
Waterfall Traffic Identification: Optimizing
Classification Cascades

Pawe�l Foremski1(B), Christian Callegari2, and Michele Pagano2

1 The Institute of Theoretical and Applied Informatics of the Polish Academy
of Sciences, Ba�ltycka 5, 44-100 Gliwice, Poland

pjf@iitis.pl
2 Department of Information Engineering, University of Pisa,

Via Caruso 16, 56122 Pisa, Italy
{c.callegari,m.pagano}@iet.unipi.it

Abstract. The Internet transports data generated by programs which
cause various phenomena in IP flows. By means of machine learning
techniques, we can automatically discern between flows generated by
different traffic sources and gain a more informed view of the Internet.

In this paper, we optimize Waterfall, a promising architecture for
cascade traffic classification. We present a new heuristic approach to
optimal design of cascade classifiers. On the example of Waterfall, we
show how to determine the order of modules in a cascade so that the
classification speed is maximized, while keeping the number of errors and
unlabeled flows at minimum. We validate our method experimentally on
4 real traffic datasets, showing significant improvements over random
cascades.

Keywords: Network management · Traffic classification · Machine
learning · Cascade classification

1 Introduction

Internet traffic classification is a well-known problem in computer networks.
Since introduction of Peer-to-Peer (P2P) networking and encrypted protocols
we have seen a rapid growth of classification methods that apply statistical
analysis and machine learning to various characteristics of IP traffic, e.g. [1–3].
Survey papers list many existing methods grouped in various categories [4,5],
yet each year still brings new publications in this field. Some authors suggested
connecting several methods in multi-classifier systems as a future trend in traffic
classification [6,7]. For example, in [8], the authors showed that classifier fusion
can increase the overall classification accuracy. In [9], we proposed to apply the
alternative of classifier selection instead, showing that cascade classification can
successfully be applied to traffic classification. This paper builds on top of that.

In principle, cascade traffic classification works by connecting many classi-
fiers in a single system that evaluates feature vectors in a sequential manner.

c© Springer International Publishing Switzerland 2015
P. Gaj et al. (Eds.): CN 2015, CCIS 522, pp. 1–10, 2015.
DOI: 10.1007/978-3-319-19419-6 1

2 P. Foremski et al.

Our research showed that by using just 3 simple modules working in a cascade,
it is possible to classify over 50 % of IP flows using the first packet of a network
connection. We also showed that by adding more modules one can reduce the
total amount of CPU time required for system operation. However, the problem
still largely unsolved is how to choose from a possible large pool of modules, and
how to order them properly so that the classification performance is maximized.
In this paper, we propose a solution to this problem.

The contribution of our paper is as follows:

1. We propose a new solution to the cascade optimization problem, tailored to
traffic classification (Sect. 3).

2. We give a quick method for estimating performance of a Waterfall system
(Sect. 3).

3. We experimentally validate our proposal on 4 real traffic datasets, demon-
strating that our algorithm works and can bring significant improvements to
system performance (Sect. 4).

The rest of the paper is organized as follows. In Sect. 2, we give background on
the Waterfall architecture and on existing methods for building optimal cascade
classifiers. In Sect. 3, we describe our contribution, which is validated experimen-
tally in Sect. 4. Section 5 concludes the paper.

2 Background

We introduced cascade traffic classification in [9]. Our Waterfall architecture
integrates many different classifiers in a single “chain” of modules. The system
sequentially evaluates module selection criteria and decides which modules to
use for a given classification problem x. If a particular module is selected and
provides a label for x, the algorithm finishes. Otherwise, the process advances to
the next module. If there are no more modules, the flow is labeled as “Unknown”.
The algorithm is illustrated in Fig. 1. We refer the reader to [9] for more details.

Cascade classification is a multi-classifier machine learning system, which
follows the classifier selection approach [10]. Although presented in 1998 by
Alpaydin and Kaynak [11], so far few authors considered the problem of optimal
cascade configuration that would match the Waterfall architecture. In a 2006
paper [12], Chellapilla et al. propose a cascade optimization algorithm that only
updates the rejection thresholds of the constituent classifiers. The authors apply
an optimized depth first search to find the cascade that satisfies given constraints
on time and accuracy. However, comparing with our work, the system does
not optimize the module order. In another paper published in 2008 [13], Sherif
proposes a greedy approach for building cascades: start with a generic solution
and sequentially prepend a module that reduces CPU time. Comparing with
our work, the approach does not evaluate all possible cascade configurations and
thus can lead to suboptimal results.

In this paper, we propose a new solution to the cascade classification prob-
lem, which is better suited for traffic classification than [12,13]. However, we

Waterfall Traffic Identification: Optimizing Classification Cascades 3

Fig. 1. The Waterfall architecture. A flow enters the system and is sequentially exam-
ined by the modules. In case of no successful classification, it is rejected.

assume no confidence levels on the classification outputs, thus we do not con-
sider rejection thresholds as input values to the optimization problem. One can
consider the same classifier parametrized with various thresholds as a set of
separate modules available to build the cascade from.

3 Optimal Classification

Let us consider the problem of optimal cascade structure: we have n modules
in set E that we want to use for cascade classification of IP flows in set F in
an optimal way. In other words, we need to find a sequence of modules X that
minimizes a cost function C:

E = {1, . . ., n}, (1)
X = (x1, . . ., xm) m ≤ n, xi ∈ E, ∀i�=j xi �= xj , (2)

C(X) = f(tX) + g(eX) + h(uX). (3)

The terms tX , eX , and uX respectively represent the total amount of CPU time
used, the number of errors made, and the number of flows left unlabeled while
classifying F with X. The terms f , g, and h are arbitrary real-valued functions.
Because m ≤ n, some modules may be skipped in the optimal solution. Note
that uX does not depend on the order of modules, because unrecognized flows
always traverse till the end of the cascade.

3.1 Proposed Solution

To find the optimal cascade, we propose to quickly check all possible X. We
propose an approximate method, because for an accurate method one would
need to run the full classification process for each X, i.e. experimentally evaluate
all permutations of all combinations in E. This would take S experiments, where

S =
n∑

i=1

n!
(n − i)!

, (4)

4 P. Foremski et al.

which is impractical even for small n. On another hand, fully theoretical models
of the cost function seem infeasible too, due to the complex nature of the cascade
and module inter-dependencies.

Thus, we propose a heuristic solution to the cascade optimization problem.
The algorithm has two evaluation stages:

(A) Static: classify all flows in F using each module in E, and
(B) Dynamic: find the X sequence that minimizes C(X).

A. Static Evaluation. In every step of stage A, we classify all flows in F
using single module x, x ∈ E. We measure the average CPU time used for flow
selection and classification: t(x)s and t

(x)
c . We store each output flow in one of

the three outcome sets, depending on the result: F (x)
S , F (x)

O , or F
(x)
E . These sets

hold respectively the flows that were skipped, properly classified, and improperly
classified. Let us also introduce F

(x)
R :

F
(x)
R = F \

(
F

(x)
S ∪ F

(x)
O ∪ F

(x)
E

)
, (5)

the set of rejected flows. See Fig. 2 for an illustration of the module measurement
procedure. As the result of every step, the performance of module x on F is fully
characterized by a tuple of P (x):

P (x) =
(
t(x)s , t(x)c , F

(x)
S , F

(x)
O , F

(x)
E

)
. (6)

Finally, after n steps of stage A, we obtain n tuples: the input to stage B.

Fig. 2. Measuring performance of module x ∈ E

B. Dynamic Evaluation. Having all of the required experimental data, we
can quickly estimate C(X) for arbitrary X. Because f , g, and h are used only
for adjusting the cost function, we focus on their arguments: tX , eX , and uX .

Let X = (x1, . . ., xi, . . ., xm) represent certain order and choice of modules,
and Gi represent the set of flows entering the module number i (G1 = F). We
estimate the cost factors using the following procedure:

tX ≈
m∑

i=1

|Gi| · t(xi)
s +

∣∣∣Gi \ F
(xi)
S

∣∣∣ · t(xi)
c , (7)

Waterfall Traffic Identification: Optimizing Classification Cascades 5

eX =
m∑

i=1

∣∣∣Gi ∩ F
(xi)
E

∣∣∣, (8)

uX = |Gm+1|, (9)

where

Gi+1 = Gi\
(
F

(xi)
O ∪ F

(xi)
E

)
i ≤ m. (10)

The difference operation in Eq. (10) is crucial, because we need to remove the
flows that were classified in the previous step. In stage A, our algorithm evaluates
static performance of every module, but in stage B we need to simulate cascade
operation. The difference operator in Eq. (10) connects the static cost factors
(tX , eX , uX) with the dynamic effects of cascade classification.

Module performance depends on its position in the cascade because preceding
modules alter the distribution of traffic classes in the flows conveyed onward. For
example, a module designed for P2P traffic running before a port-based classifier
can improve its accuracy, by removing the flows that run on non-standard ports
or abuse the traditional port assignments.

3.2 Discussion

In our optimization algorithm we simplified the original problem to n experi-
ments and several operations on flow sets. We can speed up the search for the
best X because the algorithm is additive:

C(X + xi) = C(X) + C(xi). (11)

Thus, we can apply the branch and bound algorithm [14].
Note that the results depend on F : the optimal cascade depends on the

protocols represented in the traffic dataset, and on the ground-truth labels. The
presented method cannot provide the ultimate solution that would be optimal for
every network, but it can optimize a specific cascade system working in a specific
network. In other words, it can reduce the amount of required CPU power, the
number of errors, and the number of unlabeled flows, given a set of modules and
a set of flows. We evaluate this issue in Sect. 4 (Table 2).

We assume that the flows are independent of each other, i.e. labeling a par-
ticular flow does not require information on any other flow. In case such infor-
mation is needed, e.g. DNS domain names for the dnsclass module, it should
be extracted before the classification process starts. Thus, traffic analysis and
flow classification must be separated to uphold this assumption. We successfully
implemented such systems for our DNS-Class [15] and Mutrics [9] classifiers.

In the next section, we experimentally validate our method and show that it
perfectly predicts eX and uX , and approximates tX properly (see Fig. 3). The
simulated cost accurately follows the real cost, hence we argue that our proposal
is valid and can be used in practice. In the next section, we analyze the trade-offs
between speed, accuracy, and ratio of labeled flows (Fig. 4), but the final choice
of the cost function should depend on the purpose of the classification system.

6 P. Foremski et al.

4 Experimental Validation

In this section, we use real traffic datasets to demonstrate that our method is
effective and gives valid results. We ran 4 experiments:

1. Comparing simulated tX , eX , and uX to real values, which proves validity of
Eqs. (7)–(9);

2. Analyzing the effect of f , g, and h on the results, which proves that parameters
influence the optimization process properly;

3. Optimizing the cascade on one dataset and testing it on another dataset,
which verifies robustness in time and space;

4. Comparing optimized cascades to random configurations, which demonstrates
that our work is meaningful.

We used 4 real traffic datasets, as presented in Table 1. Datasets Asnet1 and
Asnet2 were collected at the same Polish ISP company serving <500 users, with
an 8 month time gap. Dataset IITiS1 was collected at an academic network
serving <50 users, at the same time as Asnet1. Dataset Unibs1 was also col-
lected at an academic network (University of Brescia1), but a few years earlier
and without packet payloads. We established ground-truth using Deep Packet
Inspection (DPI) and trained the modules using 60 % of flows chosen randomly –
as described in our original work [9]. The remaining flows were used for evalu-
ating our proposal. We used the following Waterfall modules: dstip, dnsclass
[15], npkts, port, and portsize. We handled Unibs1 differently, because the
dataset has no packet payloads and has all IP addresses anonimized: we used
the stats module instead of dnsclass.

Experiment 1. In the first experiment, we compare simulated cost factors with
the reality. We randomly selected 100 000 flows from each dataset and ran the
static evaluation on them. Next, we generated 100 random cascades, and for
each cascade we ran real classification and the dynamic evaluation stage of our
optimization algorithm. As a result, we obtained pairs of real and estimated
values of tX , eX , and uX for same X values. The results for tX are presented
in Fig. 3. For eX and uX we did not observe a single error, i.e. our method
perfectly predicted the real values. For CPU time estimations, we see a high

Table 1. Datasets used for experimental validation

1 Downloaded from http://www.ing.unibs.it/ntw/tools/traces/.

http://www.ing.unibs.it/ntw/tools/traces/

Waterfall Traffic Identification: Optimizing Classification Cascades 7

Fig. 3. Experiment 1. Estimated classification time vs real classification time. Dashed
line shows least-squares approximation, the correlation coefficient is 0.95.

correlation of 0.95, with little under-estimation of the real value. For all datasets,
the estimation error was below 20 % for majority of evaluated cascades (with
respect to the real value). The error was above 50 % only for 5 % of evaluated
cascades. We conclude that in general our method properly estimates the cost
factors and we can use it to simulate different cascade configurations.

Experiment 2. In our second experiment, we want to show the effect of tuning
the cost function for different goals: minimizing the computation time, minimiz-
ing errors, and labeling as many flows as possible. We chose the following cost
function:

C(X) = f(tX) + g(eX) + h(uX) = taX + ebX + uc
X . (12)

Next, we separately varied the a, b, c exponents in range of 0–10, and observed
the performance of the optimal cascade found by applying such cost function.
We ran the experiment for Asnet1, Asnet2, and IITiS1. In Fig. 4, we present
the results: dependence of CPU time, number of errors, number of unlabeled
flows, and module count on f(tX), g(eX), and h(uX). As expected, higher f
exponent leads to faster classification, with fewer number of modules in the
cascade (more unclassified flows) and usually less errors. Optimizing for accuracy
leads to reduction of errors and CPU time, at the cost of higher number of flows
left without a label. Note that we observed more errors than in the case of
time optimization – probably because the number of errors was low, thus the
g exponent had less impact on such values. Finally, if we choose to classify as
much traffic as possible, the system will use all available modules, at the cost of
increasing the CPU time. We conclude that our proposal works, i.e. by varying
the parameters we optimize the cascade for different goals.

8 P. Foremski et al.

Fig. 4. Experiment 2. Optimizing the cascade for different goals: best classification
time (a exponent), minimal number of errors (b exponent), and the lowest number of
unlabeled flows (c exponent): the plot shows the averages for 3 datasets.

Table 2. Experiment 3. Optimization stability: increase in the cost C(X), depending
on the reference dataset used for determining the optimal cascade.

Experiment 3. In the third experiment, we verify if the result of optimiza-
tion is stable in time and space, i.e. if the optimal cascade stays optimal with
time and changes of the network. We ran optimization for 3 datasets (all flows
in Asnet1, Asnet2, and IITiS1), obtaining different cascade configuration for
each dataset. Next, we evaluated these configurations on the other datasets, i.e.
Asnet1 on Asnet2 and IITiS1, etc. We measured the increase in the value of the
cost function C(X) and compared it with the original value. Table 2 presents
the results. We see that our proposal yielded results that are stable in time:
the cascades found for Asnet1 and Asnet2, which are 8 months apart, are very
similar and can be exchanged with little decrease in performance. However, the
cascades found for Asnet1 and Asnet2 gave 7 % and 8 % decrease in performance
compared with IITiS1. We conclude that optimization results are quite specific
to the network, but also stable in time, for the evaluated datasets.

Waterfall Traffic Identification: Optimizing Classification Cascades 9

Table 3. Experiment 4. Average improvements compared to random cascade selection.
We evaluated 100 random cascades on 100 000 random flows for each of 4 datasets.

Experiment 4. In our last experiment, we compare our proposal with random
choice of the modules, i.e. a situation in which we have a possibly large number
of “black box” modules to build the cascade from. For example, we could have
a large number of npkts modules trained on different flow samples, and with
different parameters. We used the data collected in Experiment 1 (100 000 flows
and 100 random cascades for each of 4 datasets) and calculated the average tX ,
eX , and uX values. Next, we run our optimization algorithm on the same 100 000
flows for each dataset and measured the improvements with respect to the aver-
age performance of random cascades. We used the cost function given in Eq. (12),
for a = 0.95, b = 1.75, and c = 1.20. In Table 3, we present obtained results:
in every case, our algorithm optimized the classification system to work better,
significantly reducing the amount of CPU time required for operation. Thus, we
conclude that our work is meaningful and can help a network administrator to
configure a cascade classification system properly.

5 Conclusions

In this paper, we presented a new method for optimizing cascade classifiers, on
the example of the Waterfall traffic classification architecture. The method eval-
uates the constituent classifiers and quickly simulates cascade operation in every
possible configuration. By searching for the cascade that minimizes a custom cost
function, the method finds the best configuration for given parameters, which
corresponds to minimizing required CPU time, number of errors, and number of
unclassified IP flows. We experimentally validated our proposal on 4 real traffic
datasets, demonstrating method validity, effectiveness, stability, and improve-
ments with respect to random choices.

Not only does our proposal apply to traffic classification, but it can be also
applied in the field of machine learning (for multi-classifier systems). However,

10 P. Foremski et al.

our approach does not consider rejection thresholds of the classifiers, which is
a certain limitation for application in other fields. We release an open source
implementation of our proposal as an extension to the Mutrics classifier2.

References

1. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: Blinc: multilevel traffic classifi-
cation in the dark. In: ACM SIGCOMM Computer Communication Review, vol.
35, pp. 229–240. ACM (2005)

2. Finamore, A., Mellia, M., Meo, M., Rossi, D.: KISS: stochastic packet inspection
classifier for UDP traffic. IEEE/ACM Trans. Netw. 18(5), 1505–1515 (2010)

3. Bermolen, P., Mellia, M., Meo, M., Rossi, D., Valenti, S.: Abacus: accurate behav-
ioral classification of P2P-TV traffic. Comp. Netw. 55(6), 1394–1411 (2011)

4. Nguyen, T.T., Armitage, G.: A survey of techniques for internet traffic classification
using machine learning. Commun. Surv. Tutor. IEEE 10(4), 56–76 (2008)

5. Callado, A., Kamienski, C., Szabó, G., Gero, B., Kelner, J., Fernandes, S., Sadok,
D.: A survey on internet traffic identification. Commun. Surv. Tutor. IEEE 11(3),
37–52 (2009)

6. Dainotti, A., Pescape, A., Claffy, K.C.: Issues and future directions in traffic clas-
sification. Netw. IEEE 26(1), 35–40 (2012)

7. Foremski, P.: On different ways to classify Internet traffic: a short review of selected
publications. Theor. Appl. Inf. 25(2), 119–136 (2013)

8. Dainotti, A., Pescapé, A., Sansone, C.: Early classification of network traffic
through multi-classification. In: Domingo-Pascual, J., Shavitt, Y., Uhlig, S. (eds.)
TMA 2011. LNCS, vol. 6613, pp. 122–135. Springer, Heidelberg (2011)

9. Foremski, P., Callegari, C., Pagano, M.: Waterfall: rapid identification of IP flows
using cascade classification. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2014.
CCIS, vol. 431, pp. 14–23. Springer, Heidelberg (2014)

10. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley
(2004)

11. Alpaydin, E., Kaynak, C.: Cascading classifiers. Kybernetika 34(4), 369–374 (1998)
12. Chellapilla, K., Shilman, M., Simard, P.: Optimally combining a cascade of classi-

fiers. Proceed. SPIE 6067, 207–214 (2006)
13. Abdelazeem, S.: A greedy approach for building classification cascades. In: Seventh

International Conference on Machine Learning and Applications, ICMLA 2008, pp.
115–120. IEEE (2008)

14. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960)

15. Foremski, P., Callegari, C., Pagano, M.: DNS-class: immediate classification of IP
flows using DNS. Int. J. Netw. Manag. 24(4), 272–288 (2014)

2 See https://github.com/iitis/mutrics/tree/bks.

https://github.com/iitis/mutrics/tree/bks

	Waterfall Traffic Identification: Optimizing Classification Cascades
	1 Introduction
	2 Background
	3 Optimal Classification
	3.1 Proposed Solution
	3.2 Discussion

	4 Experimental Validation
	5 Conclusions
	References

