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Abstract. In this paper, we analyze a queueing system with so called
“cold” redundancy. The system consists of an infinite buffer, the main
unreliable server (server 1) and the absolutely reliable reserve server
(server 2). The input flow is a BMAP (Batch Markovian Arrival Process).
Breakdowns arrive to the server 1 according to a MAP (Markovian
Arrival Process). If the server 1 is fault-free, it serves a customer, if any.
After breakdown occurrence the server 1 fails and the repair period starts
immediately. The customer, whose service is interrupted by a break-
down, goes to the second server, where its service is restarted. When the
repair period ends, the customer whose service on the server 2 has not
yet completed goes back to the server 1 and its service begins anew. We
assume that the switching from one server to another takes time. Switch-
ing times as well as service times and repair time have PH (Phase type)
distribution. The queue under consideration can be applied for mod-
eling of a hybrid communication system consisting of the FSO – Free
Space Optics channel (server 1) and the radio-wave channel (server 2).
We derive a condition for stable operation of the system, calculate its
stationary distribution and base performance measures and derive an
expression for the Laplace-Stieltjes transform of the sojourn time distri-
bution.

Keywords: Unreliable queueing system · Batch markovian arrival
process · Phase-type distribution · Stationary state distribution · Sojourn
time distribution

1 Introduction

In recent years, the FSO – Free Space Optics technologies have become wide-
spread due to their undoubted advantages. The main advantages of atmospheric
optical (laser) communication link are high capacity and quality of communica-
tion. However, optical communication systems have also disadvantages, the main
of which is the dependence of the communication channel on the weather condi-
tion. The unfavorable weather conditions such as rain, snow, fog, aerosols, smog
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can significantly reduce visibility and thus significantly reduce the effectiveness
of atmospheric optical communication link.

As it is mentioned in [1], one of the main directions of creating the ultra-
high speed (up to 10 Gbit/s) and reliable wireless means of communication is
the development of hybrid communication systems based on laser and radio-
wave technologies. Unlike the FSO channel, radio-wave IEEE802.11n channel is
not sensitive to weather conditions and can be considered as absolutely reliable.
However, it has a lower transmission speed compared with the FSO-channel. In
hybrid communication system consisting of the FSO channel and the radio-wave
IEEE802.11n channel the latter can be considered as as a backup communication
channel. Because of the high practical need for hybrid communication systems,
a considerable amount of studies of this class of systems have appeared recently.
Some results of these studies are presented in [2–4].

Papers from [2] are mainly focused on the study of stationary reliability
characteristics, methods and algorithms for optimal channel switching in hybrid
systems by means of simulation. The paper [3] deals with hybrid communica-
tion channel with so called “hot” redundancy, where the backup IEEE 802.11n
channel continuously transmits data along with the FSO channel, but, unlike
the latter, at low speed. In the paper [4], the hybrid communication system
with “cold” redundancy is considered, where the radio-wave link is assumed to
be absolutely reliable and backs up the atmospheric optical communication link
only in cases when the latter interrupts its functioning because of the unfavorable
weather conditions. The paper [1] is devoted to the study of a hybrid communi-
cation system where the millimeter-wave radio channel is used as a backup one.
To model this system, the authors consider two-channel queueing system with
unreliable heterogeneous servers which fail alternately.

In the present paper, we consider queueing system suitable to model a hybrid
communication channel with “cold” reserve under more general, in comparison
with the papers cited above, assumptions about the pattern of arrival processes of
customers and breakdowns, distributions of service and repair times. Besides, we
assume that the switching from one server to another takes time. Switching times
as well as service times and repair time have PH (Phase type) distributions. The
queue under consideration can be applied for modeling of hybrid communication
system with “cold” redundancy where the radio-wave link is assumed to be
absolutely reliable (its work does not depend on the weather conditions) and
backs up the atmospheric optical communication link only in cases when the
latter interrupts its functioning because of the unfavorable weather conditions.
Upon the occurrence of favorable weather conditions the data packets begin to
be transmitted over the FSO channel.

2 Mathematical Model

We consider a queueing system consisting of two heterogeneous servers and infi-
nite waiting room. One of the servers (main server, server 1) is unreliable and
the other one (reserve server, server 2) is absolutely reliable. The latter is in
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the so-called cold standby and connects to the service of a customer only in the
case when the main server is under repair.

Customers arrive into the system in accordancewith aBatchMarkovianArrival
Process (BMAP). The BMAP is defined by the underlying process νt, t ≥ 0,
which is an irreducible continuous-time Markov chain with the finite state space

{0, . . . , W}, and the matrix generating function D(z) =
∞∑

k=0

Dkz
k, |z| ≤ 1. The

batches of customers enter the system only at the epochs of the chain νt, t ≥ 0,
transitions. The (W +1)× (W +1) matrices Dk, k ≥ 1, (non-diagonal entries of
the matrix D0) define the intensities of the process νt, t ≥ 0, transitions which
are accompanied by generating the k-size batch of customers. The matrix D(1)
is an infinitesimal generator of the process νt, t ≥ 0. The intensity (fundamental
rate) of the BMAP is defined as λ = θD′(1)e where θ is the unique solution of
the system θD(1) = 0, θe = 1, and the intensity of batch arrivals is defined as
λb = θ(−D0)e. Here and in the sequel e(0) is a column (row) vector of appro-
priate size consisting of 1’s (0’s). For more information about the BMAP see,
e.g., [5].

If there is no customers in the system and the server 1 is fault-free at an arrival
epoch, it immediately starts the service of an arriving customer. If the server 1
is under repair or serves a customer at an arrival epoch, an arriving customer
is placed at the end of the queue in the buffer and is picked-up for service later
on, according the FIFO discipline.

If a breakdown arrive to the server 1 during service of a customer, the repair
of the server 1 and the switching to the server 2 begin immediately. After the
switching time has expired, the customer goes to the server 2 where it starts
its service anew. However, if during the switching time the server 1 becomes
fault-free, the customer restarts its service on this server.

If the repair period on the server 1 ended but the service of a customer by
the server 2 does not complete, then the switching to the server 1 begins. It is
assumed that during the switching time the server 1 can not serve customers
from the queue. After the switching time has expired, the customer goes to the
server 1 where it starts its service anew. If at the end of the switching time the
server 1 is under repair, the customer restarts its service on the server 2.

Breakdowns arrive to the server 1 according to a MAP which is defined by
the (V + 1) × (V + 1) matrices H0 and H1. The breakdowns fundamental rate
is calculated as h = γH1e where the row vector γ is the unique solution of the
system γ(H0 + H1) = 0, γe = 1.

The service time of a customer by the k-th server, k = 1, 2, has PH type
distribution with an irreducible representation (β(k),S(k)). The service process
on the k-th server is directed by the Markov chain m

(k)
t , t ≥ 0, with the state

space {1, . . . , M (k),M (k)+1} where M (k)+1 is an absorbing state. The intensities
of transitions into the absorbing state are defined by the vector S(k)

0 = −S(k)e.
The service rates are calculated as μ(k) = −[β(k)(S(k))−1e]−1, k = 1, 2.

The switching time from the server 2 to the server 1 has PH type distrib-
ution with an irreducible representation (α(1), A(1)). The switching time from
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the server 1 to the server 2 has PH type distribution with an irreducible rep-
resentation (α(2), A(2)). The switching process on the k-th server is directed by
the Markov chain l

(k)
t , t ≥ 0, with the state space {1, . . . , L(k), L(k) + 1} where

L(k) + 1 is an absorbing state, k = 1, 2. The intensities of transitions into the
absorbing state are defined by the vector A(k)

0 = −A(k)e. The switching rates
are defined as κk = −[α(k)(A(k))−1e]−1, k = 1, 2.

The repair period has PH type distribution with an irreducible representa-
tion (τ , T ). The repair process is directed by the Markov chain ϑt, t ≥ 0, with the
state space {1, . . . , R,R + 1} where R + 1 is an absorbing state. The intensities
of transitions into the absorbing state are defined by the vector T0 = −Te. The
repair rate is φ = −(τT−1e)−1.

3 Process of the System States

Let at the moment t:

• it be the number of customers in the system, it ≥ 0;
• nt = 0 if the server 1 is fault-free and nt = 1 if the server 1 is under repair;
• rt = 0 if one of the servers serves a customer and rt = 1 if the switching period

takes place;
• m

(k)
t be the state of the directing process of the service at the k-th busy server,

m
(k)
t = 1,M (k), k = 1, 2;

• l
(1)
t be the state of the directing process of the switching time from the server
2 to the server 1, l

(1)
t = 1, L(1);

• l
(2)
t be the state of the directing process of the switching time from the server
1 to the server 2, l

(2)
t = 1, L(2);

• ϑt be the state of the directing process of the repair time at the server 1,
ϑt = 1, R;

• νt and ηt be the states of the directing process of the BMAP and the MAP
correspondingly, νt = 0,W , ηt = 0, V .

The process of the system states is described by the regular irreducible contin-
uous time Markov chain, ξt, t ≥ 0, with the state space

X = {(i, n, ν, η), i = 0, n = 0, ν = 0,W , η = 0, V }
⋃

{(i, n, ν, η, ϑ), i = 0, n = 1, ν = 0,W , η = 0, V , ϑ = 0, R}
⋃

{(i, n, r, ν, η,m(1)), i > 0, n = 0, r = 0, ν = 0,W , η = 0, V ,m(1) = 1,M (1)}
⋃

{(i, n, r, ν, η, l(1)), i > 0, n = 0, r = 1, ν = 0,W , η = 0, V , l(1) = 1, L(1)}
⋃

{(i, n, r, ν, η,m(2), ϑ), i > 0, n = 1, r = 0, ν = 0,W , η = 0, V ,m(2) = 1,M (2),

ϑ = 1, R}
⋃

{(i, n, r, ν, η, ϑ, l(2)), i > 0, n = 1, r = 1, ν = 0,W ,
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η = 0, V , ϑ = 1, R, l(2) = 1, L(2)}.

In the following, we will assume that the states of the chain ξt, t ≥ 0, are ordered
as follows. Within the indicated above subsets of the set X the states of the
chain are enumerated in the lexicographic order. Denote the obtained ranked
sets as X(0, 0),X(0, 1),X(i, n, r), i ≥ 1, n, r = 1, 2, r = 1, 2, and arrange these
sets in the lexicographic order. Let Qij , i, j ≥ 0, be the matrices formed by
intensities of the chain transition from the state corresponding to the value i of
the component in to the state corresponding to the value j of this component
and Q = (Qij)i,j≥0, be the generator of the chain. For further use in the sequel,
we also introduce the following notation:

• ⊗, ⊕ are the symbols of Kronecker’s product and sum of matrices;
• W̄ = W + 1, V̄ = V + 1, a = W̄ V̄ ;
• diag{Bi, i = 1, n} is the n-size diagonal matrix with diagonal blocks Bi.

Lemma 1. Infinitesimal generator Q of the Markov chain ξt, t ≥ 0, has the
following block structure

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q̃0 Q̃1 Q̃2 Q̃3 · · ·
Q̂0 Q1 Q2 Q3 · · ·
O Q0 Q1 Q2 · · ·
O O Q0 Q1 · · ·
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where the non-zero blocks are of the form

Q̃0 =
(

D0 ⊕ H0 IW̄ ⊗ H1 ⊗ τ
Ia ⊗ T0 D0 ⊕ H ⊕ T

)

, Q̂0 =

⎛

⎜
⎜
⎝

Ia ⊗ S
(1)
0 O

OaL(1)×a O

O IaR ⊗ S
(2)
0

OaRL(2)×a O

⎞

⎟
⎟
⎠,

Q̃k =

(
Dk ⊗ IV̄ ⊗ β(1) Oa×aL(1) O Oa×aRL(2)

O O Dk ⊗ IV̄ ⊗ T ⊗ β(2) O

)

, k ≥ 1,

Q0 =

⎛

⎜
⎜
⎝

Ia ⊗ S
(1)
0 β(1) O O O

O OaL(1) O O

O O IaR ⊗ S
(2)
0 β(2) O

O O O OaRL(2)

⎞

⎟
⎟
⎠,

Qk = diag {Dk−1 ⊗ IV̄ ⊗ IM(1) , Dk−1 ⊗ IV̄ ⊗ IL(1),

Dk−1 ⊗ IV̄ ⊗ IR ⊗ IM(2) , Dk−1 ⊗ IV̄ ⊗IR ⊗ IL(2)} , k ≥ 2,

Q1 =

⎛

⎜
⎜
⎝

D0 ⊕ Q1,1 O O IW̄ ⊗ Q1,4

IW̄ ⊗ Q2,1 D0 ⊕ Q2,2 IW̄ ⊗ Q2,3 O
O IW̄ ⊗ Q3,2 D0 ⊕ Q3,3 O

IW̄ ⊗ Q4,1 O IW̄ ⊗ Q4,3 D0 ⊕ Q4,4

⎞

⎟
⎟
⎠,
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where
Q1,1 = H0 ⊕ S(1), Q1,4 = H1 ⊗ eM(1) ⊗ τ ⊗ α(2),

Q2,1 = IV̄ ⊗ A
(1)
0 ⊗ β(1), Q2,2 = D0 ⊕ H0 ⊕ A(1), Q2,3 = H1 ⊗ eL(1) ⊗ τ ⊗ β(2),

Q3,2 = IV̄ ⊗ T 0 ⊗ eM(2) ⊗ α(1), Q3,3 = (H0 + H1) ⊕ T ⊕ S(2),

Q4,1 = IV̄ ⊗T 0⊗eL(2) ⊗β(1), Q4,3 = IV̄ ⊗IR⊗A
(2)
0 ⊗β(2), Q4,4 = H ⊕T ⊕A(2).

Corollary 1. The Markov chain ξt, t ≥ 0, belongs to the class of continuous
time quasi-Toeplitz Markov chains (QTMC), see [6].

The proof follows from the form of the generator given by Lemma 1 and the
definition of QTMC given in [6].

In the following it will be useful to have expressions for the generating func-

tions Q̃(z) =
∞∑

k=1

Q̃kz
k, Q(z) =

∞∑

k=0

Qkz
k, |z| ≤ 1.

Corollary 2. The matrix generating functions Q̃(z), Q(z) are of the form

Q̃(z) =

(
(D(z) − D0) ⊗ IV̄ ⊗ β(1) O O O

O O (D(z) − D0) ⊗ IV̄ ⊗ T ⊗ β(2) O

)

, (1)

Q(z) =Q0 + Qz + z diag {D(z) ⊗ IV̄ ⊗ IM(1) , D(z) ⊗ IV̄ ⊗ IL(1), (2)
D(z) ⊗ IV̄ ⊗ IR ⊗ IM(2) , D(z) ⊗ IV̄ ⊗IR ⊗ IL(2)},

where the matrix Q has the following block form:

Q =

⎛

⎜
⎜
⎝

Q1,1 O O Q1,4

Q2,1 Q2,2 Q2,3 O
O Q3,2 Q3,3 O

Q4,1 O Q4,3 Q4,4

⎞

⎟
⎟
⎠, (3)

and blocks Qi,j are defined in the Lemma 1.

4 Stationary Distribution Performance Measures

Theorem 1. The necessary and sufficient condition for existence of the station-
ary distribution of the Markov chain ξt, t ≥ 0, is the fulfillment of the inequality

λ < q1S
(1)
0 + q3S

(2)
0 , (4)

where the vectors q1, q3 are calculated as q1 = x1(eV̄ ⊗ IM(1)), q3 = x3(eV̄ R ⊗
IM(2)), and the vectors x1, x3 are sub-vectors of the vector x = (x1, x2, x3, x4),
which is the unique solution of the system of linear algebraic equations

x
[
Q + diag

{
Ia ⊗ S

(1)
0 β(1), OaL(1) , IaR ⊗ S

(2)
0 β(2), OaRL(2)

}]
= 0, xe = 1. (5)

Here the vectors x1, x2, x3, x4 have the dimensions a, aL(1), aRM (2), aRL(2)

correspondingly.
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Proof. It follows from [6], that a necessary and sufficient condition for existence
of the stationary distribution of the chain ξt, t ≥ 0, can be formulated in terms
of the matrix generating function Q(z) and has the form of the inequality

yQ
′
(1)e < 0, (6)

where the vector y is the unique solution of the system of linear algebraic
equations

yQ(1) = 0, (7)

ye = 1.

Let x be a stochastic vector separated into parts as x = (x1, x2, x3, x4). Rep-
resent the vector y in the form y = (θ ⊗ x1,θ ⊗ x2,θ ⊗ x3,θ ⊗ x4).

Then, using (2) and taking into account that θ
∞∑

k=0

Dk = 0, system (7) is

reduced to the form

x
[
diag

{
IV̄ ⊗ S

(1)
0 β(1), OV̄ L(1) , IV̄ R ⊗ S

(2)
0 β(2), OV̄ RL(2)

}
+ Q

]
= 0. (8)

Adding to system (8) the normalization condition, we obtain system (5).
Similarly, we conclude that inequality (4) is reduced to the following inequality:

λ + xQe < 0. (9)

Taking into account the structure of the matrix Q given by (3), we reduce
inequality (9) to the form

λ < x1

(
eV̄ ⊗ S

(1)
0

)
+ x3

(
eV̄ R ⊗ S

(2)
0

)
. (10)

Applying mixed product rule, we derive from (10) ergodicity condition (4).

Remark 1. Intuitive explanation of stability condition (4) is as follows. The left
hand side of inequality (4) is the rate of customers arriving into the system. The
right hand side of the inequality is a rate of customers leaving the system after
service under overload condition. It is obvious that in steady state the former
rate must be less that the latter one.

Corollary 3. In the case of stationary Poisson flow of breakdowns and expo-
nential distribution of service and repair times, ergodicity condition (4)–(5) is
reduced to the following inequality:

λ < q1μ1 + q3μ2,

where

q1=
φ + κ(2)

h

[
φ + κ(2)

h
+

κ(2)

κ(1)
+

κ(2)(κ(1) + h)
κ(1)φ

+ 1
]−1

, q3= q1
hκ(2)(κ(1) + h)
κ(1)φ(φ + κ(2))

.
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In what follows we assume inequality (4) be fulfilled. Let us enumerate the steady
state probabilities in accordance with the introduced above order of the states of
the chain and form the row vectors pi of steady state probabilities corresponding
the value i of the first component of the Markov chain, i ≥ 0.

To calculate the vectors pi, i ≥ 0, we use the numerically stable algorithm,
see [6], which has been elaborated for calculating the stationary distribution of
multi-dimensional continuous time quasi-Toeplitz Markov chains.

Having the stationary distribution pi, i ≥ 0, been calculated we can find
a number of stationary performance measures of the system. When calculating
the performance measures, the following result will be useful, especially in the
case when the distribution pi, i ≥ 0, is heavy tailed.

Lemma 2. The vector generating function P (z) =
∞∑

i=1

piz
i, |z| ≤ 1, satisfies

the following equation:

P (z)Q(z) = z
[
p1Q0 − p0Q̃(z)

]
. (11)

In particular, formula (11) can be used to calculate the value of the generating
function P(z) and its derivatives at the point z = 1 without the calculation
of infinite sums. Having these derivatives been calculated, we will able to find
a number of performance measures of the system. The problem of calculating
the value of the P (z) and its derivatives at the point z = 1 from Eq. (11) is
non-trivial because the matrix Q(z) is singular at the point z = 1.

Let us denote f (n)(z) the n-th derivative of the function f(z), n ≥ 1, and
f (0)(z) = f(z).

Corollary 4. The m-th, m ≥ 0, derivatives of the vector generating function
P (z) at the point z = 1 are recursively calculated from the system of linear
algebraic equations

⎧
⎪⎪⎨

⎪⎪⎩

P (m)(1)Q(1) = Γ (m)(1) −
m−1∑

l=0

Cl
mP (l)(1)Q(m−l)(1),

P (m)(1)Q′(1)e = 1
m+1

[

Γ (m+1)(1) −
m−1∑

l=0

Cl
m+1P

(l)(1)Q(m+1−l)(1)
]

e.
(12)

where

Γ (m)(1) =

⎧
⎪⎨

⎪⎩

p1Q0 − p0Q̃(1), m = 0,

p1Q0 − p0Q̃(1) − p0Q̃
′(1), m = 1,

−p0

[
mQ̃(m−1)(1) + Q(m)(1)

]
, m > 1,

and the derivatives Q(m)(1), Q̃(m)(1) are calculated using formulas (1)–(2).

The proof of the corollary is parallel to the one outlined in [7] and is omitted
here.

Now we are able to calculate a number of performance measures of the system
under consideration.
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• Throughput of the system 
 = q1S
(1)
0 + q3S

(2)
0 .

• Mean number of customers in the system L = P (1)(1)e.
• Variance of the number of customers in the system V = P (2)(1)e + L − L2.
• Probability that a system is empty and the server 1 is fault-free (is faulty)

P
(0)
0 = p

(0)
0 e, P

(1)
0 = p

(1)
0 e.

• Probability that the server 1 serves a customer (the server 1 is faulty and the
server 2 serves a customer)

P
(0,0)
0 = P (1) diag

{
IaM(1) , 0L(1)+aR(M(2)+L(2))

}
e.

P
(1,0)
0 = P (1) diag

{
0a(M(1)+L(1)), IaRM(2) , 0aRL(2)

}
e.

• Probability that the switching period from the server 2 to the server 1 (from
the server 1 to the server 2) takes place

P
(0,1)
0 = P (1) diag

{
0aM(1) , IaL(1) , 0aR(M(2)+L(2))

}
e.

P
(1,1)
0 = P (1) diag

{
0a(M(1)+L(1)+RM(2)), IaRL(2))

}
e.

5 Sojourn Time Distribution

Let V (x) be the stationary distribution function of the sojourn time of an arbi-

trary customer in the system, v(s) =
∞∫

0

e−sxdV (x), Re(s) ≥ 0, be the Laplace-

Stieltjes transform of this function.

Theorem 2. The Laplace-Stieltjes transform of the sojourn time stationary dis-
tribution is calculated as

v(s) = λ−1

{

p0

∞∑

k=1

Q̃k

k∑

l=1

Φl(s) +
∞∑

i=1

pi

∞∑

k=2

Qk

k−1∑

l=1

Φi+l(s)

}

e (13)

where
Φ(s) = (sI − Q̄)−1Q0, Q̄ = Q(1) − Q0.

Proof. The proof is based on the probabilistic interpretation of the Laplace-
Stieltjes transform. We assume that, independently on the system operation,
the stationary Poisson input of so called catastrophes arrives. Let s, s > 0,
be the rate of this flow. Then, the Laplace-Stieltjes transform v(s) is interpreted
as the probability of no catastrophe arrival during the sojourn time of a customer.
This allows to derive the expression for v(s) by means of probabilistic reasonings.

Let us assume that at the moment of the beginning of a customer service the
initial phases of service time at the servers are already determined. Then the
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matrix of probabilities of no catastrophes arrival during the service time of the
customer and corresponding transitions of the finite components of the Markov

chain ξt, t ≥, 0 is calculated as Φ̂(s) =
∞∫

0

e(−sI+Q̄)tQ̂0dt = (sI − Q̄)−1Q̂0,

if at the departure epoch there are no customers in the queue, and Φ(s) =
∞∫

0

e(−sI+Q̄)tQ0dt = (sI − Q̄)−1Q0, if at the departure epoch there are customers

in the queue. Note, that Φ̂(s)e = Φ(s)e because Q̂0e = Q0e.
Assuming that an arbitrary customer arriving in a group of size k is placed

on the j-th position with probability 1/k and using the law of total probability,
we obtain the following expression

v(s) = p0

∞∑

k=1

k

λ
Q̃k

k∑

l=1

1
k

Φl(s)e +
∞∑

i=1

pi

∞∑

k=2

k − 1
λ

Qk

k−1∑

l=1

1
k − 1

Φi+l(s)e. (14)

Formula (13) immediately follows from formula (14). The theorem is proved.

Corollary 5. Mean sojourn time, v̄, of an arbitrary customer in the system is
calculated as

v̄ = −λ−1

[
p0

∞∑
k=1

Q̃k

k∑
l=1

l−1∑
m=0

Φm(0) +

∞∑
i=1

pi

∞∑
k=2

Qk

k−1∑
l=1

i+l−1∑
m=0

Φm(0)

]
Φ′(0)e (15)

where Φ′(0) = −(Q̄)−2Q0.

Proof. To obtain formula (15), we used the relation v̄ = −v′(0) and the fact that
the matrix Φ(0) is a stochastic one.

6 Conclusion

In this paper, we study a single-server queueing system with BMAP input and
cold redundancy. The queue under consideration can be applied for modeling
of a hybrid communication system consisting of the FSO – Free Space Optics
channel and the radio wave channel. The system is studied in steady state using
matrix-analytic methods. We derive a condition for stable operation of the sys-
tem, calculate its stationary distribution and key performance measures and
derive an expression for the Laplace-Stieltjes transform of the sojourn time dis-
tribution. This research was carried out in the framework of the applied project.
Further studies suggest the computer realization of proposed algorithms and the
implementation of numerical experiments to investigate the qualitative nature
of the system under study.
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