
Parallel Simulated Annealing Algorithm

for Cyclic Flexible Job Shop Scheduling Problem

Wojciech Bożejko1(�), Jaros�law Pempera1,
and Mieczys�law Wodecki2

1 Department of Automatics, Mechatronics and Control Systems,
Faculty of Electronics, Wroc�law University of Technology,

Wyb. Wyspiańskiego 27, 50-370 Wroc�law, Poland
{wojciech.bozejko,jaroslaw.pempera}@pwr.edu.pl

2 Institute of Computer Science, University of Wroc�law,
Joliot-Curie 15, 50-383 Wroc�law, Poland
mieczyslaw.wodecki@ii.uni.wroc.pl

Abstract. This paper deals with scheduling of tasks in cyclic flexible job
shop scheduling problem (CFJSSP). We have proposed a new method of
computing cyclic time for CFJSSP. This method is based on the known
properties of the job shop problem as well as new properties of cyclic
scheduling. We have developed two versions of proposed method: se-
quential and parallel. The parallel version is dedicated to the computing
devices supporting vector processing. Finally, we have developed double
paralyzed simulated annealing algorithms: fine grained - vector process-
ing, multiple walk - multi core processing. Computation results, provided
on market multicore processors, are presented for a set of benchmark in-
stances from the literature.1

1 Introduction

Currently, in the vast majority of production systems there are multifunctional
machines used that are configured and controlled remotely not only by industrial
information systems but also by electronic drivers. Machines versatility helps in
the implementation of a number of stages in the process of products manufactur-
ing on the same machine or with the use of multiple machines which perform the
most time-consuming production steps. This type of feature is called flexibility
of manufacturing systems. The high flexibility of production systems supported
by electronic exchange of information enables the use of advanced methods of
production systems management (kanban, lean manufacturing) which adjust the
schedule of the tasks execution to the needs of customers while reducing storage
costs and work in progress.

Due to the high complexity of flexible manufacturing systems the efficient
scheduling at the operational levels has significant importance. Operational plan-
ning guarantees conflict-free production and not only enables reduction of pro-
duction costs but also increases the efficiency of the production system due to

1 The work was supported by the OPUS grant DEC-2012/05/B/ST7/00102 of Polish
National Centre of Science.

c© Springer International Publishing Switzerland 2015
L. Rutkowski et al. (Eds.): ICAISC 2015, Part II, LNAI 9120, pp. 603–612, 2015.
DOI: 10.1007/978-3-319-19369-4_53



604 W. Bożejko et al.

the application of optimization algorithms. Both of these features enhance the
economic efficiency of enterprises because the production of computer support
systems, in particular, optimizing the operational level are subjects of interest
of many practitioners.

Even the simplest flexible manufacturing systems generate NP-hard optimiza-
tion problems. For this reason, researchers focused attention on the development
of heuristic algorithms based on local search methods. Among a wide variety of
algorithms for flexible job shop systems, the best algorithms are based on tabu
search methods: Hurink, Jurish and Thole [9], Mastrolilli and Gambardella [14].
Due to the current tendency of boosting performance by increasing the number
of processing units, population algorithms, that can be in a relatively simple
way parallelized, are gaining importance. Examples of such algorithms are: ge-
netic algorithm (Yang Kacem and Borne [11]), particle swarm algorithm with
simulated annealing search method (Xia and Wu [16]), genetic algorithm com-
bined with the search algorithm with a variable environment (Jie Linyan oraz
Mitsuo [10]). Dedicated parallel algorithms were proposed by Bożejko [4] and
Bożejko et al. [2, 3].

In many real manufacturing systems, there is a cyclic production strategy
used. Cyclic manufacturing simplifies the logistics chain management for the
production supplying distribution process with finished products. Scheduling
of operations in such systems is still a challenge for researchers. This challenge
particularly concerns the development of computational models and optimization
algorithms.

The most general models of cyclic systems and detailed models for selected
production systems were collected by Kampmeyer [12]. Kampmeyer and Brucker
[6] used an algorithm based on tabu search method for cyclic job shop problem
with no storage constraints, whereas neural networks which optimize the cycle
time in job shop problem were used by Kechadi et al. [13].

2 Cyclic Flexible Job Shop Scheduling Problem CFJSP

A flexible job shop production system consists of m multifunction machines from
the set of M = {1, ...,m}. In the production system the set of n tasks from the
set J = {J1, ..., Jn} must be performed infinite number of times. Task Ji ∈ J
consists of ni operations from the set of Oi = {(i, 1), (i, 2), ..., (i, ni)}. The set J
consists of o =

∑
Ji∈J ni technological operations. For each operation (i, k) ∈ Oi,

i = 1, ..., n, k = 1, ..., ni there is assigned a set of machines Mik ⊆ M on which
it may be executed. If Mi = M for every Ji ∈ J , then the production system
is called fully flexible. Operation (i, k) is performed on the machine l ∈ Mik in
pikl > 0 time. Each machine can perform only one operation at a time. At any
given time only one operation from the task can be executed. Operations are
performed on the machines continuously without interruptions.

In the cyclic production systems tasks are performed in the so-called produc-
tion cycles. In one cycle, all tasks from the set of tasks J are performed. The
order of operations execution on the machines in the first production cycle is
reproduced in subsequent cycles.



Parallel Simulated Annealing Algorithm for CFJSSP 605

Let πl = ((jl(1), kl(1)), ..., (jl(nl), kl(nl))) be a permutation of determining
the order of operations on the machine l ∈ M , where nl denotes the number
of operations executed on machines. The set π = (π1, . . . , πnl

) describes the
sequence of operations for all machines in the production system. Note that π
unambiguously describes the assignment of operations to machines. Let Sx

ik (Cx
ik)

be the moment of starting (completion) of the performance of the k-th opera-
tion of Ji task in x-th x = 0, 1, .... production cycle. The schedule of execution of
operations in each production cycle must comply with the requirements arising
from technological route and the order of operations on the machines π. Tech-
nological requirements for the tasks performed in x-th x = 0, 1, ... production
cycle can be formally described with the inequality:

Sx
i,k ≥ Cx

i,k−1, Ji ∈ J, k = 2, ..., nl, (1)

whereas executing of operations in the cycle, in the order of π require the fulfil-
ment of inequality:

Sx
jl(s),kl(s)

≥ Cx
jl(s−1),kl(s−1), l ∈ M, s = 2, ..., nl, (2)

which means that the start of execution of s-th, in the order of πl, operation
(jl(s), kl(s)) can only take place after the end of the previous operation (jl(s−
1), kl(s− 1)) performed on the machine l.

In addition, the schedule of operations execution for two consecutive produc-
tion cycles x− 1 and x, x = 1, 2, ... must fulfill the following conditions:

Sx
jl(1),kl(1)

≥ Cx−1
jl(nl),kl(nl)

, l ∈ M. (3)

Due to the fact that operations are executed in a production system with-
out interruptions the starting and completion of operations have the following
relationship:

Cx
ik ≥ Sx

ik + pik,μik
, Ji ∈ J, k = 1, ..., ni, (4)

where μik denotes, resulting from π, the machine assigned to operation (i, k),
μik = l dla (jl(s), kl(s)), s = 1, ..., nl, l ∈ M .

The schedule of operations execution in the production system is called cyclic
if the following condition is met:

Sx
ik = S0

ik + τ · x Ji ∈ J, k = 1, ..., ni, x = 1, 2, . . . , (5)

where τ is a period called cycle time.
The order of operations execution in a cyclical system π is feasible if there is

a solution to the inequality (1–5).
Let us denote by τ(π) the smallest value of the cycle time for the feasible

order of π. The problem to be found is a sequence of operations execution on
the machines π∗ such that

τ(π∗) = minπ∈Π τ(π), (6)



606 W. Bożejko et al.

where Π is the set of all allocations of operations to machines and all permissible
order of operations for these assignations.

The problem of designation of a cyclic schedule for flexible job shop problem
with a minimum cycle time belongs to a class of sequencing problems. Sequenc-
ing problems embrace scheduling problems in which the solution can be uniquely
represented in the form of the order of operations on the machines as for the
given order the value of the objective function is defined unambiguously. There
is a wide range of methods for constructing algorithms for sequencing problems
in which the most effective use of problem properties are being solved in or-
der to increase the efficiency. However, the most time consuming part of these
algorithms is determination of the objective function value or its estimation.

3 Determination of the Cycle Time for the Sequence π

In the section we propose an original method of determining the cycle time
for a given order π. Considerations begin by analyzing the performance of left
shifted schedule for execution of operations in cyclic systems. At this stage, it is
required to fulfil the constraints (1–4), whereas the constraints (5) do not have
to be met. The earliest completion moments of operations on the machines can
be calculated on the following recursive formula:

Cx
jl(s),kl(s)

= max{Cx
jl(s−1),kl(s−1), C

x
jl(s),kl(s)−1}+ pjl(s),kl(s), (7)

where Cx
jl(s),0

= 0, Cx
jl(0),kl(0)

= 0 for x = 0 and Cx
jl(0),kl(0)

= Cx−1
jl(nl),kl(nl)

for
x = 1, 2, . . . .

It can be easily seen that the execution of the calculations in accordance with
the order Q for subsequent cycles (see Section 2) enables determination of the
completion times for the operation in a sequential way because at the time of
designation of the value of expression(7) the completion times of machine and
technological predecessor are known, i.e. have been designated earlier.

For the operation (i, k) performed in the production cycle x there is a se-
quence ux

i,k = (u0
1, ...., u

xs
s , ...., u

xnu
nu ), uxs

s = (is, ks), u
xnu
nu = (i, k) defined, such

that Sxs

is,ks
= Cxs−1

is−1,ks−1
. Obviously, the predecessor operation (is, ks) in a se-

quence ux
i,k is its machine or technological predecessor. Operation u0

1 = (i1, k1)
performed in 0 cycle will be called a source of schedule for the operation (i, k)
executed in a cycle x. By L(ux

i,k) =
∑nu

s=1 pisks let us designate the sum of op-
erations’ execution times belonging to a sequence ux

i,k. It is easy to observe that

Cx
i,k = S0

i1,k1
+ L(ux

i,k).
Let us consider the sequence ux

i,k, Ji ∈ J , k = 1, ..., nk, x = 1, ... with the

source u0
i,k. We have Cx

i,k = S0
i,k +L(ux

i,k) = C0
i,k − pi,k +L(ux

i,k), thus, the cycle
time τ(π) must meet the following condition:

τ(π) ≥ (L(ux
i,k)− pik)/x for Ji ∈ J, k = 1, ..., nk, x = 1, . . . . (8)



Parallel Simulated Annealing Algorithm for CFJSSP 607

Property 1 For a given order of operations execution in a cyclic flexible job
shop system π = (π1, ..., πm), where πl = ((jl(1), kl(1)), ..., (jl(nl), kl(nl))), l ∈
M , the cycle time is:

τ(π) = max{(L(ux
jl(1),kl(1)

)− pjl(1),kl(1))/x|l ∈ M, x = 1, ...,m− 1}, (9)

where L(ux
jl(1),kl(1)

) is a sum of times assigned to elements of a sequence ux
jl(1),kl(1)

with source u0
jl(1),kl(1)

. Property 1 is given without a proof.

Arbitrarily selected sequence ux∗
jl∗(1),kl∗(1) such that τ(π) = (L(ux∗

jl∗ (1),kl∗(1)
)−

pjl∗ (1),kl∗ (1))/x
∗, l∗ ∈ M , x∗ ∈ {1, ...,m− 1} will be called a critical sequence.

Algorithm 1 describes, in a precise manner, the proposed method for the
determination of cycle time τ(π) for a given order π. In the commentary the
discussion of the algorithm will be limited only to steps 2 and 3.1, since the rest
of the steps are obvious. In Step 2 in positions 0 in the permutation πl there is
fictional operation −l inserted. Let us observe the fact that during performing
the computations for the machine l ∈ M , the completion time for operation
execution is initiated by a large natural number B. Since the operation −l is the
machine predecessor of operation (jl(1), kl(1)) therefore this initiation makes
(jl(1), kl(1)) the source of schedule.

Algorithm 1. Sequential Computing τ(π)

1. Determine sequence Q(π)
2. Set πl(0) = −l
3. For l = 1, . . . ,m do
3.1 Set C0

jl(−s),kl(−s) = B for s = l and C0
jl(−s),kl(−s) = 0 for s �= l, s = 1, . . . ,m

3.2 For x = 0, . . . ,m− 1 do
3.2.1 For s = 1, . . . , o do
3.2.1.1 Compute Cx

js,ks
((is, ks) = qs) from (7).

4. Determine τ(π) from (9).

Property 2 The cycle time τ(π) can be determined in time O(om2).

Proof. Step 3.2.1.1 requires O(1) computation time. This step is executed
(m ·m · o) times (loops 3.2, 3.2.1, 3.2.1.1). Step 3.1 requires O(m) time and is
executed m times. Step 4. requires O(m2) time.

By C
(l)x
i,k let us designate the completion time of execution of operation (i, k) in

x-th production cycle for the source schedule (jl(1), kl(1)). The sequence C
x
i,k =

(C
(1)x
i,k , C

(2)x
i,k , ..., C

(m)x
i,k ) creates vector of m-elements. Algorithm 2 describes the

vector processing version of the proposed method for determining the cycle
time.



608 W. Bożejko et al.

Algorithm 2. Vector Computing of τ(π)

1. Determine sequence Q(π)

2. For l = 1, ...,m set πl(0) = 0, set in parallel C0
0,0 = 0, set C

(l)0
0,0 = B.

3. For x = 0, . . . ,m− 1 do
3.1 For s = 1, . . . , o do
3.1.1 Compute in parallel Cx

js,ks
((is, ks) = qs) from (7).

4. Determine τ(π) from (9).

Property 3 The cycle time τ(π) can be designated in time O(om) on the vector
processor consisting of m computing cores.

Proof. Step 3.2.1 requires O(1) computing time on vector processor. The step
is performed (m ·o) times (loops 3. and 3.1). Other steps require much less time.

4 Simulated Annealing Algorithm

One of the most effective and, at the same time, easiest to implement meth-
ods of construction of local search algorithms is Simulated Annealing (SA, see
Pempera et al. [15]). In each iteration of the algorithm, on the basis of the base
solution π there is a new solution π′ generated. If T (π′) ≤ T (π), then this so-
lution is accepted unconditionally, otherwise with probability p = exp(−Δ/t),
where Δ = T (π′) − T (π), whereas t is the temperature in a given iteration of
the algorithm. The temperature decreases in each iteration of the algorithm ac-
cording to the approved cooling scheme. The algorithm terminates computations
after a predetermined number of iterations.

In the proposed algorithm, the new solution is generated by shifting a single
operation. It is implemented in the three following steps:

1. randomly select operation (i, k) from the critical path,
2. randomly select machine l from the set Mik,
3. designate feasible positions in which operation (i, k) on machine l can be

inserted and insert randomly selected.

The proposed method of generating new solutions is limited to generating
feasible solutions potentially better than the current one, i.e. is based on the
following property:

Property 4 Let π′ be the order of operations on the machines resulting from
the order π such that T (π′) < T (π), then at least one operation from the critical
path is performed on a different machine or in a different position.

Property 4 is a simplification of a known, for a wide class of scheduling problems,
block theory [7], [8].

At the same time the above operation is not time-consuming since the most
time consuming is Step 3 performed in time O(o) (see Property 5).



Parallel Simulated Annealing Algorithm for CFJSSP 609

Property 5 Let (i, k), Ji ∈ J , k = 1, ..., ni be any operation and l, l ∈ Mik any
machine on which this operation can be performed. The range of feasible positions
on machine l in which operation (i, k) can be inserted, can be designated in time
O(o).

5 Results of Computational Studies

Simulated annealing algorithm described in Section 5 was implemented in 4
versions: (SA) – Single-walk Simulated Annealing,(MSA) – Multiple-walk Sim-
ulated Annealing,(PSA) – Parallel single-walk Simulated Annealing algorithms
with parallel computing of the cycle time, and (MPSA) – Multiple-walk Paral-
lel Simulated Annealing algorithms with parallel computing of the cycle time.
The algorithms have been implemented in the Visual Studio 2010 environment
in C++ language. The tests were conducted on an Intel I7-core 2.4GHz 4-core
(Intel Hyper Threading 8-cores) computer, 4GB of RAM, managed by 32-bit
Windows 7 operating system. Experimental studies were conducted on the set
consisting of 21 instances proposed by Barnes and Chambers [1]. The set con-
sists of instances containing from 10 to 15 tasks and from 11 to 18 machines
with varying degrees of flexibility. In a single path of an algorithm, the simu-
lated annealing process was carried out rep times. The first computations process
began with the solutions generated by a construction algorithm, the remaining
began with the last solutions generated by the previous process. The simulated
annealing was performed with the following parameters: the initial temperature
of 1000, the rate of cooling scheme λ = 0.995, the number of iterations 10000.
In order to generate the initial solution there was construction algorithm used,
with the priority rule: earliest completion time.

Computational study of the proposed algorithms were divided into two stages.
The aim of the first phase was to examine the speedup of algorithms obtained
by the use of vector processing in a real computer system, while the second
assessment concerned the quality of the generated solutions, in particular the
quality of the solutions generated by multipath parallel algorithms. During the
computational study there were: T (A) -time cycle for the best solutions found
by A algorithms and CPU(A) - time of computations of algorithm A, A ∈
{SA, PSA,MSA,MPSA} remembered.

5.1 Assessment of Vector Processing Speedup

Today’s processors produced by leading manufacturers, used in stationary and
mobile computers, support parallel processing on two levels: processor instruc-
tions and multi-core processing. In case of instructions level (SSE), in one cycle
of calculation one identical computational activity is performed on the number
of data, remembered in computer registers as a vector consisting of a certain
number of elements s. In other words, the calculations are performed by the
vector processor consisting of s cores. SSE registers size is 128- bit, thus for the



610 W. Bożejko et al.

Table 1. Time of running and sppedup of SA algorithms

Name n×m (o) one path 4 paths 8 paths
SA PSA SU MSA MPSA SU MSA MPSA SU

mt10c1 10×11 (100) 30.6 6.1 5.0 38.4 8.0 4.8 50.2 10.1 5.0
mt10cc 10×12 (100) 36.7 6.7 5.5 43.6 8.8 5.0 60.4 11.2 5.4
mt10x 10×11 (100) 31.6 5.9 5.3 37.2 8.2 4.6 49.8 9.9 5.0
mt10xx 10×12 (100) 36.0 6.5 5.5 41.9 8.8 4.8 59.9 11.0 5.5
mt10xxx 10×13 (100) 42.7 7.1 6.0 47.3 9.3 5.1 65.7 11.9 5.5
mt10xy 10×12 (100) 35.9 6.6 5.4 41.7 8.8 4.8 59.6 10.8 5.5
mt10xyz 10×13 (100) 42.5 7.1 6.0 49.1 8.9 5.5 70.1 12.1 5.8
setb4c9 15×11 (150) 46.6 8.6 5.4 52.8 10.7 4.9 74.0 13.4 5.5
setb4cc 15×12 (150) 55.6 9.4 5.9 63.3 11.3 5.6 86.4 14.4 6.0
setb4x 15×11 (150) 46.6 8.5 5.5 52.9 10.2 5.2 73.0 14.1 5.2
setb4xx 15×12 (150) 54.8 9.0 6.1 62.1 10.8 5.8 85.6 14.5 5.9
setb4xxx 15×13 (150) 64.4 10.0 6.4 73.2 11.8 6.2 100.8 16.0 6.3
setb4xy 15×12 (150) 54.6 9.4 5.8 61.1 11.4 5.4 86.0 14.6 5.9
setb4xyz 15×13 (150) 65.4 9.6 6.8 71.8 12.0 6.0 99.8 15.7 6.4
seti5c12 15×16 (225) 156.9 17.2 9.1 172.2 22.1 7.8 233.5 27.5 8.5
seti5cc 15×17 (225) 177.1 19.3 9.2 195.8 24.2 8.1 264.4 31.1 8.5
seti5x 15×16 (225) 157.3 17.0 9.3 172.2 21.0 8.2 234.2 27.8 8.4
seti5xx 15×17 (225) 177.4 19.8 8.9 197.6 23.7 8.3 265.9 30.7 8.7
seti5xxx 15×18 (225) 202.4 20.2 10.0 221.1 25.6 8.6 293.4 32.7 9.0
seti5xy 15×17 (225) 175.8 19.6 9.0 193.3 24.1 8.0 261.0 30.6 8.5
seti5xyz 15×18 (225) 196.5 20.7 9.5 217.1 25.7 8.4 294.3 32.4 9.1

data of Int16 type, used in the calculations, the size of the vector is s = 8. Un-
doubtedly, in case of vectors with sizes larger than s, the vector is divided into
fragments of s-elements and then they are processed sequentially.

All algorithms were run with parameter rep = 20 while the multipath algo-
rithms were started simultaneously at 4 and 8 cores (each realized a different
path). Table 1 presents algorithms’ execution times for all instances of the test.
In addition, on the basis of the time of the algorithm running in the basic version
and using the processing vector, there was designated the speedup of calculations
SU = CPU(SA)/CPU(PSA) (SU = CPU(MSA)/CPU(MPSA)).

The analysis of single-path algorithms shows that for certain instances the
speedup is greater than the number of cores of vector processor s = 8. This
stays in contrast to Ahmdal’s Law. In fact, in a sequential and parallel pro-
cessing participate other CPU instructions of varying execution time. What is
more,the most frequently used function max for SSE instruction is executed in
one processor cycle, while in case of sequential x86 instruction it consists of com-
parison and jump instructions. The use of vector processing helps to accelerate
the SA algorithm running from 5 to 10 times in single-path version. In case of
multipath versions the speedup is slightly smaller. The size of the speedup de-
pends on the number of machines. The smallest speedup is observed, e.g. for a
small number of machines and distant from the multiple of s = 8 (mt10c).



Parallel Simulated Annealing Algorithm for CFJSSP 611

Comparing the running time of single-path PSA algorithm and 4-path MPSA
algorithm it can be seen that the MPSA running time is on average by 1.3
(minimum 1.2) times longer than the SA time. I7 processor consists of 4 identical
cores, the MPSA algorithm performs exactly 4 times more computations than
the SA. In case of 8-track MPSA algorithm the running time is on average 1.7
times longer than the SA. In this case, we can see the beneficial effects of Hyper
Threading technology.

5.2 Assessment of Algorithms Efficiency

The aim of the second phase of research was to assess the quality of solutions
generated by PSA (single-path), PSA4 (4-paths) and PSA8 (8-paths) algorithms.
In assessing the quality the relative deviation was used for the cycle time of
solution πA generated by the A algorithm compared to the cycle time of the
best know solution π∗: Dev(A) = (τ(πA) − τ(π∗))/τ(π∗). The algorithm was
executed with the parameter rep = 20. Reference solutions π∗ were generated
by the PSA8 algorithm with rep = 50.

As a result of detailed analysis of the test results it was noted that for the
PSA single-walk algorithm deviation was 2.1% to 8.1%, 4.7% in average, PSA4
at the same time generates solutions with the value of Dev from 0% to 4.6%, in
average 2.1%. Solutions of PSA8 have an average coefficient of Dev = 1.3%.

In summary, the results show that the use of vector processing significantly
accelerates SA algorithm. In addition, the use of multiple-walk search yields a
significantly better solutions in the same time of calculations. The average value
of Dev for 4 and 8-path algorithms is more than 2 and almost 4 times smaller
than the Dev for single-walk algorithm, respectively.

6 Conclusions

The work is devoted to the scheduling of tasks in a cyclic flexible production
system. The paper presents new properties of the problem and the properties
characteristic of the cyclic manufacturing. Based on the theoretical properties,
a genuine method of the cycle time determination was proposed. Sequential and
parallel (based on vector processing) implementations were presented as well as
the analysis of the computational complexity of the proposed methodology.

As further research, parallel processing techniques are planned to be designed
for efficient calculations on modern computational units (GPU, HPC), equipped
with large number of cores.

References

1. Barnes, J.W., Chambers, J.B.: Flexible Job Shop Scheduling by tabu search, Grad-
uate program in operations research and industrial engineering, Technical Report
ORP 9609, University of Texas, Austin (1996)



612 W. Bożejko et al.

2. Bożejko, W., Uchroński, M., Wodecki, M.: Parallel hybrid metaheuristics for the
flexible job shop problem. Computers & Industrial Engineering 59, 323–333 (2010)

3. Bożejko, W., Uchroński, M., Wodecki, M.: The new golf neighborhood for the
flexible job shop problem. In: Proceedings of the ICCS 2010. Procedia Computer
Science, vol. 1, pp. 289–296. Elsevier (2010)

4. Bożejko, W.: On single-walk parallelization of the job shop problem solving algo-
rithms. Computers & Operations Research 39, 2258–2264 (2012)

5. Bożejko, W., Pempera, J., Smutnicki, C.: Parallel Tabu Search Algorithm for the
Hybrid Flow Shop Problem. Computers and Industrial Engineering 65, 466–474
(2013)

6. Brucker, P., Kampmeyer, T.: Cyclic job shop scheduling problems with blocking.
Annals of Operations Research 159, 161–181 (2008)

7. Grabowski, J., Skubalska, E., Smutnicki, C.: On Flow Shop Scheduling with Re-
lease and Due Dates to Minimize Maximum Lateness. Journal of the Operational
Research Society 34(7), 615–620 (1983)

8. Grabowski, J., Pempera, J.: New block properties for the permutation flow shop
problem with application in tabu search. Journal of Operational Research Soci-
ety 52, 210–220 (2001)

9. Hurink, E., Jurisch, B., Thole, M.: Tabu search for the job shop scheduling problem
with multi-purpose machine. Operations Research Spektrum 15, 205–215 (1994)

10. Jia, H.Z., Nee, A.Y.C., Fuh, J.Y.H., Zhang, Y.F.: A modified genetic algorithm for
distributed scheduling problems. International Journal of Intelligent Manufactur-
ing 14, 351–362 (2003)

11. Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multiobjective
evolutionary optimization for flexible job-shop scheduling problems. IEEE Trans-
actions on Systems, Man, and Cybernetics Part C 32(1), 1–13 (2002)

12. Kampmeyer, T.: Cyclic Scheduling Problems, Ph. D. Thesis, University Osnabrück
(2006)

13. Kechadi, M., Low, K.S., Goncalves, G.: Recurrent neural network approach
for cyclic job shop scheduling problem. Journal of Manufacturing Systems 32,
689–699 (2013)

14. Mastrolilli, M., Gambardella, L.M.: Effective neighborhood functions for the flexi-
ble job shop problem. Journal of Scheduling 3(1), 3–20 (2000)

15. Pempera, J., Smutnicki, C., Żelazny, D.: Optimizing bicriteria flow shop scheduling
problem by simulated annealing algorithm. Procedia Computer Science 18, 936–945
(2013)

16. Xia, W., Wu, Z.: An effective hybrid optimization approach for multi-objective
flexible job-shop scheduling problem. Computers and Industrial Engineering 48,
409–425 (2005)


	Parallel Simulated Annealing Algorithm for Cyclic Flexible Job Shop Scheduling Problem
	1 Introduction
	2 Cyclic Flexible Job Shop Scheduling Problem CFJSP
	3 Determination of the Cycle Time for the Sequence 
	4 Simulated Annealing Algorithm 
	5 Results of Computational Studies
	5.1 Assessment of Vector Processing Speedup
	5.2 Assessment of Algorithms Efficiency

	6 Conclusions
	References




