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Abstract. We introduce an object categorization system which uses
hierarchical clustering to extract categories. The system is able to assign
multiple, nested categories for unseen objects. In our system, objects are
represented with global pair-wise relations computed from 3D features
extracted by three RGB-D sensors. We show that our system outper-
forms a state-of-the-art approach particularly when only a few number
of training samples is used.

1 Introduction

Object categorization is important for a variety of tasks especially when systems
are expected to deal with novel objects based on prior knowledge. For instance in
robotic applications, categories can be linked to manipulation actions allowing
for performing predefined actions on novel objects (see e.g., [1]). Categorizing
novel objects is also useful in other applications such as driver assistance [2] and
video surveillance [3]. The prior knowledge is built from previous observations by
identifying common structures in the visual data. In this paper, we introduce an
object categorization method based on unsupervised clustering of 3D relational
features. Clustering [4] is a powerful tool to automatically find structures in the
data that can be, in this context, translated into categories.

In our system, visual data are provided in terms of view-point invariant rep-
resentations of objects extracted from 3D sensors. These representations code
the properties of objects by computing global, pair-wise relations from 3D fea-
tures (i.e., 3D texlets [5]). This space of feature relations is then expressed in
histograms, providing unique and specific object descriptors. Moreover, such
descriptors provide a fixed-length feature space, which can be directly fed into the
clustering algorithm. The representations used here have been found to achieve
high performance on object instance recognition [6].

In this paper, we apply hierarchical agglomerative clustering [7]. In contrast
to flat clustering algorithms such as k-means, hierarchical clustering allows for
overlapping of categories (see Fig. 1a for an illustration). This means that very
similar categories are nested within larger clusters forming a structure in which
more generic categories are found on top of less generic ones. This provides
flexibility in selecting the abstraction level.
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(a) Illustrative hierarchical clustering
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(b) Examples of labeled ob-
jects

Fig. 1. Examples of hierarchical clustering and object labeling. The thumbnails are
resized for better visualization and they don’t necessarily reflect their actual relative
sizes.

Existing object categorization methods assume that objects belong to
mutually-exclusive (single) categories [8]. In this paper, we consider scenarios
where objects can have multiple, nested categories (see Fig. 1b). Such scenarios
are very common when dealing with everyday objects. One important aspect of
this approach is that it is inherently capable of providing multiple categories.
In contrary, other approaches will not only require learning multiple classifiers
(see e.g., [8]) but also—as we show in this paper—perform poorly on nested
categories.

To evaluate the system, we hand-labeled our benchmark object set with a
number of visual categories. We use the labeled categories from the training
subset to find the best matching ones in the hierarchy. Then, we evaluate the
performance of the system on the test subset. Note that although the hierarchy is
built unsupervised, finding the corresponding categories is done in a supervised
way. This is, however, necessary for evaluation. This procedure is repeated using
different parameterizations of the visual representations in order to empirically
find the best set of parameters for each category.

We compare this approach to a supervised approach using Random Forests [9]
using the same visual features. In addition, we make a comparison with a state-of-
the-art method (Hierarchical Matching Pursuit, HMP [8]) that works on RGB-D
data and extracts distinct visual features. The main achievements of this work
can be summarized as follows:

– We introduce an object categorization method that is capable of predicting
multiple, nested categories.

– We show that—using hierarchical clustering for finding categories—we per-
form better than classification with Random Forests. Our method also out-
performs a state-of-the-art method on our dataset.
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– We demonstrate that the use of our visual features, compared to features
extracted a state-of-the-art method, allow the system to have high perfor-
mance with fewer training samples.

2 Related Work

Early research on object categorization focused on generic object representations
that capture shape at high levels of abstraction (such as generalized cylinders
[10], superquadrics [11], or geons [12]). The difficulty involved in reconstruct-
ing such abstractions from real objects has led to the development of solutions
that could recognize only exemplar objects [13] (i.e., object recognition), which
require little or no abstraction. Over the years, the gap between the low-level
and the high-level abstractions has been narrowed by introducing representations
that are invariant to a number of geometrical properties such as view-point, rota-
tion, and scaling. Such representations often make use of local descriptors such
the popular SIFT [14] features and various recently developed 3D features [15].

Belongie et al. [16] proposed representing objects using ‘shape contexts’,
which uses relative shape information within a local neighborhood. The shape
contexts were later extended to 3D in [17]. In this paper, we use shape relations
of 3D features presented in [6], which are similar to shape context but are defined
in a global context. Additionally, we go beyond the work in [6] by addressing
the scale-invariance to obtain a more abstract representation that is important
for object categorization.

Recently, hierarchical approaches for object representation have shown high
performance on large dataset [18]. Notably, Bo et al. [8] introduced a multi-
layer network that builds feature hierarchies layer by layer with an increasing
receptive field size to capture abstract representations. They shows that their
method achieves state-of-the-art performance in a large-scale RGB-D dataset of
objects [19]. It is worth noting that these results are based on very large training
data with significant computational cost.

Existing object categorization systems typically apply supervised learning to
recognize object classes that correspond to labeled categories and associate only
one category per object (single-label) [1,8]. In our approach, to summarizing the
novelty, categories are learned in an unsupervised way using hierarchical agglom-
erative clustering [7]. Based on that, we built a method capable of associating
more than one category per object (multi-label). Building such a hierarchy can
be seen as a way to obtain higher levels of abstraction (from the visual features)
where more generic categories are formed at the top of the hierarchy.

3 System Description

The components of the object categorization system introduced in this paper are
shown Fig. 2. The system operates in a set-up in which three views are captured
by three Kinect sensors, which are mounted in a close to equilateral triangular
configuration. The process starts with scene preprocessing for table removal and
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Fig. 2. System Overview: block diagram of the different components.

object segmentation in the 3D point cloud data. In following, we describe in
detail the other components.

3.1 Object Representation Using Histogram of Relational Features

For the approach we introduce in this paper, object shapes are described as
distributions of relations between pairs of 3D features. The relations we use are
intrinsically pose-invariant.

From RGB-D data (Kinect sensor), we extract our 3D features—3D texlets [5].
The 3D texlet has both position and orientation, and provides absolute infor-
mations (relative to an external reference frame) of objects in the 3D space. In
our system, we combine 3D texlets from three view resulting in a rather com-
plete object information (see Fig. 3a). To describe an object, we compute a set
of pair-wise relations from all pairs of texlets belonging to the object.

Shape relations are similar to the 3D shape context introduced as local
descriptors by [17], however, they are used here as global descriptors of objects.
Having combined multiple 3D views of objects allows such global descriptors to
become robust and rich representations for fast learning.

In [6], we defined in detail three shape relations used for object instance
recognition, namely, Angle Relation Ra(ΠT

i ,ΠT
j ), Distance (Euclidean) Rela-

tion Rd(ΠT
i ,ΠT

j ), and Normal Distance Relation Rnd(ΠT
i ,ΠT

j )—they are also
depicted in Fig. 3b. Note that the relations transform an absolute pose-dependent
representation into a relative pose-independent one. For instance, the distance
relation Rd transforms texlets’ positions into inter-texlet distances.

The two distance relations are scale-variant, which is suitable for object
instance recognition where object size matters and shall be encoded. However, for
object categorization, because what defines a category is usually independent of
scale, scale-invariance is crucial. Therefore, we introduce a new scale-invariant
distance relation referred to as Scaled Distance Relation, Rsd(ΠT

i ,ΠT
j ). The

scaled distance is computed by dividing the Distance Relation by the maximum
distance within an object. For robustness against outliers, the maximum distance
is calculated as the median value of the highest 10 % distance relation values.
Figure 3c shows an example of two objects with different sizes (belong to the
same category), comparing using distance and scaled distance when representing
objects. One aspect we investigate in the experiment section is the performance
of the system on each category when combinations of different relations are used.

The final object representation is obtained by binning the selected relations
in multi-dimensional histograms, which model the distributions of the relations
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Fig. 3. Texlet’s shape relations. (a) extracted 3D texlets of an object. (b) definition of
three shape relations. (c) 2D histograms of two objects belonging to the same catego-
rize. In the right column the distance is scaled

in fixed-sized feature vectors fed to the learning algorithm. Examples of 2D
histograms are shown in Fig. 3c. Different values of binning size are also investi-
gated in the experiments. Another process that is optionally performed on our
histograms is smoothing using ND Gaussian filters to reduce the noise.

3.2 Finding Categories Using Hierarchical Clustering

HierarchicalClustering.The quality and the invariance properties of the object
representation presented in the previous section make it attractive for object cat-
egorization. We propose using unsupervised category learning through clustering
using agglomerative hierarchical clustering [7] (R implementation [20]). By doing
so, we build a hierarchy of clusters from unlabeled data where each cluster (branch-
ing point in the hierarchy) is considered as a potential category that can be linked
(by an autonomous process) to an actual category. Note that we use the Euclidean
distance as a dissimilarity measure (between all pairs of data samples or object
instances in our case) whereas as a linkage metric, we use Ward’s criterion, which
aims at minimizing the total within-cluster variance [7].
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Finding Categories From Human-Labeled Categories. Particularly for
this paper, to validate our approach, we use human-defined labels from the train-
ing samples (Fig. 1b shows some examples) and then we find the corresponding
categories in the hierarchy. Those definitions of categories are rather subjective
and might not correspond to real ones. Therefore, we also compare our approach
with other approaches—one of which even extracts different features from the
raw RGB-D data.

To find a category in the hierarchy that correspond to a labeled one, we
search for the cluster that contains the most similar set of object instances to
the set of objects labeled as such. To compute the similarity, we use Jaccard’s
index [21], which measures the similarity between finite sample sets and is defined
as the size of the intersection divided by the size of the union. The Jaccard’s
index rewards the existence of the object in the prospective cluster and also pun-
ishes for the absence thereof. This prohibits assigning categories to very specific
(at the bottom of the hierarchy) or very generic clusters (at the top of the hier-
archy).

Note that, although building the structure is done in an unsupervised way,
finding the learned categories corresponding best to the labeled categories is
performed in a supervised fashion (based on labeled data).

Predicting Categories for Novel Objects. To allow the system to categorize
objects, the proposed method should provide a prediction mechanism. Tradition-
ally for supervised learning, the learned model is used to make predictions for the
novel object. Such a model usually forms a map of the feature space allowing for
making predictions based on the features of the novel object. In our method, the
principle concept we propose for prediction is to identify where the novel object
falls in the learned (previously-built) hierarchy. This requires involving the train-
ing samples because the hierarchy is built directly from the training data. This
seems computationally inefficient especially for large set of training samples.
However, we show in this paper that our method requires few training samples.

To implement this, in the prediction phase, we first add the novel object
to the objects previously used for training. Once the hierarchy is built again,
we identify the closest sibling of the novel object. The novel object will then
inherit all the branching points—including the ones associated with the labeled
categories—from the sibling object. Finally, the predicted categories for the novel
object will be all the inherited categories.

4 Dataset and Experiments

Dataset. To benchmark our approach, we use a dataset of 100 objects with 30
different samples (random poses) for each object1. The dataset was originally
created to test the performance of the object instance recognition present in [6].
The selection of objects covers a wide range including industrial and household
objects, some of them taken from the KIT dataset [22].

1 http://caro.sdu.dk/index.php/sdu-dataset.

http://caro.sdu.dk/index.php/sdu-dataset
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To validate our approach, we hand-labeled the objects in the dataset with
purely visual as well action-related categories (see Fig. 1b). Note that a single
object can have multiple (nested) categories. This allows us to study the perfor-
mances of the different approaches on such cases.

Comparison Methods. The approach we introduce in this paper is compared
with two different methods that use classical supervised learning. We apply
those methods in N-classifier mode where N refers to the number of categories.
This allows the methods to provide multiple categories per object and hence
make them comparable with our approach. The first method we compare with
is a Random Forest classifier, which uses the same features as the introduced
approach (see Sect. 3).

The second method is HMP [8], which is a state-of-the-art method. HMP is
a multi-layer sparse coding network that builds feature hierarchies layer by layer
with an increasing receptive field size to capture abstract representations from
raw RGB-D data. Note that HMP was not designed to combine features from
different views in the 3D space. Therefore, to make it comparable to our multi-
view system, we provide all the three views in the training phase. Additionally,
we compare all methods when only one view is used.

The comparison also includes a ‘dummy’ classifier that generates uniformly-
distributed random category predictions. Comparing the different methods with
this classifier may indicate whether a particular method has failed to achieve
reasonably good performance on the category in question.

Histogram Variations. In the experiments below, we vary the parametrization
of our object representation. The objective is to find out the set of parameters
that yields the best performance on each category. Note that those variations are
applied to the methods in which our object representation is used (namely, the
proposed approach and the Random Forest approach). The object representation
was discussed in detail in Sect. 3. The exact list of parameters we vary are the
following:

– Set of relations: We vary what relations to use for representing objects from the
ones defined in Sect. 3: Angle Relation, Distance Relation, Normal Distance
Relation, and Scaled Distance Relation.

– Relational dimensionality: We vary how we combine relations in ND his-
tograms. The combinations we apply are: 1D histograms of the individual
relations and 2D histograms of Angle Relation with one of distance relations.

– Histogram binning: Here, we vary the ND histogram bin size among the fol-
lowing values: 10, 20, 50 and 100. For simplicity, the bin size is fixed across
dimensions in the 2D case.

– Filtering: We analyze the impact of applying filtering with Gaussian kernel.

In addition to the above-mentioned parameters, we also experiment with the
impact of performing vector normalization on the final object representation.

Experimental Procedure. In the following experiments, we study the perfor-
mance of each method for categorizing novel objects. Therefore, in each experi-
ment, the object dataset is divided into training and test subsets where sampling
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Fig. 4. The performance of object categorization on 7 categories. In (a) three camera
views are used whereas in (b) one camera view is used. Using a 2D histogram of angle
and scaled distance (with 10 bins at each dimension) yields the best performance in all
categories except for ‘bowl like’ (in this case, combining two 1D histograms of angle
and scaled distance with 12 bins). Also, applying filtering and vector normalization
helps achieving the best performance in all cases.
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is performed in a way that prohibits the presence of samples from the same object
in both subsets. Allowing otherwise, results in performing recognition of object
instances rather than object categories in which in our tests we obtained sig-
nificantly higher performance. The size of the test subset is set to 100 samples
per category whereas the size of the training subset is allowed to vary—all sam-
ples are randomly chosen. Each experiment is executed 20 times from which the
average F1 score and the standard deviation are computed. Note that the same
training and test subsets are passed to each method.

In the result shown in Fig. 4b, the size of the training set varies among certain
values: 1, 3, 5, 10, 15, 20, 30, 50, 70 and 100 per category. By doing this, we
are able to study the performance of each method when only a small number of
training samples are available and how that changes when the number increases.

Results. Figure 4 shows the performance of object categorization on 7 cate-
gories. Each sub-figure shows the average F1 score and the standard deviation
for a varying number of training samples. The average performance on all cate-
gories is also shown in a separate sub-figure. The results show that the method
introduced in this paper generally achieves the highest performance in identi-
fying the categories particularly when a few training samples are used. This
means that our method is able to learn faster and also generalize better when
the training samples are limited.

Conclusion. Both the proposed method and the Random Forest approach use
the same extracted visual representations of objects. This indicates that finding
categories in clusters formed hierarchically in unsupervised way has a better
generalization than the supervised learning of categories. Additionally, because
both approaches outperform the HMP method, which extracts different visual
representations, the results suggest that our visual representation provides strong
features for describing object categories. This is particularly clear in the three-
view case where our representation allows for combing the three views in 3D
resulting in a rather complete object description.

For some categories (namely, ‘container’ and ‘has rim’), our method achieves
relatively good performance in identifying the categories whereas the other meth-
ods fail (perform comparatively the same as the dummy classifier). Those cat-
egories are nested categories (i.e., in this case, any container also has a rim).
This indicates that our approach is able to identify the relation between the two
categories. The supervised approaches, on the other hand, try to learn discrim-
inatively the two categories, which for most samples have very similar represen-
tations. This may explain their failure in identifying the nested categories.

Acknowledgment. This work has been funded by the EU project Xperience (FP7-
ICT-270273).
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