study site and dose

7.9.2 Using Generalized Least Squares

We stay with baseline adjustment and use a variety of correlation structures,
with constant variance. Time is modeled as a restricted cubic spline with
3 knots, because there are only 3 unique interior values of week. Below, six
correlation patterns are attempted. In general it is better to use scientific
knowledge to guide the choice of the correlation structure.

require(nlme)

cp← list(corCAR1 ,corExp ,corCompSymm ,corLin ,corGaus ,corSpher)

z ← vector( ' list ' ,length(cp))
for(k in 1: length(cp)) {

z[[k]] ← gls(twstrs ∼ treat * rcs(week , 3) +

rcs(twstrs0 , 3) + rcs(age , 4) * sex , data=both ,

correlation=cp[[k]]( form = ∼week | uid))

}

anova(z[[1]] ,z[[2]] ,z[[3]] ,z[[4]] ,z[[5]] ,z[[6]])

Model df AIC BIC logLik
z[[1]] 1 20 3553.906 3638.357 -1756.953
z[[2]] 2 20 3553.906 3638.357 -1756.953
z[[3]] 3 20 3587.974 3672.426 -1773.987
z[[4]] 4 20 3575.079 3659.531 -1767.540
z[[5]] 5 20 3621.081 3705.532 -1790.540
z[[6]] 6 20 3570.958 3655.409 -1765.479
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Fig. 7.2 Quartiles of TWSTRS stratified by dose

AIC computed above is set up so that smaller values are best. From this
the continuous-time AR1 and exponential structures are tied for the best.
For the remainder of the analysis we use corCAR1, using Gls.3

a ← Gls(twstrs ∼ treat * rcs(week , 3) + rcs(twstrs0 , 3) +

rcs(age , 4) * sex , data=both ,

correlation=corCAR1(form=∼week | uid))

print(a, latex=TRUE)

Generalized Least Squares Fit by REML

Gls(model = twstrs ~ treat * rcs(week, 3) + rcs(twstrs0, 3) +

rcs(age, 4) * sex, data = both, correlation = corCAR1

(form = ~week | uid))

Obs 522 Log-restricted-likelihood -1756.95
Clusters 108 Model d.f. 17
g 11.334 σ 8.5917

d.f. 504
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Coef S.E. t Pr(> |t|)
Intercept -0.3093 11.8804 -0.03 0.9792
treat=5000U 0.4344 2.5962 0.17 0.8672
treat=Placebo 7.1433 2.6133 2.73 0.0065
week 0.2879 0.2973 0.97 0.3334
week’ 0.7313 0.3078 2.38 0.0179
twstrs0 0.8071 0.1449 5.57 < 0.0001
twstrs0’ 0.2129 0.1795 1.19 0.2360
age -0.1178 0.2346 -0.50 0.6158
age’ 0.6968 0.6484 1.07 0.2830
age” -3.4018 2.5599 -1.33 0.1845
sex=M 24.2802 18.6208 1.30 0.1929
treat=5000U * week 0.0745 0.4221 0.18 0.8599
treat=Placebo * week -0.1256 0.4243 -0.30 0.7674
treat=5000U * week’ -0.4389 0.4363 -1.01 0.3149
treat=Placebo * week’ -0.6459 0.4381 -1.47 0.1411
age * sex=M -0.5846 0.4447 -1.31 0.1892
age’ * sex=M 1.4652 1.2388 1.18 0.2375
age” * sex=M -4.0338 4.8123 -0.84 0.4023

Correlation Structure: Continuous AR(1)

Formula: ~week | uid

Parameter estimate(s):

Phi

0.8666689

ρ̂ = 0.867, the estimate of the correlation between two measurements
taken one week apart on the same subject. The estimated correlation for
measurements 10 weeks apart is 0.86710 = 0.24.

v ← Variogram(a, form=∼ week | uid)

plot(v) # Figure 7.3

The empirical variogram is largely in agreement with the pattern dictated by
AR(1).

Next check constant variance and normality assumptions.

both$resid ← r ← resid(a); both$fitted ← fitted(a)

yl ← ylab( ' Residuals ' )
p1 ← ggplot(both , aes(x=fitted , y=resid )) + geom_point () +

facet_grid(∼ treat) + yl

p2 ← ggplot(both , aes(x=twstrs0 , y=resid )) + geom_point ()+yl

p3 ← ggplot(both , aes(x=week , y=resid )) + yl + ylim(-20 ,20) +

stat_summary(fun.data="mean_sdl", geom= ' smooth ' )
p4 ← ggplot(both , aes(sample=resid )) + stat_qq () +

geom_abline(intercept=mean(r), slope=sd(r)) + yl

gridExtra :: grid.arrange(p1 , p2, p3, p4, ncol =2) # Figure 7.4
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Fig. 7.3 Variogram, with assumed correlation pattern superimposed

These model assumptions appear to be well satisfied, so inferences are likely
to be trustworthy if the more subtle multivariate assumptions hold.

Now get hypothesis tests, estimates, and graphically interpret the model.

plot(anova(a)) # Figure 7.5

ylm ← ylim(25, 60)

p1 ← ggplot(Predict(a, week , treat , conf.int=FALSE),

adj.subtitle=FALSE , legend.position= ' top ' ) + ylm

p2 ← ggplot(Predict(a, twstrs0), adj.subtitle=FALSE) + ylm

p3 ← ggplot(Predict(a, age , sex), adj.subtitle=FALSE ,

legend.position= ' top ' ) + ylm

gridExtra :: grid.arrange(p1, p2, p3, ncol =2) # Figure 7.6

latex(summary(a),file= ' ' , table.env=FALSE) # Shows for week 8

Low High Δ Effect S.E. Lower 0.95 Upper 0.95

week 4 12 8 6.69100 1.10570 4.5238 8.8582
twstrs0 39 53 14 13.55100 0.88618 11.8140 15.2880
age 46 65 19 2.50270 2.05140 -1.5179 6.5234
treat — 5000U:10000U 1 2 0.59167 1.99830 -3.3249 4.5083
treat — Placebo:10000U 1 3 5.49300 2.00430 1.5647 9.4212
sex — M:F 1 2 -1.08500 1.77860 -4.5711 2.4011

# To get results for week 8 for a different reference group

# for treatment , use e.g. summary(a, week=4, treat = ' Placebo ' )

# Compare low dose with placebo , separately at each time
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Fig. 7.4 Three residual plots to check for absence of trends in central tendency
and in variability. Upper right panel shows the baseline score on the x-axis. Bottom
left panel shows the mean ±2×SD. Bottom right panel is the QQ plot for checking
normality of residuals from the GLS fit.
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Fig. 7.5 Results of anova from generalized least squares fit with continuous time
AR1 correlation structure. As expected, the baseline version of Y dominates.
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Fig. 7.6 Estimated effects of time, baseline TWSTRS, age, and sex

k1 ← contrast(a, list(week=c(2,4,8,12,16), treat= ' 5000U ' ),
list(week=c(2,4,8,12,16), treat= ' Placebo ' ))

options(width =80)

print(k1, digits =3)

week twstrs0 age sex Contrast S.E. Lower Upper Z Pr(>|z|)
1 2 46 56 F -6.31 2.10 -10.43 -2.186 -3.00 0.0027
2 4 46 56 F -5.91 1.82 -9.47 -2.349 -3.25 0.0011
3 8 46 56 F -4.90 2.01 -8.85 -0.953 -2.43 0.0150
4* 12 46 56 F -3.07 1.75 -6.49 0.361 -1.75 0.0795
5* 16 46 56 F -1.02 2.10 -5.14 3.092 -0.49 0.6260

Redundant contrasts are denoted by *

Confidence intervals are 0.95 individual intervals

# Compare high dose with placebo

k2 ← contrast(a, list(week=c(2,4,8,12,16), treat= ' 10000U ' ),
list(week=c(2,4,8,12,16), treat= ' Placebo ' ))

print(k2, digits =3)

week twstrs0 age sex Contrast S.E. Lower Upper Z Pr(>|z|)
1 2 46 56 F -6.89 2.07 -10.96 -2.83 -3.32 0.0009
2 4 46 56 F -6.64 1.79 -10.15 -3.13 -3.70 0.0002
3 8 46 56 F -5.49 2.00 -9.42 -1.56 -2.74 0.0061
4* 12 46 56 F -1.76 1.74 -5.17 1.65 -1.01 0.3109
5* 16 46 56 F 2.62 2.09 -1.47 6.71 1.25 0.2099

Redundant contrasts are denoted by *

Confidence intervals are 0.95 individual intervals
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k1 ← as.data.frame(k1[c( ' week ' , ' Contrast ' , ' Lower ' ,
' Upper ' )])

p1 ← ggplot(k1, aes(x=week , y=Contrast )) + geom_point () +

geom_line () + ylab( ' Low Dose - Placebo ' ) +

geom_errorbar(aes(ymin=Lower , ymax=Upper), width =0)

k2 ← as.data.frame(k2[c( ' week ' , ' Contrast ' , ' Lower ' ,
' Upper ' )])

p2 ← ggplot(k2, aes(x=week , y=Contrast )) + geom_point () +

geom_line () + ylab( ' High Dose - Placebo ' ) +

geom_errorbar(aes(ymin=Lower , ymax=Upper), width =0)

gridExtra :: grid.arrange(p1, p2, ncol =2) # Figure 7.7
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Fig. 7.7 Contrasts and 0.95 confidence limits from GLS fit

Although multiple d.f. tests such as total treatment effects or treatment
× time interaction tests are comprehensive, their increased degrees of free-
dom can dilute power. In a treatment comparison, treatment contrasts at
the last time point (single d.f. tests) are often of major interest. Such con-
trasts are informed by all the measurements made by all subjects (up until
dropout times) when a smooth time trend is assumed. They use appropriate
extrapolation past dropout times based on observed trajectories of subjects
followed the entire observation period. In agreement with the top left panel
of Figure 7.6, Figure 7.7 shows that the treatment, despite causing an early
improvement, wears off by 16 weeks at which time no benefit is seen.

A nomogram can be used to obtain predicted values, as well as to better
understand the model, just as with a univariate Y .

n ← nomogram(a, age=c(seq(20, 80, by=10), 85))

plot(n, cex.axis=.55 , cex.var=.8, lmgp=.25) # Figure 7.8
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Fig. 7.8 Nomogram from GLS fit. Second axis is the baseline score.

7.10 Further Reading

1 Jim Rochon (Rho, Inc., Chapel Hill NC) has the following comments about
using the baseline measurement of Y as the first longitudinal response.

For RCTs [randomized clinical trials], I draw a sharp line at the point
when the intervention begins. The LHS [left hand side of the model equa-
tion] is reserved for something that is a response to treatment. Anything
before this point can potentially be included as a covariate in the regres-
sion model. This includes the “baseline” value of the outcome variable.
Indeed, the best predictor of the outcome at the end of the study is typ-
ically where the patient began at the beginning. It drinks up a lot of
variability in the outcome; and, the effect of other covariates is typically
mediated through this variable.

I treat anything after the intervention begins as an outcome. In the west-
ern scientific method, an “effect”must follow the “cause” even if by a split
second.

Note that an RCT is different than a cohort study. In a cohort study,
“Time 0” is not terribly meaningful. If we want to model, say, the trend
over time, it would be legitimate, in my view, to include the “baseline”
value on the LHS of that regression model.
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Now, even if the intervention, e.g., surgery, has an immediate effect, I
would include still reserve the LHS for anything that might legitimately
be considered as the response to the intervention. So, if we cleared a
blocked artery and then measured the MABP, then that would still be
included on the LHS.

Now, it could well be that most of the therapeutic effect occurred by
the time that the first repeated measure was taken, and then levels off.
Then, a plot of the means would essentially be two parallel lines and the
treatment effect is the distance between the lines, i.e., the difference in
the intercepts.

If the linear trend from baseline to Time 1 continues beyond Time 1, then
the lines will have a common intercept but the slopes will diverge. Then,
the treatment effect will the difference in slopes.

One point to remember is that the estimated intercept is the value at time
0 that we predict from the set of repeated measures post randomization.
In the first case above, the model will predict different intercepts even
though randomization would suggest that they would start from the same
place. This is because we were asleep at the switch and didn’t record the
“action” from baseline to time 1. In the second case, the model will predict
the same intercept values because the linear trend from baseline to time
1 was continued thereafter.

More importantly, there are considerable benefits to including it as a co-
variate on the RHS. The baseline value tends to be the best predictor of
the outcome post-randomization, and this maneuver increases the preci-
sion of the estimated treatment effect. Additionally, any other prognostic
factors correlated with the outcome variable will also be correlated with
the baseline value of that outcome, and this has two important conse-
quences. First, this greatly reduces the need to enter a large number of
prognostic factors as covariates in the linear models. Their effect is already
mediated through the baseline value of the outcome variable. Secondly,
any imbalances across the treatment arms in important prognostic factors
will induce an imbalance across the treatment arms in the baseline value
of the outcome. Including the baseline value thereby reduces the need to
enter these variables as covariates in the linear models.

Stephen Senn563 states that temporally and logically, a “baseline cannot be
a response to treatment”, so baseline and response cannot be modeled in an
integrated framework.

. . . one should focus clearly on ‘outcomes’ as being the only values that
can be influenced by treatment and examine critically any schemes that
assume that these are linked in some rigid and deterministic view to
‘baseline’ values. An alternative tradition sees a baseline as being merely
one of a number of measurements capable of improving predictions of
outcomes and models it in this way.

The final reason that baseline cannot be modeled as the response at time zero is
that many studies have inclusion/exclusion criteria that include cutoffs on the
baseline variable yielding a truncated distribution. In general it is not appropri-
ate to model the baseline with the same distributional shape as the follow-up
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measurements. Thus the approach recommended by Liang and Zeger405 and
Liu et al.423 are problematicf.

2 Gardiner et al.211 compared several longitudinal data models, especially with re-
gard to assumptions and how regression coefficients are estimated. Peters et al.500

have an empirical study confirming that the “use all available data” approach of
likelihood–based longitudinal models makes imputation of follow-up measure-
ments unnecessary.

3 Keselman et al.347 did a simulation study to study the reliability of AIC for
selecting the correct covariance structure in repeated measurement models. In
choosing from among 11 structures, AIC selected the correct structure 47% of
the time. Gurka et al.247 demonstrated that fixed effects in a mixed effects
model can be biased, independent of sample size, when the specified covariate
matrix is more restricted than the true one.

f In addition to this, one of the paper’s conclusions that analysis of covariance is not
appropriate if the population means of the baseline variable are not identical in the
treatment groups is arguable563. See346 for a discussion of423.
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