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Abstract. In this article we examine the performance of two well-known
metaheuristic techniques (Genetic Algorithm and Simulating Annealing)
for selecting the input features of a classifier in a BCI system. An im-
portant problem of the EEG-based BCI system consists in designing the
EEG pattern classifier. The selection of the EEG channels used for build-
ing that learning predictor has impact in the classifier performance. We
present results of both metaheuristic techniques on real data set when
the classifier is a Bayesian predictor. We statistically compare that per-
formances with a random selection of the EEG channels. According our
empirical results our approach significantly increases the accuracy of the
learning predictor.

Keywords: Brain computer interface · EEG pattern selection · Bayesian
classifier · Genetic algorithms · Simulating annealing

1 Introduction

A Brain Computer Interface (BCI) is a functional interaction between the brain
and an external device. It can be useful means for assisting and repairing hu-
man cognitive and sensory-motor functions. A BCI basically consists of three
components: a brain signal acquisition system, an information processing de-
vice, and an external device. In respect of first component, there are several
kinds of signals that have been used for BCI. The most widespread signal is the
Electroencephalography (EEG) that presents good advantages in respect to the
other ones, such as: good temporal resolution, portability, and low set-up cost.
The second BCI provides a parametric mapping between the brain signals and
the mental states. This tool is used for discriminating EEG patterns related to
different mental states and includes supervised learning methods. The third com-
ponent is an external device committed to receive commands from the classifier
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Fig. 1. General diagram of a signal based BCI system

and to provide feedbacks to the subject. Figure 1 is depicted a BCI architecture
including information flows.

In the EEG-based BCI experiment the signals are recorded using N electrodes.
Then, we dispose of a high-dimensional time series data, which is most often
affected by sources of noise. In order to improve the classification efficiency in
the BCI, a pre-training step is performed. This consists among others in selecting
a subset of the EEG signals from the all-channel time series data. The problem
of finding the best configuration of the EEG signals via brute-force search has
factorial algorithmic time. Instead, we propose an alternative approach to find
a good configuration of EGG channels as relevant sources for BCI.

The goal of this article is to study the efficiency of two well-known nature-
inspired metaheuristic techniques, Genetic Algorithm (GA) and Simulating An-
nealing (SA), for selecting the input information of the EEG pattern classifier.
The SA is a probabilistic metaheuristic for solving optimisation problems, that
was inspired from the annealing process in thermodynamics. The original mo-
tivation of GA was to simulate the natural selection process. In this article, we
consider a Bayesian Predictor as the EEG pattern classifier, due to well perfor-
mances of this learning tool in our previous works [1]. Therefore, the learning
process has two phases. The first one consists of performing the metaheuristic
techniques for selecting the EEG channels. The second one consists in train-
ing a Bayesian classifier in order to generate a mapping between a set of EEG
signals and mental tasks. The signals that are not selected in the first phase
by the nature-inspired algorithms are omitted in the second learning phase. We
compute the accuracy of that technique using the κ function [2, 3].

A previous study of EEG feature selection using metaheuristic was presented
in [4]. In this work, the authors use Support Vector Machine (SVM) as classi-
fication technique over a specific data set, and the EEG feature selection was
done applying GA. In [5], the authors use GA and SVM to search the features
on a EEG-based BCI. The main differences of our work with these articles are:
we use our own BCI experimental data, we study the performance of two feature
selection tools (GA and SA), and we use our own Bayesian learning classifier [6].

The article is organised as follows. Section 2 presents the experimental pro-
cedure used for collecting the data set. This section also contains a descrip-
tion of a Bayesian classifier, and it presents the criteria used for measuring
its performance assesment. Section 3 introduces two nature-inspired techniques



Nature-Inspired Algorithms for Selecting EEG Sources 81

(SA and GA) employed as feature selection. Besides, we present an algorithm
that shows how to use the SA and GA in the BCI context. The experimental
results are presented in Section 4. Next, we go for final conclusions and future
work.

2 Methodology

In this Section, we specify the methodology and the protocol used during the ex-
periments. In addition, a background about the Bayesian Classifier is introduced
in subsection 2.2, and the definition of the performance assessment is presented
in subsection 2.3.

2.1 Experimental Procedure

In this Section, we describe in brief the protocol used for collecting the data set.
More details about the experiments can be seen in [2,7]. The data was collected
during the experimental sessions with 5 right-handed and healthy subjects aged
from 25 to 50. The subjects performed instructions displayed on a screen. There
are four instructions: to relax, to imagine the movement of the right hand, to
imagine the movement of the left hand, and to imagine the movement of the feet.
The movement that they were asked to imagine was a handgrip or feet pressure.
An experiment for each subject consists of training and testing sessions. The
training session was performed in order to train the BCI classifier. During the
testing session, in real time we provide to the subjects the output of the BCI
classifier in orden to enhance the subject efforts to imagine a movement.

The subject was sitting in a comfortable chair located one meter from a 17”
monitor. The subject was instructed to fix a gaze on a motionless circle of 1
cm in diameter, in the middle of the screen. Each 10 seconds, one command
instruction was displayed in the screen. Four gray markers were placed around
the circle. A marker changes the colour into green signalled to the subject that
mental task must be performed. Each clue was preceded by a 4-second warn-
ing when the marker color changed into blue. Green color in the left and right
markers indicates to left and right hand movement imagining, respectively. The
top marker indicates relaxation. The lower marker corresponds to feet move-
ment imagining. Four such instructions presented in random order constituted
a block. The training session is composed by one block and the testing session
has nine blocks as is illustrated in Figure 2. Each subject received 10 blocks of
instructions at each experimental day. The structure of the block is presented
in Figure 3. During the testing sessions, the result of the predictor classification
was presented to the subject. This was done using green color in the central cir-
cle when the estimation of the classifier predictor coincides with the instruction.
Besides, we increase the brightness of the central circle showing the augmenting
of the classifying confidence. During the instruction to relax the subject does
not receive feedbacks from the screen.

The EEG signals were recorded using 48 active electrodes and g.USBamp and
g.USBamp API for MATLAB (g-tec, Graz, Austria). The sampling frequency
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employed was 256 Hz. The EEG signal were filtered by notch filter in order to
suppress supply noise. The position of the electrodes were: Fz, F3, F4, Fcz, Fc3,
Fc4, F7, F8, Fcz, Fc3, Fc4, Fc5, Fc6, Fc7, Fc8, Cz, C1, C2, C3, C4, C5, C6, T7,
T8, Cpz, Cp1, Cp2, Cp3, Cp4, Cp5, Cp6, Tp7, Tp8, Pz, P1, P2, P3, P4, P5,
P6, P7, P8, Pose, Po3, Po4, Po7, Po8, Oz, O1, O2. The central frontal electrode
(Afz) was taken as reference. All codes of data processing were carry out with
Matlab (Mathworks Inc. Natick, Ma, USA). The subjects have provided written
a participation consent. The experimental procedure was approved by the Board
of Ethics at the Institute for Higher Nervous Activity and Neurophysiology of the
Russian Academy of Sciences [8].

Daily experimental sessions
Training
1 block

Testing
9 blocks

Fig. 2. The sequence of sessions in the experimental protocol

Block

Relaxation Left hand MI Right hand MI Foot MI

4 10 4 10 4 10 4 10

Fig. 3. Structure of the experimental block. Each instruction was presented only once
and using random selection. The light blue areas of the block represent time of the
instruction for warnings. The rest of the blue areas of the block represent time of the
instruction for performance.

2.2 Bayesian Classifier Description

In this article, the mental tasks were classified using a Bayesian Classifier (BC) [1,
6]. Let L be the number of mental tasks to be classified and let N be the number of
active electrodes used for recording the EEG signals. We denote byXn(t) the EEG
signal recorded by the electrode n at time t. We assume that Xn(t) has Gaussian
distributionwith zeromean for allnand t.WedenotebyCi(t) the covariancematrix
of theEEGsignal corresponding to the i taskwith i= 1, . . . , L.Given a signalX(t),
for determining the class that the signalX(t) is associated,we compute the values of
Prob(X(t) | i), for all i. We assign to X(t) the class such that occurs the maximum
value ofProb(X(t) | i). Due to the distribution ofX(t) is Gaussian, the probability
to obtain X(t) under the condition that it corresponds to performing the mental
tasks i is given by

Prob(X(t) | i) ∝ exp

(−Vi(t)

2

)
, (1)
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where Vi(t) is defined as Vi(t) = XT (t)Ci(t)X(t) + ln(det(Ci(t))) and det(·) is
the determinant function of a matrix. Note that, Ci(t) must be a nonsingular
matrix in order to compute the ln(det(Ci(t))).

The class that maximises the expression (1) is such that minimises the value
Vi(t). As a consequence, it is enough to find the minimal values of Vi(t) at each
time for all i. The value of Vi(t) can be unstable in the time, therefore we split
the signal in epochs. Let u be an epoch of duration Δt. We compute the data
covariance matrix at each epoch u as

C(u) = 〈X(u)XT (u)〉, (2)

then we compute the average Vi(u) by

〈Vi(u)〉 = trace(C(u)C−1
i (u)) + ln(det(Ci(u))), (3)

where trace(·) is the trace function of a matrix.
The training phase of the Bayesian predictor consists in computing the co-

variance matrices Ci for all i. The predictor was tested computing C(u) and the
〈Vi(u)〉 values.

2.3 Accuracy of the Estimator

To evaluate the accuracy of the classifier and its generalisation capability we
proceed as follows. We split the signals in epochs of a Δt duration. We randomly
divide the learning set in 10 blocks. We randomly chose 7 blocks of them for
computing the covariance matrices Ci for all mental tasks (training phase). The
rest part of the learning set is used for testing the predictor. We repeat M times
these classification trials. Next, we generate a confusion matrix P of dimensions
L × L that contains the averages over all M classification trials. The P matrix
has at the position (i, j) the probability pi,j , that is the probability to recognise
the i−th mental state in case that the instruction j−th mental task is performed.
Note that, the better learning predictor performs the P is closer to the identity.

We chose the Cohen’s κ function as indice of classification efficiency. The κ
function is defined as follows:

κ =

1

L

L∑
i=1

pi,i − 1

L2

L∑
i=1

L∑
j=1

pi,j

1− 1

L2

L∑
i=1

L∑
j=1

pi,j

. (4)

The value κ belongs to the [0, 1] interval, closer is κ to 1 closer is the accuracy
of the predictor, on the other hand a κ value closes to 0 indicates a deficient
classifier.
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3 Nature-Inspired Algorithm Description

This section introduces our main contribution, that is the algorithm that uses
metaheuristic techniques for doing the EEG channels selection on the context of
BCI based on motor imagery experiments. The section starts with a description
of the nature-inspired algorithms used in this article: the Simulating Annealing
(SA) and the Genetic Algorithm (GA). Next, we specify our approach that mixes
the metaheuristic techniques and the bayesian classifier.

3.1 Simulating Annealing Description

The Simulating Annealing (SA) method is an optimisation technique particularly
interesting for solving problems of large scale. It has been applied for solving both
combinatorial and continuous optimisation problems. The technique is mainly
useful when the goal is to find a global extremum that is hidden among several
local ones [9]. The goal is to minimise/maximise an objective function that in
the SA context is often referred as energy function. The algorithm tries random
steps following some criteria that arises from physical phenomena. The method is
an analogy with the thermodynamical process that liquids freeze and crystallise
or metals cool and anneal. Following this analogy, the method has a parameter
called temperature (T ), and a constant called Boltzmann’s constant relates the
temperature with the energy of the current system state. The technique is iter-
ative, at each iteration we replace a current solution scurr by a random nearby
solution snew that is chosen with a probability p. We consider a nearby solution
such that its Hamming distance with the current solution is less than or equal to
1. In other words, the strings scurr and snew differ only in one bit. The temper-
ature T decreases at each iteration until is reached some arbitrary value T end.
The probability of selecting a new solution is given by

p = min{exp (−(E(snew)− E(scurr))/kT ), 1}, (5)

where k is the Boltzmann’s constant. The probability brings the capacity to jump
from a local optimum to another part of the searching space. This exploration cri-
teria usually takes a downhill step while sometimes takes an uphill step is popularly
knownunder thenameofMetropolisAlgorithm.Thealgorithmstarts froman initial
solution with an initial temperature T , and a sequence of solutions are proposed,
and the temperature decreases its value until it reaches a frozen condition.

3.2 Genetic Algorithm Description

The Genetic Algorithm (GA) family started in the 60’s [10]. At the beginning,
the technique was motivated by a biological analogy with the selective breeding
of the plants and animals [10]. In the last 20 years, the GA trend has become
increasingly popular for solving optimisation problems. A GA is an iterative pro-
cedure. At each iteration, points in the searching space are analysed as possible
solutions, and they are combined according some rules. Following the biologi-
cal analogy, the points collection is named population, each individual point is



Nature-Inspired Algorithms for Selecting EEG Sources 85

called chromosome, and the coordinates in a particular point are named genes.
Each chromosome is evaluated by a fitness function E(·) that is the function to
be optimised. The algorithm consists in modifying the population applying the
following three evolutionary operations:

– Selection: there are several selection schema presented in the literature In
this article, we study the selection following the Baker’s stochastic universal
selection, a single value is used for sample all of the solutions by choosing
them at evenly spaced intervals.

– Crossover: It is a function that takes two chromosomes (often referred as
parents) and generates two new ones (often referred as offspring). The op-
eration replaces some genes of one parent by the corresponding genes of the
other one. In general, the selection of which genes to replace is random. In
this article, we follow the criteria of one-point crossover. Given two parents A
and B, this operation consists in random selecting a cutting-point, it means
a random position in the chromosome. Next, to generate a new two chro-
mosomes. One of them in its first part (until the cutting point) has genes
from parent A and the second part (from the cutting point till the end) has
genes from the another parent B. Another chromosome has in its first part
the genes from B and in its second part has the genes from A.

– Mutation: In this operation a randomly selected group of genes is changed.
In our problem, the genes are binaries, then the gene mutation is the binary
complement operation.

3.3 Applying the Nature-Inspired Algorithms for Feature Selection

Without loss of generality we enumerate the EEG channels by {1, . . . , N}, where
N is the number of electrodes sources of the EEG signals. The searching space
of our problem is {0, 1}N . Possible solutions have the form s = [s1, s2, . . . , sN ]
where si = 0 represents that the signal captured by the electrode i is omitted as
source of the classification tool, and si = 1 represents that the signal measured
by the electrode i is an input of the classification tool. Besides, we consider as
accuracy of our model the kappa function given by (4), that has domain in [0, 1].
The problem is to find s ∈ {0, 1}N such that the kappa function is maximized
when the BC is used for the mental class estimation. Note that a larger kappa
value implies a better model accuracy. For this reason we have a maximisation
problem instead of a minimisation one.

In the SA method, given a current solution scurr we must select a nearby
solution of scurr that we denote by snew. In this step, we randomly select a
value i in [1, N ]. Next, we define the nearby solution as snewj = scurri for all
j �= i and snewj = scurri + 1 mod 2, where mod is the module function. The
procedure for generating the classification tool in the BCI using SA is presented
in Algorithm (1). The algorithm has the following input parameters: an initial
temperature T (0) and the stop condition T end. Besides, it must be defined the
a cooling schedule for decreasing the temperature. Algorithm (2) presents the
method for generating the feature selection using GA.
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Algorithm 1. Procedure for generating the classification tool in the BCI
using Simulated Annealing.
1 Define an initial population {s(1), . . . s(K)};
2 for (k = 1 to K) do
3 Generate the time-series data with the electrodes channels that

verifies s
(k)
i = 1;

4 Train the classification tool;
5 Compute the kappa function;

6 T = T (0);
7 scurr = s(k);
8 while (T ≥ T end) do
9 Select a random nearby solution snew;

10 if (kappa(snew) ≤ kappa(scurr)) then
11 scurr = snew;

12 else
13 Compute p using expression (1);
14 if (rand(0, 1) < p) then
15 scurr = snew;

16 i = i+ 1;
17 Decrease temperature T ;

18 Return scurr;

4 Experimental Results

We begin by specifying the notation. we use the following abbreviations: the
Bayesian Classifier without using metaheuristic is denoted by BC, Bayesian Clas-
sifier with feature selection using Simulating Annealing is denoted by BC-SA,
and Bayesian Classifier with feature selection using Genetic Algorithms is de-
noted by BC-GA. A tradeoff between time resolution and accuracy is presented
in the expression (3), wherein must be defined the epoch length criteria. We
follow the same criteria that in [1] where the authors used epochs of 1 second
length. The setting of the GA method was done as follows. We perform 1500
generations, each generation has 100 chromosomes, we use the Baker selection
for select the parent chromosomes, and the mutation factor is 1/48. In the SA
technique the cooling schedule consists in decrease the temperature in one unit
at each algorithm iteration. In order to compare performance between SA and
GA, both algorithms are performed during the same time. In order to have ref-
erence values about the accuracy of the BC without the feature selection using
the metaheuristics, we perform 50 times the BC using random selection of the
EEG channels. Then, we compute the kappa value reached by the BC predictor
for each one of the 50 trials.

Table 1 shows the accuracy obtained by the BC, BC-SA and the BC-GA pro-
cedures. First column shows an identificador of the studied subject. The columns
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Algorithm 2. Procedure for generating the classification tool in the BCI
using Genetic Algorithm.
1 Define an initial population {s(1), . . . s(K)};
2 for (k = 1 to K) do
3 Generate the time-series data with the electrodes channels that

verifies s
(k)
i = 1;

4 Train the classification tool;
5 Compute the kappa function;

6 while (cond is not satisfied) do
7 repeat
8 Select parent chromosomes;
9 Choose a cutting point;

10 Perform crossover;
11 Choose mutation points;
12 Perform mutation;
13 Evaluate fitness of the offspring;
14 until (New generation has enough offsprings);

15 Return the classification tool and the best combination of EEG channels;

Table 1. Classification accuracy using the kappa function. The first column presents
the experiment identification. The second column presents the results when a Bayesian
Classifier (BC) was performed using the all EEG channels. The third column shows
the results of to use SA as feature selection and then to use BC. The last column shows
the accuracy reached when GA is used for selecting the channels and BC is performed.
50 iteraciones

Experiment 50 random selections SA-BC GA-BC
Id Mean Std 95% Max
A 0.1424 0.0412 0.1538 0.2433 0.2522 0.2631
B 0.3398 0.0653 0.3579 0.4867 0.4836 0.4972
C 0.3076 0.1062 0.3370 0.4696 0.5360 0.5372
D 0.1152 0.0585 0.1314 0.2264 0.2478 0.2544
E 0.2028 0.0439 0.2150 0.2753 0.2922 0.2882

2 to 5 show results reached using the BC. In column 2, we can see the average
value of kappa among the kappa values reached on the 50 trials. Column 3
presents the standard deviation of these set of kappa values, column 4 shows
the upper endpoint of a 95% confidence interval, and the column 5 presents the
maximum kappa value reached among the 50 trials. Column 6 shows the best
kappa value reached by the BC-SA, and column 7 presents the best kappa value
reached by the BC-GA. We can see that in all experiments the upper endpoint
of the 95% confidence interval is lower than the kappa value reached used meta-
heuristics. Even the maximum kappa value reached among the set of experiment
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is less than the kappa value computed using BC-SA and BC-GA. In the 80% of
the experiments the BC-GA reaches better kappa value than GA-SA. Figure 4
illustrates the evolution of the kappa value for the experiments A, B and C for
both procedures BC-SA and BC-GA. Figure 5 presents an example of the evolu-
tion of the number of EEG channels used for computed the best kappa value at
each generation of the BC-GA method. The figure has the evolution of number
of electrodes used for the 5 experiments.

5 Conclusions and Future Work

An important task of a BCI system development consists in designing the EGG
pattern classifier. The analysis based on EEG signals presents significant diffi-
culties, due to the presence of noise. As a consequence, the selection of the EEG
channels used for building a learning predictor can impact in the predictor per-
formance. In general, in the EEG-based BCI experiments several EEG channels
are used for collecting the data. For instance, in our experiments we are using
48 channels. Therefore, the selection of a best combination of EEG channels can
not be done using a brute-force strategy.

In this article, we propose a solution for this problem that is based on two
well-known metaheuristic techniques: Simulating Annealing (SA) and Genetic
Algorithms (GA). We analyse the performance of both techniques for selecting
the EEG channels when we are using a Bayesian Classifier in the BCI system.
We compare the performance of these techniques with a EEG random selec-
tion strategy. Besides, we present statistical results for that comparisons. We
can affirm that the use of both metaheuristic procedures significantly improve
the accuracy of the EEG pattern predictor. In particular, in the 80% of the
experiments the higher accuracy is reached when the selection is done using
the GA. As a for future work, we are interested in applying the same approach
for EEG-based BCI visual imagery. Additionally, we have plans to compare the
performance reached by SA and GA with other nature-inspired techniques.
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