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Abstract— We present and evaluate an algorithm for image 
reconstruction from a small number of projections in 3D x-ray 
computed tomography (CT). The proposed algorithm is similar 
to the class of projected gradient methods. Because each itera-
tion of these algorithms for large 3D CT reconstruction is very 
computationally demanding, our goal is to devise an algorithm 
with fast convergence. To achieve this goal, in the proposed al-
gorithm the gradient descent for reducing the measurement 
misfit term is carried out using a stochastic gradient descent it-
eration and the gradient directions are weighted using weights 
suggested by parallel coordinate descent. To further improve 
the speed of the algorithm, at each iteration we minimize the 
cost function on the subspace spanned by the direction of the 
current projected gradient and several previous update direc-
tions. We apply the proposed algorithm on simulated and real 
cone-beam projections and compare it with a well-known accel-
erated projected gradient algorithm, Monotone Fast Iterative 
Shrinkage-Thresholding Algorithm (MFISTA). Evaluations 
show that the rate of convergence of the proposed algorithm is 
superior to that of MFISTA. 

Keywords— Computed tomography, stochastic gradient de-
scent, parallel coordinate descent, projected gradient. 

I. INTRODUCTION  

Statistical and iterative reconstruction methods for x-ray 
computed tomography (CT) have received renewed interest 
in recent years. The majority of algorithms proposed for 3D 
CT in recent years are based on the class of projected gradient 
methods. Each iteration of these algorithms involves a gradi-
ent step to reduce the measurement misfit term followed by 
a proximal operator for the regularization term, which is usu-
ally the total variation. Accelerated versions of these algo-
rithms, such as FISTA, Nesterov's method, and ADMM have 
also been proposed for 3D CT [1-3]. 

In this study, we propose a new algorithm that is different 
from the basic gradient projection scheme in several ways. 
For reducing the measurement misfit term, we suggest a par-
allel coordinate descent update that will lead to a weighted 
gradient descent step. To improve the convergence speed of 
the algorithm, instead of performing full gradient descent 
steps, we perform stochastic gradient descent steps with di-
minishing step size. After applying the proximal operator for 
the TV regularization, this can be used as the new estimate of 

the image. However, in the spirit of methods such as the 
method of conjugate gradients, we will use this direction 
along with the directions of several previous image updates 
to define a subspace over which the cost function is approxi-
mately minimized in each iteration. We apply the proposed 
algorithm on simulated and real CT data and compare it with 
monotone version of FISTA (MFISTA) [1]. 

II. MATERIALS AND METHODS 

We denote the unknown image by  and the projec-
tion measurements by  and the system matrix with . 
Our goal is to recover an estimate of the unknown image by 
solving the following unconstrained problem: 

              (1) 

where the first term is the squared norm of measurement mis-
fit and the second term, the total variation (TV) of the image, 
reflects the prior assumption that the unknown image is 
piece-wise constant. 

Assuming that  is our current estimate, if we want to 
minimize the measurement misfit term with respect to its  
coordinate, the exact solution will be: 

                     (2) 

where  denotes the  column of . While a straight-for-
ward implementation of this algorithm is possible in theory, 
it will be impractical for 3D CT because of the very large size 
of the problem and because fast forward and back-projection 
algorithms process all measurements in one projection view 
at once. Therefore, we suggest the following parallel coordi-
nate descent iteration: 

             (3) 

where  is a diagonal matrix whose diagonal elements 
are norms of the columns of  and  is the proximal op-
erator for TV, i.e.: 

           (4) 

The inner update in (3) (i.e. the update prior to the appli-
cation of the proximal operator) is in the form of a weighted 
gradient descent. The algorithm can be made significantly 
faster by replacing this step with a stochastic gradient descent 
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algorithm [5,5]. To explain this idea, let us note that the 
measurement misfit term can be written as: 

 

where  is total number of projection views,  is the vector 
of measurements in the  projection, and  is the subma-
trix of  containing rows that correspond to the  projec-
tion. This form of a cost function is very conducive to sto-
chastic gradient descent. A full gradient descent iteration for 
this cost function will have this form: 

 
which is the same as the inner update in (3) save the multi-
plication by the diagonal matrix . A stochastic gradient de-
scent step will be as follows: 

 
where  is a randomly selected index from among the set 

 and  is the step size. 
Therefore, at each iteration of the algorithm, instead of 

performing a full gradient step, we perform  stochastic gra-
dient descent steps, where  is the number of projection 
views. The order of projection views is chosen randomly in 
each iteration and each projection view is used exactly once 
in each iteration. Stochastic gradient descents usually exhibit 
fast convergence in the initial iterations but their convergence 
rate deteriorates as the algorithm makes progress [6]. This is 
because the direction of a stochastic gradient is equal to the 
direction of the true (full) gradient only in expectation and 
the variance can be quite high. Therefore, it is common to use 
diminishing step sizes. We use a rule of the form 

, where  is the initial step size,  is an it-
eration number, and  is a decay parameter [6]. We used a 
value of  which we found empirically. As for the ini-
tial value, , we used different values for different projec-
tion views. Specifically,  was selected to be inversely pro-
portional to largest eigenvalue of the corresponding sub-
matrix , which is the Lipschitz constant of the gradient of 
the measurement misfit term associated with the correspond-
ing projection view (i.e., ). 

The iteration in (3) is in the form of forward-backward 
splitting algorithms. These algorithms are known to have a 
slow convergence rate. To improve their speed, several algo-
rithms have been proposed. In most of these algorithms (e.g. 
[1,3]), the speedup is achieved by exploiting the directions of 
previous updates. In other words,  is computed not only 
based on , but also . In sequential subspace optimiza-
tion, proposed in [7], directions of several previous updates 
are exploited and superior convergence rates are reported. 
This idea is very similar in essence to the method of conju-
gate gradients applied to quadratic functions. Following this 
idea, at every iteration of the algorithm we minimize the cost 
function in (1) over the subspace spanned by the direction 

suggested by (3) as well as the directions of K previous up-
dates. Formally: 

 

where 

 

and the coefficients  are chosen to minimize the cost func-
tion: 

 

 

This minimization is not easy because TV(x) is non-
smooth. The approach followed in this study was to sequen-
tially minimize the cost function with respect to individual 

s using golden section search. In our experience, the values 
of s did not change drastically between successive itera-
tions of the algorithm. Therefore, s  can be initialized to the 
values found in the previous iteration and a search performed 
in a small neighborhood around these values. This way, a sin-
gle sweep through s, starting with , was enough to find 

s to good accuracy. We used  in this study. 
In order to evaluate the proposed algorithm, we applied it 

on a set of simulated data and two sets of real cone-beam pro-
jections. The simulated data consisted of 30 projections with 
uniform angular spacing between  and  from a 3D 
Shepp-Logan phantom. A phantom of size  
voxels and a flat detector of  pixels were consid-
ered. The incident photon count was considered to be 

. The real cone-beam sinograms were acquired using a 
Gamma Medica eXplore CT 120 micro--CT scanner. The im-
aged objects included a phantom, designed in [8] for compre-
hensive evaluation of the performance of micro-CT scanners, 
and a dead mouse. The sinograms were of size . 
The tube voltage, tube current, and exposure times were, re-
spectively, , , and  for the scan of the phan-
tom, and 5 , 63 , and  for the mouse scan. The 
size of the reconstructed image was  
voxels, with isotropic voxels of  in size.  

The scan of the phantom consisted of 220 projections at 
, whereas the scan of the mouse consisted of 260 pro-

jections at  intervals. We used the full set of scans to 
reconstruct a high-quality image by using a filtered-backpro-
jection followed by 15 iterations of the SART algorithm. We 
will use these high-quality image as the reference image or 
“true” image for the physical phantom and the mouse. To 
evaluate the proposed algorithm, we used 110 projections of 
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the phantom and 122 projections of the mouse for reconstruc-
tion with the proposed algorithm and with MFISTA. 

III. RESULTS 

For the simulated data from the Shepp-Logan phantom, 
Fig. 1 shows the Root-mean-square of the reconstruction er-
ror (RMSE), where reconstruction error is defined as the dif-
ference between the reconstructed and true images, for the 
proposed algorithm and MFISTA for up to 40 iterations. Both 
algorithms were initialized with a filtered-backprojection re-
construction. In Fig. 2, we show a typical profile from the 
images of the phantom reconstructed with the proposed algo-
rithm and MFISTA. 

 
Fig. 1 Change in the RMS of the reconstruction error for the Shepp-Lo-

gan phantom reconstructed with the proposed algorithm and MFISTA. 

 
Fig. 2 Typical profiles of the Shepp-Logan phantom reconstructed using 

the proposed algorithm (a) and MFISTA (b). 

Fig. 3 shows the change in the RMSE of the images of the 
physical phantom and the mouse for the proposed algorithm 
and MFISTA. Here, we use the high-quality reference image 
as the “true” image. Both algorithms were initialized with a 
filtered-backprojection reconstruction and the RMSE values 
were normalized with that of the initial estimate so that we 
can show the curves for the physical phantom and the mouse 
on the same figure. 

 
Fig. 3 Change in the normalized RMSE for reconstruction of the images 

of the physical phantom and the mouse from real projections with the pro-
posed algorithm and MFISTA. 

In Fig. 4 we have shown cross sections of the recon-
structed phantom at the location of a resolution coil and one-
dimensional profiles through it. We also used a uniform pol-
ycarbonate plate in the phantom to assess the noise level in 
the reconstructed images. The signal-to-noise-ratio for the 
images reconstructed using MFISTA and the proposed algo-
rithm were 22.3 and 23.0 dB, respectively. Fig. 5 shows a 
selected regions of the images of the mouse reconstructed 
with the proposed algorithm and MFISTA. As expected from 
the RMSE plots in Fig. 3, images reconstructed with the pro-
posed algorithm have a noticeably higher quality than those 
reconstructed with MFISTA. 

IV. CONCLUSIONS  

The proposed algorithm shows a promising performance 
on simulated and real data. A very important feature of the 
proposed algorithm is its fast convergence, particularly in the 
initial iterations. For the simulated data (Fig. 1) and the real 
data from both the physical phantom and the mouse (Fig. 3), 
approximately 10 iterations of the proposed algorithm re-
duces the RMSE to the level that is achieved in 40 iterations 
of MFISTA. This can be a very desirable behavior in many 
applications. Reconstruction of CT images from a small 
number of projections has attracted much attention in recent 
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years because of its potential for dose reduction. Even though 
implementation of CT reconstruction algorithms on special-
purpose hardware has reduced the computational time, be-
cause of the very large size of 3D CT images, forward and 
back-projection operations are still very computationally de-
manding and reducing the number of these operations is 
highly desirable. Our results show that the proposed algo-
rithm is successful in reducing the number of these opera-
tions. 

A limitation of the proposed algorithm is the need to store 
several previous update directions and their projections. Each 
update direction has the size of the reconstructed image and 
the size of its projection is equal to the size of the projection 
measurements used in the reconstruction. Considering the 
large size of 3D CT images and their projections, the memory 
requirements may be problematic. The required memory 
grows linearly with the number, K, of previous update direc-
tions used. In our experience no additional improvements are 
achieved beyond K = 3 and the memory requirements for 
storing three update directions and their projections should 
not be prohibitive for most applications. 

 

 

 

Fig. 4 Typical 2D slices and 1D profiles through a resolution coil in the 
image of physical phantom reconstructed with the proposed algorithm (a) 
and MFISTA (b). The thin blue lines in 1D profiles show the profile for the 
reference (i.e. “true”) image. 

 
Fig. 5 Typical slices from the image of the mouse reconstructed with the 

proposed algorithm (a) and MFISTA (b). 
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