
Chapter 7
Homomorphism Groups

Abstract The fact that the homomorphisms of a group into another group form an abelian group
has proved extraordinarily profound not only in abelian group theory, but also in Homological
Algebra where the functor Hom is one of the cornerstones of the theory. Our first aim is to find
relevant properties of Hom both as a bifunctor and as a group.

It is rather surprising that in some significant cases Hom.A;C/ is algebraically compact; for
instance, when A is a torsion group, or when C is algebraically compact. In the special situation
when C is the additive group T of the reals mod 1, in which case Hom.A;T/, furnished with
the compact-open topology, will be the character group of A, our description leads to a complete
characterization of compact abelian groups by cardinal invariants. An analogous result deals with
the linearly compact abelian groups.

The final section discusses special types of homomorphisms that play important roles in the
theory of torsion groups.

1 Groups of Homomorphisms

Homomorphism Groups We have already noticed earlier that, if ˛ and ˇ are
homomorphisms of A into C, then their sum ˛ C ˇ, defined as

.˛ C ˇ/a D ˛aC ˇa .a 2 A/;

is again a homomorphism A ! C. It is now routine to check that the homomor-
phisms of A into C form an abelian group under addition. This group is called the
homomorphism group of A into C and is denoted by Hom.A;C/. The zero in this
group is the trivial homomorphism mapping A to 0 2 C, and the inverse �˛ of
˛ W A! C maps a 2 A upon �.˛a/ 2 C.

If A D C, then the elements of Hom.A;A/ are the endomorphisms of A, and
the group Hom.A;A/ D End A is called the endomorphism group of A. This
group carries a ring structure where the product ˛ˇ of ˛; ˇ 2 End A is defined
by .˛ˇ/a D ˛.ˇa/ for a 2 A (observe the order of maps). The ring identity is the
identity automorphism of A.

Next we list some simple facts on homomorphism groups.

(A) There are two important necessary conditions to satisfy when we are looking
for homomorphisms ˛ W A ! C: one is that if a 2 A is annihilated by n 2 N,
then also n.˛a/ D 0 2 C, and the other is that we must have hp.˛a/ � hp.a/.
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214 7 Homomorphism Groups

(B) Hom.A;C/ D 0 in the following cases: (i) A is torsion and C is torsion-free;
(ii) A is a p-group and C is a q-group, for primes p ¤ q; (iii) A is divisible and
C is reduced.

(C) If CŒn� D 0 for some n 2 N, then Hom.A;C/Œn� D 0 for every group A. Indeed,
if ˛ W A! C and n˛ D 0, then for a 2 A we have n.˛a/ D .n˛/a D 0 whence
CŒn� D 0 implies ˛a D 0, i.e. ˛ D 0.

(D) Hom.A;C/ is torsion-free whenever C is torsion-free.
(E) If C is torsion-free and divisible, then so is Hom.A;C/ for every A. In order

to show that Hom.A;C/ is now also divisible, pick an ˛ 2 Hom.A;C/ and
an n 2 N. For a 2 A, there exists a unique c 2 C with nc D ˛a, and thus
we may define a map ˇ W A ! C via ˇa D c. It follows readily that ˇ is a
homomorphism A! C satisfying nˇ D ˛.

(F) If nA D A for some n 2 N, then Hom.A;C/Œn� D 0. Indeed, let ˛ 2 Hom.A;C/
with n˛ D 0. Write a 2 A as a D nb for some b 2 A. Then ˛a D ˛.nb/ D
.n˛/b D 0 shows that ˛ D 0.

(G) If A is divisible, then Hom.A;C/ is torsion-free.
(H) If A is torsion-free and divisible, then the same holds for Hom.A;C/, for any

C. The proof is similar to the one in (E).

Example 1.1. If A D Z, then every ˛ W Z ! C is completely determined by ˛.1/ D c 2 C.
Moreover, evidently, for every c 2 C there is a homomorphism � W Z ! C such that �.1/ D c:
Since ˛.1/ D c1 and ˇ.1/ D c2 imply .˛ C ˇ/.1/ D c1 C c2, the correspondence � 7! c given
by �.1/ D c is a natural isomorphism between Hom.Z;C/ and C,

Hom.Z;C/ Š C for all groups C:

Example 1.2. If A D Z.m/ with m 2 N, then again, every homomorphism ˛ W Z.m/ ! C is
determined by the image ˛.N1/ D c of the coset N1 D 1 C mZ, but here mc D 0 must hold, i.e.
c 2 CŒm�. Conversely, each such c gives rise to a homomorphism � W N1 7! c, and as in the preceding
example, the correspondence � 7! c given by �.N1/ D c is a natural isomorphism

Hom.Z.m/;C/ Š CŒm� for all groups C:

Example 1.3. From the preceding example we obtain

Hom.Z.pk/;Z.pn// Š Z.p`/ where ` D minfk; ng:
Example 1.4. Next, let C be quasi-cyclic, say, C D hc1; : : : ; cn; : : : i with the defining relations
pc1 D 0; pcnC1 D cn.n � 1/. If � is an endomorphism of C, then write �cn D kncn with an integer
kn .0 � kn < pn/ for every n. Now kncn D �cn D �.pcnC1/ D p�cnC1 D pknC1cnC1 D knC1cn

implies kn � knC1 mod pn. This means that the sequence of the kn is a Cauchy sequence in Jp, so it
has a limit, say � 2 Jp is the limit. The correspondence � 7! � between the endomorphisms � of C
and the p-adic integers � is evidently additive. If the endomorphisms �1 and �2 define the same � ,
then �1��2 maps every cn to 0, i.e. �1 D �2. On the other hand, if � D s0Cs1pC� � �Csnpn C : : :

is any p-adic integer, then the correspondence cn 7! .s0 C s1p C � � � C snpn/cn for all n (which
we may write simply as �cn) extends uniquely to an endomorphism � of C such that � 7! � . We
conclude:

EndZ.p1/ Š Jp:

Example 1.5. Consider Q.p/, the group of rational numbers with powers of p as denominators,
and C D Z.p1/. Suppose Q

.p/ D h1; p�1; : : : ; p�n; : : : i and C as in the preceding example
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(and cn D 0 for n � 0). A p-adic number � D pk� (with a p-adic unit � and k 2 Z) induces a
homomorphism � W Q.p/ ! Z.p1/ such that p�n 7! �cn�k for all n. As in the preceding example,
we can convince ourselves that different p-adic numbers � give rise to different homomorphisms,
and every homomorphism � W Q.p/ ! Z.p1/ arises in this way. Consequently, Hom.Q.p/;Z.p1//

is isomorphic to the additive group of all p-adic numbers, i.e., we have

Hom.Q.p/;Z.p1// Š ˚�Q with � D 2@0 :

Example 1.6. If A D C D Jp, then it is evident that multiplication by a fixed p-adic integer �
is an endomorphism of Jp (which we denote by P�), and different p-adic integers yield different
endomorphisms of Jp, since they map 1 2 Jp differently. Let � 2 End Jp such that �.1/ D � . Then
� and P� are identical on Z � Jp, so Z � Ker.� � P�/. But Jp=Z is divisible, while Jp is reduced, so
Jp=Ker.� � P�/ D 0. It follows that � D P� , and we have

End Jp Š Jp:

Hom and Direct Sums and Products Our next concern is the behavior of Hom
towards direct sums and direct products. The following theorem is fundamental.

Theorem 1.7. For an arbitrary index set I, there are natural isomorphisms

Hom.˚i2I Ai;C/ Š
Y

i2I

Hom.Ai;C/ (7.1)

and

Hom.A;
Y

i2I

Ci/ Š
Y

i2I

Hom.A;Ci/: (7.2)

Proof. In order to prove (7.1), let �i W Ai ! ˚Ai and �i W ˚Ai ! Ai denote the
injection and the projection maps, respectively. We map the left side of (7.1) to the
right side by sending ˛ W ˚Ai ! C to .: : : ; ˛�i; : : : / where ˛�i W Ai ! C. This
is evidently a homomorphism 	 from the left to the right side. It is clear that 	
maps ˛ to 0 only if ˛ D 0. Since every .: : : ; ˛i; : : : / 2 Q

Hom.Ai;C/ defines an
˛ 2 Hom.˚Ai;C/ via ˛ D ˚.˛i�i/, 	 is epic as well.

For the proof of (7.2), let 
i W Ci ! Q
Ci and �i W QCi ! Ci denote the

injection and the projection maps, respectively. Every ˇ 2 Hom.A;
Q

Ci/ defines
a homomorphism �iˇ 2 Hom.A;Ci/ for each i. As in the preceding paragraph, we
conclude that the correspondence ˇ 7! .: : : ; �iˇ; : : : / is an isomorphism of the left-
hand side of (7.2) with its right-hand side. ut

We can now derive the following corollary.

Corollary 1.8. Assume A is a torsion group with p-components Ap, and C is a group
with p-components Cp. Then

Hom.A;C/ Š
Y

p

Hom.Ap;Cp/:
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Proof. Apply (7.1) and observe that Hom.Ap;C/ D Hom.Ap;Cp/: ut
Example 1.9. For any group A,

Hom.A;Q/ Š Y

rk0.A/

Q:

Because of (E), the description of Hom.A;Q/ becomes a simple calculation in cardinal arithmetics.
If F is a free subgroup of A generated by a maximal independent system of elements of infinite
order only, then every 	 W F ! Q extends uniquely to a map ˛ W A ! Q. This amounts to saying
that Hom.F;Q/ Š Hom.A;Q/ naturally. The former Hom is evaluated by using (7.1).

Hom As Bifunctor The correct way of viewing Hom is as a functor
Ab�Ab!Ab associating the group Hom.A;C/ with the ordered pair .A;C/ 2
Ab � Ab. In the balance of this section we investigate the functorial behavior of
Hom.

Let ˛ W A0 ! A and � W C ! C0 be fixed homomorphisms. An � 2 Hom.A;C/

defines a homomorphism A0 ! C0 as the composite A0 ˛�!A
��!C

��!C0. The
correspondence � 7! ��˛ is a homomorphism

Hom.˛; �/ W Hom.A;C/! Hom.A0;C0/;

called the homomorphism induced by ˛ and � . Clearly, Hom.1A; 1C/ D 1Hom.A;C/.

Furthermore, if A00 ˛0

�!A0 ˛�!A and C
��!C0 � 0

�!C00, then

Hom.˛˛0; � 0�/ D Hom.˛0; � 0/Hom.˛; �/:

Evidently, Hom.˛; �/ is additive in both arguments. Therefore, we can conclude:

Theorem 1.10. Hom is an additive bifunctor Ab�Ab! Ab, contravariant in the
first and covariant in the second argument. ut

It is often convenient to use abbreviated notations (provided there is no danger
of confusion):

˛� D Hom.˛; 1C/ and �� D Hom.1A; �/:

The following result describes the behavior of Hom towards direct and inverse
limits.

Theorem 1.11 (Cartan–Eilenberg [CE]). Assume

A D fAi .i 2 I/I�k
i g and C D fCj .j 2 J/I �`j g

are a direct and an inverse system of groups, respectively, and let A D lim�!Ai; C D
lim �Cj with canonical maps �i W Ai ! A and �j W C! Cj. Then

H D fHom.Ai;Cj/ ..i; j/ 2 I � JIHom.�k
i ; �

`
j /g
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is an inverse system of groups whose inverse limit is Hom.A;C/ with Hom.�i; �j/

as canonical maps.

Proof. It is straightforward to check that H is an inverse system; let H denote its
inverse limit. From the required commutativity of the triangles we can conclude
that there exists a unique map � rendering all triangles

Hom(A, C)
ξ

H

Hom(πi, ρj)

Hom(Ai, Cj)

ξij

commutative, where the �ij are the canonical maps. To show that � is monic, let
� 2 Ker � . Then �ij�� D 0; that is, �j��i D Hom.�i; �j/� D 0 for all i; j. Thus the
map ��i W Ai ! C is 0, because all of its jth coordinates are 0, and since[i�iAi D A;
we have � D 0.

Any � 2 H is of the form � D .: : : ; �ij; : : : / 2 Q
Hom.Ai;Cj/ where the

coordinates �ij satisfy the requisite postulates. Define � W A ! C as follows: if
a D �iai, then for this i set �a D .: : : ; �ijai; : : : / 2 Q

Cj. It is straightforward
to verify the independence of �a of the choice of i as well as the homomorphism
property of �. Considering that �ij� D �ij and �ij�� D �j��i D �ij, we must have
�� D �, showing that � is epic. Thus � is an isomorphism. ut

Hom and Exact Sequences Next we prove a most frequently used application
of the Hom functor.

Theorem 1.12. If 0 ! A
˛�!B

ˇ�!C ! 0 is an exact sequence, then so are the
induced sequences

0! Hom.G;A/
˛��!Hom.G;B/

ˇ��!Hom.G;C/ (7.3)

and

0! Hom.C;G/
ˇ�

�!Hom.B;G/
˛�

�!Hom.A;G/ (7.4)

for every group G. Equation (7.3) can always be completed to an exact sequence
with! 0 if G is a free group, and (7.4) if G is a divisible group.

Proof. Let � W G ! A. If ˛� D 0, then ˛ monic implies � D 0, so ˛� is also
monic. Furthermore, ˇ˛� D 0 shows that ˇ�˛� D 0 as well. If � W G ! B is such
that ˇ� D 0, then Im � � Kerˇ D Im˛, so there is a 	 W G ! A with � D ˛	.
Thus (7.3) is exact. If we continue with! 0, then exactness at Hom.G;C/ would
mean that for every 
 W G! C there is a � W G! B such that ˇ� D 
, this holds for
free groups G, due to their projective property.

Next let � W C ! G. If �ˇ D 0, then � D 0, since ˇ is epic; thus ˇ� is monic.
From �ˇ˛ D 0 we obtain ˛�ˇ� D 0. Assume � W B ! G satisfies �˛ D 0. This
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means that Kerˇ D Im˛ � Ker � , so there is a 	 W C! G with � D 	ˇ. Thus (7.4)
is exact. If G is injective, then for every 
 W A ! G there is a � W B ! G such that

 D �˛, so! 0 can be added to (7.4). ut

More can be said if we start with a pure-exact sequence.

Proposition 1.13 (Fuchs [11]). If the sequence given in the preceding theorem is
pure-exact .p-pure-exact/, then so are (7.3) and (7.4).

Proof. First, let � W G ! B; � W G ! A satisfy n� D ˛� .n 2 N/. Thus n�
maps G into ˛A, and so Im � � n�1˛A. By Theorem 2.10 in Chapter 5, n�1˛A D
˛A ˚ X where nX D 0. If � denotes the projection onto the first summand, then
	 D ˛�1�� W G! A satisfies n	 D � , establishing the first claim.

Next, assume n� D �ˇ holds for � W B ! G; � W C ! G and n 2 N. Then
�.n˛/ D �ˇ˛ D 0 shows that n˛A � Ker �. Owing to Theorem 2.10 in Chapter 5,
there is a direct decomposition B=.n˛A/ D ˛A=.n˛A/˚B0=.n˛A/ for some B0 � B.
Define 	 as the composite map B! B=.n˛A/! B0=.n˛A/! G, where the second
map is the canonical projection, while the third is induced by �. Clearly, n	 D n�
and ˛A � Ker	. Because of this inclusion, there is a homomorphism � W C ! G
such that 	 D �ˇ. Hence n.�ˇ/ D n	 D n� D �ˇ, completing the proof. ut

Small Groups A group G is said to be small if there is a natural isomorphism

Hom.G;˚i2I Ci/ Š ˚i2I Hom.G;Ci/

for every set of groups Ci. Equivalently, the image of every homomorphism of G
into an infinite direct sum is already contained in the direct sum of a finite number
of summands. If the groups Ci in the definition are restricted to a class C of groups
(e.g., to torsion-free groups), then G is called C-small. In particular, if C is the direct
sum of copies of G itself, then G is self-small.

Example 1.14. (a) Finitely generated groups are small, while finite rank torsion-free groups are
F-small, where F denotes the class of torsion-free groups.

(b) The quasi-cyclic group Z.p1/ is not small: it has a homomorphic image in ˚@0Z.p
1/ that

has non-zero projection in every summand (elements of order pn have non-zero coordinates
in the first n summands).

(a) Epic images of small groups are small.
(b) A finite direct sum of groups is small if and only if each component is small.
(c) A group is small if and only if it is finitely generated. If G is small, then its

copy in an injective group must be contained in the direct sum of finitely many
summands, whence we infer that G is of finite rank. The torsion subgroup
of G cannot have infinitely many non-zero p-components, nor a quasi-cyclic
summand (see Example 1.14b), so it must be finite. G=tG is a small torsion-free
group, hence all of its torsion homomorphic images have to be small, so finite.
Hence G=tG is a finite extension of a finitely generated free subgroup, so itself
finitely generated.

(d) A torsion-free group is small in the category of torsion-free groups if and only
if it is of finite rank.
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F Notes. The group structure of Hom has been the main topic of numerous investigations.
It is impossible to survey them without the extensive knowledge of the material in later chapters.
Perhaps the most important results are due to Pierce [1] that give a very precise description of Hom
in case of p-groups, making use of Theorem 2.1. No comparable study is expected for torsion-free
groups.

One question which we would like to point out here is concerned with the problem as to what
extent the functor Hom.A;�/ determines the group A. That A is by no means determined by this
functor was proved by Hill [12] for p-groups and by Sebel’din [2] for torsion-free groups. The
counterexamples are: 1) A D ˚2@0 B and A0 D ˚2@0 B where B D ˚@0 ˚n<! Z.pn/ (B is the
torsion-completion of B, see Sect. 3 in Chapter 10); and 2) A D ˚@0Z˚Q and A0 D A˚Q: Then
Hom.A;G/ Š Hom.A0;G/ holds for all G. Albrecht [7] deals with this question for p-groups and
cotorsion groups.

An important generalization of homomorphism groups is concerned with groups with distin-
guished subgroups. The objects of the category Abn are A D fAI Ai.i < n/g where A 2 Ab, and
A0; : : : ;An�1 are fixed subgroups of A. If C D fCI Ci.i < n/g is another object in this category,
then 	 W A ! C is a morphism if 	 2 Hom.A;C/ such that 	.Ai/ � Ci for all i < n. Results
on homomorphism groups in such categories are instrumental in several questions concerning
ordinary homomorphism groups.

Exercises

(1) Show that Hom.A;C/ is isomorphic to a subgroup of CA.
(2) We have Hom.A;C/ Š Hom.C;A/ and Hom.A;Q=Z/ Š A if both A and C

are finite groups.
(3) If A is torsion-free and C is divisible, then Hom.A;C/ is divisible.
(4) Prove that Hom.A;Z.m// Š Hom.A=mA;Z.m// for all m 2 N.
(5) If C is torsion-free, then Hom.Q;C/ is isomorphic to the maximal divisible

subgroup of C.
(6) If the sequence 0 ! A ! B ! C ! 0 is pure-exact, then (7.3) can be

completed with! 0 if G is †-cyclic, and (7.4) can so be completed if G is
pure-injective.

(7) (a) If A is a torsion group, then the set union [ Im˛, taken for all ˛ 2
Hom.A;C/, is a subgroup of C.

(b) The same is not necessarily true if A is torsion-free. [Hint: A of rank 2
with End A Š Z, and C D A˚ A:]

(8) Prove End Jp Š Jp via the isomorphism End Jp Š lim �n
Hom.Jp;Z.pn//:

(9) Describe the structures of End.˚�Q/ and End.˚�Jp/ for a cardinal �.
(10) If either A or C is a p-group, then Hom.A;C/ is a Jp-module.
(11) If ˛ 2 Aut A, � 2 Aut C, then Hom.˛; �/ is an automorphism of Hom.A;C/.
(12) (Gerdt) G is small if and only if G � ˚i2I Ci implies G � ˚i2J Ci for some

finite subset J � I. (Thus it suffices to consider monomorphisms.)
(13) (Gerdt) If D is the class of divisible groups, then D-small groups are small.
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2 Algebraically Compact Homomorphism Groups

Having considered elementary properties of Hom as well as the exact sequences
involving Homs, we turn our attention to special situations when Hom.A;C/ is of
great interest. We concentrate on cases in which Hom is algebraically compact.

Hom for Torsion Groups We start with the remarkable fact that if A is a
torsion group, then Hom.A;C/ has to be algebraically compact, and hence it can
be characterized by invariants describable in terms of the invariants of A and C.

Theorem 2.1 (Harrison [2], Fuchs [11]). If A is a torsion group, then Hom.A;C/
is a reduced algebraically compact group, for any C.

Proof. It suffices to prove that if A is a p-group, then H D Hom.A;C/ is complete
in its p-adic topology. To show that H is Hausdorff, suppose � 2 H is divisible by
every power of p. If a 2 A is of order pk, and if � 2 H satisfies pk� D �, then
�a D pk�a D �pka D 0 shows that � D 0. Next, let �1; : : : ; �n; : : : be a Cauchy
sequence in the p-adic topology of H; dropping to a subsequence if necessary, we
may assume it is neat: �nC1 � �n 2 pnH for each n; i.e. �nC1 � �n D pn�n for some
�n 2 H. Let

� D �1 C .�2 � �1/C � � � C .�nC1 � �n/C : : : :

This is a well-defined map A ! C, since for a 2 A of order pk, we have
.�nC1 � �n/a D 0 for all n � k, so that the image �a D �1a C .�2 � �1/a C
� � � C .�k � �k�1/a is well defined. Furthermore,

� � �n D .�nC1 � �n/C .�nC2 � �nC1/C � � � D pn.�n C p�nC1 C : : : /;

where the infinite sum in the parentheses belongs to H. Thus �� �n 2 pnH, and � is
the limit of the given Cauchy sequence. Consequently, H is complete. ut

We give a second, shorter proof based on Theorem 1.11. As a torsion group, A
is the direct limit of its finite subgroups Ai. By Theorem 1.11, Hom.A;C/ is then
the inverse limit of the groups Hom.Ai;C/ which are bounded in view of Sect. 1(F).
Hence Hom.A;C/ is the inverse limit of complete groups, and the assertion follows
from Sect. 2, Exercise 7 in Chapter 6.

The invariants of Hom.A;C/ for p-groups A can be computed, but the computa-
tion is very technical and lengthy, so we just refer the interested reader to Pierce [1];
see also Fuchs [IAG].

Hom for Compact Groups A most interesting case is when the Hom is a
compact group. Next, we take a look at this situation.

We want to give an algebraic characterization of those groups that can carry
a compact group topology. In Sect. 5 in Chapter 6 we have introduced the group
Char G D OG as the group of all continuous homomorphisms of the topological
group G into the circle group T D R=Z, and observed that OG is compact if and
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only if G is discrete. Actually, this is all that we need from the Pontryagin duality to
describe the structure of compact groups:

Proposition 2.2. A group A can carry a compact group topology if and only if it is
of the form

A D Hom.G;T/

for some group G. ut
Here Hom can be viewed in the algebraic or in the topological sense.

Character Groups Accordingly, our problem became purely algebraic: to
classify the groups of the form Hom.G;T/. Algebraically, T is nothing else than
the direct product of quasi-cyclic groups, one for each prime p. Hence

Char G Š
Y

p

Hom.G;Z.p1//:

Consequently, it suffices to deal with Hom.G;Z.p1// only.
In describing the structure of this Hom, crucial role is played by the p-basic

subgroups of G. So let us fix a p-basic subgroup B of G, and write

B D ˚1
nD0Bn where B0 D ˚�0Z; Bn D ˚�nZ.p

n/ for n � 1:

Here �n .n � 0/ are cardinal numbers, uniquely determined by G. The p-component
of G=B is of the form˚�Z.p1/; the fact that the cardinal � depends on the choice of
B is not relevant (as we shall see below), but it can be made unique by choosing e.g.
a lower basic subgroup in the p-component of G. Finally, we let � D rk0.G=B/. A
full characterization of Hom.G;Z.p1// may be given with the aid of these cardinal
numbers.

Theorem 2.3 (Fuchs [10]). Using the above notation, for any group G we have

Hom.G;Z.p1// Š
Y

�0

Z.p1/˚
1Y

nD1

Y

�n

Z.pn/˚
Y

�

Jp ˚
Y

�@0
Q: (7.5)

Proof. The p-pure exact sequence 0 ! B ! G ! G=B ! 0 induces the p-pure-
exact sequence

0! Hom.G=B;Z.p1//! Hom.G;Z.p1//! Hom.B;Z.p1//! 0:

Now Theorem 1.7 shows that

Hom.B;Z.p1// D
1Y

nD0
Hom.Bn;Z.p

1// Š
Y

�0

Z.p1/˚
1Y

nD1

Y

�n

Z.pn/:
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If we write G=B D ˚�Z.p1/ ˚ H with zero p-component for H, then because
of Hom.˚�Z.p1/;Z.p1// Š Q

� End.Z.p1// Š Q
� Jp, it remains to evaluate

Hom.H;Z.p1//. The p-pure subgroup L in H generated by a maximal independent
set of elements of infinite order is torsion-free and p-divisible, and H=L is a torsion
group with zero p-component, so L D ˚�Q.p/. (This group L is not unique, not
even its cardinality is well defined, but this does not influence the outcome.) The
exactness of 0! L! H ! H=L! 0 implies that of 0 D Hom.H=L;Z.p1//!
Hom.H;Z.p1//! Hom.L;Z.p1//! 0, thus we obtain

Hom.H;Z.p1// Š Hom.L;Z.p1// Š
Y

�

Hom.Q.p/;Z.p1// D
Y

�

.
Y

@0
Q/;

where we have used Example 1.5. We observe that Hom.G=B;Z.p1// is alge-
braically compact, so its purity in Hom.G;Z.p1// implies that it is a summand.
This completes the proof. ut

If we determine the cardinal numbers �0; �n; �; � for all primes, then Char G will
be the direct product of groups (7.5) with p ranging over all primes. The group on
the right side of (7.5) does not depend on the choice of �, since the second summand
always has a summand that is the product of �0 copies of Jp where �0 D fin rk tB, so
(7.5) has always the product of fin rk tG copies of Jp. A similar comment applies to
the choice of � (see also Theorem 2.6 below).

Observe that the first and the fourth summands in (7.5) come from elements of
infinite order, while the two middle summands from the torsion subgroup of G.
Hence:

Corollary 2.4. Char G is reduced if and only if G is a torsion group, and is divisible
if and only if G is torsion-free. ut

Since groups G can be found with arbitrarily chosen cardinals �n and �, for every
prime p, we can conclude:

Corollary 2.5 (Hulanicki [1], Harrison [1]). A reduced group is the character
group of some .torsion/ group exactly if it is the direct product of finite cyclic groups
and groups Jp for .distinct or equal/ primes p. ut

For divisible groups, a simple inequality must be satisfied.

Theorem 2.6 (Hulanicki [1], Harrison [1]). A divisible group ¤ 0 is the charac-
ter group of some .torsion-free/ group if and only if it is of the form

Y

p

Y

�p

Z.p1/˚
Y

�

Q where � � @0:

Proof. If G is a torsion-free group, then its rank is, in the above notation, �0.p/ C
�.p/ (the dependence on p must be indicated, but the sum is the same for every
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prime p). This shows that Char G will have the stated form with �p D �0.p/, unless
�0.p/ D 0 for every prime p. In this case, the direct sum with

Q
@0Q does not change

the isomorphy class of the first direct product.
Conversely, given a divisible group of the stated form, it is an easy exercise to

check that�may be replaced by�CP
p �p. This says, in short, that� � �p may be

assumed. Define G as a direct sum of rational groups Gi such that, for every prime
p, �p of them satisfy pGi ¤ Gi and � of them satisfy pGi D Gi. Then Char G will
be as desired. ut
Example 2.7. (a) For discrete groups Z.p1/;Q we have Char Z.p1/ Š Jp and Char Q Š R.
(b) For discrete Jp, Char Jp Š Z.p1/˚ ˚2@0Q.

Corollary 2.8 (Kakutani). The character group of a group of infinite cardinality
� is of the power 2� .

Proof. The cardinality of an infinite group G is the sum of the cardinalities used
in Theorem 2.3, taken for all primes p. (7.5) implies that then the group Char G
must have cardinality 2� . ut

The theorems above are convincing evidence that the algebraic structure of
compact groups is extremely special. The cardinality of the set of all non-isomorphic
groups of infinite cardinality � 2� is 22

�
, but the number of those that can carry a

compact group structure is minuscule. For instance, if � D @˛ with j˛j � @0, then
there are only countably many, pairwise (algebraically) non-isomorphic groups of
cardinality � that can be compact topological groups, provided we assume GCH.
Indeed, then the cardinal invariants in Theorems 2.3 and 2.6 can be chosen not more
than countably many ways, and they are unique due to GCH.

Example 2.9. This is an example of a group that can carry one and only one compact group
topology: J�p for any cardinal � (it is compact in the finite index topology). In fact, Theorem 2.3
shows that the only discrete group whose character group is Š J�p is the group ˚�Z.p1/ where �
is unique if GCH holds (note that jJ�p j D 2� ).

In contrast, some groups may be furnished with as many distinct compact
topologies as possible, as is shown by the following theorem:

Theorem 2.10 (Fuchs [10]). For any infinite cardinal �, there exist 2� non-
isomorphic compact topological groups of power 2� that are algebraically all
isomorphic.

Proof. In the proof we refer to Corollary 3.8 in Chapter 11 that asserts the
existence of 2� non-isomorphic p-groups of cardinality �: they can be chosen with
isomorphic basic subgroups ˚1

nD1 ˚� Z.pn/, and they have the same final rank �.
By virtue of Theorem 2.3, their character groups are algebraically isomorphic toQ1

nD1
Q
� Z.p

n/ ˚Q
� Jp; however, by the Pontryagin duality theory, they are not

isomorphic as topological groups. ut
While we are still on the subject of compactness, it is worthwhile pointing out

that Hom preserves (algebraic) compactness in the second argument.
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Theorem 2.11. If A is .algebraically/ compact, then Hom.G;A/ is .algebraically/
compact for every group G.

Proof. Hom.G;A/ is isomorphic to a subgroup of the group AG of all functions from
G to A. If A is compact, then AG is a compact group in which Hom is a closed subset.
Hence Hom.G;A/ is a compact group. (For the proof of algebraic compactness, use
the summand property.) ut

Linearly Compact Groups The structure of linearly compact groups (see
Sect. 3 in Chapter 6) is similar to the compact case, though there are some notable
differences. First and foremost is that the Kaplansky duality replaces the Pontryagin
duality.

In Kaplansky’s theory, the duality is established between the category of
linearly compact and the category of discrete p-adic modules, for a fixed prime
p. Thus only those abelian groups are participating in the duality that are also
Jp-modules. The characters are continuous homomorphisms into the discrete p-
adic module Z.p1/. If M is a discrete p-adic module, then its character module
HomJp.M;Z.p

1// is a linearly compact Jp-module, furnished with the compact-
open topology. On the other hand, if M is a linearly compact Jp-module, then the
continuous homomorphisms of M into Z.p1/ yield a discrete Jp-module.

Example 2.12. The Kaplansky dual of the discrete group Z.p1/ is the linearly compact group Jp,
and vice versa.

Consequently, the linearly compact p-adic modules are, from the pure algebraic
point of view, nothing else than the groups HomJp.M;Z.p

1// where M ranges over
the class of discrete p-adic modules. Hence, from the proof above on the character
groups one can derive:

Theorem 2.13 (Fuchs [15]). A group admits a linearly compact topology if and
only if it is the direct product of groups of the following types:

(a) Cocyclic groups: Z.pn/;Z.p1/ for any prime p and n 2 N;
(b) The additive group Jp of the p-adic integers and the additive group of the field

Q
�
p of the p-adic numbers, for each prime p. ut

F Notes. The character group of a discrete left module (over any ring) is a right module that is
compact in the compact-open topology. Theorem 2.11 also extends to modules. It was S. Lefschetz
who introduced linearly compact vector spaces, and later the theory was extended to modules.
Linearly compact modules have an extensive theory.

Exercises

(1) Prove that Hom.Q;Q=Z/ Š Q
@0 .

(2) (a) If A is algebraically compact, and if H is a pure subgroup of a group G, then
Hom.G;A/ Š Hom.H;A/˚ Hom.G=H;A/.

(b) Show that then Char G Š Char H˚ Char G=H (isomorphism in the
algebraic sense only).
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(3) The additive group R of the reals can be furnished with infinitely many distinct
topologies, each yielding non-isomorphic compact groups. [Hint: Char .˚nQ/.]

(4) The group A D Z
N=Z.N/ is the character group of ˚@0 .Q ˚ Q=Z/. [Hint:

Exercise 9 in Sect. 3 in Chapter 6.]
(5) If C is a complete group, then Hom.A;C/ is the inverse limit of bounded groups.
(6) (a) Assume A is equipped with a non-discrete compact topology. Then it

has a subgroup (algebraically) isomorphic either to 1) Jp for some p,
or to 2) an infinite direct product of cyclic groups of prime orders.
[Hint: Theorem 2.3.]

(b) A group admits a non-discrete locally compact topology if and only if it has
a subgroup of kind 1) or 2).

(7) (Faltings) Let A be a p-group. Then t.Hom.A;Z.p1// Š A if and only if A is
torsion-complete with finite UK-invariants.

(8) Calculate the invariants of the algebraically compact group Hom.A;C/ in case
A is †-cyclic and C D ˚�Z.p1/.

(9) Find the invariants of Hom.A;C/ if A is torsion-free and C D ˚�Z.p1/. [Hint:
take p-basic in A.]

(10) Give a detailed proof of Theorem 2.13 for linearly compact groups.

3 Small Homomorphisms

This section should be read after getting familiar with the basic material from
Chapter 10; in particular, with large subgroups to be discussed in Sect. 2 there.

Small Homomorphisms Let A;C be p-groups. Following Pierce [1], we call a
homomorphism 	 W A ! C small if Ker	 contains a large subgroup of A. In other
words, the Pierce condition (Sect. 2 in Chapter 10) must be satisfied: given k > 0,
there exists n > 0 such that

pnAŒpk� � Ker	:

Example 3.1. The map � in the proof of Szele’s theorem 6.10 in Chapter 6 is a small endomor-
phism of the p-group A; its image is a basic subgroup.

(A) Elements of infinite height belong to the kernel of every small homomorphism,
since the first Ulm subgroup is contained in each large subgroup (see Sect. 2(D)
in Chapter 10).

(B) The small homomorphisms 	 W A ! C form a subgroup of the group
Hom.A;C/. Observe that if pn1AŒpk� � Ker	1 and pn2AŒpk� � Ker	2, then
pnAŒpk� � Ker.	1 C 	2/ holds with n D maxfn1; n2g. The group of small
homomorphisms will be denoted by Homs.A;C/.

(C) Homs.A;C/ D Hom.A;C/ whenever either A or C is bounded. The latter holds
as pmA is a large subgroup of A for each m > 0.
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(D) The factor group Hom.A;C/=Homs.A;C/ is torsion-free. This follows from the
fact that if pm	 is a small homomorphism for some 	 W A! C and m > 0, then
	 must be small, as well.

(E) If 	 W A ! C is a small homomorphism, then B C Ker	 D A for any basic
subgroup B of A. This is a consequence of the definition of large subgroups.

Lemma 3.2 (Pierce [1]). Let B be a basic subgroup of the p-group A. There is a
natural isomorphism

Homs.A;C/! Homs.B;C/

given by the restriction map: 	 7! 	 � B where 	 W A! C.

Proof. If 	 W A! C is a small homomorphism, then (E) shows that, for every a 2 A,
the image 	a is the same as 	b if a � b mod Ker	 (b 2 B). Hence it is clear that
	 � B is different for distinct 	’s.

Conversely, we show that if we are given a small homomorphism  W B ! C,
then we can extend it to a small 	 W A! C. By definition, there is a large subgroup
B.u/ of B contained in Ker . Then L D A.u/ is a large subgroup of A such that
L \ B D B.u/ by the purity of B in A. Since A=L D .L C B/=L Š B=.L \ B/ and
there is a natural homomorphism B=.L \ B/ ! B=Ker , we have the composite
map 	 W A ! A=L ! B=Ker , which is evidently small and coincides with  
on B. ut

Homs As a Summand Perhaps more interesting is that Homs.A;C/ is a
summand of Hom.A;C/. This is demonstrated by the next theorem.

Theorem 3.3 (Pierce [1]). For p-groups A;C, Homs.A;C/ is a direct summand of
Hom.A;C/, complete in its p-adic topology. We have

Hom.A;C/ Š QF ˚ Homs.A;C/

where QF is the p-adic completion of a free group F.

Proof. To show that Homs.A;C/ is complete, let 	1; : : : ; 	i; : : : be a neat Cauchy
sequence in Homs.A;C/. It is Cauchy also in Hom.A;C/, thus, by the completeness
of this Hom, it has a limit in Hom.A;C/, which must be  D 	1 C .	2 � 	1/ C
� � � C .	iC1 � 	i/C : : : . It remains to show that  is small. By the Cauchy property,
	iC1 � 	i D pi i for some  i 2 Homs.A;C/. Pick a k 2 N and let pni AŒpk� �
Ker i for suitable ni 2 N, for each i. Since AŒpk� � Ker pk i � Ker pi i whenever
i � k, if we choose n D maxfn0; n1; : : : ; nk; kg, then pnAŒpk� � Ker.	iC1 � 	i/ for
all i, showing that  is a small homomorphism. This proves that Homs.A;C/ is a
complete group.

Since by (D) Hom.A;C/=Homs.A;C/ is torsion-free, Homs.A;C/ is by algebraic
compactness a summand of Hom.A;C/. A complementary summand is p-adically
complete (as a summand of Hom.A;C/) and torsion-free, so it must be the p-adic
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completion of a free group. (The rank of F can be computed as �� where � .�/
denotes the final rank of the basic subgroup of A (resp. C/ if these are infinite.) ut

The special case A D C leads to the subgroup Ends.A/ of End A consisting
of the small endomorphisms of A. It is a two-sided ideal: that �	 is small for all
� 2 End A whenever 	 2 EndsA is pretty obvious. That the same holds for 	� too
follows easily, see, e.g., Exercise 2. Thus End.A/=Ends.A/ is a torsion-free ring on
an algebraically compact group.

Exact Sequence for Homs We now prove an analogue of Theorem 1.12 for
Homs.

Proposition 3.4 (Pierce [1]). Let 0 ! A
˛�!B

ˇ�!C ! 0 be an exact sequence of
p-groups. Then the induced sequence

0! Homs.G;A/
˛��!Homs.G;B/

ˇ��!Homs.G;C/

is likewise exact for every group G. If the first sequence is pure-exact, then so is the
induced sequence even if we append! 0 to the end.

Proof. For the first part, the only non-obvious claim is Im˛� � Kerˇ�. If � 2
Homs.G;B/ satisfies ˇ� D 0, then ˇ.�G/ D 0, so �G � Im˛. Hence there is a
� W G ! A such that ˛� D �. Since evidently Ker � D Ker � (˛ being monic), we
have � 2 Homs.G;A/, as desired.

Assume the given sequence is pure-exact, and � 2 Homs.G;C/. If H denotes a
basic subgroup of G, then by Theorem 4.3 in Chapter 5 there is a homomorphism
� W H ! B such that ˇ� D � � H. It is readily checked that the map 	 W G D
HCKer � ! B is well defined if we apply � to H and send Ker � to 0. Furthermore,
	 is small, and ˇ�.	/ D � , so ˇ� is surjective. To verify purity, let 	 2 Homs.G;B/
satisfy pk	 2 ˛.Homs.G;A//. Then by Proposition 1.13 there is a  W G ! A
satisfying ˛.pk / D pk	. From the equality of the kernels we derive that pk is a
small homomorphism. Hence  is small as well, and the proof is complete. ut

Note that we do not claim that the sequence for Homs.	;G/ is exact. As Pierce
[1] points out, in contrast to Proposition 3.4, this is not true in general.

F Notes. Megibben [2] shows that an unbounded torsion-complete p-group has a non-small
homomorphism into a separable p-group C if and only if C has an unbounded torsion-complete
subgroup. A result by Monk [2] states that the finite direct decompositions of End A=Ends A are
induced by those of End A, so that they correspond to certain direct decompositions of A.

The concept of small homomorphism has been extended to the torsion-free and mixed cases by
Corner–Göbel [1]. The general version, called inessential homomorphism, is based on the ideal
Ines A of End A; this is the set of all kinds of endomorphisms that are always present in groups
(like those with finite rank images). Interested readers are advised to consult this interesting paper.



228 7 Homomorphism Groups

Exercises

(1) (Pierce) Every small homomorphism 	 W pkA! pkC can be extended to a small
homomorphism A! C.

(2) (Pierce) (a) 	 W A! C is small if and only if for every k > 0 there is an n > 0

such that o.a/ � pk and h.a/ � n imply 	.a/ D 0.
(b) 	 is small if and only if, for every k > 0, there is an n > 0 such that
pna ¤ 0 .a 2 A/ implies o.	a/ � o.pka/.

(3) (Pierce) Prove that Homs.A1 ˚ A2;C/ Š Homs.A1;C/ ˚ Homs.A2;C/ and
Homs.A;C1 ˚ C2/ Š Homs.A;C1/˚ Homs.A;C2/.

(4) (Pierce) If G is a pure subgroup of the p-group A, then every small homomor-
phism 	 W G! C extends to a small homomorphism A! C.

(5) (Pierce) Let A;C be arbitrary p-groups. Homs.A;C/ D Hom.A;C/ if either (a)
A has bounded basic subgroups and C is reduced, or (b) C is bounded.

(6) The composite of two small homomorphisms is small.
(7) Suppose A;C are p-groups. 	 W A ! C is small exactly if 	.A1/ D 0 and the

induced map A=A1 ! C is small.
(8) Let A be a p-group with unbounded basic subgroup B. Prove Szele’s

theorem 6.10 in Chapter 5 by first mapping B onto itself by a small
endomorphism, and then applying Lemma 3.2.

(9) Let A be a p-group and B a basic subgroup of A. Then, for every p-group C,
the torsion subgroups of Hom.A;C/ and Hom.B;C/ are isomorphic. [Hint: the
elements in these Homs are small homomorphisms.]

Problems to Chapter 7

PROBLEM 7.1. Can the groups Hom.M;Z/ be characterized for monotone
subgroups M of Z@0?

See Sect. 2 in Chapter 13 for monotone subgroups.

PROBLEM 7.2. Call 	 2 Hom.A;B/ a right universal homomorphism for A! B
if every  2 Hom.A;B/ factors uniquely as  D �	 with � 2 End B. It is left
universal if  D 	� with unique � 2 End A. Study the cases when uniqueness is
not required, so Hom is singly generated (on the right or on the left) over End.

Right universal homomorphisms, called localizations, were discussed by Dugas [3] for torsion-
free groups. Left universal homomorphisms were completely described by Chachólski–Farjoun–
Göbel–Segev [1] for divisible groups B under the name of cellular cover, and for arbitrary abelian
groups by Fuchs–Göbel [2]. See also Dugas [4].
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