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Abstract— Because of its physiological and clinical im-
portance, heart rate variability (HRV) has been investigated 
with many techniques, including time-frequency methods.  In 
this study, time-varying frequency changes in the lower bands 
of continuous wavelet transforms directly computed from 
ECG signals are quantified with statistical and information-
theoretic measures.  These metrics are compared for resting 
and lower body negative pressure (LBNP) conditions, and with 
standard HRV metrics.  Although the latter confirm the ex-
pected lower variability in the LBNP condition, metrics from 
the main frequency band in the wavelet transform correspond-
ing to the observed range of heart rate (0.5–1.25 Hz) exhibit 
statistically significant higher variability than baseline condi-
tions. It is proposed that a more complete HRV analysis can 
emerge when lower-band variability metrics of ECG in the 
time-frequency domain is used in conjunction with more tradi-
tional time and frequency domain approaches. 

Keywords— Heart rate variability, ECG, continuous wave-
let transform, entropy, approximate entropy. 

I. INTRODUCTION  

Numerous approaches have been developed to analyze 
how heart rate variability (HRV) is linked to underlying 
autonomic nervous system (ANS) activity by quantifying 
time and frequency domain aspects of HRV [1].  The high 
frequency (HF) (0.15-0.40 Hz) component is associated 
with parasympathetic activity, whereas low frequencies 
(LF) (0.04-0.15 Hz) are produced by mostly sympathetic 
and some parasympathetic nerve activity.  The LF/HF ratio 
has been proposed to quantify the dynamic relationship 
between sympathetic and parasympathetic activity [2].  

While traditional Fourier transform (FT) HRV analysis 
generally relates HRV to experimental conditions, some 
difficulties arise.  First, HRV signals are generated, post 
hoc, from the original RR intervals of electrocardiograms 
(ECGs), and usually undergo resampling and other post-
processing to obtain a uniformly-sampled signal suitable for 
frequency analysis.  The resulting HRV is susceptible to 
artifacts introduced during these processes [3].  

Second, HRV frequencies do not directly correspond to 
the actual frequency of important ECG features [4].  The 
standard very low, low, and high frequencies (VLF, LF, HF, 
respectively) are useful because numerous studies have 

correlated known physiological stressors with FT results.  
The relationship, while meaningful, is indirect.     

Third, with the FT, it is difficult to assess when the 
changes in the heart rate occur, and to detect transient 
events [5]. As a result, investigators are turning to time-
frequency approaches, such as wavelet transforms, to assess 
the dynamic characteristics of HRV [5, 6].     

The most plentiful source of information about heart ac-
tivity is found in the original ECG, for which many analysis 
and interpretation techniques in both the time and frequency 
domains are available [5, 6].  In this paper, a complemen-
tary approach is proposed to enhance understanding of the 
HRV-ANS relationship. Specifically, it is suggested that 
HRV can also be studied directly in the time-frequency 
domain from ECG by quantifying variability metrics of 
instantaneous changes in frequencies in a continuous wave-
let transform (CWT) in a specific frequency band corre-
sponding to the heart rate.  The standard RR interval 
measures are complemented with analogous fluctuations in 
frequency in the time-frequency domain, as changes in 
frequency correspond to beat-to-beat variation.  

The experiments performed in the current study used a 
known orthostatic stressor – lower body negative pressure 
(LBNP) – to increase sympathetic tone. It was hypothesized 
that corresponding changes in heart rate variability can be 
statistically quantified in terms of ECG signal roughness, 
entropy, and approximate entropy, through the CWT.  

II. MATERIALS AND METHODS 

A. Subjects and experimental protocol 

Nine healthy subjects (7 men, 2 women) participated in 
this study. The participants were 27 ± 5 years of age, 171 ± 
3 cm in height, and 79 ± 9 kg in weight (means ± SE). All 
subjects provided informed, written consent for the experi-
mental protocol as approved by The University of Western 
Ontario (UWO) Health Sciences Research Ethics Board. 

Subjects reported to the laboratory at UWO on two sepa-
rate occasions within a one-week period. During the first 
session, subjects participated in an orientation session in 
which they experienced LBNP. During the experiments, 
subjects – having refrained from food (two hours), caffeine 
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and nicotine (12 hours), and exercise (at least 12 hours) – 
lay on their backs with the lower torso to the iliac crest 
enclosed in an LBNP chamber, and completed the baseline 
and LBNP (–20 mmHG) experimental five-minute condi-
tions in a supine posture. 

Analog signals for ECG (standard three-lead, sampled at 
1 KHz), as well as other parameters, were collected as part 
of a larger study with an on-line data acquisition and analy-
sis system (PowerLab, ADInstruments; Castle Hill, NSW, 
Australia). ECG signals were bandpass filtered at 10-25 Hz. 

 
B. Continuous wavelet transform 

The CWT captures time-frequency information at arbi-
trary resolutions, with frequency content better resolved at 
low frequencies, and transient events better resolved at high 
frequencies.  Specific wavelets, (t), where t is time, can be 
selected for different applications.  The Morlet wavelet, 
used in this study and in many others, has been found to be 
particularly useful, as its scale has a straightforward linear 
relationship to the Fourier period, and is expressed as [7]: 

 tfj
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where j = -1, fc is the centre frequency (the position of the 
global maximum of the Fourier transform of  (t)), and b > 
0 is the bandwidth parameter.  The bandwidth b and centre 
frequency were set to 1, so that frequency = signal sampling 
frequency / wavelet scale (f = fs / a).  The CWT using the 
basis function in Eq. 1 was calculated for 128 frequencies to 
a maximum of 2.4805 Hz, with f = 0.0195 and fs = 1 KHz. 
 
C. Wavelet metrics 

High power areas in the CWT often appear as “blobs”, 
or, in the present study, as thick “bands” (see Fig. 1).  To 
determine the frequencies in the main CWT band, the ridge, 
(continuous maxima across the band) was identified through 
a ridge detection process in the 0.75-1.40 Hz range [8].  In a 
few cases, small gaps in the ridge were connected manually, 
based upon visual inspection of the CWT representation.  

Three variability metrics, roughness, entropy, and ap-
proximate entropy, were calculated from ridges of the main 
power band of the CWT for the baseline and LBNP condi-
tions, and compared.  It was visually observed that the main 
bands in the LBNP CWTs were “wavier” and more com-
plex than the corresponding baseline bands. All Morlet 
CWTs and CWT metrics were calculated in the Matlab 
environment (The Mathworks, Natick, MA). 

Roughness (R) quantifies the departure from linearity of a 
time series, and is given as [9]: 

 

 

 
Fig. 1 Morlet CWT for baseline (top) and experimental (LBNP) (middle) 

conditions, and ridges extracted from the transforms (bottom) 
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Entropy (H) quantifies the unpredictability or disorder in 
a random variable [10].  In the wavelet domain, low entro-
pies occur when the larger coefficient energies are concen-
trated at only a few discrete locations [6].  H is given as: 
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where N is the length of the ridge.  p(x) was computed with 
a Gaussian kernel with range 0.75-4.0 Hz, and with 200 
equispaced points.  

Approximate entropy (ApEn) is a measure of complexity 
that quantifies self-similarity, and has been applied to heart 
rate analysis [11].  To compute ApEn, a positive integer m 
(length of a sequence of data to be compared with other 
sequences of length m) and a radius r  0 (self-similarity 
tolerance) are selected.  The approximation of the correla-
tion integral C for each i (0  i  N – m) is computed as the 
mean of the number of times that the intra-sequence dis-
tance between two samples is less than r. ApEn is then [11]: 
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In the experiments performed here, m = 5, r = 0.025, and the 
original signal was down-sampled every 5th sample. 
 
D. HRV time-and frequency-domain metrics 

Standard HRV measures used in this study were: the 
standard deviation of normal-to-normal (NN) interval 
(SDNN), which reflects all the cyclic components responsi-
ble for variability in the periods of recording; the root mean 
square of successive differences in NN intervals (RMSSD), 
which quantifies parasympathetic nervous activity [5]; and 
the number of successive differences of intervals that differ 
by more than 50 msec (NN50).  In the frequency domain, 
the LF/HF ratio was computed with a 1024-point FT ap-
plied with a 50% overlap Welch smoothing window.  The 
maximum frequency analyzed was 0.5 Hz.  Frequency 
bands were 0-0.04 Hz (VLF), 0.04-0.15 Hz. (LF), and 0.15-
0.4 Hz (HF). All standard metrics were computed in the 
PowerLab environment.  

Because the samples were dependent (the baseline and 
experimental data were collected from the same subject), 
the paired differences t-test was performed on the mean of 
baseline metric minus the mean of the LBNP metric, com-
pared at  = 0.05.  Additionally, because of the dependence 
of the two samples and the small sample size, the non-
parametric two-tailed Wilcoxon signed rank test was per-
formed.  All analyses were performed in SPSS (IBM). 

III. RESULTS 

The CWT variability measures of the ridge of the main 
0.5-1.25 Hz frequency band are shown in Table 1.  The 
CWT power is significantly less linear (R), more disordered 
or unpredictable (H), and more complex (ApEn) in the ex-
perimental LBNP condition than in the baseline readings, 
contrasting with the HRV metrics, which exhibit the ex-
pected behavior of less variability in the experimental con-
dition.  The Wilcoxon p values support the t-test results.   

For the standard HRV time- and frequency-domain met-
rics, the statistical analysis of the nine signals per condition 
is also shown in Table 1.  Of these metrics, only SDNN was 
not significant (p = 0.441).  This result is not surprising, as 
SDNN reflects long-term measurement of HRV.  The non-
parametric Wilcoxon tests also corroborate the significance 
of the HRV metrics. The LF/HF ratio (frequency domain) 
was also significant, with a higher LF content in the LBNP 
experiments, and a decrease in variability, as expected [12].   

Table 1 CWT and HRV variability measures 

Baseline – 
LBNP 

Mean Std. Dev. 2-tailed p Wilcoxon p 

CWT     
R -1.341a 1.657a 0.041 0.002 
H -0.629 0.357 0.001 0.002 
ApEn -4.433b 3.401b 0.004 0.002 
     

HRV     
SDNN -4.881 19.223 0.468 0.441 
RMSSD 22.781 24.366 0.023 0.038 
NN50 55.222 50.791 0.011 0.028 
LF/HF -2.027 2.051 0.018     0.008   
a x × 10-5, b x × 10-3 

IV. DISCUSSION 

While important features may be present in all CWT 
bands, especially in the regions associated with low and 
high frequencies (< 0.4 Hz), the experiments in this paper 
focus on the band around 1 Hz, which contains the greatest 
power, and corresponds directly to the heart rate.  The 
standard time and frequency domain HRV metrics are dif-
ferent, but complementary, to those obtained from the 
CWTs, and generally agree with the results of similar stud-
ies [13]. Careful analysis of the differences between the 
these metrics is necessary, however, to avoid misinterpreta-
tion. For example, the control LF/HF ratio was significantly 
lower than in LBNP, meaning that LBNP causes decreased 
high frequency and/or increased low frequency power. 
Thus, researchers may erroneously conclude that increased 
sympathetic tone should result in a more regular power 
band in the CWT plots. However, variability increases with 
sympathetic nerve activation, as seen in the CWT plots.  

The large deviations (spikes in LBNP CWT) from the 
mean heart rate may correspond to transient adjustments of 
the ANS to compensate for fluctuations in blood pressure. 
With low blood pressure, afferent baroreceptor firing rates 
decrease, resulting in increased efferent sympathetic inner-
vation and decreased parasympathetic innervation to the 
heart. The net result is an increase in heart rate and stroke 
volume. Peripheral resistance is also increased due to con-
striction of blood vessels via sympathetic innervation. It is 
possible that with LBNP, the initial ANS response over-
compensates, which in turn activates antagonistic pathways. 
It is known that muscle sympathetic nerve activity during 
LBNP increases irregularly [14], possibly supporting the 
notion of phase-lag ANS regulation of blood pressure dur-
ing LBNP. During nonhypotensive LBNP (-5 mmHg), mus-
cle sympathetic nerve activity does increase, but a direct 
link to changes in heart rate is unclear [15]. As the link 
between ANS activation and heart rate activity is complex, 
the traditional metrics used in HRV cannot capture the time 
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at which these transient fluctuations occur (and therefore 
their correspondence with specific events cannot be deter-
mined), nor their rate of occurrence. 

Although the current study treats variability measures 
over the entire length of the signal, how the signal evolves 
over time can also be investigated with the CWT.  For stud-
ies where the most powerful CWT bands correspond to 
traditional bands, quantification of CWT metrics, as de-
scribed in this paper, become particularly useful.  

V. CONCLUSION 

The variability measurements (R, H, and ApEn) comput-
ed from the CWT band corresponding to the heart rate pro-
vide an alternative, complimentary analysis of the ECG–
ANS relationship. Clinicians and researchers using these 
techniques have the ability to visually inspect the CWT plot 
and to subsequently determine time points of interest and to 
relate those features to physiological events. 

Future research will investigate dynamic change, which 
cannot be accurately measured by traditional HRV tech-
niques.  Transient changes in physiological response can be 
easily identified with the CWT.  Additionally, in assessing 
changes over time, a rigorous method of choosing CWT 
parameters and basis functions is required.  Whether the 
centers of gravity of the main bands are increasing or de-
creasing in dynamic conditions may provide further insight 
into various disease states, and may thereby enhance clini-
cal usefulness of time-frequency techniques.  
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