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Abstract— Residual noise analysis is useful in designing op-
timal filters for noise reduction. To begin we derive the vari-
ance of residual noise 2

r , from Poisson and Gaussian series 
after filtered by a Gaussian filter. For Poisson series, we 
have 0

*2 4/2 Ir , and for Gaussian series 

0
22 4/2r , where *I is the noiseless signal in the 

Poisson series, and 0 are the standard deviations of the 
Gaussian series and the Gaussian filter, respectively. Then by 
utilizing these results, we design an optimal filter with aim to 
minimizing the local noise-to-signal ratio in a Poisson series 
with )sin(40* kxAI , which can represent the change of 
contrast and resolution of an image with A and k, respectively. 
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I. INTRODUCTION  

Noise reduction is one of the main practices in image 
processing and has broad applications in segmentation, 
registration and so on. Ionizing-radiation imaging systems 
such as x-ray computed tomography (CT), cone beam CT, 
and positron emission tomography (PET) have been widely 
used in diagnosis, image-guided treatment and treatment 
vilification. Besides the benefit from these medical imaging 
systems, the potential long term effect of the ionization dose 
is of concern. Ionization is one of the carcinogens. The 
probability of radiation induced cancers is proportional to 
the radiation dose. Use of low dose imaging is desired in 
clinic practice, but increases the noise-to-signal ratio in the 
projections and thus reduces the image quality of the recon-
structed image.   

The goal of noise reduction is to filter out the noise and 
meanwhile preserve the structures in the original image, so 
that the processed image can provide acceptable clinical 
benefit while lowering the exposure risk. Usually, noise 
reduction is accompanied by structure blurring. In order to 
better balance de-noising and structure blurring, multi-scale 
techniques use local structure information and noise proper-
ty to adjust those parameters in the algorithms or fil-
ters[1,2]. Residual noise analysis can be useful for selecting 
those optimal parameters. To our best knowledge, there is 
no publication giving the analytical form of the variance of 
residual noise after a stochastic process is filtered by a 
Gaussian. In this work, we derive the form of the residual 
noise from a Gaussian and Poisson processes filtered by a 

Gaussian. Gaussian and Poisson noises are the most com-
mon noise in medical images. Application of the residual 
noise analysis to designing filters for minimizing noise-to-
signal ration is also given. 

II. DERIVATION OF THE VARIANCE OF RESIDUAL NOISE 

A. Gaussian noise 

Assume a series of Gaussian noise { x }, x=1, 2, 3, …, 
being filtered by a flat filter: 

otherwise0
, 00 xxxy

x ,          (1) 

where both y and 0x are positive. The result is again a 
noise series { 0' x }: 
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Gaussian noise is independent and identically distributed 
(i.i.d.), i.e., for N

i iY
1

, one has the variance of Y, 
22 NY . Thus from (2), the variance of the resid-

ual noise 0' x  is 
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Namely, the variance of the residual noise decreases as the 
width of the flat filter.  

Further, for a statistically spatially independent noise se-
quence, it can be treated like a constant when integrated in 
space. Particularly, following expression holds.  
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Where 2 x is the mean width of the Gaussian bell shape 
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By replacing 2 0x in (3) by 2 x in (5), we obtain the variance 
of residual noise from a Gaussian noise series (with vari-

© Springer International Publishing Switzerland 2015
D.A. Jaffray (ed.), World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada, 
IFMBE Proceedings 51, DOI: 10.1007/978-3-319-19387-8_50 

207 



ance 2 ) filtered by another Gaussian filter (with proper-
ty variance 2

0 ) as 
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The variance of residual noise is inversely proportional 
to the standard deviation of the filter. When applying (6) to 
a pixelated image, we must have 12/4 0 , otherwise, 
the truncated filter is wholly within one pixel and thus there 
is no effect of the filter onto the image.  

B. Poisson noise 

Again, we consider a Poisson series *II filtered by 
a flat filter (1), where *I is the noiseless constant signal. We 
have  

0

00

*
0

'

2
1;

xx

xx
dtt

x
IxxI                                  (7) 

or 
0

0

*
00

'
0 2;2

xx

xx
dttIxxxIx .         (8) 

Note that for Poisson noise I, the function of 0

0

xx

xx
dtI  is 

equivalent to a counter detector, where the buffering time 
equals 02x . For a coming Poisson sequence, no matter how 
long the buffering time is, the signal from the detector is 
still in Poisson, but the noiseless signal is proportional to 
the buffering time. For our case, we have  
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What we expect is the variance corresponding to *I . From 
(7) and (8), 
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Again, for spatially independent noise, the Gaussian filter is 
equivalent to a flat filter with the mean width given in (5). 
We obtain the variance of residual noise from a Poisson 
process after filtered by a Gaussian as 
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The variances of the residual noise in (6) and (11) are the 
same because for Poisson noise the variance is equal to *I . 
This is reasonable because Poisson process can be treated as 
Gaussian when *I is sufficiently large.  

 

It is valuable to point out that (a) the result (11) can also 
be obtained by using the i.i.d. property of a Poisson series, 

and (b) 0

0

xx

xx
dtI  is a Poisson process but 0

002
1 xx

xx
dtt

x
is 

not simply because a Poisson process is defined in integers. 

III. APPLICATION TO MINIMIZING NOISE-TO-SIGNAL RATIO 

Consider performing a Gaussian filter on a Poisson noise 
fluence consisting of noiseless fluence *I and noise  
 

,          ***

*

GIIIG
GIGIG

        (12) 

where  is for convolution operator. The term ** IIG  
represents the structure damage and G  the residual 
noise. Balance of noise reduction and structure preservation 
can be reached by minimizing following expression,  
 

.
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2
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In case that  is independent on *I , and 2  is re-

placed by *I in the denominator, g becomes the noise-to-
signal ratio of the filtered projection. For Poisson noise,  is 
dependent on *I , but g is still a proper measurement of the 
filter’s performance. Ideally g = 0, and in practice 1,0g . 
The term )(2  in (13) is not relative to filter G, but used 

here to normalize the quantity g when 0 =0, or no filter is 

applied. As 0 increases from zero, the effect of noise re-
duction may be larger than that of structure blur, and the 
value of g decreases until these two effects reach a balance. 
Further increase of 0 will cause g to increase, and in this 
case, the signal-to-noise ratio (SNR) of the processed image 
will decrease. By searching the value of g with various 
values of 0 , one may numerically obtain optimal 0 but 
the searching can be time consuming.  

If the form of *I is known, we can derive the optimal 

0 to obtain the filtered series with maximal SNR. In this 
work, we assume the noiseless signal 

)sin(0
* kxAII ,         (14) 

where I0, A and k are parameters, with following two con-
siderations. (a) (14) may stand for the dominant form of the 
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local Fourier expansion of an image, and (b) the parameters 
A and k represent the contrast and resolution of an image 
respectively, and I0 represents mAs. 

kxkAIIG 222
0

22**2 sin)2/exp(1 .  (15) 
Thus, from (11) and (13), we have 
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Or when we consider the mean behavior 
of )( **2 IIG , )(2 G , and )(2 over 

,x , we have 
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The optimal 0 is obtained when g or <g>is minimal, i.e. 

0/ 0g or 0/ 0g  in (16) or (17).  

IV. RESULTS  

In this section, we give the comparison of the analytical 
results with numerical simulations. The Gaussian and Pois-
son noise series were generated by using Matlab functions 
random(‘norm’, mean, std) and poissrnd(mean), respec-
tively. 

Figure 1 displays 2
r from a Gaussian series with  =2 

and 4 filtered by Gaussian filters with 0 . Fig. 2 shows 
2
r from a Poisson series with noiseless signal 40*I  and 

80, and filtered by Gaussian filters. Both figures show that 
the analytical results (ana2 in the legends) agree with those 
from numerical simulations. The discrepancy is due to the 
pixelation of the filter. As 0 increases, more pixels are 
effectively covered within one convolution, resulting in the 
decrease of the pixilation effect of the filter, and thus the 
discrepancy decreases. When the value of 2 x is from the 
pixelated filter, the discrepancy is much smaller (ana1 in the 
legends). The value of 2 x is from the pixelated filter was 
calculated as follows. 

The pixelated filter  
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Fig. 1. A comparison of G2 from derived (10) with numerical 
simulation, where the Gaussian noise has zero mean and standard devia-
tions as indicated in the legend. “num” is for numerical simulation, “ana2” 
is for analytical result from (11), and “ana1” is for analytical result (10) but  
2 x is from (19). The inserted figure displays the difference between the 
derived and numerical simulation. 

 
Fig. 2. The same as in Fig. 1 except for Poisson process with the noise-
less signal as indicated in the legend. 
 

 Figure 3 displays the values of <g>from the analytical 
result (17) with 2 x calculated from (19), and from the di-
rect simulation on (13), where the Poisson noise was gener-
ated with noiseless signal (14). In the numerical simula-
tions, the values of g’s over 20 periods of )sin(kx were 
averaged. It is seen that the analytical results agree with the 
numerical simulations, particularly on the optimal 0 ’s that 
correspond to the minimal values of <g>. In addition, the 
optimal value of 0 is more sensitive to k than to A, and so 
is g. Hence, the multi-scale problem is mainly a multi-
resolution issue. Finally, when k is large, <g> is still far 
away from zero even at optimal 0 ’s. This indicates the 
limitation of multi-scale Gaussian filters. 
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Fig. 3. Comparisons of <g>from derivation (17) with numerical simula-
tions of (13) when the noiseless signal is ...,3,2,1),sin(40 xkxA  (a)  
A=10 and k=0.3, 0.5 and 1 for simulating different resolutions. (b) k=1 and 
A=5, 7 and 10 for simulating different contrasts.  

V. CONCLUSIONS  

We have derived analytical forms of the variance of re-
sidual noise of Gaussian and Poisson processes after filtered 
by a Gaussian filter. It is straightforward to extending the 
derivation to other filters. 

 
We applied the derived forms to determining the optimal 

variance in the multi-scale Gaussian filters. In real images, 

such as cone beam CT projections, the value of noiseless 
signal is not known but may be estimated[3] and then itera-
tively approached to the expected. Use of analytical form of 
the variance of residual noise could save the computation 
and speedup the convergence in the iterative. Furthermore, 
some optimal noise reduction algorithms such as penalized 
weighted least-squares method[4,5] often assume some 
smoothness properties of the noiseless image. These proper-
ties could be combined with analytical form of the variance 
of residual noise to further optimize the parameters in the 
algorithms.  
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