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Abstract. In convex nonnegative matrix factorization, the feature vec-
tors are modeled by convex combinations of observation vectors. In the
paper, we propose to express the factorization model in terms of the
sum of rank-1 matrices. Then the sparse factors can be easily estimated
by applying the concept of the Hierarchical Alternating Least Squares
(HALS) algorithm which is still regarded as one of the most effective
algorithms for solving many nonnegative matrix factorization problems.
The proposed algorithm has been applied to find partially overlapping
clusters in various datasets, including textual documents. The experi-
ments demonstrate the high performance of the proposed approach.
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1 Introduction

Nonnegative Matrix Factorization (NMF) [1,2] is an unsupervised learning tech-
nique that is commonly used in machine learning and data analysis for feature
extraction and dimensionality reduction of nonnegative data. The basic model
for NMF assumes a decomposition of a nonnegative input matrix into two lower-
rank nonnegative matrices. The one represents nonnegative feature or basis vec-
tors, and the other, referred to as an encoding matrix, contains coefficients of
nonnegative combinations of the feature vectors.

Convex NMF (CNMF) is a special case of the standard model in which the fea-
ture vectors are expressed by linear combinations of observation vectors. Hence,
they lie in the space spanned by observation vectors, and may not be constrained
to nonnegative values as in the standard NMF model. This model was first pro-
posed by Ding et al. [3] for clustering of unsigned data. It is conceptually closely
related to the k-means, however the experiments carried out in [3] demonstrated
its superiority over the standard k-means with respect to clustering accuracy.
Then, CNMF was further developed and improved.

Thurau et al. [4] proposed Convex-Hull NMF (CH-NMF) in which the clus-
ters are restricted to be combinations of vertices of the convex hull formed by
observation points. Due to distance preserving low-dimensional embeddings, the
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vertices can be computed efficiently by formulating the CNMF on projected low-
dimensional data. CH-NMF is thus scalable, and can be applied for clustering
large-scale datasets. The convex model of NMF is also discussed by Esser et al.
[5] in the context of endmember identification in hyperspectral unmixing.

The factors in CNMF [3] are updated with multiplicative rules, similarly as in
the NMF models proposed by Lee and Seung [1]. The multiplicative algorithms
are simple to implement and guarantee non-increasing minimization of the ob-
jective function. However, their convergence is terrible slow and unnecessarily
towards to the minimum that is optimal according to the Karush-Kuhn-Tucker
(KKT) optimality conditions. Hence, there is a need for searching more efficient
algorithms for CNMF. Krishnamurthy et al. [6] extended CNMF by applying
the Projected Gradient (PG) algorithm, which considerably improves the con-
vergence properties. Despite this, the convergence is still linear and it might be
a problem with satisfying the KKT optimality conditions in each iterative step.

To considerably improve the convergence properties of CNMF, we propose to
apply the concept of the Hierarchical Alternating Least Squares (HALS) algo-
rithm which was first used for NMF by Cichocki et al. [7]. In this method, the
NMF model is expressed by the sum of rank-1 factors that are updated sequen-
tially, subject to nonnegativity constraints. This approach can be also used for
minimization of the α- and β-divergence [2]. To significatively reduce its com-
putational complexity, Cichocki and Phan [8] proposed the Fast HALS, which is
a reformulated and considerably improved version of the original HALS. Many
independent researches [9,10,11,12,13] confirm its high effectiveness for solving
various NMF problems and its very fast convergence.

Motivated by the success of the HALS, we apply this concept to CNMF by
expressing the factorization model by the sum of rank-1 factors, both for the
standard Euclidean distance and the β-divergence. Then applying the similar
transformations as in [8], the computational complexity of the proposed HALS-
based algorithms for CNMF is considerably reduced.

The paper is organized as follows: Section 2 discusses the CNMF model. The
optimization algorithms for estimating the factors in CNMF are presented in
Section 3. The experiments carried out for clustering various datasets are de-
scribed in Section 4. Finally, the conclusions are drawn in Section 5.

2 Convex NMF

The aim of NMF is to find such lower-rank nonnegative matrices A = [aij ] ∈
R

I×J
+ and X = [xjt] ∈ R

J×T
+ that Y = [yit] ∼= AX ∈ R

I×T
+ , given the data

matrix Y , the lower rank J , and possibly some prior knowledge on the matrices
A or X. The set of nonnegative real numbers is denoted by R+. When NMF is
applied for model dimensionality reduction, we usually assume: J << IT

I+T or at
least: J ≤ min{I, T }.

Assuming each column vector of Y = [y1, . . . ,yT ] represents a single observa-
tion (a datum point in R

I), and J is a priori known number of clusters, we can
interpret the feature vectors, i.e. the column vectors of A = [a1, . . . ,aJ ], as the
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centroids (indicating the directions of central points of clusters in R
I) and the en-

tries in X = [xjt] as indicators to the clusters. Normalizing each xt to the unit
l1 norm, each xjt can be regarded as the probability of assigning the vector yt to
the j-th cluster. If the clusters are disjoint, X should be a binary matrix [14].

In CNMF, each feature vector aj is assumed to be a convex combination

of the data points, i.e. ∀j : aj =
∑T

s=1 wsjys, where wsj ∈ R+ are weighting

factors, and
∑T

s=1 wsj = 1. Thus, the CNMF model has the form:

Y ∼= Y WX, (1)

where W ∈ R
T×J
+ , 1T

TW = 1T
J , and 1M = [1, . . . , 1]T ∈ R

M is a M -dimensional
vector of all ones.

Each centroid is therefore a weighted sum of observation vectors. If only a few
vectors {ys} affect the centroid aj , the vector wj = [wsj ] ∈ R

T
+ is nonnegative

and very sparse. If the clusters are only slightly overlapped, the matrix X is also
nonnegative and very sparse. Hence, the nonnegativity and sparsity constraints
are typically imposed on the factors W and X in CNMF.

If X = W T in (1), the model is known as the Cluster NMF [3], and it is
suitable for clustering the columns in Y . For clustering the rows, the nonlinear
projective NMF [15] can be used. It is expressed by the model: Y = WW TY ,
where W = [wij ] ∈ R

I×J
+ . If wij = 1 and ∀m �= i : wmj = 0, then i-th row of Y

belongs to the j-th cluster.

3 Algorithms

The matrices W and X in (1) can be estimated by minimizing various objective
functions. Assuming a normally distributed residual error, the objective function
is expressed by the squared Euclidean distance:

Ψ(W ,X) =
1

2
||Y − Y WX||2F . (2)

Let Y TY = [Y TY ]+ − [Y TY ]−, where [bij ]
+ = max{0, bij} and [bij ]

− =
max{0,−bij}. Applying the majorization-minimization approach, Ding et al.
proposed the following multiplicative updating rules:

w
(k+1)
tj = w

(k)
tj

√
√
√
√
√
√

[(
[Y TY ]+ + [Y TY ]−W (k)X(k)

)
(X(k))T

]

tj[(
[Y TY ]− + [Y TY ]+W (k)X(k)

)
(X(k))T

]

tj

, (3)

x
(k+1)
jt = x

(k)
jt

√
√
√
√
√
√

[
(W (k+1))T

(
[Y TY ]+ + [Y TY ]−W (k+1)X(k)

)]

jt[
(W (k+1))T

(
[Y TY ]− + [Y TY ]+W (k+1)X(k)

)]

jt

, (4)
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The computational complexity of the update rule (3) can be roughly estimated
as O(IT 2) + O(kJT 2), where the first term concerns the computation of the
matrix Y TY , and k is the number of alternating steps. The rule (4) has the
similar cost.

3.1 HALS-Based CNMF

Let the model (1) be expressed by the sum of rank-1 matrices:

Y =
T∑

t=1

ytwtX =
T∑

t=1

ytzt, (5)

where yt ∈ R
I is the t-th column vector of Y , wt ∈ R

1×J is the t-th row vector
W , and zt = wtX ∈ R

1×T . Note that ∀t : ytzt ∈ R
I×T
+ , rank(ytzt) = 1.

Considering the model (5), the objective function in (2) can be rewritten as:

Ψ(W ,X) =
1

2
||Y −

∑

r �=t

yrwrX − ytwtX||2F =
1

2
||Y (t) − ytwtX||2F , (6)

where Y (t) = Y −∑
r �=t yrwrX.

The stationary point of Ψ(W ,X) with respect to wt can be obtained from
the condition:

∇wt
Ψ(W ,X) = −yT

t Y
(t)XT + ξtwtXXT � 0, (7)

where ξt = ||yt||22. The closed-form updating rule for wt has the form:

wt = ξ−1
t yT

t Y
(t)XT (XXT )−1. (8)

The computational complexity of the update rule in (8) depends on its imple-
mentation. Let the matrix XT (XXT )−1 and the vectors {ξt} be precomputed
with the approximative costs O(J3 + J2T ) and O(IT ), respectively. Then, the
total cost of performing k alternating steps with (8) is about O(J3 + J2T +
IT ) + kO(IT 2 + JT 2). If J << T , we have O(kIT 2). Thus the computational
complexity is I/J-times higher than for the update rule (3). In practice, the im-
plementation of (8) needs the sweeping over the index t, which involves a nested
loop in Matlab but the rule (3) can be fully vectorized. Hence, there is a need
to redefining the rule (8) in order to implement it more efficiently (especially in
Matlab).

The matrix Y (t) can be rewritten as:

Y (t) = Y − Y WX + ytwtX. (9)

Inserting (9) to (8) and assuming XXT is a full rank matrix, we have:

wt ← ξ−1
t yT

t (Y − Y WX + ytwtX)XT (XXT )−1

= wt + ξ−1
t yT

t Y
(
XT (XXT )−1 −W

)
. (10)
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The matrices Y TY and XT (XXT )−1 can be precomputed. Thus the over-
all computational complexity for k iterations of (10) is O(J3 + J2T + IT 2) +
O(kJT 2), which is at least I/J-times lower than for (8).

The rule (10) does not enforce nonnegativity of W . The standard approach
to nonnegativity in the HALS is to apply the projection [x]+ = max{0, x} onto

the entries of wt for each t. Thus we have: w
(k+1)
t =

[
w

(k)
t

]

+
, where w

(k)
t is

calculated by (10). This simple projection used in the standard ALS algorithm
does not ensure monotonic convergence. However, the projections in the HALS

are nested and hierarchical. Note that the calculation of w
(k+1)
t+1 involves w

(k+1)
t ,

which is much more than only w
(k)
t . Due to the nested and subsequent projec-

tions, the convergence of the HALS is monotonic and optimal according to the
KKT optimality conditions [11].

After updating the whole matrix W , its columns are normalized to the unit
l1 norm.

Let A(k+1) = Y W (k+1). The factor X can be estimated by solving the fol-
lowing regularized least squares problem with nonnegativity constraints:

min
X≥0

1

2
||Y −A(k+1)X||2F + λXΦ(X), (11)

where Φ(X) is a penalty function to enforce sparsity in X, and λX is a penalty
parameter. If the clusters are disjoint,X should be a binary matrix. For partially
overlapping clusters, X should still be quite sparse.

There are many ways to enforce the sparsity in the estimated factor. Here we
assume one of the most efficient and simple approach that was nearly simulta-
neously proposed in [16] and [17]. Let Φ(X) = tr{XTEJX}, where EJ ∈ R

J×J
+

is a matrix of all ones. After reformulating the problem (11) according to [17],
the solution X can be obtained from:

min
X≥0

∣
∣
∣
∣

∣
∣
∣
∣

(
A(k+1)

√
λX11×J

)

X −
(

Y
01×T

)∣
∣
∣
∣

∣
∣
∣
∣

2

F

. (12)

To solve the system (12), we used the Fast Combinatorial Nonnegative Least
Squares (FC-NNLS) algorithm [18].

3.2 β-CNMF

The model (1) can be decomposed with respect to the entries of W as:

Y =
∑

r �=t

yrwrX +
∑

s�=j

ytwtsxs + wtjytxj = Ỹ
(t,j)

+ wtjytxj . (13)

Let Y (t,j) = Y − Ỹ
(t,j)

and Q(t,j) = wtjytxj , thus y
(t,j)
in = [Y (t,j)]in and

q
(t,j)
in = [Q(t,j)]in = wtjyitxjn.
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Assuming that the disimilarity between the observation y
(t,j)
in and the model

q
(t,j)
in is expressed by the β-divergence [2], we have:

D(β)(y
(t,j)
in ||q(t,j)in ) =

(
y
(t,j)
in

)β+1

ψ

(
q
(t,j)
in

y
(t,j)
in

)

, (14)

where ψ(z) = 1
β(1+β)

(
1− (β + 1)zβ + βzβ+1

)
. For z ∈ R+ and β ∈ (0, 1], ψ(z)

is strictly convex. The joint β-divergence has the form: D(β)(Y (t,j)||Q(t,j)) =
∑I

i=1

∑T
n=1 D

(β)(y
(t,j)
in ||q(t,j)in ).

From the stationarity condition ∇wtjD
(β)(Y (t,j)||Q(t,j)) � 0, we have:

∇wtjD
(β)(Y (t,j)||Q(t,j)) =

∑

i,n

(
q
(t,j)
in − y

(t,j)
in

)
(q

(t,j)
in )β−1yitxjn

=
∑

i,n

(
wβ

tjy
β+1
it xβ+1

jn − y
(t,j)
in wβ−1

tj yβitx
β
jn

)
� 0. (15)

After straightforward calculations, the update rule for wtj is derived from (15):

wtj =

∑
i,n y

(t,j)
in yβitx

β
jn

∑
i,n yβ+1

it xβ+1
jn

. (16)

Inserting y
(t,j)
in = yin− [Y WX]in+wtjyitxjn to (16), we obtain the simplified

update rule for wtj :

wtj ←
∑

i,n (yin − [Y WX]in + wtjyitxjn) y
β
itx

β
jn

∑
i,n y

β+1
it xβ+1

jn

=

∑
i,n yiny

β
itx

β
jn −∑

i,n[Y WX]iny
β
itx

β
jn + wtj

∑
i y

β+1
it

∑
n x

β+1
jn

∑
i,n y

β+1
it xβ+1

jn

= wtj +
[(Y β)TY (Xβ)T ]tj − [(Y β)TY WX(Xβ)T ]tj

(1T
I Y

β+1)t(X
β+11T )j

. (17)

The operator Zβ = [zβij ] means element-wise raise to power β. The update rule
(17) can be parallelized with respect to the index t or j (but not jointly). For
T >> J , higher efficiency can be obtained if only one loop for (sweeping through
t) is used. Thus:

w
(k+1)
t,∗ = w

(k)
t,∗ +

[
(Y β)TY (Xβ)T

]

t,∗
−
[
(Y β)TY

]

t,∗
W̃

(k)
X(Xβ)T

(1T
I Y

β+1)t(X
β+11T )∗

, (18)

where W̃
(k)

= [w
(k+1)
1 ; . . . ;w

(k+1)
t−1 ;w

(k)
t ; . . . ;w

(k)
T ] ∈ R

T×J .
Neglecting the computational complexity for raising to power β, the matri-

ces (Y β)TY , X(Xβ)T and (Y β)TY (Xβ)T can be precomputed with the costs:
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O(IT 2), O(TJ2) and O(JT 2) + O(IT 2), respectively. Hence the overall com-
putational complexity for k iterations with the update rule (18) can be roughly
estimated as O(IT 2+JT 2+TJ2+kT 2J2). Assuming J << min{I, T }, we have:
O(IT 2 + kT 2J2). It is therefore J higher than for the HALS-based CNMF.

If T >> J , i.e. the clusters are assumed to include many samples, the centroids
do not have to be calculated using all samples. To accelerate the computations
both for the HALS-CNMF and β-CNMF, the update rules in (10) and (18) may
be applied to only the selected rows of W in each iterative step. The selection
can be random, and the number of the selected rows should depend on the rate
T/J . In the experiments, we select only 10 percent of the rows in each iteration.

4 Experiments

The proposed algorithms were tested for solving partitional clustering problems
using various datasets that are briefly characterized in Table 1.

Table 1. Details of the datasets

Datasets Variables (I) Samples (T ) Classes (J) Sparsity [%]

Gaussian mixture 3 3000 3 0
Hand-written digits 64 5620 10 3.1

TPD 8190 888 6 98.45
Reuters 6191 2500 10 99.42

The samples in the Gaussian mixture dataset are generated randomly from a
mixture of three 3D Gaussian distributions with the following parameters:

μ1 = [40, 80,−30]T , μ2 = [70,−40, 60]T , μ3 = [20, 20, 30]T ,

Σ1 =

⎡

⎣
50 −0.2 0.1

−0.2 0.1 0.1
0.1 0.1 5

⎤

⎦ , Σ2 =

⎡

⎣
50 −5 −1
−5 5 −0.5
−1 0.5 1

⎤

⎦ , Σ3 =

⎡

⎣
2 0 0
0 10 0
0 0 5

⎤

⎦ .

Obviously, all the covariance matrices are positive-definite. From each distribu-
tion 500 samples are generated, hence Y ∈ R

3×1500.
The dataset entitled Hand-written digits is taken from the UCI Machine

Learning Repository [19]. It contains hand-written digits used for optical recog-
nition.

The datasets TPD and Reuters contain textual documents that should be
grouped according to their semantic similarity. The documents in the first one
come from the TopicPlanet document collection. We selected 888 documents
classified into 6 topics: air-travel, broadband, cruises, domain-names, invest-
ments, technologies, which gives 8190 words after having been parsed. Thus
Y ∈ R

8190×888 and J = 6. The documents in the Reuters database belong to the
following topics: acq, coffee, crude, eran, gold, interest, money-fx, ship, sugar,
trade. We selected 2500 documents that have 6191 distinctive and meaningful
words; thus Y ∈ R

6191×2500 and J = 10. Both datasets are very sparse, since
each document contains only a small portion of the words from the dictionary.
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Several NMF algorithms are compared with respect to the efficiency for solv-
ing clustering problems. The proposed algorithms are referred to as the HALS-
CNMF and β-CNMF. The other algorithms are listed as follows: HALS [8], UO-
NMF(A) (Uni-orth. NMF with orthogonalization of the feature matrix) [20], UO-
NMF(X) (Uni-orth. NMF with orthogonalization of the encoding matrix) [20],
Bio-NMF (Bi-orthogonal NMF) [20], Cx-NMF (standard multiplicative convex
NMF) [3], and k-means (standard Matlab implementation for minimization of
the Euclidean distance). In the β-CNMF, we set β = 5.

All the tested algorithms were initialized by the same random initializer gen-
erated from an uniform distribution. To analyze the efficiency of the discussed
methods, 100 Monte Carlo (MC) runs of each algorithm were carried out, each
time the initial matrices were different. All the algorithms were implemented us-
ing the same computational strategy, i.e. the same stopping criteria are applied
to all the algorithms, and the maximum number of inner iterations for updating
the factor A, W or X is set to 10.

The quality of clustering is evaluated with the Purity measure [20] that reflects
the accuracy of clustering. Fig. 1 shows the statistics of the Purity obtained from
100 MC runs of the tested algorithms. The average runtime is given in Table 2.
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Fig. 1. Statistics of the puritymeasure for clustering the following datasets: (a) Gaussian
mixture; (b) Hand-written digits; (c) TPD; (d) Reuters
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Table 2. Average runtime [in seconds] of the tested algorithms: 1 – HALS, 2 – UO-
NMF(A), 3 – UO-NMF(X), 4 – Bio-NMF, 5 – Cx-NMF, 6 – k-means, 7 – HALS-CNMF,
8 – β-CNMF

Datasets 1 2 3 4 5 6 7 8

Gaussian mixture 0.077 0.079 0.16 0.27 72.9 0.0053 2.76 4.66
Hand-written digits 1.02 0.71 1.1 2.26 39.3 0.53 25.8 24.5

TPD 3.85 2.26 4.34 6.07 14.1 36.53 7.0 11.37
Reuters 10.12 5.41 12.4 14.2 89.75 194.6 29.7 48.2

5 Conclusions

In this paper, we proposed two versions of CNMF for clustering mixed-sign and
unnecessarily sparse data points. Both algorithms are more efficient with respect
to the clustering accuracy and the computational time than the standard multi-
plicative CNMF. The results presented in Fig. 1 show that the HALS-CNMF gives
the best clustering accuracy for the analyzed datasets. The β-CNMF can be tuned
to the distribution of data points with the parameter β. If the number of variables
in the dataset is much larger than the number of clusters, both proposed CNMF
algorithms are faster than the k-means (see Table 2).When the number of samples
is very large, the proposed algorithms provide high accuracy of clustering but at
the cost of an increased computational cost.

Summing up, the proposed CNMF algorithms seem to be efficient for cluster-
ing mixed-signed data points. They can be also combined with the CH-NMF for
clustering big data.
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