
Chapter 2
Direct Sums and Direct Products

Abstract The concept of direct sum is of utmost importance for the theory. This is mostly due
to two facts: first, if we succeed in decomposing a group into a direct sum, then it can be studied
by investigating the summands separately, which are, in numerous cases, simpler to deal with. We
shall see that almost all structure theorems in abelian group theory involve, explicitly or implicitly,
some direct decomposition. Secondly, new groups can be constructed as direct sums of known or
previously constructed groups.

Accordingly, there are two ways of approaching direct sums: an internal and an external way.
Both will be discussed here along with their basic features. The external construction leads to the
unrestricted direct sum, called direct (or cartesian) product, which will also play a prominent role
in our future discussions. We present interesting results reflecting the fundamental differences in
the behavior of direct sums and products in the infinite case. Pull-back and push-out diagrams will
also be dealt with.

Important concepts are the direct and inverse limits that we shall use on several occasions. The
final section of this chapter discusses completions in linear topologies.

A reader who is well versed in group theory can skip much of this chapter.

1 Direct Sums and Direct Products

Internal Direct Sum Let B;C be subgroups of the group A, and assume they
satisfy

(i) BC C D A; and
(ii) B \ C D 0:
Condition (i) tells us that every element a 2 A can be written as a D b C c with
b 2 B; c 2 C, while (ii) implies that such b; c are unique. For, if a D b0 C c0 with
b0 2 B; c0 2 C, then b � b0 D c0 � c 2 B \ C D 0. We will refer to b; c as the
coordinates of a (in the given direct sum decomposition of A). In this case we write
A D B˚ C, and call A the (internal) direct sum of its subgroups B and C. (Recall
that if (ii) is satisfied, we say that B and C are disjoint.)

Let Bi .i 2 I/ be a set of subgroups in A subject to the following conditions:

(i)
P

i2I Bi D A, i.e. the subgroups Bi combined generate A; and
(ii) for every i 2 I, Bi \P

j¤i Bj D 0.
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44 2 Direct Sums and Direct Products

Again, (i) means that every element a 2 A can be written as a finite sum a D
bi1 C � � � C bin with bij belonging to different components Bij , while (ii) states that
such an expression is unique. We then write

A D B1 ˚ � � � ˚ Bn or A D ˚i2I Bi

according as the index set is finite or infinite. We call these direct decompositions
of the group A, and the Bi (direct) summands of A. If A D B ˚ C, C
is a complementary summand or a complement to B. A is called (directly)
indecomposable if A D B˚ C implies that either B D 0 or C D 0.

Let a 2 A D B˚ C, and write a D bC c with b 2 B; c 2 C. The maps

� W A! B; � W A! C given by � W a 7! b; � W a 7! c

are surjective maps; they can also be regarded as endomorphisms of A. They satisfy
�b D b; �c D 0; �c D c; �b D 0 as well as �aC �a D a, thus

�2 D �; �2 D �; �� D 0 D ��; � C � D �C � D 1A: (2.1)

If we mean by a projection an idempotent endomorphism, and by orthogonal
endomorphisms those with 0 products (in both orders), then (2.1) may be expressed
by saying that a direct decomposition A D B˚ C defines a pair of orthogonal pro-
jections with sum 1A. Conversely, any pair �; � of endomorphisms satisfying (2.1)
yields a direct decomposition A D �A˚�A: In fact, idempotency and orthogonality
imply that any element common to �A and �A must be both reproduced and
annihilated by � and �, so �A \ �A D 0, while � C � D 1A guarantees that
�AC �A D A.

If A is the direct sum of several subgroups, A D ˚i2I Bi, the decomposition can
also be described in terms of pairwise orthogonal projections. The ith projection
�i W A! Bi assigns to the element a D bi1 C � � � C bin the term bi 2 Bi (which can
very well be 0). Then we have:

(a) �i�j D 0 or �i according as i ¤ j or i D j;
(b) for every a 2 A, almost all of �ia are 0, and

P
i2I �ia D a.

Conversely, if f�i j i 2 Ig is a set of endomorphisms of A satisfying (a) and (b), then
A is the direct sum of the subgroups �iA.

Some of the most useful properties of direct sums are listed as follows:

(A) If A D B˚ C, then C Š A=B. Thus the complement of B in A is unique up to
isomorphism.

(B) If A D B ˚ C, and if G is a subgroup of A containing B, then we have
G D B˚ .G \ C/.

(C) If a 2 A D B ˚ C, and if a D b C c .b 2 B; c 2 C/, then o.a/ D
lcm fo.b/; o.c/g provided both orders are finite. Otherwise, o.a/ D1.

(D) If A D ˚i2I Bi and if Ci � Bi for each i, then
P

i Ci D ˚i Ci.
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(E) If A D ˚i Bi, where each Bi is a direct sum Bi D ˚j Cij, then A D ˚i ˚j Cij.
This is a refinement of the given decomposition of A. Conversely, if A D
˚i ˚j Cij, then A D ˚i Bi where Bi D ˚j Cij.

(F) If in the exact sequence 0 ! B
˛�!A

ˇ�!C ! 0; Im˛ is a summand of A,
then A Š B ˚ C. In this case, we say that the exact sequence is splitting.
Any map � W C ! A satisfying ˇ� D 1C is called a splitting map; then
A D Kerˇ ˚ Im � . Of course, there is another map: ı W A! B with ı˛ D 1B

indicating splitting: A D Im˛ ˚ Ker ı.

Two direct decompositions of A, A D ˚i Bi and A D ˚j Cj are called isomorphic
if there is a bijection between the two sets of components, Bi and Cj, such that
corresponding components are isomorphic.

We now prove a fundamental result.

Lemma 1.1. Let C D hci be a finite cyclic group where o.c/ D m D pr1
1 � � � prk

k with
different primes pi. Then C has a decomposition into a direct sum

C D hc1i ˚ � � � ˚ hcki .o.ci/ D pri
i /

with uniquely determined summands.

Proof. Define mi D mp�ri
i and ci D mic .i D 1; : : : ; k/. Then the mi are relatively

prime, so there are si 2 Z such that s1m1C� � �C skmk D 1. Then c D s1m1cC� � �C
skmkc D s1c1 C � � � C skck shows that the ci generate C. Clearly, hcii is of order pri

i ,
so disjoint from hc1; : : : ; ci�1; ciC1; : : : ; cki which has order mi. Hence we conclude
that C D hc1i ˚ � � � ˚ hcki.

The uniqueness of the summands hcii (but not of the generators ci) follows from
the fact that hcii is the only subgroup of C that contains all the elements whose
orders are powers of pi. ut

Decomposition of Torsion Groups One of the most important applications of
direct sums is the following theorem that plays a fundamental role in abelian group
theory.

Theorem 1.2. A torsion group A is the direct sum of p-groups Ap belonging to
different primes p:

A D ˚p Ap:

The Ap are uniquely determined by A.

Proof. Given A, let Ap consist of all a 2 A whose orders are powers of the prime p.
Since 0 2 Ap, Ap is not empty. If a; b 2 A, i.e. pma D 0 D pnb for integers m; n � 0,
then pnCm.a � b/ D 0, so a � b 2 Ap, and Ap is a subgroup of A. If p1; : : : ; pk are
primes¤ p, then Ap\ .Ap1 C� � �CApk/ D 0, since every element of Ap1 C� � �CApk

is annihilated by a product of powers of p1; : : : ; pk. Thus the Ap generate their direct
sum in A; it must be all of A, as it is obvious in view of Lemma 1.1.
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If A D ˚p Bp is another decomposition of A into p-groups Bp with different
primes p, then by the definition of the Ap we have Bp � Ap for each p. If we had
Bp < Ap for some p, then˚pBp could not equal A. ut

The subgroups Ap are called the primary components or the p-components
of A. They are, as is seen from the definition, fully invariant in A. If A is not
torsion, then the p-components Tp of its torsion part T D tA may be referred
to as the p-components of A. (In this case, however, Tp need not be a summand
of A.) Theorem 1.2 is of utmost importance as it makes it possible to reduce the
structure theory of torsion groups to primary groups.

Example 1.3. The group Q=Z is isomorphic to the multiplicative group of all complex numbers
that are nth roots of unity for some integer n > 0. It is a torsion group whose p-component is
Z.p1/ (this corresponds to the subgroup of all pkth roots of unity .k D 0; 1; 2; : : : /). Hence

Q=Z Š ˚p Z.p
1/:

Another crucial direct sum decomposition is a trivial consequence of a vector
space theorem.

Theorem 1.4. An elementary group is a direct sum of cyclic groups of prime orders.

Proof. By Theorem 1.2 only p-groups need to be considered. An elementary p-
group is a Z=pZ-vector space, and as such it is the direct sum of one-dimensional
spaces, i.e. of groups of order p. ut

External Direct Sum While the internal direct sum serves to break a group into
smaller pieces, in case of external direct sums we glue together groups to create a
new larger group.

We start with two unrelated groups, B and C, and construct a new group A that is
the direct sum of two subgroups B0 and C0, such that B0 Š B; C0 Š C. The set of all
pairs .b; c/ with b 2 B; c 2 C forms a group A under the rules:

(a) .b1; c1/ D .b2; c2/ if and only if b1 D b2; c1 D c2;
(b) .b1; c1/C .b2; c2/ D .b1 C b2; c1 C c2/.

Then B0 D f.b; 0/ j b 2 Bg Š B; C0 D f.0; c/ j c 2 Cg Š C under
the correspondences b 7! .b; 0/; c 7! .0; c/; they are subgroups of A such that
A D B0 ˚ C0 (internal direct sum). If we think of B;C being identified with B0;C0
under the indicated mappings, then we may also write A D B ˚ C, and call A the
external direct sum of B and C. (We write A Š B˚ C to say that A is a direct sum
of two subgroups isomorphic to B and C.)

Direct Products A vector .: : : ; bi; : : : / over the set fBigi2I of groups has exactly
one coordinate bi from Bi, viz. in the ith position, for each i 2 I. Such a vector can
also be interpreted as a function f defined over I such that f .i/ D bi 2 Bi for every
i 2 I. Equality and addition of vectors are defined coordinate-wise (for functions,
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we would say point-wise). In this way, the set of all vectors becomes a group C,
called the direct product or the cartesian product of the groups Bi; in notation:

C D
Y

i2I

Bi:

The correspondence �i W bi 7! .: : : ; 0; bi; 0; : : : ; 0; : : : / where bi is the ith
coordinate and 0’s are everywhere else, is an isomorphism of Bi with a subgroup
B0i of C. The groups B0i .i 2 I/ generate their direct sum B in C which consists of
all vectors with finite support, where support means supp c D fi 2 I j ci ¤ 0g if
c D .: : : ; ci; : : : / 2 C. B is the external direct sum of the Bi, B D ˚i2IBi. Clearly,
B D C whenever I is finite.

For a group A, and for a set I, A.I/ D ˚i2I A will denote the direct sum of jIj
copies of A, and the symbol AI D Q

i2I A will stand for the direct product of jIj
copies of A. The corresponding notations A.�/ and A� for a cardinal � should be
clear.

The external direct sums and direct products can also be described in terms of
systems of maps. The functions

�B W b 7! .b; 0/; �C W c 7! .0; c/; �B W .b; c/ 7! b; �C W .b; c/ 7! c

are called the (coordinate) injection and projection maps, respectively. They
satisfy

�B�B D 1B; �C�C D 1C; �B�C D 0 D �C�B; �B�B C �C�C D 1B˚C:

For an arbitrary number of components Bi .i 2 I/, we have injections �i and
projections �i satisfying

Bi
�i�!C D

Y

i2I

Bi
�i�!Bi

where �ibi D .: : : ; 0; bi; 0; : : : /; �i.: : : ; bj; : : : ; bi; : : : / D bi satisfy the conditions:
(i) �j�i D 1Bi or 0 according as i D j or i ¤ j; and (ii)

P
i2I �i�i D 1C (formally).

Similarly for an infinite direct sum ˚i2IBi, in which case any given element is
annihilated by almost all �i.

The following ‘universal’ properties are crucial.

Theorem 1.5. Let ˇi W Bi ! A .i 2 I/ denote arbitrary homomorphisms, and �i W
Bi !˚i2I Bi the injection maps. There is a unique homomorphism � W ˚i2I Bi ! A
such that ˇi D ��i for every i.

Proof. Write b 2 ˚i2I Bi in the form b D �1�1b C � � � C �n�nb where the �i

are the projection maps of the direct sum. It is immediately checked that �b D
ˇ1�1bC � � � C ˇn�nb 2 A defines a homomorphism � W ˚i2I Bi ! A with ˇi D ��i.
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If �0 is another such map, then .� � �0/�i D 0 for each i, so .� � �0/b vanishes for
all b 2 ˚i2I Bi, i.e. � D �0. ut
Theorem 1.6. Let ˛i W A! Bi .i 2 I/ denote homomorphisms and �i W Qi2I Bi !
Bi the projection maps. There exists a unique map  W A ! Q

i2I Bi such that
˛i D �i for each i 2 I.

Proof. Define  .a/ D .: : : ; ˛ia; : : : / 2 Q
i2I Bi. This is obviously a homomor-

phism satisfying ˛i D �i . If also  0 has the same property, then �i. � 0/a D 0
for all a 2 A, thus . �  0/a D 0. This means  D  0. ut

A notational agreement: if ˛i W Ai ! Bi .i 2 I/ are homomorphisms, then˚i2I ˛i

will denote the map ˚i2I Ai ! ˚i2I Bi that carries the ith coordinates to the ith
coordinates as given by ˛i. The map

Q
i2I ˛i W Qi2I Ai ! Q

i2I Bi has similar
meaning.

For a group G, the diagonal map �G W G ! Q
G (arbitrary number of

components) acts as �G W g 7! .: : : ; g; : : : ; g; : : : /, and the codiagonal map
rG W ˚G! G as rG W .: : : ; gi; : : : / 7!P

i gi.

Subdirect Products Among the subgroups of the direct product, the subdirect
products are most important. A group G is a subdirect product of the groups
Bi .i 2 I/ if it is a subgroup of the direct product A D Q

i2I Bi such that �iG D Bi

for all projections �i W A ! Bi. This means that for every bi 2 Bi, G contains
at least one vector whose ith coordinate is exactly bi. If Ki D Ker.�i � G/, then
\i2I Ki D 0. Conversely, if Ki are subgroups of a group G such that \i2I Ki D 0,
then G is a subdirect product of the factor groups G=Ki, via

g 7! .: : : ; gC Ki; : : : / 2
Y

i2I

.G=Ki/ where g 2 G:

If the index set I is finite, then we also say that we have a subdirect sum.

Lemma 1.7 (Łoś). Every group is a subdirect product of cocyclic groups.

Proof. For every non-zero a in group A, let Ka be a subgroup of A maximal without a
(argue with Zorn). Thus every subgroup of A that properly contains Ka also contains
a, i.e. the coset a C Ka is a cogenerator in A=Ka, so this factor group is cocyclic.
Since \0¤a2AKa D 0, it follows that A is a subdirect product of the cocyclic groups
A=Ka. ut

There are numerous subdirect products contained in a direct product of groups,
but there is no complete survey of them. The only exception is the case of subdirect
sums of two groups.

Let G be a subdirect sum of B and C. The elements b 2 B with .b; 0/ 2 G form a
subgroup B0 � B and the elements c 2 C with .0; c/ 2 G form a subgroup C0 � C.
It is straightforward to check that the correspondence bC B0 7! cC C0 whenever
.b; c/ 2 G is an isomorphism of B=B0 with C=C0. Thus G consists of those .b; c/ 2
B ˚ C for which the canonical epimorphisms B ! B=B0 and C ! C=C0 map b
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and c upon corresponding cosets. The groups B0 and C0 are called the kernels of the
subdirect sum. Conversely, if we are given the groups B;C along with epimorphisms
ˇ W B ! F; � W C ! F for some group F, then the elements .b; c/ 2 B ˚ C with
ˇb D �c form a group G that is a subdirect sum of B and C. It is easy to verify the
isomorphisms

G=B0 Š C; G=C0 Š B; B=B0 Š G=.B0 ˚ C0/ Š C=C0:

We mention that the subdirect sum G in the preceding paragraph may also be

obtained as a pull-back of the maps ˇ; � where B
ˇ�!B=B0 Š C=C0

� �C: See
Exercise 3 in Sect. 3.)

Let K be an ideal in the Boolean lattice of all subsets of I; then the K-productQ
K Ai is the set of all vectors in

Q
i2I Ai whose supports belong to K. The �-productQ<�

i2I Ai consists of vectors with support < �.

Ultraproducts The following construction is based on the notion of filters. Let I
be an infinite index set and F a filter on the subsets of I. The filtered direct product
of groups Ai .i 2 I/ is a subgroup of the direct product A DQ

i2I Ai consisting of all
vectors a D .: : : ; ai; : : : / 2 A for which the null-set n.a/ D fi 2 I j ai D 0g 2 F . It
is routine to check that this is in fact a (pure) subgroup of A, which we shall denote
as

QF
i2I Ai. The factor group

Y

i2I

Ai=F D
Y

i2I

Ai=
YF

i2I
Ai

is called the reduced product with respect to F . Thus a; b 2 Q
i2I Ai are equal inQ

i2I Ai=F exactly if supp .a � b/ 2 F .
The most important special case is when F is an ultrafilter U . Then

Q
i2I Ai=U

is called the ultraproduct of the Ai. If U is a principal ultrafilter, i.e. it consists of
those subsets of I that contain a fixed j 2 I, then

QU
i2I Ai DQ

i2J Ai where J D Infjg.
In this case, the ultraproduct is just Aj. Therefore, only ultraproducts with respect to
non-principal ultrafilters are of real interest.

Example 1.8. The filter F that consists of all subsets of I with finite complements is non-principal,
and

QF
i2I Ai contains the direct sum˚i2I Ai.

F Notes. A noteworthy generalization of direct powers, studied by Balzerzyk [3], Eda [1],
relies on a complete Boolean lattice B with 0 as smallest and 1 as largest element. By the Boolean
power A.B/ of the group A is meant the set of functions f W A! B such that (i) f .a/^ f .b/ D 0 if
a ¤ b in A, and (ii)

W
a2A f .a/ D 1. The sum f C g of two functions is defined via

.f C g/.a/ D _aDxCy.f .x/^ g.y//

for all possible x; y 2 A satisfying x C y D a. In case B is the power-set of a set I, then the
elements f 2 A.B/ are in a bijective correspondence with the elements Nf 2 AI such that f .a/ D
fi 2 I j Nf .i/ D ag 2 B where a 2 A.

The primary decomposition Theorem 1.2 is of central importance in abelian group theory. Its
roots are in elementary number theory; this kind of decomposition was used by C.F. Gauss. In its
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complete, final form is due to Frobenius–Stickelberger [1]. The result generalizes straightforwardly
to torsion modules over Dedekind domains.

In contrast to Theorem 1.2, Theorem 1.4 easily generalizes to arbitrary modules: if a module
is the union of simple submodules, then it is a direct sum of simple modules (it is then called
semi-simple). Semi-simple modules may be characterized by the property that every submodule is
a direct summand.

The result on the subdirect sum of two groups is due to R. Remak; he dealt with finite,
not necessarily commutative groups. Ultraproducts have profound implications in various areas,
especially in model theory. See Eklof [1] for their structure.

Exercises

(1) Let B;C be subgroups of A, and B ˚ C their external direct sum. There is an
exact sequence 0! B \ C! B˚ C! BC C! 0.

(2) Determine when the direct product of infinitely many torsion groups is again a
torsion group.

(3) If 0! Ai
˛i�!Bi

ˇi�!Ci ! 0 are exact sequences for i 2 I, then so are

0!˚Ai
˚˛i�!˚Bi

˚ˇi�!˚Ci ! 0 and 0!
Y

Ai

Q
˛i�!
Y

Bi

Q
ˇi�!
Y

Ci ! 0:

(4) If G is a subdirect sum of B and C, then BC G D B˚ C D GC C.
(5) Let B;C be subgroups of A such that B \ C D 0. If .BC C/=C is a summand

of A=C, then B is a summand of A.
(6) (a) The subdirect sum of Z.pm/ and Z.pn/ .0 < m � n/ with kernels Z.pm�k/

and Z.pn�k/ is isomorphic to Z.pn/˚ Z.pm�k/.
(b) The subdirect sum of Z.p1/ and Z.p1/with kernels Z.pm/ and Z.pn/ .0 <

m � n/ is isomorphic to Z.p1/˚ Z.pm/.
(7) A group A is called subdirectly irreducible if in any representation of A as a

subdirect product of groups Ai, one of the coordinate projections �i W A ! Ai

is an isomorphism. Prove that A is subdirectly irreducible if and only if it is
cocyclic.

2 Direct Summands

Direct Summands In this section, we collect a few criteria for a subgroup to be
a summand. We start with the most frequently used criterion.

Lemma 2.1. A subgroup B of A is a summand of A if and only if A has an
idempotent endomorphism � satisfying �A D B; equivalently, the injection B! A
followed by � W A! B is the identity 1B of B.
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Proof. If A D B ˚ C, then the projection � on the first summand, viewed as an
element of End A, is as desired. Conversely, if � is an idempotent endomorphism,
then A D �A˚ .1 � �/A. ut

Putting it in a different way, lemma states that B is a summand of A exactly if the
identity map of B extends to an endomorphism A! B.

If B is a summand of A, then the complementary summand is unique up to
isomorphisms (recall: it is Š A=B), but it is far from being unique as a subgroup.
The following result explains how to obtain from one complement all the other
complements.

Lemma 2.2. Let A D B ˚ C be a direct decomposition with projections ˇ; � . If
also A D B˚ C0 with projections ˇ0; �0, then, for some endomorphism � of A, we
have

ˇ0 D ˇ C ˇ��; �0 D � � ˇ��: (2.2)

Conversely, if the maps ˇ0; �0 are of the form (2.2), then A D B˚ �0A.

Proof. If we are given the two direct decompositions, then let � D ���0. Then B �
Ker � , so � D �ˇC�� D �� . If a D bCc D b0Cc0 with b; b0 2 B; c 2 C; c0 2 C0,
then �a D c � c0 D b0 � b 2 B, thus ˇ� D � . Hence �0 D � � � D � � ˇ�� and
ˇ0 D 1A � �0 D ˇ C � � �0 D ˇ C ˇ��:

Conversely, if ˇ0; �0 are obtained from ˇ; � as given in (2.2) with any � 2 End A,
then ˇ0C �0 D 1A; ˇ

2
0 D ˇ0; �20 D �0; and ˇ0�0 D �0ˇ0 D 0. Thus A D ˇ0A˚ �0A

where ˇ0A D ˇA D B. ut
If ˇ is a central idempotent (commutes with all endomorphisms), then

ˇ0 D ˇ C �ˇ� D ˇ and �0 D � . Thus the complements cannot be changed
(they are fully invariant in A).

In general, a subgroup of a direct sum does not decompose along the summands.
However, there is an important exceptional case.

Lemma 2.3. If A D B˚ C, and if G is a fully invariant subgroup of A, then

G D .G \ B/˚ .G \ C/:

Proof. Let ˇ; � be the projections attached to the given direct sum. By full
invariance, both ˇG and �G are subgroups of G. Evidently, ˇG and �G generate a
direct sum in A, and since ˇC � D 1A, we have G D ˇG˚ �G. Since ˇG � G\B
and �G � G\C; and proper inclusion is out of question, we have ˇG D G\B and
�G D G \ C. ut

The following is a useful lemma.
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Lemma 2.4 (Kaplansky [K]). If the factor group A=B is a direct sum: A=B D
˚i2I .Ai=B/, and if B is a direct summand in every Ai, say, Ai D B˚ Ci, then B is a
summand of A. More precisely,

A D B˚ .˚i2I Ci/:

Proof. It is clear that the groups B and the Ci generate A. Assume that b C c1 C
� � � C cn D 0 for some b 2 B and cj 2 Cj .j D 1; : : : ; n/. Passing mod B, we obtain
.c1CB/C � � � C .cnCB/ D B, whence the given direct sum forces cj 2 B for every
j. Thus cj 2 Cj \B D 0; and hence also b D 0. Consequently, B and the Ci generate
their direct sum in A. ut

Summands of Large Direct Sums The following theorem has several applica-
tions in the study of properties inherited by summands.

Theorem 2.5 (Kaplansky [2]). Summands of a direct sum of countable groups are
also direct sums of countable groups.

Proof. Let A D ˚i2I Ai D B ˚ C where each summand Ai is countable. Pick any
summand A1, a generating system fajgj2J of A1, and write aj D bj C cj .bj 2B;
cj 2 C/. Note that each bj and each cj has but a finite number of non-zero coordinates
in the direct sum A D ˚i Ai. Collecting all the Ai that contain at least one non-
zero coordinate of some bj or cj, and then forming their direct sum, we obtain
a countable direct summand X1 of A. Next, we repeat the same process with X1
replacing A1: select a generating system for X1 and collect all the Ai which have
non-zero coordinates of the B- and C-coordinates of the generators, to obtain a
larger countable summand X2 of A. Continuing the same way, we get a chain
X1 � X2 � � � � � Xn � : : : of countable summands of A whose union is a countable
summand NA1 such that NA1 D .B \ NA1/˚ .C \ NA1/.

A smooth chain of summands S	 of A is defined as follows. Each S	 is a direct
sum of some Ai. Set S0 D 0. If S	 is defined for an ordinal 	 and S	 < A, then
pick an Ai not in S	 and let S	C1 D S	 C NAi (where NAi is obtained by repeating
the above process for Ai using components not in S	 ). For limit ordinals 	 we set
S	 D [�<	 S�. It is evident that for some ordinal 
 � jAj we will reach S
 D A. It is
also clear that S	C1=S	 is countable, and every S	 is a direct sum of a subset of the Ai

such that S	 D .B\S	 /˚.C\S	 / for all 	 � 
 . Setting B\S	C1 D .B\S	 /˚B	 ,
it is clear that the B	 are countable and generate their direct sum in B. Since the B	
together generate B, we have B D ˚	<
 B	 , as claimed. ut
Example 2.6. Let G be any countable group, and A D ˚	<!1 G	 where G	 Š G for each 	 . If
A D B˚ C, then both B and C are direct sums of countable groups (not necessarily isomorphic
to G).

F Notes. Kaplansky’s Theorem 2.5 holds for countably generated modules over arbitrary
rings. It has been extended to �-generated modules by C. Walker [2] for any infinite cardinal �.
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Exercises

(1) (Grätzer) Let B be a subgroup of A, and C a B-high subgroup in A. Then
A D B ˚ C if and only if pa D b C c .a 2 A; b 2 B; c 2 C/ for a prime p
implies b 2 pB.

(2) Suppose C < B < A. Prove that

(a) if B is a summand of A, then B=C is a summand of A=C;
(b) if C is a summand of A and B=C is a summand of A=C, then B is a

summand of A.

(3) Let B be a summand of A, and let f�i j i 2 Ig be the set of all projections of
A onto B. These projections form a semigroup such that �i�j D �j.

(4) A group A has no summand isomorphic to itself if and only if one-sided units
in its endomorphism ring End A are twosided.

(5) Let � denote an endomorphism of A.

(a) If, for some n, Im �nC1 D Im �n, then Ker �n C Im �n D A.
(b) If, for some n, Ker �nC1 D Ker �n, then Ker �n \ Im �n D 0.

(6) Assume A D B˚ C D B0 ˚ C0, and let ˇ W A ! B; ˇ0 W A ! B0 denote the
projections in the given decompositions. Then B Š B0 if and only if there are
�; 2 End A such that � D ˇ and  � D ˇ0.

(7) (a) (Grätzer–Schmidt) Let B be a direct summand of A. The intersections of
all the complements of B in A is the maximal fully invariant subgroup of
A that is disjoint from B. [Hint: Lemma 2.2.]

(b) A complement to a direct summand of A is unique if and only if it is fully
invariant in A.

(8) Call a subgroup G of A projection-invariant if �G � G for every projection
� of A onto a summand. Prove that: (a) G is projection-invariant in A if and
only if �G D G \ �A for all projections � ; (b) intersections of projection-
invariant subgroups are projection-invariant, and so are subgroups generated
by projection-invariant subgroups; (c) Lemma 2.2 holds for projection-
invariant G; (d) a projection-invariant summand is a fully invariant subgroup.

(9) (Kulikov) A direct decomposition A D ˚i2IAi has a common refinement with
every direct decomposition of A if and only if every Ai is projection-invariant.

(10) (Fuchs) B < A is an absolute direct summand of A if A D B˚ C for every
B-high subgroup C. (a) Prove that B is an absolute direct summand if and
only if it is either injective (see Chapter 4) or A=B is a torsion group whose
p-component is annihilated by pk whenever B n pB contains an element of
order pk. (b) Find all absolute direct summands of a bounded group.

(11) (Irwin–Walker) Let A D ˚i2I Ai and Bi � Ai for each i. If Ci is Bi-high in
Ai, then˚i Ci is˚i Bi-high in A.

(12) (Enochs) Let A be a p-group and A D B˚C D B0˚C0 direct decompositions
of A such that BŒp� D B0Œp�. Then A D B˚C0 D B0˚C: [Hint: use induction
of the order of a 2 A to show a 2 B˚ C0:]



54 2 Direct Sums and Direct Products

(13) (C. Walker) Generalize Theorem 2.5 to larger cardinalities �: summands of
direct sums of �-generated groups are of the same kind.

(14) A supplement subgroup S to some C < A is defined to be minimal with
respect to the property A D CC S. S has this property if and only if S \ C is
superfluous in A. [Hint: use the modular law in both directions.]

3 Pull-Back and Push-Out Diagrams

Pull-Backs With the aid of direct sums, we can describe two important methods
in constructing certain commutative diagrams.

Theorem 3.1. Given the homomorphisms ˛ W A ! C and ˇ W B ! C, there exists
a group G, unique up to isomorphism, along with homomorphisms � W G ! A; ı W
G! B, such that the diagram

G
γ−−−−→ A

δ

⏐
⏐
�

⏐
⏐
�α

B
β−−−−→ C

is commutative, and if

G′ γ′
−−−−→ A

⏐
⏐
�δ′

⏐
⏐
�α

B
β−−−−→ C

is any commutative diagram, then there exists a unique homomorphism � W G0 ! G
such that �� D � 0 and ı� D ı0.
Proof. Given ˛; ˇ, define G as the subgroup of the direct sum A˚B consisting of all
pairs .a; b/ .a 2 A; b 2 B/ such that ˛a D ˇb, and let � W .a; b/ 7! a; ı W .a; b/ 7! b.
This makes the first diagram commutative.

If the second diagram is commutative, then define � W G0 ! G as �g0 D
.� 0g0; ı0g0/ for g0 2 G0; here .� 0g0; ı0g0/ 2 G, since ˛� 0 D ˇı0. Evidently, ��g0 D
� 0g0 and ı�g0 D ı0g0 for every g0 2 G0. It is easy to see that Ker � D .0;Kerˇ/ and
Ker ı D .Ker˛; 0/. Therefore, if �0 W G0 ! G also satisfies ��0 D � 0; ı�0 D ı0,
then �.� � �0/ D 0 D ı.� � �0/, and so Im.� � �0/ � Ker � \ Ker ı D 0: Hence
� � �0 D 0, thus � is unique.

The uniqueness of G can be verified by considering a G0 with the same prop-
erties. Then by what has already been shown, there are unique maps � W G!G0;

�0 W G0 ! G with the indicated properties. Then �0� W G ! G is a unique map
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(if applied to the case G0 D G), so it must be the identity; the same holds for
��0 W G0 ! G0, whence the uniqueness of G is manifest. ut

Push-Outs The group G of the preceding theorem is called the pull-back of the
maps ˛ and ˇ. Our next task is to prove the dual, where the group H will be called
the push-out of ˛ and ˇ.

Theorem 3.2. Assume that ˛ W C! A; ˇ W C! B are homomorphisms. There exist
a group H, unique up to isomorphism, and homomorphisms � W A! H; ı W B! H,
such that the diagram

C
α−−−−→ A

β

⏐
⏐
�

⏐
⏐
�γ

B
δ−−−−→ H

is commutative, and for every commutative diagram

C
α−−−−→ A

β

⏐
⏐
�

⏐
⏐
�γ′

B
δ′

−−−−→ H ′

there is a unique homomorphism  W H ! H0 satisfying  � D � 0 and  ı D ı0.
Proof. Starting with ˛; ˇ, define H as the factor group of A˚B modulo the subgroup
X D f.˛c;�ˇc/ j c 2 Cg. Let � W a 7! .a; 0/CX; ı W b 7! .0; b/CX .a 2 A; b 2 B/
be the maps induced by the injections. Then �˛c D ıˇc for every c 2 C assures the
commutativity of the first diagram.

If the second diagram is commutative, then we let  W .a; b/ C X 7! � 0a C
ı0b 2 H0. One can readily check that this definition is independent of the chosen
representative .a; b/ of the coset, and moreover, it satisfies  � D � 0 and  ı D ı0.
The uniqueness follows from the simple fact that Im � and Im ı generate H, and
therefore, if  0� D � 0;  0ı D ı0 for some  0 W H ! H0, then . �  0/� D 0 D
. � 0/ı implies that  � 0 maps the whole of H upon 0. An argument similar to
the one at the end of the proof of the preceding theorem establishes the uniqueness
of H. ut

The following observations are of importance.

(a) If in the pull-back diagram, ˛ is monic, then so is ı; if ˛ is epic, so is ı. In
view of the uniqueness of the pull-back diagram, it is enough to prove the claim
for the group G as constructed in the proof above. That Ker˛ D 0 implies
Ker ı D 0 is immediately seen from the proof. Furthermore, if ˛ is epic, then to
every b 2 B there is an a 2 A such that ˛a D ˇb, and so ı is also epic.
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(b) If in the push-out diagram, ˛ is monic, then so is ı; if ˛ is epic, so is ı.
Again, we need only show this for H as defined above. Now clearly Ker ı D 0

whenever Ker˛ D 0. If ˛ is epic, then to every a 2 A there is a c 2 C with
˛c D a, and so ı maps bC ˇc upon .0; bC ˇc/C X D .a; b/C X. Hence ı is
epic as well.

Exercises

(1) If B D 0 in the pull-back diagram above, then G Š Ker˛.
(2) (a) If C D 0 in the pull-back diagram, then G Š A˚ B.

(b) If C D 0 in the push-out diagram, then H Š A˚ B.
(3) If both ˛; ˇ are surjective in the pull-back diagram, then G is a subdirect sum

of A and B with kernels Ker˛;Kerˇ.
(4) The pull-back diagram above is a push-out diagram (for �; ı) exactly if the map
r.˛ ˚ ˇ/ W A˚ B! C is surjective.

(5) If in the diagram

A1 −−−−−→ A2 −−−−−→ A3
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

B1 −−−−−→ B2 −−−−−→ B3

each of the two squares is a pull-back, then the outer rectangle is also a pull-
back.

(6) Formulate and prove the dual of the preceding exercise for push-outs.
(7) Using the notations of the above pull-back and push-out diagrams, the

sequences 0! G! A˚ B! C ! 0 and 0! C ! A˚ B! H ! 0 (with
the obvious maps) are exact.

4 Direct Limits

Direct Systems Let fAi .i 2 I/g be a system of groups where the index set I is
partially ordered and directed (upwards) in the sense that to each pair i; j 2 I, there
is a k 2 I such that both i � k and j � k. Suppose that for every pair i; j 2 I with
i � j, there is a homomorphism �

j
i W Ai ! Aj (called connecting map) subject to

the conditions:

(i) � i
i is the identity map of Ai for all i 2 I; and

(ii) if i � j � k in I, then �k
j �

j
i D �k

i .
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In this case, A D fAi .i 2 I/I � j
i g is called a direct system. (If the index set is !,

then it suffices to specify only �nC1
n for all n < !, because the other �m

n are then
determined by rule (ii).) By the direct or injective limit, or colimit of A is meant a
group A� such that

(a) there are maps �i W Ai ! A� such that �i D �j�
j
i holds for all i � j;

(b) if G is any group, and �i W Ai ! G .i 2 I/ are maps satisfying �i D �j�
j
i for all

i � j, then there is a unique map ˛ W A� ! G such that �i D ˛�i for all i 2 I.

We write: A� D lim�!i2I
Ai; and call the maps �i W Ai ! A� canonical.

Theorem 4.1. A direct system A D fAi .i 2 I/I � j
i g of groups has a limit, unique

up to isomorphism.

Proof. We form the direct sum A D ˚i Ai, and consider the subgroup B � A
generated by the elements ai � � j

i ai for all ai 2 Ai and for all i � j in I. Our
claim is that A=B D A� is the direct limit of A.

The elements of A=B are cosets of the form ai1 C � � � C ain C B with aij 2 Aij . If
i 2 I is such that i1; : : : ; in are all � i, then this coset is � i

i1
ai1 C � � � C � i

in
ain C B,

since ai1C� � �Cain �� i
i1

ai1 � � � ��� i
in

ain D .ai1 �� i
i1

ai1 /C� � �C .ain �� i
in

ain/ 2 B.
Thus every element in A=B can be written as ai C B for some ai 2 Ai. In particular,
B consists of all finite sums of the form b D ai1 C � � � C ain with aij 2 Ain for which
there is an i 2 I such that i1; : : : ; in � i and � i

i1
ai1 C � � � C � i

in
ain D 0:

Consider the maps �i W Ai ! A=B acting as ai 7! ai C B. They obviously satisfy
�i D �j�

j
i .i � j/. If G is any group as stated in (b), then define ˛ W A=B ! G

by ˛.ai C B/ D �iai. Owing to �i D �j�
j
i , this definition is independent of the

choice of the coset representative, and since ˛ is evidently additive, ˛ is a genuine
homomorphism. It satisfies �i D ˛�i for all i 2 I, as required. If ˛0 W A=B! G also
satisfies �i D ˛0�i for all i 2 I, then .˛�˛0/�i D 0 for each i 2 I, thus ˛�˛0 sends
every aiCB D �iai to 0, i.e. ˛ D ˛0. It follows that A=B is a limit of the given direct
system, so we can write A� D A=B.

To show that A� is unique up to isomorphism, suppose that also A0 shares
properties (a)–(b). Then there exist unique maps ˛ W A� ! A0 and ˛0 W A0 ! A� as
required by (b). Also, ˛0˛ W A ! A and ˛˛0 W A0 ! A0 are unique, so they are the
identity maps. Consequently, A0 Š A�. ut

We now list some of the most useful properties of direct limits.

(A) A� is the set union of the subgroups �iAi .i 2 I/:
(B) If �iai D 0 for some ai 2 Ai, then there is a j � i such that � j

i ai D 0. Indeed,
if �iai D 0, then ai 2 B, and the proof above establishes this claim.

(C) If every � j
i is a monic map, then all the �i are monomorphisms. This follows

from (B).
(D) If J is a cofinal subset of I, then the system restricted to J has the same direct

limit: lim�!J
Ai Š lim�!I

Ai. In fact, if the first group is A0=B0, then aj C B0 7!
aj C B is an isomorphism of A0=B0 with A=B.
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Example 4.2. Let fAi .i 2 I/g be the collection of all subgroups of a group A where the index set
I is partially ordered by the rule: i � j if and only if Ai � Aj. Let � j

i W Ai ! Aj denote the injection

map for i � j. Then A D fAi .i 2 I/I� j
i g is a direct system with limit A.

Example 4.3. If we admit only finitely generated subgroups of A in the direct system A D fAi .i 2
I/I� j

i g with the injection maps � j
i , the direct limit is still A. In the special case where A is arbitrary

torsion-free, we get A as the direct limit of finitely generated free groups.

Example 4.4. Let A D ˚j2J Cj be a direct sum. Let i range over the set I of finite subsets of J, so
that i � k in I means that i is a subset of k. If we define Ai D ˚j2i Cj for all i 2 I, and �k

i W Ai ! Ak

to be the obvious inclusion map, then we get a direct system whose limit is A.

Maps Between Direct Systems We consider homomorphisms between direct
limits that are induced by homomorphisms between direct systems. If A D fAi .i 2
I/I � j

i g and B D fBi .i 2 I/I �j
ig are direct systems with the same index set I, then

by a homomorphism ˆ W A ! B we mean a set of homomorphisms ˆ D f�i W
Ai ! Bi j i 2 Ig such that the diagrams

Ai
πj
i−−−−→ Aj

φi

⏐
⏐
�

⏐
⏐
�φj

Bi
ρj
i−−−−→ Bj

commute for all i � j in I.

Lemma 4.5. If ˆ is a homomorphism between the direct systems A and B, then
there exists a unique morphism ˆ� W A� D lim�!Ai ! B� D lim�!Bi making all the
diagrams

Ai
πi−−−−→ A∗

φi

⏐
⏐
�

⏐
⏐
�Φ∗

Bi
ρi−−−−→ B∗

commute .�i; �i denote the canonical morphisms/. ˆ� is an epimorphism
.monomorphism/ if all the �i are epimorphisms .monomorphisms/.

Proof. Since the maps �i�i W Ai ! B� satisfy the condition �j�j�
j
i D �j�

j
i�i D �i�i

for every pair i � j, the existence of a unique homomorphism ˆ� W A� ! B� such
that �i�i D ˆ��i for each i 2 I is guaranteed. This proves the first assertion.

If all the �i are epic, then the subgroups �iBi D �i�iAi cover B�, so ˆ� must
be epic. If all the �i are monic, then pick an a 2 Kerˆ�. There is j 2 I such that
a D �jaj for some aj 2 Aj. Hence �j�jaj D ˆ��jaj D ˆ�a D 0, and so by (B)
we have a k � j with �k

j �jaj D 0. But �k
j �j D �k�

k
j and �k is monic, so �k

j aj D 0,
whence �jaj D 0 and a D 0. ut
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We now move to three direct systems: A, B as above, and a third one, C D
fCi .i 2 I/I 	 j

i g, all with the same directed index set I. Ifˆ W A! B and‰ W B! C

are homomorphisms between them such that the sequence 0! Ai
�i�!Bi

 i�!Ci ! 0

is exact for each i 2 I, then we say that the sequence

0! A
ˆ�!B

‰�!C! 0 (2.3)

is exact. It is an important fact that direct limits of exact sequences is exact. More
precisely,

Theorem 4.6. Let A;B;C be direct systems over the same index set I, andˆ W A!
B and ‰ W B ! C homomorphisms between them. If the sequence (2.3) is exact,
then the sequence

0! A� D lim�!
i

Ai
ˆ��!B� D lim�!

i

Bi
‰��!C� D lim�!

i

Ci ! 0

of direct limits is likewise exact.

Proof. Exactness at A� and C� is guaranteed by Lemma 4.5, so we prove exactness
only at B�. By Lemma 4.5, the diagram

0 −−−−→ Ai
φi−−−−→ Bi

ψi−−−−→ Ci −−−−→ 0

πi

⏐
⏐
� ρi

⏐
⏐
�

⏐
⏐
�σi

0 −−−−→ A∗
Φ∗−−−−→ B∗

Ψ∗−−−−→ C∗ −−−−→ 0

is commutative for all i 2 I. If a 2 A�, then �iai D a for some ai 2 Ai, so‰�ˆ�a D
‰�ˆ��iai D ‰��i�iai D 	i i�iai D 0. Next let b 2 Ker‰�. For some bi 2 Bi,
we have �ibi D b, whence 	i ibi D ‰��ibi D ‰�b D 0. There exists j 2 I with
	

j
i ibi D 0, thus  jbj D  j�

j
ibi D 0. Since the top row in the diagram is exact,

there is an aj 2 Aj with �jaj D bj. Setting a D �jaj, we arrive at ˆ�a D ˆ��jaj D
�j�jaj D �j�

j
ibi D �ibi D b, i.e. b 2 Imˆ�, and the bottom row is exact at B�. ut

Exercises

(1) Show that lim�!n
Z.pn/ D Z.p1/, using inclusion maps.

(2) Let An Š Z .n < !/ with �nC1
n W An ! AnC1 multiplication by n. Prove that

lim�!n
An Š Q.

(3) If every � j
i is an onto map, then all the �i are epimorphisms.

(4) A group is locally cyclic if and only if it is a direct limit of cyclic groups.
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(5) (a) Let A� be the limit of the direct system A D fAi .i 2 I/I� j
i g, and a 2 A�.

There exist a j 2 I and an aj 2 Aj such that �jaj D a and o.aj/ D o.a/.
(b) Direct limit of torsion (torsion-free) groups is again torsion (torsion-free).

(6) If G is finitely generated, and ˛ W G! A� (notations as above), then there exist
a j 2 I and an ˛j W G! Aj such that ˛ D �j˛j.

(7) If A D fAi .i 2 I/I� j
i g and B D fBi .i 2 I/I �j

ig are direct systems of groups,
then A˚B D fAi˚Bi .i 2 I/I� j

i ˚�j
ig is likewise a direct system whose direct

limit is the direct sum of the direct limits of A and B.
(8) What is wrong with the following argument? Because of Theorem 4.6, the

sequence 0 ! Z.p1/ ! Z.p1/ ! Z.p1/ ! 0 must be exact, since it can
be obtained as the direct limit of the exact sequences 0! Z.pm/! Z.p2m/!
Z.pm/! 0 .m 2 N/.

5 Inverse Limits

Inverse Systems Inverse limits are dual to direct limits: we just reverse the
arrows.

Assume fAi j i 2 Ig is a collection of groups, indexed by a poset I, and for
each pair i; j 2 I of indices with i � j there is given a connecting homomorphism
�

j
i W Aj ! Ai such that

(i) � i
i is the identity map of Ai for all i 2 I; and

(ii) if i � j � k in I, then � j
i�

k
j D �k

i .

In this case, A D fAi .i 2 I/I � j
i g is called an inverse system. By the inverse or

projective limit, or simply limit, of this inverse system is meant a group A� such
that

(a) there are maps �i W A� ! Ai such that �i D � j
i�j for all i � j; and

(b) if G is any group with maps �i W G ! Ai .i 2 I/ subject to �i D �
j
i�j for i � j,

then there is a unique map � W G! A� satisfying �i D �i� for all i 2 I.

We write: A� D lim �i2I
Ai; and call the maps �i W A� ! Ai canonical.

Theorem 5.1. An inverse system A D fAi .i 2 I/I � j
i g of groups has a limit, unique

up to isomorphism.

Proof. Consider the subgroup A� in the direct product A D Q
i2I Ai that consists of

all vectors a D .: : : ; ai; : : : / whose coordinates satisfy � j
i aj D ai for all i � j. This

is in fact a subgroup as is seen immediately. The projection maps �i W a 7! ai satisfy
�i D � j

i�j, so (a) holds for A�.
To verify (b), let G be a group as stated in (b), and for g 2 G define � W g 7!

.: : : ; �ig; : : : / 2 Q
i Ai. Owing to the condition �i D �

j
i�j, we have �g 2 A�.

Clearly, � W G ! A� satisfies �i D �i� for all i 2 I. If �i D �i�
0 holds also
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for �0 W G ! A�, then �i.� � �0/ D 0 for all i, so every coordinate projection of
.� � �0/G is 0, hence � D �0.

In order to establish the uniqueness of A�, we can mimic the argument at the end
of the last paragraph almost word-by-word. ut

It is worthwhile noting the following properties of inverse limits.

(A) If I is directed, and if in the inverse system A D fAi .i 2 I/I � j
i g all connecting

maps � j
i are monomorphisms, then so are all the �i. In fact, assume a 2 A� is

such that �ia D 0. Given j 2 I, there is a k 2 I with i; j � k. Then �k
i �ka D

�ia D 0, whence �k
i monic implies �ka D 0. Therefore, �ja D �k

j �ka D 0

for all j 2 I, and so a D 0. (Exercise 5 will show that, in general, the same
fails for epimorphisms.)

(B) If I is directed, and if J is a cofinal directed subset in I, then we have
lim �i2I

Ai D lim �j2J
Aj:

(C) A� is the intersection of kernels of certain endomorphisms of
Q

i Ai. For, every
pair i � j in I defines an endomorphism

�ij W .: : : ; ai; : : : ; aj; : : : / 7! .: : : ; ai � � j
i aj; : : : ; aj; : : : /:

Comparing this with the proof of Theorem 5.1, it becomes evident that
A� D \i�j Ker �ij:

(D) If all the groups in the inverse system A D fAi .i 2 I/I � j
i g are Hausdorff topo-

logical groups and the connecting maps � j
i are continuous homomorphisms,

then the inverse limit A� is a closed subgroup of
Q

i Ai .which is equipped with
the product topology/, and the canonical maps �i W A� ! Ai are continuous.
Indeed, then the endomorphisms �ij in (C) are continuous, so their kernels as
well as the intersection of the kernels are closed subgroups. A� carries the
topology inherited from

Q
i Ai, so the continuity of the �i is obvious.

Example 5.2. Let A DQ
˛2J B˛ be the direct product of the groups B˛ . Let I denote the set of all

finite subsets of J, partially ordered by inclusion. For i 2 I, set Ai D ˚˛2i B˛ , and for i � j in I
let � j

i be the projection map Aj ! Ai. This gives rise to an inverse system A D fAi .i 2 I/I � j
i g.

We now claim: A� D lim �i2I
Ai Š A. To prove this, let �i W A� ! Ai be the ith canonical map,

and �i W A ! Ai the ith projection map. By definition, there is a unique map � W A ! A�

such that �i� D �i. If �a D 0 for some a 2 A, then �ia D �i�a D 0 for all i 2 I, so � is
monic. If a� D .: : : ; ai; : : : ; aj; : : : / 2 A�, then write ai D b˛1 C � � � C b˛k with b˛` 2 B˛` if

i D f˛1; : : : ; ˛kg. If i � j, then by the choice of � j
i , the B˛-coordinates of ai are identical with

the corresponding coordinates of aj, so a� defines a unique .: : : ; b˛; : : : / 2 A. A glance at the
definition of � in the proof of Theorem 5.1 shows that �.: : : ; b˛; : : : / D a�, so � is epic as well.

Example 5.3. Let Cn D hcni be cyclic groups of order pn .n 2 N/, and define maps �nC1
n W

CnC1 ! Cn induced by cnC1 7! cn. Now C D fCn .n 2 N/I �m
n g is an inverse system, and our

claim is that C� D lim �n2N
Cn Š Jp. If �n W C� ! Cn is the canonical map, and if we define

�n W Jp ! Cn via �n.1/ D cn, then by definition there is a unique map � W Jp ! C� such
that �n� D �n for all n 2 N. Since only 0 2 Jp can belong to all Ker �n, Ker� D 0 is clear.
Now let c D .b1; : : : ; bn; : : : / 2 C� with bn D kncn .kn 2 Z/; by the choice of �nC1

n we have
knC1 � kn mod pn, so there is a p-adic integer 	 such that 	 � kn mod pn for all n. We conclude
that �n	 D bn, and � must be epic.
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Example 5.4 (The Intersection of Subgroups is an Inverse Limit). Let fAi j i 2 Ig denote a set of
subgroups of a group A closed under finite intersections. We partially order I by reverse inclusion.
The groups Ai, along with the injection maps � j

i W Aj ! Ai .i � j/, form an inverse system. Its
inverse limit will be\i2I Ai, because only the constant vectors in

Q
i2I Ai can belong to the inverse

limit A�.

Maps Between Inverse Systems Assume A D fAi .i 2 I/I � j
i g and B D

fBi .i 2 I/I �j
ig are inverse systems, indexed by the same poset I. A homomorphism

ˆ W A ! B is a set f�i W Ai ! Bi .i 2 I/g of homomorphisms subject to the
requirement that all diagrams of the form

Aj
πj
i−−−−→ Ai

φj

⏐
⏐
�

⏐
⏐
�φi

Bj
ρj
i−−−−→ Bi

be commutative for all i � j.

Lemma 5.5. Ifˆ W A! B is a homomorphism between inverse systems, then there
exists a unique mapˆ� W A� D lim �i2I

Ai ! B� D lim �i2I
Bi such that, for every i 2 I,

the diagram

A∗ πi−−−−→ Ai

Φ∗
⏐
⏐
�

⏐
⏐
�φi

B∗ ρi−−−−→ Bi

commutes .with canonical maps �i; �i/. ˆ� is monic, if so are the �i.

Proof. The homomorphisms �i .i 2 I/ induce a homomorphism N� D Q
i �i WQ

i Ai ! Q
i Bi. The commutativity of the diagram before the lemma shows that

if a D .: : : ; ai; : : : / 2 A�, then N�a 2 B�, hence we can define ˆ� W A� ! B� as
the restriction of N�. With this ˆ� we have �i�ia D �iai D �iˆ

�a, establishing the
commutativity of the diagram. If also ˆ0 W A� ! B� makes the diagram commute
for every i, then �i.ˆ

� �ˆ0/ D 0 for every i, thus ˆ� D ˆ0.
Finally, if all the �i are monic, and if ˆ�a D 0 for some a 2 A�, then �i�ia D

�iˆ
�a D 0 implies �ia D 0 for every i, whence a D 0. ut

For the inverse limits of exact sequences, we have a somewhat weaker result than
for direct limits.

Theorem 5.6. Assume A D fAi .i 2 I/I � j
i g;B D fBi .i 2 I/I �j

ig; and C D
fCi .i 2 I/I 	 j

i g are inverse systems over the same index set I. Let ˆ W A ! B and

‰ W B! C be homomorphisms. If the sequence 0 ! Ai
�i�!Bi

 i�!Ci ! 0 is exact
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for every i 2 I, then the sequence

0! A� D lim �
i

Ai
ˆ�

�!B� D lim �
i

Bi
‰�

�!C� D lim �
i

Ci (2.4)

of inverse limits is likewise exact.

Proof. Exactness at A� follows from Lemma 5.5. From the definition ofˆ�; ‰� it is
evident that ‰�ˆ� D 0. If �i; �i; 	i denote the canonical maps, then by Lemma 5.5
the diagram

0 −−−−→ A∗ Φ∗
−−−−→ B∗ Ψ∗

−−−−→ C∗

πi

⏐
⏐
� ρi

⏐
⏐
�

⏐
⏐
�σi

0 −−−−→ Ai
φi−−−−→ Bi

ψi−−−−→ Ci −−−−→ 0

is commutative for each i 2 I. In order to show the exactness of the top row at B�,
let b 2 Ker‰�. In view of  i�ib D 	i‰

�b D 0 and the exactness of the bottom
row, for every i 2 I there is an ai 2 Ai satisfying �iai D �ib. For j > i, �i�

j
i aj D

�
j
i�jaj D �

j
i�jb D �ib D �iai, whence � j

i aj D ai as �i is monic. We infer that
a D .: : : ; ai; : : : ; aj; : : : / 2 A�. For this a we have �iˆ

�a D �i�ia D �iai D �ib for
every i, so ˆ�a D b: ut

Exercise 5 will show that, in general, Theorem 5.6 cannot be improved by putting
! 0 at the end of the exact sequence (2.4). A noteworthy special case when the exact
sequence of inverse limits is exact is as follows.

Proposition 5.7. If in Theorem 5.6 we specialize: A D fAn .n < !/I �nC1
n g;B D

fBn .n < !/I �nC1
n g; C D fCn .n < !/I 	nC1

n g, and assume that all the maps �nC1
n

are epic, then the sequence of inverse limits is exact:

0! A� D lim �
n

An
ˆ�

�!B� D lim �
n

Bn
‰�

�!C� D lim �
n

Cn ! 0:

Proof. Let c� D .c0; : : : ; cn; : : : / represent an element of C�. We now construct by
induction an element b� D .b0; : : : ; bn; : : : / 2 B� such that ‰�b� D c�. As  0 is
surjective, there is b0 2 B0 with  0b0 D c0. Suppose that, for some n < !, we
have found bi 2 Bi for all i � n such that  ibi D ci and �i

i�1bi D bi�1. Choose any
b0nC1 2 BnC1 mapped upon cnC1 by  nC1. Then bn � �nC1

n b0nC1 D �nan for some
an 2 An. If anC1 2 AnC1 is such that �nC1

n anC1 D an (which exists by hypothesis),
then b0nC1 C �nC1anC1 2 BnC1 is our choice for the next coordinate bnC1 in b�. It is
clear that then b� 2 B� is as desired. ut

Derived Functor of Inv The inverse systems of abelian groups (with a fixed
index set I) and the morphisms between them form a category Inv.I/. The functor
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Inv.I/ 7! Ab assigning to an inverse system its inverse limit is left-exact. Since
its right-exactness fails in general, the inverse limit functor has a derived functor,
denoted lim1. This is especially interesting in case the index set is ! when the
inverse system looks like

C0
�1 �C1

�2 � : : : �n �Cn
�nC1 �CnC1

�nC2 � : : : :

Then lim �
1

n
Cn Š Coker where

 W .: : : ; cn; : : : / 7! .: : : ; cn � �nC1cnC1; : : : /:

denotes the Eilenberg map  W Q
n<! Cn ! Q

n<! Cn; see Jensen [Je], as well
as Schochet [1]. The functor lim �

1 will be discussed later in Proposition 6.9 in
Chapter 9. We just point out here that, for an exact sequence of inverse systems
in Proposition 5.7, there is an exact sequence

0! lim �
n

An ! lim �
n

Bn ! lim �
n

Cn ! lim �
n

1An ! lim �
n

1Bn ! lim �
n

1Cn ! 0:

Example 5.8. Consider the inverse system fZI nŠg W Z
1Š �Z 2Š � : : : nŠ �Z.nC1/Š �

Z � : : : The Eilenberg map  carries the vector .k0; : : : ; kn; : : : / .kn 2 Z/ to the vector
.k0� k1; k1� 2Šk2; : : : ; kn� .nC 1/ŠknC1; : : : /. This vector is divisible modulo˚Z (which group
is in Ker ), so Coker is divisible. An easy argument shows that the cokernel is torsion-free and
its cardinality is the continuum, hence lim �

1

n
fZI nŠg Š Q

@0 .

Example 5.9. We now consider three inverse systems: fZ; pg W Z Pp �Z Pp �Z Pp � : : : , fZ; 1g W
Z

1 �Z 1 �Z 1 � : : : , and fZ=pn
Z; �gW 0 �Z=pZ

� �Z=p2Z
� � : : : (with canonical maps �).

They fit into the exact sequence

0! fZ; pg ! fZ; 1g ! fZ=pn
Z; �g ! 0

of inverse systems. The lim �-lim �
1 exact sequence (see above) yields the exact sequence 0! Z!

lim �Z=pn
Z! lim �

1fZ; pg ! 0, whence

lim �
1fZ; pg Š Jp=Z Š Q

@0 :

F Notes. The so-called Mittag-Leffler condition (not stated) is a most useful sufficient
criterion to guarantee that! 0 can be put at the end of (2.4). See Jensen [Je].

Exercises

(1) If A D fAi .i 2 I/I � j
i g and B D fBi .i 2 I/I �j

ig are inverse systems, then
A˚B D fAi ˚ Bi .i 2 I/I � j

i ˚ �j
ig is again an inverse system. Its limit is the

direct sum of the limits of A and B.
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(2) Let Cn D hcni be cyclic of order n, and for njm let �m
n W Cm ! Cn be the

homomorphism induced by cm 7! cn. Then C D fCn .n 2 N/I �m
n g is an

inverse system where N is partially ordered by the divisibility relation. Show
that lim �n

C ŠQ
p Jp:

(3) Let An Š Z.p1/, and let �nC1
n W Z.p1/ ! Z.p1/ be the multiplication by

p. Then the inverse limit of the inverse system A D fAn .n 2 N/I �nC1
n g is

isomorphic to the group of all p-adic numbers.
(4) The inverse limit of torsion-free groups is torsion-free, but the inverse limit of

torsion groups need not be torsion.
(5) Let Bn D hbni Š Z and �m

n W bm 7! bn for all n � m in N. Let Cn D hcni Š
Z.pn/ and �m

n W cm 7! cn for n � m. Show that

(a) B D fBn .n 2 N/I�m
n g and C D fCn .n 2 N/I �m

n g are inverse systems, and
the epimorphisms �n W bn ! cn.n 2 N/ define a map ˆ W B! C.

(b) The induced homomorphism ˆ� W B� ! C� between the inverse limits is
not epic. [Hint: Z! Jp.]

(6) The inverse limit of splitting exact sequences need not be exact.
(7) Let A D fAn .n < !/I �nC1

n g be an inverse system where the maps �nC1
n are

epimorphisms, but not isomorphisms. Then the inverse limit A� has cardinality
at least the continuum.

6 Direct Products vs. Direct Sums

One aspect of direct products that deserves special attention is related to their
homomorphisms. There is a remarkable contrast between homomorphisms from
a direct sum and from a direct product: those from direct sums are completely
determined by their restrictions to the components, but not much can be said about
homomorphisms from a direct product, except when either the components or the
target groups satisfy restrictive conditions. A most fascinating result is concerned
with homomorphisms of direct products into direct sums—this is the case that we
wish to explore here. What is a surprising, if not recondite, phenomenon about it is
that it works only up to the first measurable cardinal.

Before entering into the discussion, a simple remark might be helpful on infinite
sums in direct products A DQ

i2I Ai. Infinite sums
P

j2J xj do make sense when the
terms are vectors xj D .: : : ; aji; : : : / .aji 2 Ai/ such that, for each i 2 I, only a finite
number of ith coordinates aji ¤ 0. (Actually,

P
j2J xj is then a convergent sum in

the product topology.)

Example 6.1. Let A D Q
n<! An be a countable product. Then x D P

n<! xn is a well-defined
element of A if xn D .0; : : : ; 0; ann; an;nC1; : : : / .ani 2 Ai/ .n zeros).

Maps from Direct Product into Direct Sum We start with a special case which
has independent interest. (‘Reduced’ means no divisible subgroup ¤ 0, and C1 D
\n2N nC denotes the first Ulm subgroup of C.)
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Theorem 6.2 (Chase [1], Ivanov [5]). Let A D Q
i<! Ai denote a countable

product of groups, and � W A ! C D ˚j2J Cj a homomorphism into the direct
sum of reduced groups Cj. Then there exist integers m > 0; k, as well as a finite
subset J0 � J such that

�.mBk/ � .˚j2J0 Cj/C .˚j2J C1
j /;

where Bk DQ
k�i<! Ai .summand of A/.

Proof. Let �j W A! Cj denote the map � followed by the jth coordinate projection.
Assume the claim is false. Then we can find inductively an increasing sequence
1 D m0 < m1 < � � � < mk < : : : of integers, a sequence of elements bk 2 mkBk, and
indices jk 2 J such that

mkjmkC1; �jk.b`/ D 0 for ` < k and �jk.bk/ … mkC1Cjk

for all k < !. Indeed, if, for some k < !, we have b`;m` and j` for all ` � k at hand
as required, then jkC1 will be selected as an index not in [`�k.supp �.b`// such that
�jkC1

.mkC1BkC1/ 6� \n2N nCjkC1
for some proper multiple mkC1 of mk; this can be

done, since otherwise the claim would be true. Only a finite number of bk have non-
zero coordinates in any Ai, therefore, the infinite sum a DP

k<! bk is a well-defined
element in A. Consider

�jk a D �jk.
X

`<!

b`/ D �jk.
X

`<k

b`/C �jk.bk/C �jk.
X

k<`<!

b`/;

and observe that in the last sum the first term is 0, and the third term is contained in
mkC1Cjk , but the second term is not. Since �a has a finite support in C, this equation
can hold only for a finite number of indices k—an obvious contradiction. ut

We state the following theorem for p-groups that involves transfinite heights; its
proof runs parallel to the preceding one.

Theorem 6.3 (Zimmermann-Huisgen [1]). Let A D Q
i<! Ai be a countable

product of p-groups, and � W A ! C D ˚j2J Cj a homomorphism into the direct
sum of reduced p-groups Cj. Given a limit ordinal 
 , there exist an integer k < !,
an ordinal 	 < 
 , and a finite subset J0 � J such that

�.p	
Y

k�i<!

Ai/ � .˚j2J0 Cj/C .˚j2J p
Cj/: ut

The Measurable Cardinal Phenomenon If we wish to extend the preceding
results to uncountable direct products, then we are confronted with an unusual
phenomenon. There is a natural boundary to the extension: the first measurable
cardinal. The reader who wishes to avoid the following delicate set-theoretical
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arguments can safely assume that there are no such cardinals in our model of ZFC,
and jump to Theorem 6.5.

Recall that a cardinal � is measurable if a set X of cardinality � admits a
countably additive measure  such that  assumes only two values: 0 and 1, and
satisfies .X/ D 1, while .fxg/ D 0 for all x 2 X. Here ‘countably additive’ means
that if Xi .i < !/ are pairwise disjoint subsets of X, then .[i<!Xi/ DP

i<! .Xi/.
Let f be a function B ! G where B D 2X is the Boolean lattice of all subsets

of a set X, and G ¤ 0 is a group. We will say f is a G-valued measure on X if it
satisfies the following conditions:

(i) f .fxg/ D 0 for every singleton fxg 2 B;
(ii) if V � U are subsets of X, then f .U/ D 0 implies f .V/ D 0;

(iii) if U;V are disjoint subsets of X, then f .U [ V/ D f .U/C f .V/;
(iv) if Ui .i < !/ are pairwise disjoint subsets of X, then there is n 2 N such that

f .[i<!Ui/ D f .U0/C � � � C f .Un/ and f .Ui/ D 0 for all i > n.

We call f non-trivial if f .X/ ¤ 0. The following striking argument is due to J.
Łoś.

Lemma 6.4. If a non-trivial group-valued measure exists on the subsets of the set
X, then jXj is a measurable cardinal.

Proof. Assume f W 2X ! G is a non-trivial G-valued measure on X, G ¤ 0 any
group. We show that then there exists a non-trivial countably additive f0; 1g-valued
measure on X.

Consider all subsets U � X such that f .U/ D 0. From (i)–(iv) we conclude that
these U form a countably additive ideal I in the Boolean lattice B of all subsets of
X. It is readily checked that f induces a countably additive G-valued measure Nf on
the Boolean quotient B=I: Let NU0; : : : ; NUi; : : : be pairwise disjoint elements in B=I:
We can find representatives Ui � X of the NUi which are still pairwise disjoint. By
condition (iv), f .Ui/ ¤ 0 can hold only for a finite set of indices i; in other words,
B=I is a finite Boolean lattice. Thus B=I has but a finite number of atoms, and on
them Nf is not 0. Hence we derive a f0; 1g-valued measure 0 on B=I by selecting an
atom in B=I and define 0. NU/ to be 1 or 0 according as NU does or does not contain
the selected atom. In the obvious manner, 0 gives rise to a f0; 1g-valued measure 
on B, showing that the set X is measurable. ut

It is remarkable that Theorems 6.2 and 6.3 generalize to larger products provided
that the cardinality of the set of components is not measurable.

Theorem 6.5 (Dugas–Zimmermann-Huisgen [1]). Let A D Q
i2I Ai be a direct

product, and � W A ! C D ˚j2J Cj a homomorphism where the Cj are reduced
groups. If jIj is not a measurable cardinal, then there are an integer m ¤ 0 and
finite subsets I0 � I; J0 � J such that

�.m
Y

i2InI0
Ai/ � .˚j2J0 Cj/C .˚j2J C1

j /:
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Proof. Consider the set S of all subsets S of I such that for the product AS DQ
i2S Ai

the statement of the theorem holds (i.e., if I is replaced by S). Evidently, if S 2 S ,
then all subsets of S also belong to S . Furthermore, S is not only closed under
finite unions (which is evident), but also under countable unions. In fact, if
Sk 2 S .k < !/ are pairwise disjoint subsets, then, for some n < ! we have
[n<k<! Sk 2 S—this follows by applying Theorem 6.2 to the countable product
� WQk<!.

Q
i2Sk

Ai/! C.
Once this has been established, in order to complete the proof it suffices to repeat

the arguments in Łoś’ theorem to conclude that if the claim fails, then I must be
measurable. ut
Example 6.6. To show that the last theorem may indeed fail for a measurable index set I, let each
Ai denote a copy of the †-cyclic p-group B D ˚k<! Z.pk/, and let C D B. To define � W A! B,
pick an a D .: : : ; ai; : : : / 2 A D Q

i2I Ai. a has only countably many different coordinates (as
elements of B), so the supports of the equal ones give rise to a countable partition of I into disjoint
subsets, exactly one of which has measure 1, and the rest have measure 0. If b 2 B is the element
for which the support is of measure 1, then we set �.a/ D b. It is easy to see that this gives rise to
a well-defined homomorphism. It violates the conclusion of Theorem 6.5: m Im� is not contained
in any finite direct sum of cyclic groups in C, for any integer m > 0.

The proof of Theorem 6.5 also applies to verify:

Theorem 6.7 (Zimmermann-Huisgen [1]). Let A D Q
i2I Ai be a product of

p-groups, and � W A ! C D ˚j2J Cj a homomorphism where the Cj are reduced
p-groups. Given a limit ordinal �, if jIj D � is not measurable, then there exist an
ordinal 	 < �, as well as finite subsets I0 � I; J0 � J; such that

�.p	
Y

i2InI0
Ai/ � .˚j2J0 Cj/C.˚j2J p�Cj/: ut

F Notes. The peculiar behavior of homomorphisms from a countable direct product into an
infinite direct sum was noticed by Chase [1]. The same phenomenon of larger direct products was
observed by Dugas–Zimmermann-Huisgen [1] up to the first measurable cardinal (just as in the
case of slender groups). By using @1-complete ultrafilters, Eda [1] gave a generalization to all
cardinals; see Lemma 2.13 in Chapter 13.

Ivanov [1] proves various theorems on so-called Fuchs-44 groups with respect to a class A,
which is closed under extensions, submodules, and direct products. G is such a group if for every
� W G ! ˚i2IAi with Ai 2 A, there are m 2 N and a finite subset J � I such that �.mG/ �
˚i2J Ai.

Exercises

(1) The group A D Q
k2N Z.pk/ has no unbounded †-cyclic p-group as an

epimorphic image.
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(2) Let A D Z
� where � is not measurable, and F a free group. Show that the image

of every homomorphism A! F is finitely generated.
(3) (Keef) Let Ai .i 2 I/ be an infinite set of unbounded separable p-groups. There

is no epimorphism
Q

i2I Ai !˚i2IAi.

7 Completeness in Linear Topologies

Groups that are complete in some linear topology are very special. Therefore, we
examine completeness and the completion processes.

Linear Topologies Assume that a linear topology is defined on the group A in
terms of a filter u in the lattice L.A/ of subgroups of A. The subgroups U 2 u form a
base of open neighborhoods about 0; we label them by a directed index set I, so that
i � j for i; j 2 I means that Ui � Uj. Thus I as a (directed) poset is dual-isomorphic
to a subset of u (which has the natural order relation by inclusion).

By a net in A we mean a set faigi2I of elements in A, indexed always by I. A net
is said to converge to a limit a 2 A if to every i 2 I there is a j 2 I such that

ak � a 2 Ui for all k � j:

If A is Hausdorff in the topology, then limits are unique; if, however, A fails to
be Hausdorff, then limits are determined only up to mod \iUi. The classical proof
applies to show that a subgroup B of A is closed in the topology if and only if it
contains the limits of convergent nets whose elements belong to B.

A net faigi2I is a Cauchy net if to any given i 2 I, there is a j 2 I such that

ak � a` 2 Ui whenever k; ` � j:

Since the Ui are subgroups, ak�aj; a`�aj 2 Ui implies ak�a` 2 Ui, for the Cauchy
character of a net it suffices to require that ak � aj 2 Ui for all k � j. Clearly, cofinal
subnets of a Cauchy net are again Cauchy nets, and such a subnet converges if and
only if the larger net also converges; moreover, the limits are then the same. To
facilitate discussion and to simplify notation, we shall concentrate without loss of
generality on Cauchy nets fbigi2I which are neat in the sense that, for every i 2 I,
bk � bi 2 Ui holds for k � i (i.e., j D i can be chosen). If a neat Cauchy net fbigi2I

converges to a limit b 2 A, then it converges neatly: bk � b 2 Ui for all k � i. In
a group whose topology satisfies the first axiom of countability, Cauchy sequences
fan j n < !g satisfying anC1 � an 2 Un for all n 2 N are neat.

Topological Completeness A group A is said to be complete in a topology if
it is Hausdorff, and every (neat) Cauchy net in A has a limit in A. Observe that we
mean by complete groups only Hausdorff groups.
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Lemma 7.1. A subgroup of a complete group is closed if and only if it is complete
in the induced topology.

Proof. Let G be a subgroup in the complete group C. First assume G is closed in C,
and fgigi2I is a Cauchy net in G (in the inherited topology). The net is Cauchy in C
too, so it converges to a limit c 2 C which must be in G, since G is closed. Thus G
is complete. Conversely, suppose G is complete in the induced topology, and c 2 C
is the limit of a Cauchy net fgigi2I with gi 2 G. It is a Cauchy net in G as well, so
has a limit in G, which cannot be anything else than c. Thus G is closed in C. ut

In the next result the countability hypothesis is essential.

Lemma 7.2. Let B be a closed subgroup of a complete group A that satisfies the
first axiom of countability. Then the factor group A=B is complete in the induced
topology.

Proof. Since B is closed, A=B is Hausdorff. Consider a base of neighborhoods about
0 in A such that U1 � � � � � Um � : : : with \m2N Um D 0. Let fam C B j m 2 Ng
be a Cauchy sequence in A=B; without loss of generality, we assume that it is neat,
i.e. amC1 � am C B � Um C B. We want to lift this Cauchy sequence to a Cauchy
sequence fcm j m 2 Ng in A. Let c1 D a1, and assume that c1; : : : ; cm 2 A have
already been chosen such that ci 2 ai C B and ci � ci�1 2 Ui�1 for i D 2; : : : ;m.
Then amC1�cm D umCbm for some um 2 Um; bm 2 B, and set cmC1 D amC1�bm 2
amC1 C B to have cmC1 � cm 2 Um: If limfcmg D a 2 A, then aC B is the limit of
the sequence fam C B j m 2 Ng in A=B. ut

Recall that if fAj j j 2 Jg is a family of groups, each equipped with a linear
topology, say, defined by the filter uj in L.Aj/, then the direct product A� DQ

j2J Aj

is given the product (Tychonoff) topology: a subbase of neighborhoods of 0
consists of the subgroups ��1j Uji where �j W A� ! Aj is the jth coordinate projection,
and Uji 2 uj. The product topology is again linear, and the �j are continuous, open
homomorphisms. The direct sum A D ˚j2J Aj is a dense subgroup of A�.

We should also mention the box topology on the direct product; this topology is
used, e.g., when the components are viewed in the Z-adic topology, and we want
to have this topology on their direct product. We now assume that the same poset I
serves to index a base of neighborhoods about 0 in each Aj. If fUji � Aj j i 2 Ig is
a base in the topology of Aj (where Uji � Ujk whenever k � i in I), then the box
topology on A� DQ

j2J Aj is defined to have the subgroups

Ui D
Y

j2J

Uji .i 2 I/

as a base of neighborhoods about 0. The box topology on A� satisfies the first
countability hypothesis if all the Aj do. The inclusion Ui � ��1j Uji for all j shows
that the box topology is finer than the product topology. Hence the projections �j

are continuous in the box topology as well.
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Example 7.3. Actually, there are several methods of furnishing a direct product with a linear
topology. E.g., let G DQ

j2I Aj be a product, and F a filter on the index set I. For each X 2 F we
form the subgroup

VX D fg D .: : : ; aj; : : : / 2
Y

j2I

Aj j n.g/ 2 Xg

(where n.g/ D fj 2 I j aj D 0g denotes the null-set of g), and declare the subgroups VX .X 2 F/
as a base of neighborhoods about 0. This linear topology is Hausdorff if and only if F is a free
filter, i.e. \X2FX D ¿.

Example 7.4. Choose the filter of subsets of I with finite complements. Then the topology defined
in Example 7.3 is the product topology. If Ai .i 2 I/ are non-trivial groups in the discrete topology,
then

Q
i Ai is complete in the product topology. The direct sum˚iAi is dense in the direct product.

Completions The rest of this section is devoted to the completion of groups in
linear topologies. There are two important completion processes: one is via Cauchy
nets, and another is by using inverse limits. We will employ the second method
which fits better to linear topologies.

Let A be a group with linear topology (not necessarily Hausdorff), and fUi j i 2 Ig
a base of neighborhoods of 0, with I a directed index set: i � j in I if and only if
Ui � Uj. Define the groups Ci D A=Ui, and for j � i in I, the homomorphisms
�

j
i W Cj ! Ci via � j

i W a C Uj 7! a C Ui. The limit of the arising inverse system
C D fCi .i 2 I/I� j

i g will be denoted by MA: it is furnished with the topology inherited
from the product topology of

Q
Ci. Thus, if �i denotes the ith projection

Q
Ci ! Ci,

then a subbase of neighborhoods of 0 in MA is given by the subgroups MUi D MA\��1i 0.
Evidently, �A W a 7! .: : : ; a C Ui; : : : / 2 MA is a homomorphism A ! MA which is
continuous and open, and �AUi D �AA \ MUi holds for each i 2 I. It is clear that
Ker �A is the intersection of all Ui.

Lemma 7.5. For every group A with a linear topology, the group MA is complete in
the induced topology, and the image of the map � W A! MA is a dense subgroup of MA.

Proof. Let Ma D .: : : ; ai C Ui; : : : / 2 MA, and let MUi � MA be an open set. As �Aai lies
in the MUi-neighborhood of Ma, �AA is dense in MA. Therefore, to prove completeness,
we need only verify the convergence of Cauchy nets in �AA to elements of MA. A neat
Cauchy net in �AA is the image of a neat Cauchy net fbigi2I in A. We claim that
Mb D .: : : ; bi C Ui; : : : / is the limit of f�Abigi2I . First, Mb 2 MA, since � j

i .bj C Uj/ D
bjCUi D biCUi for j � i. Secondly, the ith coordinate of �Abi� Mb is 0, so it belongs
to the open set MUi. ut

Observe that the completion is always Hausdorff, and �A W A! MA is monic if and
only if A had a Hausdorff topology to start with.

Lemma 7.6. If � is a continuous homomorphism of the group A into a complete
group C, then there is a unique continuous homomorphism M� W MA ! C such that
M��A D �.
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Proof. Let fai j i 2 Ig be a Cauchy net in A converging to the element Ma 2 MA.
Continuity implies that f�ai j i 2 Ig is a Cauchy net in C. If c 2 C is its limit, then
the only possible way of defining a continuous M� is to let M� W Ma 7! c. The rest of the
claim is straightforward. ut

From this lemma it also follows that the completion MA of A is unique up to
topological isomorphism. Also, �A W A ! MA is a natural map, for if � W A ! C
is a continuous homomorphism, then the diagram

A
φ−−−−→ C

θA

⏐
⏐
�

⏐
⏐
�θC

Ă
φ̆−−−−→ C̆

commutes where M� is the map whose existence was established in Lemma 7.6.
Our main interest lies in the Z-adic topology, and in completions in that topology.

Therefore, if we say that ‘a group is complete,’ then we always mean completeness
in the Z-adic or p-adic topology (whichever is obvious), unless stated otherwise.
Furthermore, we shall use the special notation QA for the completion of A in the
Z-adic topology.

In the next theorem we refer to linear compactness; see Sect. 3 in Chapter 6.

Theorem 7.7. Let A be any group.

(i) Its completion in the Z-adic .p-adic/ topology carries the Z-adic .p-adic/
topology.

(ii) Its completion in the finite index topology has a compact topology.
(iii) Its completion in the Prüfer topology carries a linearly compact topology.

Proof. (i) Let QA D lim �n2N A=nA, or, equivalently, QA D lim �n2N A=nŠA whenever
we consider the collection of subgroups Un D nŠA .n 2 N/ as a decreasing
sequence of neighborhoods about 0. The elements in the induced QUn have nth
coordinates 0, and it is easy to see that the conditions on the coordinates of
elements on QA imply that all the ith coordinates in QUn are 0 for i < n, while all
those for i > n are divisible by nŠ. This means that QUn D nŠ QA:

(ii) In the finite index topology, the groups A=Ui are finite, so they are compact.
Thus the product

Q
i A=Ui is compact, and the inverse limit MA D lim �i2I

A=Ui as
a closed subgroup is also compact.

(iii) The proof is similar to the one in (ii), using the linear compactness of A=Ui in
the Prüfer case.

Example 7.8. Let A D ˚n<!An be furnished with the topology where the subgroups
Uk D ˚k�n<!An form a base of neighborhoods about 0. The completion of A in this topology is
the direct product

Q
n<! An.
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If the topology fails to satisfy the first axiom of countability, then completeness
may occur in an unexpected situation. This is demonstrated by the following
example where, for a limit ordinal �, the p�-topology of a p-group A is defined
by declaring the subgroups p	A .	 < �/ as a base of neighborhoods of 0.

Example 7.9. Suppose � is a limit ordinal not cofinal with !, and let A	 .	 < �/ be p-groups
such that A	 has length 	 . Then the A	 are discrete (and hence complete) in the p�-topology.
Consequently, A� D Q

	<� A	 is complete in the p�-topology which is now the box topology on
A� (cf. Exercise 2).

Strangely enough, A D ˚	<� A	 is complete in the p�-topology. To prove this, we show that A
is closed in A�. Assume the contrary, i.e. there is x D .: : : ; a	 ; : : : / 2 A� n A in the closure of A.
We can find a sequence 	1 < � � � < 	n < : : : of ordinals with a	n ¤ 0. Let sup 	n D 	 0 < � and
y 2 A such that x�y 2 p	

0
Q
	<� A	 . Then x and y have equal coordinates in every A� with � < 	 0

which contradicts the fact that x has infinitely many and y only finitely many non-zero coordinates
for � < 	 0.

Z-adic Completeness Direct products of complete groups are complete in the
product topology. We wish to point out the following result on the Z-adic topology.

Lemma 7.10. A direct product is complete in the Z-adic topology if and only if
every component is complete in its Z-adic topology.

Proof. Summands inherit Z-adic topology and completeness. Conversely, assume
every Aj in G DQ

j2J Aj is Z-adically complete and fgi j i 2 Ig is a neat Cauchy net
in G. Then f�jgi j i 2 Ig is a neat Cauchy net in Aj, and if aj 2 Aj is the limit of this
net, then g 2 G with �jg D aj is the limit of fgi j i 2 Ig. ut

F Notes. While the completion in the Prüfer topology may be viewed as a ‘linear compact-
ification,’ completion in the finite index topology is not at all compactification. The latter process
kills the first Ulm subgroup of the group, so it is an embedding only for groups that are Hausdorff in
the finite index topology. A genuine ‘compactification’ can be accomplished by the so-called Stone
compactification. This is the process of embedding A in the group Hom.Hom.A;T/;T/, where T

denotes the circle group R=Z (the inner Hom is furnished with the discrete topology, and the outer
with the compact-open topology).

Exercises

(1) (a) The completions of the groups A and A= \ Ui are the same.
(b) A and A=A1 have the same Z-adic completion.

(2) A direct product is complete in the box topology if and only if every component
is complete.

(3) Every compact (linearly compact) group is complete in its topology.
(4) The direct product of discrete groups is Hausdorff and complete in every

u-topology where u is a free filter.
(5) The inverse limit of complete groups is complete. (Careful with the topology.)
(6) Compare the completions of a group in the finite index and in the Prüfer

topologies.
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Problems to Chapter 2

PROBLEM 2.1 (J. Dauns). Suppose A has the property that every summand B of
A has a decomposition B D B1 ˚ B2 with B1 Š B2. Is then A Š A˚ A?

PROBLEM 2.2. Study the Boolean powers A.B/ of a group A.

Cf. Balcerzyk [3], and especially, Eda [2].

PROBLEM 2.3. Represent a p-group A as a direct limit A Š lim�!n
AŒpn�. How

does the structure of A change if the connecting monomorphisms AŒpn� ! AŒpnC1�
are modified?

PROBLEM 2.4. Suppose � W A D Q
Ai ! C D Q<@1 Cj is a homomorphism of

a product into an @1-product. Can we say something about where the image must
be contained (like Theorem 6.5)?
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